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Abstract
We prove that the family of graphs containing no cycle with exactly k-chords is 𝜒-bounded, for k large enough or
of form ℓ(ℓ − 2) with ℓ ≥ 3 an integer. This verifies (up to a finite number of values k) a conjecture of Aboulker
and Bousquet (2015).
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1. Introduction

The clique number of a graph G, denoted 𝜔(𝐺), is the size of its largest clique in G. The chromatic
number of G, denoted 𝜒(𝐺), is the minimum number of colours in a proper vertex-colouring of G,
which is a colouring of the vertices where adjacent vertices have distinct colours. It is easy to see that
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𝜒(𝐺) ≥ 𝜔(𝐺) for every graph G, but the converse is far from the truth. Indeed, the chromatic number
cannot be upper-bounded by a function of the clique number. This can be seen, for example, through
a construction due to Mycielski [13] that provides a family of triangle-free graphs whose chromatic
number is unbounded.

In 1987, Gyárfás [8] proposed to study families of graphs for which the chromatic number can
be upper-bounded in terms of the clique number. More precisely, Gyárfás called a family of graphs
G𝜒-bounded if there is a function f such that 𝜒(𝐺) ≤ 𝑓 (𝜔(𝐺)) for every 𝐺 ∈ G.

For a graph F, denote by Forb(𝐹) the family of graphs that contain no induced copy of F. This is a
particularly interesting class of graphs for studying 𝜒-boundedness, as it leads us to various examples
and conjectures. Namely, one may ask: for which graphs F is Forb(𝐹)𝜒-bounded? If F contains a
cycle, Forb(𝐹) is not 𝜒-bounded; indeed, this follows from the existence of graphs with arbitrarily
large chromatic number and girth (where the girth of a graph is the length of its shortest cycle), due
to Erdős [6]. Gyárfás proved [8] that Forb(𝐹) is 𝜒-bounded when F is a path or a star. An intriguing
conjecture regarding 𝜒-boundedness, due to Gyárfás [7] and Sumner [16], asserts that Forb(𝐹) is
𝜒-bounded for every forest F. If true, this would solve the above question regarding graphs F for which
Forb(𝐹) is 𝜒-bounded. The conjecture is known for some special cases, including all trees of radius 2
[9] and some trees of radius 3 [10], but is widely open in general.

For a graph F, denote by Forb∗(𝐹) the family of graphs that do not contain an induced copy of a
subdivision of F, where a subdivision of F is a graph obtained by replacing edges of F by internally
disjoint paths. Scott [15] proved the following weakening of the Gýarfás–Sumner conjecture: Forb∗(𝐹)
is 𝜒-bounded for every forest F. He also conjectured that Forb∗(𝐹) is 𝜒-bounded for every graph F, but
this turned out to be false [14, 4]. At the best of our knowledge, there seems to be no conjectured answer
to the question that asks for which graphs F is Forb∗(𝐹)𝜒-bounded.

The fact that Forb∗(𝐹) ⊆ Forb(𝐹) for every graph F makes it natural to consider an ‘interpolation’
between the two classes to ask an analogous question. More precisely, fix an edge subset E of F and
consider the class F of graphs that contain no induced copy of a graph obtained from F by only
subdividing the edges in E, while leaving the other edges unchanged. For example, taking F to be the
graph obtained by adding a diagonal to a 4-cycle and letting E be set of edges in the cycle, the family
F obtained as above is the family of graphs that do not have a cycle with exactly one chord; given a
graph G, a chord in a cycle C in G is an edge that joins two vertices in C which are not adjacent in C.
Trotignon and Vušković [19] showed that this family of graphs with no cycle with exactly one chord is
𝜒-bounded (in fact, they give a detailed description of the structure of such graphs). Inspired by this,
Aboulker and Bousquet [1] suggested to study the family C𝑘 of graphs that do not contain a cycle with
exactly k chords. They conjecture that C𝑘 is 𝜒-bounded for every 𝑘 ≥ 1, and prove it for 𝑘 ∈ {2, 3}.
Note that [19] establishes the conjecture for 𝑘 = 1. Our main result is to prove the Aboulker–Bousquet
conjecture for sufficiently large k.

Theorem 1.1. For every large enough k,1 there is a function 𝑓𝑘 such that, if G is a graph with no cycle
with exactly k chords, then 𝜒(𝐺) ≤ 𝑓𝑘 (𝜔(𝐺)).

A k-wheel is a cycle with an additional vertex that is adjacent to exactly k vertices in the cycle, and
a wheel is a 3-wheel. It is easy to see that a k-wheel contains a cycle with exactly ℓ chords, for any
ℓ ≤ 𝑘 − 2 (see Figure 1).

It is thus quite natural, given our discussion of graphs with cycles with a given number of chords,
to also consider graphs avoiding wheels. Trotignon [18] conjectured that the class of wheel-free graphs
is 𝜒-bounded. This conjecture is now known to be false (see Davies [5]), but a weaker version of it
was proved by Bousquet and Thomassé [3]; they showed that, for every integer ℓ ≥ 1, the class of
graphs with no induced wheel or an induced 𝐾ℓ,ℓ is 𝜒-bounded. They also proved a similar result for
k-wheels, with an additional triangle-free requirement; namely, they showed that, for every ℓ, the class
of graphs with no induced k-wheel, 𝐾ℓ,ℓ or triangