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Abstract
We prove that the family of graphs containing no cycle with exactly k-chords is y-bounded, for k large enough or
of form £(¢£ — 2) with £ > 3 an integer. This verifies (up to a finite number of values k) a conjecture of Aboulker

and Bousquet (2015).
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1. Introduction

The cliqgue number of a graph G, denoted w(G), is the size of its largest clique in G. The chromatic
number of G, denoted y(G), is the minimum number of colours in a proper vertex-colouring of G,
which is a colouring of the vertices where adjacent vertices have distinct colours. It is easy to see that
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x(G) = w(G) for every graph G, but the converse is far from the truth. Indeed, the chromatic number
cannot be upper-bounded by a function of the clique number. This can be seen, for example, through
a construction due to Mycielski [13] that provides a family of triangle-free graphs whose chromatic
number is unbounded.

In 1987, Gyarfas [8] proposed to study families of graphs for which the chromatic number can
be upper-bounded in terms of the clique number. More precisely, Gyarfas called a family of graphs
G x-bounded if there is a function f such that y(G) < f(w(G)) forevery G € G.

For a graph F, denote by Forb(F) the family of graphs that contain no induced copy of F. This is a
particularly interesting class of graphs for studying y-boundedness, as it leads us to various examples
and conjectures. Namely, one may ask: for which graphs F is Forb(F)y-bounded? If F contains a
cycle, Forb(F) is not y-bounded; indeed, this follows from the existence of graphs with arbitrarily
large chromatic number and girth (where the girth of a graph is the length of its shortest cycle), due
to ErdGs [6]. Gyarfas proved [8] that Forb(F) is y-bounded when F is a path or a star. An intriguing
conjecture regarding y-boundedness, due to Gyarfas [7] and Sumner [16], asserts that Forb(F) is
x-bounded for every forest F. If true, this would solve the above question regarding graphs F for which
Forb(F) is y-bounded. The conjecture is known for some special cases, including all trees of radius 2
[9] and some trees of radius 3 [10], but is widely open in general.

For a graph F, denote by Forb*(F) the family of graphs that do not contain an induced copy of a
subdivision of F, where a subdivision of F is a graph obtained by replacing edges of F by internally
disjoint paths. Scott [15] proved the following weakening of the Gyarfds—Sumner conjecture: Forb* (F)
is y-bounded for every forest F. He also conjectured that Forb*(F) is y-bounded for every graph F, but
this turned out to be false [14, 4]. At the best of our knowledge, there seems to be no conjectured answer
to the question that asks for which graphs F is Forb™(F) y-bounded.

The fact that Forb*(F) C Forb(F) for every graph F makes it natural to consider an ‘interpolation’
between the two classes to ask an analogous question. More precisely, fix an edge subset E of F and
consider the class F of graphs that contain no induced copy of a graph obtained from F by only
subdividing the edges in E, while leaving the other edges unchanged. For example, taking F' to be the
graph obtained by adding a diagonal to a 4-cycle and letting E be set of edges in the cycle, the family
F obtained as above is the family of graphs that do not have a cycle with exactly one chord; given a
graph G, a chord in a cycle C in G is an edge that joins two vertices in C which are not adjacent in C.
Trotignon and Vuskovi¢ [19] showed that this family of graphs with no cycle with exactly one chord is
x-bounded (in fact, they give a detailed description of the structure of such graphs). Inspired by this,
Aboulker and Bousquet [ 1] suggested to study the family Cy of graphs that do not contain a cycle with
exactly k chords. They conjecture that Cy is y-bounded for every k > 1, and prove it for k € {2, 3}.
Note that [19] establishes the conjecture for k = 1. Our main result is to prove the Aboulker—Bousquet
conjecture for sufficiently large k.

Theorem 1.1. For every large enough k, ' there is a function f; such that, if G is a graph with no cycle
with exactly k chords, then x(G) < fi(w(G)).

A k-wheel is a cycle with an additional vertex that is adjacent to exactly k vertices in the cycle, and
a wheel is a 3-wheel. It is easy to see that a k-wheel contains a cycle with exactly ¢ chords, for any
€ < k — 2 (see Figure 1).

It is thus quite natural, given our discussion of graphs with cycles with a given number of chords,
to also consider graphs avoiding wheels. Trotignon [18] conjectured that the class of wheel-free graphs
is y-bounded. This conjecture is now known to be false (see Davies [5]), but a weaker version of it
was proved by Bousquet and Thomassé [3]; they showed that, for every integer ¢ > 1, the class of
graphs with no induced wheel or an induced K¢ ¢ is y-bounded. They also proved a similar result for
k-wheels, with an additional triangle-free requirement; namely, they showed that, for every ¢, the class
of graphs with no induced k-wheel, K¢ ¢ or triangle is y-bounded. Since a 2¢-cycle in K¢ ¢ has £(£ —2)

IConcretely, it suffices to take k > 1014,
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A T-wheel A cycle with four chords in a 7-wheel
Figure 1. Wheels.

chords, taking k = £(£ — 2) + 2 shows that the family of triangle-free graphs with no cycle with
exactly €(¢ — 2) chords is y-bounded. We strengthen the latter statement by removing the triangle-free
requirement.

Theorem 1.2. For every integer £ > 3 there is a function g¢ such that, if G is a graph with no cycles
with exactly €(€ — 2) chords, then x(G) < g¢(w(G)).

The proof of our main result, Theorem 1.1, is rather technical. We thus include also a proof of a
weaker result, allowing us to find, given large k£ and a graph whose chromatic number is much larger
than its clique number, a cycle with k’ chords, where k&’ € {k,k + 1,k + 2,k + 3}; see Theorem 6.1.
This proof already includes a lot of the main ideas that come into the proof of the main, exact result,
but avoids many of the technical difficulties.

In the next section, we give an outline of the proofs, focusing on the relatively simpler results
Theorems 1.2 and 6.1. After that, in Section 3, we define the basic notions that we shall need and
mention related observations. In Section 4 we show that, given an integer k > 1, graphs whose chromatic
number is much larger than their clique number either contain a large induced bipartite graph or a cycle
with exactly k chords. This will allow us to immediately deduce Theorem 1.2, and will also be a key
component in the proofs of Theorems 1.1 and 6.1. In Section 5 we provide two number theoretic lemmas,
related to Lagrange’s four square theorem. Finally, in Section 6 we prove the approximate version of our
main result, namely Theorem 6.1, and in Section 7 we prove the main result, Theorem 1.1.

2. Proof overview

The first step in our proof (accomplished in Section 4) proves the following: given positive integers £
and k, if G is a graph with large enough chromatic number in terms of a function of its clique number,
then it contains either an induced copy of K . or a cycle with exactly k chords (see Corollary 4.2).
Our proof of this result partly follows the proof of a related result due to Bousquet and Thomassé [3],
which asserts that, given ¢ and k, every graph with large enough chromatic number contains a triangle,
an induced K, ¢ or a k-wheel. Recall that every (k + 2)-wheel (defined before Figure 1) contains a
cycle with exactly k chords (see Figure 1). Bousquet-Thomassé’s result implies a weaker version of
our first step, where the graph G is assumed to be triangle-free. To avoid the triangle-free assumption,
we leverage the fact that cycles with a prescribed number of chords are easier to find than wheels. This
immediately implies our second main result, Theorem 1.2.

The next step connects to a classical result in number theory, which may be of independent interests.
Recall that Lagrange’s four square theorem asserts that every natural number can be expressed as the
sum of four integer squares. In Section 5, we prove two variants of this result. The first (Lemma 5.1)
shows that every large enough integer can be expressed as the sum of exactly 20 integer squares that are
all larger than a given constant. The second result, given in Lemma 5.2, is a similar statement, but here
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we aim to express a large number x as the sum of integers of the form a(a + 1), for large a. To achieve
this we require that x be divisible by 4 and we express it as a sum of 80 numbers of the aforementioned
form.

In Section 6, we prove an approximate version (Theorem 6.1) of our main result where instead of
finding a cycle with exactly k chords, we find a cycle whose number of chords isin {k, k+1, k+2, k +3}.
To do this, we first find, for some large £, many induced copies of K, with no edges between them,
by applying the first paragraph above several times. To find a cycle with the required number of chords,
we take paths of appropriate lengths in the copies of K¢ ¢, and join these by unimodal paths (unimodal
paths are a commonly used object in the study of y-boundedness; we will explain what they are in the
next section). A key point here is that the unimodal connections contribute O (Vk) chords (see Lemmas
6.4 and 6.5). To get the right number of chords, we apply one of the two number-theoretic lemmas from
the previous paragraph, depending on a certain parity condition. The case that requires the use of the
second lemma above is the reason why this approach yields only an approximate result.

In Section 7 we prove the exact version of our main result, Theorem 1.1. To achieve this we proceed
similarly to the paragraph above, but analyse much more carefully the interaction between the various
copies of Ky ¢; this leads to a rather technical proof. We will give an overview of this proof at the
beginning of Section 7.

3. Preliminaries

Recall that a chord in a cycle C is an edge joining two nonconsecutive vertices in C. Analogously, a
chord in a path P is an edge that joins two nonconsecutive vertices in P. It will be convenient to note
that, given a graph G and a cycle C, the number of chords in C is e(G[V(C)]) — |C|.

We now introduce the notions of extractions and unimodal paths, which are commonly used in the
study of y-boundedness. The motivation behind these notions is the following observation. For a graph
G, a vertex u and an integer i > 0, denote by N;(u) the set of vertices in G at distance exactly i from u.
For brevity, given a set of vertices U, we write y (U) to denote y (G[U]).

Observation 3.1. Let u be a vertex in a graph G. Then there is an integer i > 1 such that y (N;(u)) >
x(G)/2.

Proof. Let Uy = ;0 N2i(u) and let Uy = ;50 Nair1(u). Since there are no edges between distinct
Noi(u)’s, ¥ (Up) = max; o x (N2; (1)) In particular, there exists ig such that y (Up) = x(Na2i,(#)). By the
same argument, there exists 71 such that y (U;) = y(Na;,+1(u)). Since {Uy, U, } is a partition of V(G), we
have ¥ (G) < x(Uo)+x(U1) = x(Naiy (1)) +x (Nar, 1 (1)). Therefore, max{(Nag, (1), x (Najy 41 (1))} >
x(G)/2, as claimed. O

Trivially, every vertex in N; (u) has a ‘backward’ neighbour in N;_1 (). Let N<; (1) := Ug<j<; Ni(u).
By chasing the backward neighbours of two vertices x and y in N; (u) repeatedly until they first intersect
or have an edge between, we obtain a path between x and y in N<;(«) that is induced except the edge
xy, if it is an edge in G. If this path has length ¢, then the distance-j vertices, j < [£/2], from x or y are
in N;_ j (u)

Together with these paths, Observation 3.1 can be reformulated in a more systematic way. Namely,
every graph G has a subgraph G with the following properties:

o x(G1) 2 x(G)/2,

o every vertex in G has a neighbour in V(G) \ V(G),

o for every distinct pair of vertices x and y in G, there is a path P between x and y satisfying the
following: the path is induced except for the edge xy; the interior of P lies in V(G) \ V(G1); and the
vertices in P apart from x, y and their neighbours in P send no edges to V(G).

Such a subgraph G is called an extraction (or a 1-extraction) of G, and the path joining two vertices in
G with the above properties is called a unimodal path with respect to G .
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One can repeat this process to obtain a sequence Go = G 2 G; 2 ... 2 G, such that G; is an
extraction of G;_;. Such a sequence Go 2 ... 2 G, is called extractions and G, is a p-extraction of G.
The i-th layer of an extractions means V(G;_1) \ V(G;). We will often say that G, is a p-extraction of G
without specifying the corresponding sequence of extractions. Once a p-extraction G, of G is fixed, a
unimodal path in the i-th layer is a unimodal path with respect to G; with ends in G ,. This is an induced
path except for the edges between the ends in G, whose interior is contained in V(G;-1) \ V(G;).
Moreover, the vertices in P apart from the end vertices and their neighbours in the path send no edges
to V(G;). The following observation is immediate from the definitions, yet crucial for our arguments.

Observation 3.2. Let P and Q be unimodal paths in a p-extraction of a graph G in layers i and j,
respectively, with i < j. Then the vertices in P other than the end vertices and their neighbours in the
path send no edges to V(Q).

As a final piece of notation, given an index i € [0, p] and a vertex x in G;, an i-father of x is a
neighbour of x in V(G;-1) \ V(G;).

We close this section by mentioning the classical Kévari—-S6s—Turdn theorem, which we shall use
frequently in what follows. The theorem will allow us to find large complete bipartite graphs in bipartite
graphs with positive edge density.

Theorem 3.3 (K6vari—S6s—Turdn [12]). For every € > 0 and a positive integer €, there exists ng such
that the following holds: let G be a bipartite graph with a bipartition A U B such that |Al|, |B| = ny.
If G has at least €| A||B| edges, then G contains a copy of K¢ ¢.

4. Obtaining large complete bipartite graphs

The main purpose of this section is to prove the following theorem, which finds ‘large’ complete bipartite
graphs in graphs G with large chromatic number which have no cycle with exactly k chords.

Theorem 4.1. For every integers k, > 1, there exists a function g such that for every graph G one of
the following holds: x(G) < g(w(G)); G contains a Ky ¢; or G contains a cycle with exactly k chords.

The following corollary of the previous theorem finds induced copies of Ky ¢ in graphs G with large
chromatic number and no cycle with k chords.

Corollary 4.2. For every integers k,{ > 1 there exists a function h such that for every graph G one of
the following holds: x(G) < h(w(G)); G contains an induced K¢ ¢; or G contains a cycle with exactly
k chords.

Proof. Let gi ¢ be a function as in Theorem 4.1 for k and ¢. For each w > 1, we define Ay ¢(w) :=
gk..(w) for some L satisfying L > ¢, w. Now consider a graph G. By choice of hy ¢, one of the
following holds: x(G) < gk, (w(G)) = hi ¢(w(G)); G contains a Ky r; or G contains a cycle with
exactly k chords. In all but the second case, we are done, so suppose that G contains a K7, ; and denote
the corresponding bipartition by {A, B}. By Ramsey’s theorem and the choice of L, each of G[A] and
G [B] contain an independent set of size ¢. It follows that G contains an induced K¢ ¢, as required. O

Notice that this corollary immediately implies Theorem 1.2, using the observation that an induced
K ¢ contains a cycle with exactly £(¢ — 2) chords.

Before turning to the proof of Theorem 4.1, we mention two preliminary results. The first one, due
to Thomas and Wollan [17], shows that 10k-connected graphs are k-linked, namely one can join any k
pairs of vertices by pairwise vertex-disjoint paths. This improved on an earlier result of Bollobds and
Thomason [2].

Theorem 4.3 (Thomas—Wollan [17]). Let k > 0 and let G be a 10k-connected graph. For every set
of (not necessarily distinct) vertices x1,...,Xk, Y1, ..., Yk there exist paths Q1, ..., Q with pairwise
disjoint interiors, such that Q; has ends x;, y;.
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The second preliminary result, due to Kiihn and Osthus [11], allows us to find a subdivision of a
k-connected graph.

Theorem 4.4 (Kiihn—Osthus [11]). Let xy > «,{. Then for every graph G one of the following holds:
X (G) < x; G contains a Ky ¢; or G contains, as an induced subgraph, a 1-subdivision of a k-connected
graph H.

Recall that a 1-subdivision of a graph H is the graph obtained from H by replacing each edge uv
by a path uw,,, v, where the vertices w,,, are distinct. For brevity, denote by Hy, the 1-subdivision of a
graph H.

4.1. Finding a large complete bipartite graph

In the remainder of this section, we prove Theorem 4.1. To do so, we assume that we are given a graph
G with large chromatic number and which contains no large complete bipartite subgraphs. The starting
is Theorem 4.4 that says that under this assumption G contains an induced copy of a 1-subdivision
of a highly connected graph H. In fact, we may assume that this subdivision lies in a p-extraction
of G, for some large p. Our proof splits-off into two cases: either we can emulate the triangle-freeness
assumption that Bousquet and Thomassé [3] impose (when proving that every triangle-free graph with
large chromatic number contains either a large complete bipartite subgraph or a long wheel), or not. In
the former case our proof largely follows [3], and in the latter case we use the abundance of triangles to
construct a cycle with the right number of chords.

Throughout this section, we use the following setup. The parameters are chosen according to the
hierarchy

X>p>» >k > k> k{w.

Let G be a K ¢-free graph with y(G) = y and w(G) < w.Let G 2 G1 2 ... 2 G, be a sequence of
extractions, so that (G ,) > 277 y. We will show that G contains a cycle with exactly & chords.

By Theorem 4.4, there is a xk-connected graph H whose 1-subdivision Hg, is an induced subgraph
of G . Fix an induced copy of Hy, in G, and denote by sub(e) the vertex of the induced copy of Hy,
in G, that subdivides the edge e in H. We also identify vertices in H as corresponding vertices in the
copy of Hg, (and hence, in G ;). When considering a neighbour z of a vertex x in H, we say that z is an
H-neighbour of x to stress that the adjacency is not in the host graph G ,.

The following lemma allows us to deal with the case where at every vertex x in H, for many
H-neighbours z of x, sub(xz) has a common j-father with at least one of x and z.

Lemma 4.5. Suppose that every vertex x in H is incident with at least 2k edges e = xy in H such that
sub(e) has a common j-father with at least one of x and y, for at least k| indices j. Then G contains a
cycle with exactly k chords.

We postpone the proof of this lemma until the end of this section. In the light of Lemma 4.5, we may
assume that the particular structure described therein does not appear in the fixed copy of Hg, in G .
That is, there is a ‘special’ vertex x in H such that for all but at most 2k neighbours z of x in H the
following holds: for all but at most k; values of j, the vertex sub(xz) does not have a common j-father
with either x or z. Let Z be a set of k| neighbours of x in H that satisfy this property, that is, for z € Z,
there are at most 2k indices j such that sub(xz) has a common j-father with x or z.

Then all but at most 2k% values of j satisfy: for every z € Z, the vertex sub(xz) does not have a
common j-father with either x or z. Let J be the set of ‘good’ indices j that satisfy this property. In
particular, |J| > p — Zk%. The vertex x, set Z C Ny (x) and set J C [p] will be fixed throughout this
section. Let Y be the set of vertices in the fixed copy of Hg, in G, that are adjacent to x and some vertex
in Z, that is, Y := {sub(xz) : z € Z}. For y € Y, the extended neighbour ext(y) of y is the vertex z € Z
such that y = sub(xz). In particular, |Z| = |Y| = k;.
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Following the definition on page 7 of [3], a collection of unimodal paths Q with the set Y’ C Y of
endpoints is a-good for @ > 0 if the following conditions hold:

(G1) For every y € Y’, there exists a unique path Q € Q with the endpoint y and moreover, Q is the
only path that contains an edge incident with y.

(G2) Foreveryy € Y’, no vertex in any of the paths in Q contains a neighbour of the extended neighbour
ext(y) of y other than y itself.

(G3) For any distinct Q, Q” € Q, there is no edge between a father (in Q) of an endpoint in Q and a
father (in Q’) of an endpoint in Q’.

(G4) For every y € Y’ and every Q € Q, there are at most [N, (ext(y))| vertices in Ng, (ext(y))
that are adjacent to a vertex in Q.

We say that a collection of unimodal paths Q is independent if there are no edges between distinct
paths in Q. The following is a variant of the first part of (the proof of) Lemma 9 in [3].

Lemma 4.6. There is a i-good collection of unimodal paths Q of size at least ky in G.

Proof. Letk’, k”,cbesuchthatk; > k' > k" > ¢ > ky.Foreachy € Y and j € J, choose a j-father
of y and denote it by f;(y). We wish to find ‘large’ subsets Y’ C Y and J’ € J such that, for every
fixed j, the fathers f;(y) are distinct for y € ¥’. To this end, we construct sequences Y =Yy 2 ... 2 Y
and ji,...,j¢ € J recursively as follows: given Yp,...,Y; and ji,...,j, for r < ¢, if there exists
jeJ\{Jj1,...,j:} and asubset Y’ C Y; of size at least \/m such that f;(y) is the same forall y € Y,
define j,;4+; = j and Y;4; = Y’. Otherwise, stop the process.

Suppose first that jy, . . ., je and Y, are well-defined through the recursive process. Then f;(y) is the
same for all y € Yy, for every j € {ji,...,j¢}. Then {f;(y) : j € {j1,..., je}} is a set of size ¢ that
is fully joined to Y. Since |Y| > |Y|2_[ = (kl)z_c > ¢, there is a copy of K¢ ¢ in G, contradicting the
assumption that G is Ky ¢-free.

Now suppose that the process stops at the 7-th step for some ¢ < £ with the outputs jy, ..., j; and ;.
Let J' :=J\ {j1,...,j:}. Then for every j € J’, each element in the multiset { f;(y) : y € ¥;} repeats
at most +/|Y;| times. Since |Y;| > |Y|27[ = (kl)ﬂ > (k”")?, for every j € J’ there is a subset Y/ C Y,
of size k" such that f;(y) are distinct forall y € Y ]’ .Let Y’ C Y; be the most popular choice for ‘Y]f .By

averaging, Y] = Y’ for at least |J'|/(\|/Tt7||) > (p—k?—0)/25 > k’ indices j € J';let J” C J’ be a set

of size k’ such that ij =Y’ forevery j € J".

Let W := {f;(y) : y € Y',j € J”}. We claim that for every y € Y’ there are at most k’* elements
w € W such that w sends at least ¢ |Nh,, (ext(y))| edges to Ny, (ext(y)). Suppose to the contrary that
this is not the case for y € Y’. Write N := Ng_ (ext(y)) for brevity and let W’ be the set of vertices
w € W such that w sends at least $|N| edges to N satisfying |W’| > k”’. By Theorem 3.3, G[N, W’]?
contains a copy of K¢ ¢, a contradiction. Consider the set

1
{j €J”: forallz,y €Y', fj(z) sends at most E'Nbe (ext(y))| edges to Np,, (ext(y))}.
2

By the above statement, this set has size at least |J”’| — |Y’| - k" > k’ — (k”")? > kj. Let Jgna be a subset
of the above set of size k».

For every j € Jgnal, define a graph F; on vertices Y’ whose edges are pairs y;y, where y1, y> € Y’ are
distinct and one of the following holds: f;(y;) is adjacent to y3_; for some i € [2]; f;(y;) is adjacent to
ext(y3-;); or fj(y1) and f;(y2) are adjacent. By Ramsey’s theorem, the graph F' = (J;¢,, ., F; contains
either an independent set of size 2k, or a clique of size c. Assume the latter case and suppose that U is

2Here G [ A, B] denotes the bipartite induced subgraph, that is, we only take those edges that cross between A and B.
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a subset of Y’ of size ¢ that induces a clique. Then for some j € Jgna the graph F; has at least klz (lgl)
edges. Let U" :=U U {ext(y) : y € U} U {f;(y) : y € U}. Then, by definition of F},

e(GIU')) = e(F)) = k_2(|2|) S k_2(| i )

By Theorem 3.3, G[U’] contains a copy of K¢ ¢, a contradiction.
It remains to consider the case where F contains an independent set U of size 2k,. Write

U = {y1,...,Y2} and Jna = {Jj1,...,jk}. Let Q; be a unimodal path between f;, (y2;-1) and
fi:(y2i), fori € [k2]. By construction, one may easily check that {Q1,...,Qx,}isa i-good collection
of size at least k,. o

Recall that a k-wheel in a graph F is an induced cycle C along with an additional vertex that has at
least k neighbours in C. We note that a (k + 2)-wheel contains a cycle with exactly k chords. Indeed,
suppose that C is an induced cycle and v is a vertex (not in C) with at least k + 2 neighbours in C. Let
uo, . . ., Ugs+] be k +2 consecutive neighbours of u in C. Let P be the subpath in C that starts at ug, ends
in ug41 and contains the vertices uy, ..., ux, and let C’ be the cycle obtained by concatenating P and
the path uz.1vug. Then C’ is a cycle with exactly k chords; its chords are vuy, . . ., vug.

The following lemma obtains a collection of independent good paths from a collection of good paths.
We use this as a black box.

Lemma 4.7 (Lemma 17 in [3]). Let Q be an a-good collection of unimodal paths of size ky. If G is
k-wheel-free, then there exists an independent 2a-good collection of unimodal paths of size at least k.

The following lemma, together with the lemmas above, will complete the proof of Theorem 4.1.

Lemma 4.8 (Lemma 12 in [3]). If there is a collection of [k /2] independent (1/2k)-good unimodal
paths with endpoints in Ny, (x) for a vertex x in H, then the graph G has a k-wheel.

Proof of Theorem 4.1. Recall that, while assuming Lemma 4.5, the parameters are chosen according to
the hierarchy y > p > « > k| > k, > k,{, w. By Lemma 4.6, there is a collection Q that consists of
k> paths that are i-good. Then by Lemma 4.7, there is a collection of k; independent i-good paths;
however, Lemma 4.8 then finds a ko-wheel in G, and hence, a cycle with k chords. ]

4.2. Dealing with triangles

It remains to prove Lemma 4.5. The following lemma will be useful in the proof.

Lemma 4.9. Suppose that G does not have a cycle with exactly k chords. Then for every vertex u in G,
there exists a subset R C V(H) of at most 3(k + 1) vertices such that u does not have any edges to the
copy of (H\ R)g, in G.

Proof. Let X be the set of vertices in H that are neighbours of u in G. We claim that | X| < k+1. Suppose
to the contrary thatxy, . . ., xg, are distinct vertices in X. As H is k-connected with « > k, Theorem 4.3
guarantees that there exist pairwise internally vertex-disjoint paths Q1, . . ., Q42 such that each Q; ends
at x; and x;,1, where the addition of indices taken modulo k + 2. Let O be the path in the copy of Hy,
in G that corresponds to the 1-subdivision of Q;. Then by concatenating the paths Q1,..., 0} ,,, we
obtain an induced cycle in G that contains at least k£ + 2 neighbours of u. Then there exists a cycle with
exactly k chords, which contradicts the assumption.

Let M be a maximum matching in H such that, for each edge e in M, sub(e) is adjacent to u in G. Our
next claimis |M| < k+1. Suppose to the contrary that x| yy, . .., Xg+2Vr+2 are vertex-disjoint edges in M.
By using Theorem 4.3 as before, there exist vertex-disjoint paths Q1, ..., Qx in H\{x1y1,...,Xxs2Vk+2}
such that each Q; ends at y; and x;,1. Again, let Q] be the 1-subdivision of Q; in the copy of Hy, in G.
Then x; lei .. .xk+2yk+2Q;€ 4oX1 is an induced cycle in G that contains at least k + 2 neighbours of u,
which again yields a contradiction.

Take R = X UV(M). Then |R| < 3(k + 1) and u has no neighbours in (H \ R)g, as required. m]
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S fa fs f

Figure 2. Case 1: f; not adjacent to y;.

Proof of Lemma 4.5. Let k3, k4 be such that Let k; > k, > k3 > k4 > w > k. Say that an edge
e = xy of H is triangulated if sub(e) and at least one of x and y have a common j-father, for at least &
indices j. Then every vertex in H is incident with at least 2k; triangulated edges and hence, there is a
matching M; in H that consists of k; triangulated edges.

For each e € M let x(e) and y(e) be the two ends of e, let f(e) be a j(e)-father of sub(e)
which is adjacent to x(e) or y(e), so that the indices j(e) are all distinct for e € M. Let U be the set
{f(e) : e € My};then |U| = k. Since k| > k;, w and Gis K, -free, the set U contains an independent
set of size k. Let M, be a submatching of M; of size k, such that { f(e) : e € M} is independent.

Let F be the auxiliary graph whose vertices are the edges of M,, where e e is an edge in F whenever
f(e3—;) is adjacent to at least one of sub(e;), x(e;) and y(e;) for some i € [2]. By Lemma 4.9, the vertex
sub(e) is adjacent to at most 3(k + 1) vertices in the copy of Hy, in G, for every e € M. In particular,
every e € M, has neighbours in at most 3(k + 1) of the sets {sub(e’),x(e’), y(e’)} with e’ € M;. Thus,
F has at most 3(k + 1)|F| edges. Turdn’s theorem then implies that F' contains an independent set of
size at least |F|/6(k + 1) > k3. Let M3 be a submatching of M, of size k3 that forms an independent set
in F. That is, for every distinct e, e’ € M3, f(e) is not adjacent to any sub(e’), x(e’) or y(e’).

Foreach e € M3, let R(e) be aset of vertices in H of size at most 3(k+1) such thatx(e”), y(e’) ¢ R(e)
for all ¢’ € M3 and f(e) has no neighbours in (H \ R(e))sp except for possibly sub(e), x(e) and y(e);
the existence of such a set is guaranteed by the choice of M3 and by Lemma 4.9.

We consider three cases. Throughout the case analysis, we abuse notation by writing e for the vertex
sub(e) for simplicity. Whenever we consider indexed edges ey, e, ..., we shall denote x; := x(e;),
yi = y(e;), fi == f(e;) and R; := R(e;). The 1-subdivision of a path Q; in H is denoted by Q’, and is
again a path in the copy of Hg,.

Case 1: there are k edges e € M3 such that f(e) is not adjacent to y(e).

Letey,...,ex € M3 be distinct edges such that f; is not adjacent to y; for i € [k] (by choice of M3
this means that f; is adjacent to x; for i € [k]). Let R := R; U ... U Ry. As H is x-connected, H \ R is
10k-connected and thus, by Theorem 4.3, there exist pairwise vertex-disjoint paths Q1,...,Qr in H\ R
such that Q; has ends y; and x;4; for i € [k], where the addition of indices is taken modulo k. Let C be
the cycle x; fie1y1Q] . .. Xk frex @ x1. Then C has exactly k chords, namely: xjey, ..., xgex.

Case 2: k is even and f(e) is adjacent to x(e) and y(e) for at least k/2 values of e in M3.

Write k = 2s. Let ey, ..., e; € M3 be distinct edges such that f; is adjacent to x; and y; for i € [s].
Let R := R} U...U Ry. As before, there exist pairwise vertex-disjoint paths Q1,...,Qs in H \ R
such that Q; has ends y; and x;;; for i € [s], where the addition of indices is taken modulo s. Then
x1f1e1y10] - .. Xs fsesysQgxy is a cycle in G with exactly k chords: xjey, ..., xses and fiy1,. .., fses.

Case 3: k is odd and f(e) is adjacent to x(e) and y(e) for at least k4 + 1 values of e in M3.
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Figure 3. Case 2: k even f; adjacent to x; and y;.

Note that if £ = 1 then f(e) x(e) e y(e) is a cycle with exactly one chord, for any e € M3 where f(e)
is adjacent to x(e) and y(e). We may thus assume that k > 3; write k = 2s — 1 with s > 1.

Let M4 be a submatching of M3 of size k4 that consists of edges e where f(e) is adjacent to y(e)
and j(e) > 1 (recall that M3 contains at most one edge ¢ with j(e) = 1). For each e € My, let g(e) be
a 1-father of f(e). Here the g(e)’s are not necessarily distinct. We claim that each g(e), with e € My,
is adjacent to at most k + 1 of the vertices f(e”) with ¢’ € My. Indeed, suppose that ey, ..., ex4 are
distinct edges in My such that each f;, with j € [s], is adjacent to g(e). As usual, we can find paths
O1,...,0k2in H\ (R(e1) U...U R(er42)) that are pairwise vertex-disjoint and Q; has ends y; and
xi41 fori € [k +2]. Then xlfllei .. .xk+2fk+2yk+2Q;(+2x1 is an induced cycle in G that contains at
least k + 2 neighbours of g(e). Thus, a cycle with exactly k chords exists.

Let F be the auxiliary graph on the edges in My, where e and e, form an edge if g(e3-;) is adjacent
to at least one of e;,x(e;), y(e;) and f(e;) for somei € [2]. By Lemma 4.9 and the previous paragraph,
each g(e), with e € My, is adjacent to at most 4k +4 vertices amongst {e’, x(e’), y(e’), f(e’) : e’ € My}.
Therefore, F has at most (4k + 4)|F| edges and thus, it has an independent set of size at least
|F|/(8k +4) > k4/(8k +4) > [k/2]. Let ey, ..., e, be distinct edges in M that form an independent
setin . Write g; := g(e;) and let R} be a set of at most 3(k + 1) vertices in H such that g; has no neigh-
bours in (H \ R!)s, except for possibly x;, y;, e;, and x;,y;,e; ¢ R for j € [s]. Such a set R! exists by
Lemma 4.9 and the fact that ¢;’s form an independent set in F. Observe that the g;’s are distinct (since g;
is adjacent to f; but not to f; with j € [s] \ {i}), and g; sends no edges to {x;,y;,e;, f;} for j #i. Let
R=R/U...URy UR{ U...UR;. Asusual, let Qy, ..., Qs be pairwise vertex-disjoint paths in H \ R
such that each Q; ends at y; and x;4;. Then the path leixzfzezyzQé o Xg—1 fs—1€5-1Ys—1Qs—1Xs has
exactly 2(s —2) = k —3 chords. Similarly, paths with exactly k —3 chords exist between any u € {x, y;}
and v € {x;s, y,}. To extend one such path to a cycle with exactly k chords, we need the following claim.

Claim 4.10. There exist paths P; and P such that P; has ends g; and one of x;,y; and
V(P;) C {x;i,yi,e: fi»gi}, fori € {1, s}, and P| and P have three chords in total.

Proof of the claim. Write x = x;,y = y;i, e =e;, f = fi, g = g; for some i € {1, s}, and let o be the
number of neighbours of g in {x, y, e}. We aim to show that there are paths P with verticesin {x, y, e, f, g}
whose ends are g and one of x, y satisfying the following requirements (separately, namely P varies).

(0) P has no chords, if o = 1;

(1) P has exactly one chord, if o # 1;
(2) P has exactly two chords;

(3) P has three chords, if o = 1.

By using this, Claim 4.10 easily follows. Indeed, unless o = 1 for both i = 1 and s, we can take one of
P and Pj to have one and two chords, respectively, using (2) and (1). Otherwise, we can take one to
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one chord no chords two chords one chord one chord
T e Y T e Y T e Y T e Y T e Y
f f f
g g g g g
two chords three chords two chords two chords
T e Y T e Y T e Y T e Y
f f
g g g g
c=20 c=1 o=2 c=3

Figure 4. Proof of Claim 4.10.

have no chords and the other to have three, using (0) and (3). To show that paths P that satisfies (0)—(3)
exist, we consider the four possible values of o .

o o =0.For (1) take P = gfey, and for (2) take P = g fxey.

o o = 1. Without loss of generality, g is not adjacent to x. For (0), (2), and (3), take P = gfx,
P =gfey,and P = gfxey, respectively.

o o = 2. Without loss of generality, g is adjacent to x. For (1) and (2), take P = gxey and P = gfey,
respectively.

o o =3.For (1) and (2), take P = gey and P = gxey, respectively. ]

Let Py and P, be as in Claim 4.10. Without loss of generality, we may assume that y; is an end of
P and x5 is an end of Ps. Let P be a unimodal path with ends g; and gs. Then the interior of P sends
no edges to the copy of Hy, or {f1, ... fs}, since each g; is a 1-father of f;’s, whereas the f;’s and the
copy of Hg are in G;. Finally, augmenting the path y,Q1x2f2€220) ... Xs-1 fs-1€5-1y5-10_ X5 by
adding the path x;P;gsPg1 Py gives a cycle with exactly k chords. ]

5. Number theory lemmas

In this section we prove two results which are variants of Lagrange’s four-square theorem, which asserts
that every positive integer can be written as the sum of at most four integer squares.

Lemma 5.1. For every c, every large enough k can be written as a sum of exactly 20 squares larger
than c?.

Proof. Given a non-negative integer x, let f(x) = x> +2500c¢? + (4c + 1). We first claim that for every
integer x > 0, the number f (x) can be written as the sum of exactly five squares larger than ¢2. If x > c,
this follows by writing

F(x) = x2+ (300)% + (24¢)? + (32¢)% + (4c + 1),
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three chords in total

P
Figure 5. Case 3: odd k and f; adjacent to x; and y;.

If x < ¢ and x is even, we have

50c +x 2+2 50c — x
2 2

2
f(x) =2( ) +(4c+1)2,

which readily implies that f(x) is the sum of five squares larger than ¢2. Finally, if x < ¢ and x is odd,
we use the following equality to reach the same conclusion.

2 2
x2+(4c+1)2=2(4”%) +2(¥) .

Let € := k — 4(2500c* + (4c + 1)?) and suppose that k is large enough so that £ > 0. By the
four-square theorem, there exist non-negative integers xi,...,x4 such that £ = x% + x% + x% + xi.
Equivalently,

k = Z(xlz +2500¢% + (4c + 1)2) = if(xi).
i=1

i=1
By using the fact that each f(x;) is the sum of five squares larger than ¢, we conclude that k is the sum
of 20 squares larger than ¢, as required. O

Lemma 5.2. For every c, for every large enough k which is divisible by 4, there exist ay,...,agy = ¢
such that k = 3;cg0) @i(a; +1).

Proof. By Lemma 5.1, the integer k /4 can be written as the sum of twenty squares larger than (c + 1)

Write k/4 = %2°, x2, where x; > ¢ + 1. Then k = Y2, 4x2, that is, k is the sum of 20 even squares
larger than 4(c + 1)%. Observe now that every even square larger than 4(c + 1)? can be written as a sum
Z?zl aij(a; + 1) witha; > ¢, as 4a’> =2 - (a(a+1)+a(a—- 1)). Thus, k is a sum 2?21 a;(a; + 1) with

a; > c, as required. m]
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6. Proof of approximate result

The aim of this section is to prove the following result, that allows us to find a cycle of almost the required
number of chords, in any graph whose chromatic number is much larger than the clique number.

Theorem 6.1. Let k be large enough. Then there is a function f such that for every graph G either
x(G) < f(w(G)) or G has a cycle with exactly k' chords for some k' € {k,k+ 1,k +2,k +3}.

The proof relies on results from previous sections, as well as the following two lemmas. The next
lemma allows us to assume that there is a large collection of pairwise disjoint large induced balanced
bipartite subgraphs with no edges between them.

Lemma 6.2. Every graph G contains either { pairwise vertex-disjoint induced copies of K¢ ¢ with
no edges between them or an induced subgraph H with y(H) > x(G)/(2*) — 1 such that either
w(H) < w(G) orit is induced Ky ¢-free.

Proof. Let K, ..., K; be a maximal collection of pairwise vertex-disjoint induced copies of K, with
no edges between them; write K = V(K| U...UK;). We are done if ¢t > ¢, so suppose that ¢ < £. Notice
that one of the subgraphs G[N(v) U {v}] for some v € K or the graph G \ (K U N(K)) has chromatic
number at least y(G)/(2£%), since the union of these 2¢f + 1 graphs covers all the vertices in G and
20t +1 <202

Suppose first that some G [N (v) U{v}] has chromatic number at least y (G)/(2¢2). Then y (G[N(v)])
is at least y(G)/(2¢%) = 1 and w(G[N(v)]) < w(G), so we can take H := G[N(v)]. Otherwise, if
G \ (K UN(K)) has chromatic number at least y(G)/(2¢2), then H := G \ (K U N(K)) is induced
Ky ¢-free subgraph by maximality of ¢. O

The next lemma is the key ingredient in proving Theorem 6.1, whose proof will be given in Section 6.2.

Lemma 6.3. Let £ > k > 1,3 and let p > 300. In a p-extraction of a graph G, suppose that there are
101 induced copies of K¢ ¢ with no edges between them. Then there is a cycle with k' chords, for some
k" e{k,k+1,k+2,k+3}

We now prove Theorem 6.1 by using the previous lemmas.

Proof of Theorem 6.1. We prove by induction on w that there exists f(w) such that, for a graph
G with clique number w, if ¥(G) > f(w) then G has a cycle with exactly k’ chords for some
k" e {k,k+1,k+2,k+3} Forw =1, we can take f(1) = 2, for which the statement is vacuously true
as there are no graphs with clique number 1 and chromatic number at least 2.

Suppose that for wg > 1, f(w) is defined for w < wy so that the above statement holds. Let p and £
be sufficiently large, for example, p > 300 and £ > 2°%V/k, and let g be a function as in Corollary 4.2
for k and £; namely, if ¥ (G) > g(w(G)) then G contains either an induced K/ ¢ or a cycle with exactly k
chords. Now set f(wo+1) = 2P*1£2- (max{g(wy), f(wo)} + 1). Consider a graph G with w(G) = wo+1
and y(G) > f(wp + 1). Our goal is to show that G contains a cycle with exactly k’ chords, for some
k" € {k,k+ 1,k +2,k+3}. Let G’ be a p-extracted graph of G. In particular, y(G’) > x(G)/2P.
By Lemma 6.2, one of the following three cases holds for G’.

(G1) there are ¢ pairwise vertex-disjoint induced copies of K¢ , with no edges between them,
(G2) there is an induced subgraph H C G’ with y(H) > y(G’)/(2¢?) — 1 and w(H) < w(G"),
(G3) there is an induced subgraph H C G’ with y (H) > x(G’)/(2¢*) — 1 which is K, ¢-free.

If (G2) holds, then y(H) > x(G)/(2P*'€?) = 1 > f(wo) and w(H) < wy. Thus, by the inductive
hypothesis, H contains a cycle with exactly k” chords, for some k” € {k,k + 1,k + 2, k + 3}.

If (G3) holds, then y (H) > x(G)/(2P*1¢?) =1 > g(wo). Since H is K, ¢-free in this case, by choice
of g there is a cycle with exactly k chords in H.

3concretely, it suffices to take k > 1012,
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Figure 6. Lemma 6.4.

We may now assume that (G1) holds. In particular, there are 101 copies of K¢, in H that are pairwise
vertex-disjoint with no edges between them. By Lemma 6.3, using the choice of G’ as a p-extraction
of G, there is a cycle in G with exactly k” chords, with k < k’ < k + 3. O

6.1. Few edges between unimodal paths

For the proof of Lemma 6.3, we need the following two lemmas that allow us to assume that there are
only few edges between two unimodal paths connected to a large induced balanced bipartite subgraph.

Lemma 6.4. Let £ > k, p > 1, and let K be an induced copy of K¢ ¢ in a p-extraction of a graph G.
If P is a unimodal path starting in K and u is a vertex outside of P with an edge into K \ V(P), then
either there is a cycle in G with exactly k chords or there are at most 8k edges from u to P.

Proof. Let x and y be the ends of P with x € V(K and let x~ and y~ be the unique neighbours of x and
y in P. By unimodality, vertices in K do not send any edges to P \ {x,x”,y, y”}. Let w be a neighbour
of u# in K distinct from x, which exists by the assumption on u.

Suppose that u sends more than 8Vk edges to P. Let Q be a path in K with ends x and w on 2a or
2a + 1 vertices, where a = | Vk — 2]. Let k’ be the number of chords in the path Q. Then k' is between
a’>-(2a-1)=(a-1)*and a(a + 1) — 2a = a® — a. In particular,

k> (a—1)%> (Vk-4)? > k - 8Vk.
Let k”” be the number of chords in the path uwQxx~. Then, as e ({x~,u},V(Q)) < 2(2a + 1),
k' =k'+ec({x",u},V(Q) -2 < a’+3a < (a+2)* < k.

Take b = k — k”,sothat 0 < b < 8Vk. Let P’ be the subpath of P that starts at x and ends at the
(b + 1)-th neighbour up, of u in P \ x. Then uwQxP’upu is a cycle with exactly k chords. m]

Lemma 6.5. Let £ > k > 1, p > 3, and let K and K’ be vertex-disjoint induced copies of K¢ ¢, with
no edges between them, in a p-extraction of a graph G. For a unimodal path P that starts in K and is
not in the last two layers, let u be a vertex with a neighbour w € K’ \ V(P). Then either there is a cycle
in G with exactly k chords, or u sends at most 30Vk edges to P.

Proof. Let x, y be the ends of P, where x € K, and let x~, y~ be the neighbours of x, y in P. Take z to
be any vertex in K other than x and take v to be any vertex in K’ on the opposite side to w. Let Q be a
unimodal path with ends z and v from a later layer than P and a different layer than u, and let z7, v~ be
the neighbours of z, v in Q, respectively. By choice of Q, there are no edges between P \ {x,x,y,y"}
and Q (see Observation 3.2).
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Figure 7. Lemma 06.5.

Suppose that there is no cycle with exactly k chords and that u has more than 30Vk neighbours in P.
By Lemma 6.4, there are at most 8Vk edges between x~ and Q and at most 8Vk edges between u and Q.
Let Q' be a path in K with ends x and z on either 2a or 2a + 1 vertices, where a = L\/% — 13]. Denote
by k’ the number of chords in the path R := uwvQzQ’xx", excluding the edge ux~ if it exists. Then

k' > #{chords in @’} > (a — 1)> > (Vk — 15)> > k — 30Vk.
As x7,z7,v™, and u are the only vertices in V(R) that may have neighbours in Q’,
k" < #{chordsin O’} + e ({x,z7,v,u},V(Q")) +ec({x ", u},V(Q)) +ec({x", 2, v ,v,u,w})
< (a2—a)+4.(2a+1)+16«/%+(§) < (a+4)*+16Vk < (Vk -9)* + 16Vk
=k-2Vk+81 <k,

where the last inequality follows from the assumption that & is large. Take b = k — k’, sothat 0 < b <
30Vk. Let P’ be the subpath of P that starts at x and ends at the (b+1)-th neighbour u;, of uin P\ {x, x™}.
Then, as there are no edges between P \ {x,x™,y,y"} and K, K’ or Q, the cycle uwvQzQ’xP upu has
exactly k chords. m}

6.2. Proof of Lemma 6.3

We now prove Lemma 6.3. Roughly speaking, the idea is to find many disjoint induced K¢ ¢’s with no
edges between them, and join them via unimodal paths, to obtain a cycle whose length we can control
by choosing subpaths of the K, ,’s of appropriate lengths. Variants of the arguments used in this proof
will appear in the following section.

Proof of Lemma 6.3. Let Ko, ..., K100 be a collection of vertex-disjoint induced copies of K¢ ¢ in the
p-extraction of G such that there are no edges across distinct copies. Denote the bipartition of K; by
{Ui,1,Ui2}. Let P; ; be vertex-disjoint unimodal paths from U; ; to Uy ;, fori € [100] and j € [2]. We
take all the unimodal paths from different layers that are not the last two. Let u; ; be the first internal
vertex on P; ; from K;, for each i € [100] and j € [2]. Denote by ul’J the unique neighbour of u; ;
in V(P; ;) N V(K;). That is, the end vertex of P; ; in K;. A vertex u is said to be complete (resp. anti-
complete) to U ; if it is adjacent to all (resp. none) of the vertices in U; ; \ {u;, j}, for i € [100] and
Jj e [2].
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Ui Ui Us 1 Uso

V11 V21

Figure 8. Part of the cycle C(ay, ..., ayn)-

We first claim that, by possibly shrinking ¢ to ¢’ = €/22%, we may assume that each u; ; is either
complete or anti-complete to Uy ;, for each i, s € [100] and j, ¢ € [2]. Foreachv € 1O(i(US 1V Us ),
write a 0-1 vector x,, € {0, 1}?% to encode its adjacency to u; ;- That is, the (i, j)-coordinate is 1 if
vu; j € E(G) and 0 otherwise. Then each Uy, \ {us,} can be partitioned into at most 22% subsets
according to the value of x,,. Replacing U ; by the largest amongst these subsets and adding u ; suffices
for our purpose.

Letv;,; be the firstinternal vertex on P; ; from Ko, and let v} be the unique vertex in V(P; ;) NV (Kp).
By using the same argument possibly shrinking ¢ even further we may assume that each v; ; is either
complete or anti-complete to Uy, for i, s € [100] and j,7 € [2].

Our plan is to make a cycle in the following way. We will choose integers ay, . . ., ajoo > 0, depending
on k and the structure we have just found. Starting from vi 1 € Up,1, we take Py ,; to reach ui L€ULL
then go through a path of length 2a; + 1 in K to reach ”1 , € U1 2. The journey goes back to Ky through
P1 2. Then we move to v2 | to iterate. After 100 iterations, we close the cycle by moving from V100 , to

1’1 by an edge.

Let us calculate how many chords exist in such a cycle, which we call C(ay, . .., ajoo) (note that the
number of chords depends only on ay, . . ., ajg0, and not on the choice of the paths in K; fori € [100], by
previous assumptions). Firstly, a (2a;+1)-edge pathin a copy of K, +1,4,+1 gives (a;+ 1)%-(2a;+1) = a?
chords and the path in Ky has at most 100? chords. Second, each u; j or v; ; that is complete to Uy ;
contributes a; chords (to U ; \ {u ,}), and there are at most 100% chords between vertices u;, jorv;;
and the path in K. Third, each u; ; or v; ; adjacent to uj ,, with (i, j) # (s,), contributes one chord.
Finally, there are at most 0(\/_ k) chords between internal vertices of P; ;s (by Lemmas 6.4 and 6.5,
because otherwise there is a cycle with exactly k chords and then, we are done). Overall, the cycle
C(ay,...,aj) has the following number of chords

s,t°

100 100

Za§+2tsas+0(\/%), (D
s=1

s=1
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where ¢, is the number of vertices u; ; or v; ; that are complete to Uy ; plus the number of vertices u; ;
or v; ; that are complete to U >, and O(Vk) is a function that only depends on the graph structure that
we have found, that is, the 101 induced K/ (’s and the unimodal paths in between.

In (1), the O(Vk) term and the terms ¢, with s € [100], are all fixed parameters, that is, they do not
depend on the choice of ay, ..., ajg. Also ty < 400 for each s € [100]. Thus, one may write (1) as

100

fo(k)+ ) (a3 +15a: 5), 2)

s=1

where f (k) = O(Vk) is a parameter depending on k and G, but not on ay, . . ., 1.

Among 1, ..., 00, at least 20 values are even, or at least 80 are odd. If the former happens, we may
assume ?1, . . ., to are the even numbers by relabelling the indices. Then, by Lemma 5.1, we can choose
b > 200 for s € [20], such that

20 20 t2
D=k —fe+ ) L
s=1 s=1

Indeed, large enough k guarantees the right-hand side is a large enough positive integer that can be
expressed as the sum of exactly 20 squares at least 200%. Now let a; = by — t,/2 for s € [20] and 0
otherwise (notice that a; > 200 — ¢,/2 > 0). Then the cycle C(ay,as, ..., ag) has exactly k chords,
since (2) becomes

100 20 2
folk)+ D (@ +t5a:s) = fg (k) + Z(bg - _) k.
s=1

s=1 4
Otherwise, there are at least 80 odd #’s, say 1, . . ., t30. Let r be the unique integer divisible by 4 such that
ro3<k-f (k)+§):t§_l <r
< G 2. 7 S
By our choice of t1, . . ., g9, (> — 1) /4 is an integer for each s € [80]. Lemma 5.2 then shows that, since

r is a large enough integer divisible by 4, there exist integers by > 300, for s € [80], such that

80
r=> by(by+1).
s=1

Now take ay = by — (ty — 1)/2 if s € [80] (so as = 300 — (t;, — 1)/2 > 0), and O otherwise. Then the
number k’ of chords in C(ay, as, . .., ap), using (2), is

100

K = fo(k)+ ) (a3 +15a)
s=1

80

= (k) + (b, 1) -

s=1

tg_l) 802

= fok)+r=)"
s=1

By our choice of r, k < k' < k + 3. Therefore, there is a cycle with exactly k&’ chords for some
k" € {k,k+1,k+2,k+3}, as required. ]
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7. Exact result

In this section we will prove Theorem 1.1, our main result. To do so, we will prove Lemma 7.7 below,
which asserts that if a p-extraction of a graph G contains ¢ pairwise disjoint induced copies of K ¢ with
no edges between them, where p,{ > k > 1, then there is a cycle with exactly k chords. Notice that
Theorem 1.1 can be deduced from this lemma, along with Corollary 4.2 and Lemma 6.2, following the
proof of Theorem 6.1 in Section 6 and replacing the call to Lemma 6.3 by a call to Lemma 7.7.

7.1. Overview of the proof

The basic idea for the proof of Lemma 7.7 is similar to that of Lemma 6.3. Given ¢ induced copies
Ki,...,K, of K¢, with no edges between them, we clean them up so that we can build cycles, taking
paths P; C K; and connecting them by unimodal paths, in such a way that the number of chords depends
only on the lengths of the P;’s. However, as seen in the previous section, in some cases a parity issue
may cause this strategy to fail to give the precise desired number of chords.

To fix this, when cleaning up the K;’s we take into account, for each vertex u in one of the K;’s and
each triple T = {1, j2, j3} of layers (with j; > j» > j3), a ji-father fi(u;T) of u, a jr-father fo(u;T)
of fi(u;T), and a js-father f3(u;T) of f>(u;T) (recall that in the previous section we considered just
one father of one vertex per K¢ ¢).

Lemma 7.2 allows us to assume that there are no edges between { f (u;T), fo(u;T), f3(u;T)} and
K;’s not containing u. An important step towards the proof of Lemma 7.2 is Lemma 7.1. The latter
lemma considers a case where there is a collection of 31 pairwise vertex-disjoint induced Ky ¢’s with
no edges between them, and a collection of 31 vertices that are each complete to each of these K, /’s,
or are each complete to one part of each K, , and anti-complete to the other. The proof of this lemma
follows the usual scheme of building a cycle and controlling the number of its chords by controlling the
number of vertices used from each Ky ¢. The proof here is, in fact, a bit simpler as instead of connecting
the K¢ ¢’s using unimodal paths we can use the 31 vertices.

With the above assumption at hand, namely that there are no edges between the set of parents
{filu;T), fo(u;T), f3(u; T)} and K;’s not containing u, we now wish to analyse the interaction between
any K; and the sets { f; (u;T) : u € K;}, j = 1,2, 3, for any fixed T This is done in Lemma 7.4. The full
statement of the lemma is quite long. In short, it allows us to assume that one of six cases holds, each
describing a concrete well-structured graph.

We then turn to the proof of Lemma 7.7, which is the main result of the section. By applying
Lemma 7.4 to sufficiently many triples of layers, we can assume that one of the six cases mentioned
above holds for enough K;’s and enough layers. In four of these cases (which we analyse simultaneously),
we build the cycles as usual and can reach the desired number of chords without encountering parity
issues. In the remaining two cases, we require a few small gadgets to adjust the number of chords in
case of a parity issue.

7.2. Removing cross edges

As mentioned above, our first step towards Lemma 7.7 is Lemma 7.2 which allows us to assume that,
given a collection of induced K¢ ,’s with no edges between them, there are no edges between parents of
one copy of K, , and any other copy of K, .. Before proving Lemma 7.2, we prove the following lemma
which considers the other extreme, where there are many ‘well-connected’ vertices that are each fully
joined to at least one part of each such K¢ .

The proof is similar to other proofs in this paper, where we build a cycle using paths from each K¢ ¢.
However, instead of using unimodal paths to connect these paths, we use the well-connected vertices,
which simplifies the proof.

Lemma 7.1. Let £ > k > 1. In a graph G, suppose that K1, ..., K31 are pairwise vertex-disjoint
induced copies of K¢ ¢ with no edges between them. Denote by {U; 1,U; 2} the bipartition of K;. Let X
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a;+1 a3+1

T ) T3 Ty

Figure 9. Part of the cycle C in Case (a).

be set of 31 vertices such that one of the following holds:

(a) every x € X is complete to K;, fori € [31] or
(b) every x € X is complete to U; 1 and anti-complete to U; 3, for i € [31].

Then there is a cycle in G with exactly k chords.

Proof. Suppose first that (a) is the case. Let x1,...,xp0 € X be distinct. Let x be the number of edges
in the induced subgraph G[{xy,...,x2}]. For non-negative integers ay, ..., ax, let Q; be a path in
K; of length 2a; + 1. Then each x; is adjacent to the ends of Q; for i, j € [20]. Let C to be the cycle
x101x2 ... x20020X1.

We now wish to count the number of chords in C, which only depends on ay, . . ., ayo and x. First, by
counting the edges induced on V(Q;), the edges from x; to Q ;, and the edges induced on {xi,...,x20},
the number of edges with both ends in V(C) is

20 2

0
Z(a,- +1)2 +Zzo 2a; + 1) +x,

i=1 i=1

whereas the length of the cycle is 2?21 (2a; + 3). Subtracting the cycle length from the number of edges
induced on V(C), the number of chords equals to

20 20

Z(a% +40a; +38) +x = Z(ai +20)2 +x —c,

i=1 i=1

where ¢ = 20- (400 — 38). By using Lemma 5.1 for large enough k, there exist integers by, . .., byy > 20
such that 3.2%, b? = k — x + c. Given such by, ..., by, take a; = b; — 20 for i € [20]. Then the cycle C
has exactly k chords, as required.

Suppose now that (b) happens. Let x1,...,x2; € X be distinct. Let x be the number of edges in the
induced subgraph G[{xi,...,x20}]. Given integers a,...,a = 0, let Q; be a path in K; of length
2a;, with both ends in U; ;. Let C be the cycle x;Q1x7 . . . x21 Q21 X].

Then the number of edges with both ends in the cycle C is

21

21
Zai(ai +1) +221(ai +1) +x,

i=1 i=1
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Uia Uip Us Us Usa Us o

a1—|—1

T T2 T3 Ly
Figure 10. Part of the cycle C in Case (b).

where the length of the cycle is Z?:ll (2a; +2). Thus, the number of chords in C, obtained by subtracting
the number of the C-edges from the number of induced edges on V(C), is

21 21
Z(a% +20a; +19) +x = Z(ai +10)2 +x —c,
i=1 i=1

where ¢ = 21-(100-19). Again by Lemma 5.1, there exist by, . . ., by > 10suchthat 322, b2 = k—x+c.

Given such by, . .., by, choosing a; = b; — 10 yields a cycle C with exactly k chords. O

The next lemma allows us to assume that there is a collection of many disjoint induced K, ’s with no
edges between them, such that for many triples of layers T = {j; > j» > j3} and every vertex u in one
of these Ky ’s, there are no edges between {fi(u;T), f>»(u;T), f3(u;T)} and K¢ ¢’s not containing u
(where f1(u;T) is a ji-father of u, f>(u;T) is a jo-father of fi(u;T), f3(u;T) is a j3-father of f>(u;T),
and T = {j1 > j2 > j3}).

Roughly speaking, to prove this lemma we choose a collection {f(u;T), fo(u;T), f3(u;T)} for
each u and 7. We then clean up the K, /’s using Ramsey’s theorem to assume that each f;(u;T) is
either complete or anti-complete to each part of each K/ ¢. Finally, using the previous lemma we may
assume that for the vast majority of choices of u, T and K, ¢-copy K, there are no edges between
{fiu;T), fo(u;T), f3(u;T)} and K. The Kévari—Sés—Turdn theorem then allows us to find the required
structure.

Lemma7.2. Let p,{ > m > k > 1and let G, be a p-extraction of G. Suppose that, in G, Ky, ..., K¢
are pairwise vertex-disjoint induced copies of K¢ ¢ with no edges between them. Then either there is a
cycle with exactly k chords, or there exist a collection K7, ..., K, of pairwise vertex-disjoint induced
Kumm’s in G, and a subset J C [p] of m indices such that, for every triple T = {j1, j2, j3} € J with
J1> Jj2 > j3, every i € [m] and every u € V(K), there exist vertices fi(u;T), f2(u;T), f3(u;T) as
follows:

o fi(u;T) is a j-father of u,

o fo(u;T) is a jo-father of fi(u;T),

o f3(u;T) is a j3-father of f>(u;T),

o there are no edges between { fi(u;T), fr(u;T), f3(u;T)} and \Jgu; V(K).

Proof. We shall choose a, b,{’ with€,p > M > a> b > m > {' > k.Foreachu € K; U---UKp
and a triple T = {1, j2, j3} in [a] (with j; > j, > j3), choose f;(u;T), for i € [3], arbitrarily from
those vertices such that fj(u; T) is a ji-father of u and f; (u; T) is a j;-father of f;_; (u; T) fori € {2, 3}.
Let F(u) be the collection of all f;(u;T) chosen.
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Let {X;,Y;} be the bipartition of K;. We claim that for i € [b] we can find subsets X/ C X; and
Y/ C Y; of size mso that forallu € X/ UY/ and j # i, each v € F(u) is either complete or anti-complete
to X J’ and either complete or anti-complete to Y]f .

This can be done by an analogous technique to the one used in the proof of Lemma 6.3. Namely,
for a vertex w and a set Z, let x(w, Z) € {0, 1}% be the 0-1 vector that encodes the adjacency between
vertices in Z and w. That is, the corresponding coordinate to v € Z is 1 if w and v are adjacent and
0 otherwise. Then one can partition X; (resp. Y;) according to the values of x(w, Z) with w € X;
(resp. X;). By choosing the largest subset in the partition, we have subsets X/ C X; and ¥/ C ¥; such
that [X/| > 271211 x;] and [Y/| = 2-121]y;|, and each z € Z is either complete or anti-complete to each
weX uY.

First, choose arbitrary subsets X} C X and ¥} C ¥}, with |X}| = |V}| = M. Then for eachi < b, it
is possible to choose Xt.l C X; and Yi1 C Y; of size M such that each vertex v € F(u), withu € X]1 v Yjl
and j > i, is either complete or anti-complete to Xl.1 U Yl.1 (indeed, the previous paragraph tells us that

there exist such subsets of size at least £ - 279°PM > pp ).

Next, we repeat in the reverse order. That is, starting with i = 1, we choose subsets Xl’ C Xl.1 and
Y! c Yl.1 of size m such that each vertex v € F(u), withu € X j’ v Y]f and j < i, is either complete
or anti-complete to X/ U Y/ (this is possible since we are guaranteed such subsets of size at least
M .2-abm > m). The sets X/ and Y/ satisfy the requirements.

We then collect all “fathers’ v € F'(u) for some u € X/ UY/. Thatis, we set F := Uf’zl UueXi’UYi’ F(u).
Consider the auxiliary bipartite graph B between F and [b] where v € F and j € [b] are adjacent
whenever v is complete to X, or Y. Colour each edge (v, j) by red, blue, or green if v is complete to X’
only, Y * only, or both X U YL, /. respectively. By Lemma 7.1, if there is no cycle with exactly k chords,
then B contains no monochromatlc K¢ Since m > (', the blpartlte Ramsey Theorem tells us that
B contains no copy of K, ;. In particular, there are at most m(m) vertices f € F with degg(f) > m.
Since a > m(i) + m, we can choose a set J of m indices so that for j € J, all j-fathers f € F have
degp(f) < m. For each u € Uf.’:l X! UY/, let F'(u) € F(u) be the subset of fathers f;(u;T) with
i€{1,2,3}and T € (3). Note that |[F’(u)| < |J]* < m®.

Consider an auxiliary directed graph D on [b] where we join i to j if there is some u € X/ U Y/ and
v € F’(u) with v complete to X’ or Y’ As | Uuexluy/ F’ (u)| |X;uY/ |m3 = 2m* for each i and each
f € F’(u) is adjacent to at most m of the sets X Uy i, the digraph D has maximum out-degree at most

2m> < b /(2m+1). Therefore, D has an independent set I of size m. Letting K 1’ ,..., K}, bethe complete
bipartite graphs induced by X/ U Y/ fori € I, we get a set of complete bipartite graphs satisfying the
lemma. o

7.3. Analysing the structure of a complete bipartite subgraph and its parents

Our next task is to prove Lemma 7.4, which will be used to analyse the interaction between a complete
bipartite subgraph and its parents, ‘grandparents’ and ‘great-grandparents’.
The following simple lemma will be useful in what follows.

Lemma 7.3. Let G, be a bipartite graph on the bipartition A U B, where |A| = |B| = m, and let G,
be its subgraph. Suppose that dg,(a) > 1 for every a € A and dg,(b) < d for every b € B. Then
there exist A’ C A and B’ C B, such that |A’| = |B’| > m/4d* and each induced subgraph G;[A’, B'],
i =1,2, is a perfect matching.

Proof. Let A :={a € A : dg,(a) < 2d}. Then e(G,) < d|B| implies |A \ Ag| < e(G2)/2d < |B|/2 =
m/2 and hence, |Ag| > m/2. Let A” C Ay be a maximal subset such that there exists B’ C B such
that each G;[A’, B’], i = 1,2, induces a perfect matching. We claim that every vertex in Ay \ A’ has a
Go-neighbour in Ng,(A’). Indeed, if a € Ay \ A’ has no Gy-neighbour in Ng,(A’) then it has a
G -neighbour b € B\ Ng,(A’), which makes each G;[A’ U{a}, B"U{b}],i = 1,2, a perfect matching.
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This contradicts the maximality of A”. Thus, Ay € Ng,(Ng,(A”)), which implies |Ag| < d|Ng,(A")| <
2d?|A’|. As |Ag| > m/2, |B’| = |A’| > m/4d?, as desired. O

Lemma 7.4. For € > w, let K be an induced copy of K¢ ¢ with bipartition X UY. Suppose that R, S, T
are pairwise disjoint sets outside K such that every vertex in K has a neighbour in R, every vertex in R has
a neighbour in S, and every vertex in S has a neighbour in T. Let U := RUSUT and ¢’ := log €/10000.

Then there exist sets X' and Y’ of size {’, each of which is contained in a different set amongst X and
Y, sets A, A’, A" C U, each of which contained in a different set amongst R, S, T, and vertices a,b € U
such that one of the following holds:

(K1) The vertex a is complete to X’ UY’.

(K2) The vertex a is complete to X' and anti-complete to Y’, and b is complete to Y’ and anti-complete
to X'.

(K3) Both the induced bipartite graphs G[A,X'| and G[A’,Y’] are perfect matchings, A is anti-
complete toY’, and A’ is anti-complete to X'.

(K4) The induced bipartite graph G[A, X'] is a perfect matching and A is complete to Y'.

(KS) The induced bipartite graph G[A, X'] is a perfect matching, A is anti-complete to Y’, A’ is anti-
complete to X' and either complete or anti-complete to Y’, every vertex in A has a neighbour in
A’, and b is complete to Y’ and anti-complete to X'.

(K6) Each component in G[A,A’,A”,X’] consists of four vertices u,u’,u’”’,x in A,A’,A”,X’,
respectively, such that all pairs in {u,u’,u", x}, except for possibly uu’, form edges. Additionally,
AUA’"U A" is anti-complete to Y’, and b is complete to Y' and anti-complete to X'.

Proof. We begin by proving the following claim.

Claim 7.5. Let ¢y := 51/7/10. There exist Ry, S1,T1 C U of size £y, each of which is contained in a
different set amongst R, S, T, Q| € X of size £y, and a vertex u; € U such that one of the following holds:

(a) The vertex u; is complete to Q.

(b) The vertex u; is complete to R and anti-complete to Q| and G[Q1, R;] induces a perfect matching.

(c) Every component in G[Q1, Ry, S1] is an induced path grs with ¢, r, s in Q1, Ry, S, respectively.

(d) Every component in G[Q1, R1,S1,T1] consists of four vertices g,r,s,t from Qy, Ry, S1,T1,
respectively, such that all pairs in {q, r, s, ¢} are edges, except for possibly rz.

Proof of the claim. We shall use £ = (10£y)” implicitly throughout the proof.

If a vertex in U has at least £y neighbours in X then we may take u; to be this vertex and Q1 to be a
set of £y of its neighbours in X, which satisfies (a). In this case, the sets R;, S1, 71 are chosen arbitrarily,
as they play no role in what follows. We may hence assume that every vertex in U sends at most £y edges
to X.

By Lemma 7.3, there are subsets Q(!) ¢ Q and R' € R with [Q(V| = |[R(V| > €/4€§ such that
G[0", RM] induces a perfect matching. For r € R, denote by ¢(r) the unique neighbour of r in
0", define r(g) similarly for each ¢ € Q1.

Suppose that there is a vertex u € S U T with at least 2£, neighbours in R™"). As u has at most £,
neighbours in Q, there are at least £y neighbours r of u such that ¢(r) is not adjacent to u. Let Ry € RV
be a set of ¢y such vertices r. Then taking Qy := {g(r) : r € Ry} and u; := u proves b. Thus, we may
assume that every vertex in S U T has at most 2£, neighbours in R,

Let SV C S be a set of size |[RV| such that each vertex in R‘) has a neighbour in SV, Let
G =G[R™,5M] and let G, be the bipartite graph on R™Y U SV where rs, r € R() and s € M is
an edge if s has a neighbour in {r, ¢(r)}. By Lemma 7.3, there exist subsets R® ¢ R() and §@ c s
with |S@| = |[R®| > |[RW |/36£§ > £/144¢2, such that G;[R®, §®] induces a perfect matching, for
i=1,2.

Let 0@ := {q(r) : r € R} and let r(s),s(r),q(s),s(g) be defined similarly as above for
s €SP re R and ¢ € QP. That is, r(s) is the unique neighbour of s in R?; g(s) is the
unique neighbour of r(s) in Q?; etc. Then each component in G[Q®, R, §?)] consists of vertices
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g.r.s with g € 0@, r € R®,5 € S such that gr and rs are edges. If gs is a nonedge for at
least half of the components, then ¢ holds. We may thus assume that gs is an edge for at least half
of the components, implying that there are subsets Q) ¢ 0@, R® ¢ R? and §® ¢ §?, with
0P| =|RP| =15 | > ¢/288¢*, such that G[QP), R, §O)] induces a K3-factor.

Suppose that u € T has at least 2£, neighbours in S . Let R; € S be a set of £y neighbours such
that ¢(s) is not a neighbour of u. Indeed, such a set exists because u has at most £y neighbours in Q3.
Then taking Q; := {g(s) : s € R} and u; := u makes b hold. We thus assume that every vertex in T
has at most 2£, neighbours in §).

Now Lemma 7.3 implies that there exist subsets Q*), R, §& 7®) of 03 RG) §G) T respec-
tively, which are of the same size at least |Q®[/100¢2 > ¢/28800¢S, such that each component in
G[OW,R®W, s T®] consists of vertices ¢, r, 5, t from Q, R, S, T, respectively, such that gr, gs, s, ts
are edges. If gt is a nonedge for at least half of the components, then c¢ holds by taking subsets of
Q(4) , 8@, T™ that induce 2-edge paths. Otherwise, d holds. O

An analogous claim that produces subsets Q», Ry, S2,7T> C Y and vertex u, also holds for Y. We
may hence fix the vertex sets Q;, R;, S;, T; and vertices u;, i = 1, 2, that satisfy the claim above and the
analogous statement for Y. We then proceed to further refine these subsets.

Claim 7.6. Let £; = log{y/100. There exist subset Q;,R;,S;,Ti' of Q;,R;,S;, T;, respectively, for
i = 1,2, which are of the same size £; and satisfy one of (the obvious analogues of) (a) to (d), and,

additionally, each of u;, R, S/, T is either complete or anti-complete to Q3_;, fori € [2].

Proof of the claim. For q € Q1, let r(q) be the unique neighbour of ¢ in R, assuming that one of b to
d holds; otherwise, choose r(g) arbitrarily (say, from Ry; it will play no role). Similarly, let s(g) be the
unique neighbour of r(g) in Sy, if one of ¢ and d holds, and let #(g) be the unique neighbour of s(g)
if d holds. For the cases when s(gq) or ¢(g) are not defined, we again choose them arbitrarily as they will
play no role. For g € Q,, we define r(g), s(q), t(q) analogously with respect to Q», R», S2, T».

We then consider an auxiliary edge-coloured complete bipartite graph H on Q1 U Q> as follows: for
q1 € Q1 and g, € Oy, colour g;g> by the 0-1 vector of length eight that encodes which of the pairs in
{g3-i} x{r(qi),s(qi),t(qi),u;} are edges in G or not, fori = 1, 2.

By the classical Kovari-Sés-Turan theorem, there exist subsets Q1 € Q1 and Q) C Q> of size
each, such that H[Q7], Q)] is monochromatic. Taking R := {r(q) : ¢ € O/}, S; = {s(q) : g € Q;}, and
T/ = {t(q) : q € Q}} proves the claim. O

For brevity, let us rename Q;, R/, S!,T/ to Q;, R;, S;, T;, respectively, fori = 1,2.
A simple (though somewhat tedious) case analysis now shows that one of (K1) to (K6) above holds
by using ¢; > log £/10000 = ¢’.

o Property (a) holds for i = 1, 2.
We claim that one of (K1) and (K2) holds. Indeed, take X’ := Q; and Y’ := Q5. If one of u; and u» is
complete to both Q; and Q, for some i € [2], then (K1) holds. Otherwise, taking a := u; and b := u,
makes (K2) hold.

o Property (a) holds for neither i = 1 nor 2.
We claim that one of (K3) and (K4) holds. Indeed, if R; is anti-complete to Q3_; for both i = 1 and
2, then (K3) holds by taking X’,Y’, A, A" to be Q1, Q2, Ry, Ry, respectively). Otherwise, without loss
of generality R is complete to Q», and (K4) holds by taking X’,Y’, A to be Q1, 0>, R;.

Without loss of generality, it remains to consider the case where property (a) holds for i = 2 but not for
i = 1. At every step of the following case analysis, we iteratively assume that the previous cases do not
hold.

o The vertex u; is complete to Q. Then (K1) holds.
o The set R is complete to Q. Then (K4) holds.
o Property (b) holds fori = 1.
Then (K5) holds: take X”,Y’, A, A’, b tobe Q1, Q2, Ry, {u1}, us.
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o Property (d) holds for i = 1.
Again (K5) holds: take X’,Y’, A, A’, b tobe Q1,Q2, Ry, S, us.

o Property (d) holds fori = 1.
Here we may assume that R;, S1, 77 are anti-complete to >, as otherwise (K4) holds. It follows that
(K6) holds: take X', Y’, A, A’, A”, b tobe Q1, 02, Ry, S1, T1, us, respectively. O

7.4. Finding a cycle with exactly k chords

Finally, we prove the following lemma, which finds a cycle with exactly k chords given a large collection
of pairwise vertex-disjoint K ¢’s with no edges between them. As mentioned previously, we will use a
similar approach to that used in the previous section and earlier in this section, connecting the K, ¢’s by
unimodal paths and closing a cycle by choosing a path of the right length from each K, .. The difference
here is the much more careful analysis of the interaction between a single K, ¢, and a collection of
parents, ‘grandparents’ and ‘great-grandparents’ of its vertices. This analysis will give rise to three
cases (the first corresponding to the first four cases in Lemma 7.4 and the last two each corresponding
to one of the last two cases in Lemma 7.4). In the last two cases we will sometimes need to adjust the
cycle lengths slightly. For that we build our cycle so as to contain certain small ‘gadgets’ that will allows
us to do so.

Lemma7.7. Let p, £ > k > 1. Suppose that, in a p-extraction of G, there are € pairwise vertex-disjoint
induced copies of K¢ ¢ with no edges between them. Then there is a cycle in G with exactly k chords.

Proof. Suppose that there is no cycle with exactly k chords. Let m satisfy p,£ > m > k. Then by
Lemma 7.2, there exist a collection K1, . . ., Kxp of pairwise vertex-disjoint copies of induced K, ,,;’s
in the p-extraction of G, a subset J C [p] of size 200 - 75 that satisfy: for every triple T = {j1, j2, j3}
in J with j; > j» > js3, every i € [200] and every u € Kj, there exist vertices fi(u;T), f>(u;T), and
f3(u; T) such that f; (u;T) is j,-father of f;_;(u;T), t = 1,2,3, where u = fy(u; T). Moreover, there
are no edges between { fi(u;T), fo(u;T), f3(u;T)} and Uy V(Ky). Let Sy, ..., 8200 C J be pairwise
disjoint subsets of size 75.

Fixi € [200] and let T}, . . ., Tps be disjoint triples that partition S;. Now repeatedly apply Lemma 7.4
twenty five times to each K;: at the beginning, let K = K; with the bipartition X l.(o) U Yi(O). At the j-th
iteration, we apply Lemma 7.4 with X = Xl.(j_l), Y = Yl.(’_w, R={fiwT;):uce Xl.(’_l) U Yi(j_l)},
S={fu;Tj) :ue Xi(r]) U Yl.("fl)} and T = {f3(u;Tj) :u € Xi(r]) U Yl.("fl)}. Denote the output of
the lemma by X'.,ij,Aj,A;.,A}’ and vertices aj, b;. Recall that either Xj’ C X and ij CcY,or Xj’ cY
and Y]f C X. In the former case, take Xl.(j ) = x ]’ and Yi(j ) -y J’ and otherwise take Xi(j ) = Y]f and
Yi(j) = XJ’ so that Xi(j) c Xl.(_ji and Yi(j) c Yl(_jl)

Notice that there exists L C [25] of size 3 such that the same case among (K1) to (K6) occurred
in all iterations indexed by L, and moreover either for all £ € L we have Xi(f) = X, or we always have

Xl.([) = Y/. We assume that Xl.('g) = X, for all ¢ € L; the other case can be handled analogously. We
consider three cases, as follows. For brevity, write X; = Xl.(25) and ¥; = Yi(zs); so X; and Y; are the
shrunken sets at the end of the 25 iterations, each of which has size at least (log(so) m)/100.4

(1) One of (K1) to (K4) occurred in all iterations indexed by L.
Let 1, ¢, € L be distinct. We choose vertices u; 1, u; 2, “;,1’ ul’.’2 as follows.
o (K1): Take u; 1 = apg, and u; o = ag,, so that u; | and u; » are complete to X; UY;; choose “;,1 €X;
and M:.,z €Y.
o (K2): Take u;,1 = ap, and u; o = by,, so that u; 1 is complete to X; and anti-complete to ¥; and
u;i 2 is complete to ¥; and anti-complete to X;; choose ”;,1 € X; and ”l",z €Y;.

“Here log([) x denotes £ compositions of logarithm, for example, log(z) x =loglog x.
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o (K3): Picku;, € X; andu;, €Y; arbltranly, and let u; | be the unique neighbour of u’ | in A,
and u; > to be the unique nelghbour of u , in A’2 Notice that u; ( is the unique nelghbour of u; ¢
in X; UY;, for s e [2].

o (K4): Let u; LT X; be distinct, and let u; ¢ be unique neighbour ofu ,in Ag, for s € [2].
Then u; s is complete to ¥; and u; _ is its only neighbour in X;, for s € [2]

Notice that u; 1, u; » belong to d1fferent layers with indices in §; and are anti-complete to X; for

J € [200] \ {i}.

(2) Case (K5) occurred in all cases indexed by L.

Write L = {{y, &, 63}. Let u!, U3 € X; be distinct and let u; ; be the unique neighbour of u;  in
Ay, for s € {1,3}. Take u; 4 to be a neighbour of u; 3 in A , take u; » = by, and choose u in e Y
Then

© uj1,...,u;4 belong to four distinct layers with indices in S; and are anti-complete to X; U Y},

for j € [200] \ {i}.
o u; and u; 3 are anti-complete to Y;, and ul’b is the unique neighbour of u; s in X;, for s € {1, 3}.
o u; o is complete to ¥; and anti-complete to X;.
o u; 4 is anti-complete to X; and either complete or anti-complete to Y;.
(3) Case (K6) occurred in all cases indexed by L.
erte L ={t,0,4}. Let ul U5 €X; be distinct and let u; ¢ be the unique neighbour of u in
Ag,, fors € {1,3}. Take u; 4 to be the unique neighbour of u; 3 in A’3 and u; 5 the unique nelghbour
of u; 4 in Ag. Finally, let u; » = bg, and pick ”;,2 € Y;. Then
© ujj,...,u;5 are in distinct layers with indices in §; and are anti-complete to X; U Y; for
j € [200] \ {i}.
”:,s is the unique neighbour of u; ¢ in X; and is anti-complete to ¥;, for s € {1, 3}.
u;i is complete to ¥; and anti- complete to X;.
u; 4 is a neighbour of u; 3 and u/ ; 3 and is anti-complete to (X; U\ {ul 3}
u; 5 is a neighbour of u’ ;3 and u; 4 and is anti-complete to (X; U\ {ul 3t

O O O O

Notice that one of the following holds: (1) holds for 20 values of i € [200]; (2) holds for 100 values of
€ [200]; or (3) holds for 80 values of i € [200]. We show how to find the desired cycle with k chords
in each of these cases separately.

Case (1) holds for at least 20 values of i € [200].

By relabelling the indices of the 200 copies of K, ,, if necessary, we may assume that (1) holds for
i € [20]. To construct a cycle with k chords, we need one more copy of K, ,,, so we shall use K3 too.
For simplicity, let Ko = K»; be the copy of K, », on Xo U Yy, where X = X1 and Yy = Y3;.

We want to take a set of distinct vertices w; ;, i € [20] and j € [2], where each w; ; is at the same
layer as u; ; and has a neighbour w; ij in K¢ which are all distinct too, and there are no edges between
Uierzo) (X UY)and {wl ,j -1 €[20],j € [2]}. Heretheindex j = 1,2 indicates w i1 € XO andw’ , € Yo,
as was done for u] i ’s. Indeed, this is possible since one can greedily take w’ i and wi d1s101nt from
the previous choices in Xy and Y, respectively, and let w; ; = f (w ;T) Where T is any triple whose
smallest index is the index of the layer containing u; ;. Let P; ; be a ummodal path between u; ; and
w; j, taken in the same layers as the two end vertices so that they are in different layers from the K;’s.

Given integers a7y, . .., @y, we define a cycle C(aj, ..., ay) as follows. Let Q; be the path from

L towiy fori € [20] (addition of indices taken modulo 20), obtained by concatenating the paths
wi lw, 1, Pi1, g, 1”, 1> i ul JUi 2, Pio, wi zwl 2W1+1 |» Where Q7 is a path in G[X;, Y;] with ends ”;,1
and u of length 2@, + 1. Now let Clay,.. a’zo) be the cycle obtained by concatenating Q1, . . ., Q20.

Whlle the cycle C(ay,...,az) is not uniquely defined, its number of chords depends only on
ai,...,a. To evaluate the number of chords in this cycle, Q] contributes (a; + D2 - Qaj+1) = al.z
chords; the number of chords with one end in {u; 1, u; 2} and one end in X; UY; is one of the four values
2(2a; + 1), 2a;, 0, and 2(a; + 1), depending on the four cases described in (1); there are at most 1202
chords with both ends in U;e[20), je[2]{Wi.j> w[f’j, u; j}; and we may assume that the number of chords
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Figure 11. The path Q; in Case (1).

with ends in U;epn01,jep2) V(Pi.j) is O(Vk) by Lemmas 6.4 and 6.5. Note that there are no chords
between distinct sets X; U Y;, between a set X; U Y; and {u; 1,u;2,w; 1,w;2} for distinct i, j € [20],
or between {u; 1,u; 2} and {w; 1, w’,. 1 Wj2s w}. ,}- In total, the number of chords is

fo)+ Y (P +20ia) = fo(k) + ) (@ +00)* = 0F) = hg(k) + Y (a;+ )

i€[20] i€[20] i€[20]

where oy € {0, 1,2} fori € [20], and fg (k) and hg (k) are functions that do not depend on a1, . . ., @y
and satisfy fg (k), hg (k) = O(Vk). By Lemma 5.1, there is a choice of integers 3 . . ., B0 > 2 such
that 3, ¢ 20 ,8? =k — hg(k). Acycle C(ay,...,ay) with a; = B; — 07 has k chords, as desired.

Case (2) holds for at least 100 values of i € [200].

Again by possible relabelling, we may assume that (2) holds for i € [100]. We also need an extra
copy, denoted by Ky, taken from K;, i > 100, on the bipartition Xo U Yp. Let w; ;, with i € [100] and
J € [4], satisfy the following w; j is at the same layer as u; ;; it is anti- complete to X; UY; fori € [100];
Wi has a neighbour w; i such that w} i€ Xo if j € {1, 3} and otherwise w; i€ Yp; and the vertices
Wi js l, It with j € [4] andi € [100], are all distinct. Indeed, such choices of w; ; and w} ;jare possible
since one can again take w; ; = fi(w] i -3 T) with any triple 7 whose smallest index is the index of the
layer containing u; j, while maintaining all wlf’ j being distinct.

Let P; ; be a unimodal path with ends u; ; and w; ; in the same layer as the end vertices, for each
i € [100] and j € [4]. Given positive integers ay, . . . , @199, we define acycle C(ay, . . . , a190) as follows.
Let Q; be the path from w’ to w; 411 (index addition taken modulo 100), obtained by concatenating
the paths w’ awits P ug, 1”1 - OF ul ioUi2s Pi, 2, Wi zwl 2w 3Wi3s Pi3, uisuia, Pig, wi 4wl 4Wl+1 15
where Q7 is apath inG[X, \{u 3} Y;] w1th ends u; ; and u and of length 2¢; +1. Let C(ay, . . ., @100)
be the cycle obtained by Concatenatmg Oi,.. Qmo

As above, the cycle C(a1, ..., ajg0) is not uniquely defined, but the number of its chords depends

only on ai,...,ap. Let us evaluate the number of chords precisely as follows: Q7 contributes al.z
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Figure 12. The path Q; in Case (2).

chords; the number of chords between {u; 1, ...,u; 4} and X; UY; is either @; or 2¢; + 1 depending on
how u; 4 connects to ¥; (either complete or anti-complete); there are at most 1200?% chords with ends in
Uieriooy, jefa {wi.j wlf’j, u;,j}; and we may assume that the number of chords in U, e[i001, jej4) V (Pi.j)

is O(Vk) by Lemmas 6.4 and 6.5. In total, the number of chords in the cycle is

folky+ ). (o} +aian),

i€[100]

where o € {1,2} and fg (k) = O(Vk). Here 0;’s and f (k) do not depend on a;’s.

Suppose that o; = 2 for at least 20 values of i € [100]; let I be a set of 20 such values of i. Set
a; = 1 fori € [100] \ I. Each «;, i € I, is not yet determined. Then the number of chords in a cycle
C(ay,...,ajq) reduces to

ha (k) + ) (ai+1)2,

iel

for some hg (k) = O(Vk) that does not depend on ;’s with i € I. By Lemma 5.1, there exist integers
Bi, fori € I, such that B; > 2 and 3;c; 87 = k — hg (k). Set a; = B; — 1. The cycle C(a1, . . ., @100)
then has exactly k chords.

It remains to consider the case where o; = 1 for at least 80 values of i € [100]. Let I be a set of
80 values of i such that o; = 1. Set a; = 1 for i € [100] \ . Then the number of chords in the cycle

Clai,...,aip) is
ha (k) + ) (e} +a),
iel
where h (k) = O(Vk) is independent of the e;’s. Let T € {0, 1,2,3} be the remainder of k — hg (k)
modulo 4. Let Cr(ay,...,a100) be a cycle obtained by replacing an inner vertex of V(Q7) N X;
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Figure 13. The path Q; in Case (3).

by ulf,3, for 7 values of i. One can readily check that the number of chords in C;(ajy,..., @) is

hg(k) + T+ Xjier (a/l.2 +a@;)m as we gain the additional chord u; 3u’ ; for T values of i. Now, since
k — hg (k) — 7 is divisible by 4, Lemma 5.2 implies that there exist integers «;, i € I, such that @; > 1
and Y;¢; (a/i2 + ;) = k — hg(k) — 7. In particular, there is a cycle with exactly k chords.

Case (3) holds for at least 80 values of i € [200].

Without loss of generality, (3) holds for i € [80] and let Ko = K3; be another copy of K, ,,, on
Xy UYp. Analogously to the previous cases, choose w; ;,7 € [80] and j € [5], that satisfy the following
conditions: wl .j is in the same layer as u; ;; it is anti- complete to X; UY; for i € [80]; w; ; has a
nelghbour w! . such that w/ Lj € Xp for j € {1,3} and w/ ;€Y for j € {2,4,5}; and the vertices
Wi js Wi s w1thl € [80] and J € [5], are all distinct. As before such choices for w; ; and w} . exist.

One can find a path P; ; between u; ; and w; ; in the same layer as the two ends, for each i € [80]
and j € [5]. In fact, we do not make use of w; 4, wt’ 4 and P; 4, but we took them to preserve the
correspondence between indices.

Given positive integers a1, . . ., agy, we choose a cycle C%(ay, ..., agg) as follows. Let Q; be the
path from w; | to wi | (addition modulo 80), obtained by concatenating the paths w; wi 1, Pi1,
u;, 1"‘1 > OFs u! 2Ui2, P, wiaw! 2w’ Wi 3s Pi3, ui3u; gty s, Pis, wi 5W, 5 +1 1> Where Q7 is a path
in G[X; \ {u] 3} Y;] with ends u/ i, and u’ i » and of length 2a; + 1. Let Co(al, ..., ag) be the cycle
obtained by concatenating Q1, . .., Oso. For 7=1,2,3,letC"(ay,...,ag) be the cycle obtained from
C%ay, ..., as) by replacing one of the internal vertices of Q7 in X; by “;,3’ fori € [7].

The cycle C7 (ay, . . ., agy) for each o = 0, 1, 2, 3 is not necessarily unique, but all the choices have
the same number of chords. To verify, let us evaluate the number of chords in Co(al, ..., agp) first, as
follows: Q7 contributes al.z chords; there are exactly a; chords between {u; 1,...,u; 5} and X; U Y;, all
of which are incident to u; »; there are at most 12002 chords with ends in U,-G[SO]JE[S] {wij, wlf’j, ui it
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and we may assume that the number of chords in U;¢[s01, jes1 V(Pi.5) is O (Vk), by Lemmas 6.4 and

6.5. The cycle C7(ay, . . ., ago) has precisely 37 more chords than C0(ay, . .., agy), as u; 5 gives three
extra chords to u; 3, u; 4, and u; 5 (see Figure 13). The total number of chords in C* (e, . . ., agp) is hence

folky+ . (a +a;) +31,

i€[80]

where f (k) = O(Vk). Now choose 7 € {0, 1,2,3} to be such that 37 equals k — f¢ (k) modulo 4. By
Lemma 5.2, there exist positive integers a1, . .., aso, such that };c30) @i(@; + 1) = k — fg (k) — 37.
The cycle C7(ay, .. ., ago) has exactly k chords. ]

8. Conclusion

We showed that the family of graphs with no cycle with exactly & chords is y-bounded, for every integer
k which is either sufficiently large or of form k = £(£ — 2), where £ > 3 is an integer. This was already
known to hold for k € {1,2,3} (see [19, 1]). An obvious follow-up problem, which is a conjecture due
to Aboulker and Bousquet [1], would be to extend this to all k£ > 1.

Conjecture 8.1 (Aboulker—Bousquet [1]). For every k > 1 there is a function fi such that, if G is a
graph with no cycle with exactly k chords, then x(G) < fi(w(G)).

It would also be interesting to get a better understanding of whether graphs with small clique number
and large chromatic number contain cycles with k& chords that have some sort of further structure.
Whereas our proof essentially just produces a cycle with k chords, there are conjectures that it should be
possible to find more. A k-fan is defined as a path P with one additional vertex v added that has exactly
k neighbours on P. It is easy to see that k-fans contain a cycle with k — 2 chords. Thus the following
would be a strengthening of the results in this paper and of Conjecture 8.1.

Conjecture 8.2 (Davies [5]). Forevery k > 1 there is a function fy, such that, if G is a graph with k-fan,
then x(G) < fi(w(G)).

Currently, this conjecture is only known to hold for k = 1 (where it is equivalent to the ‘k = 1’ case
of Conjecture 8.1).
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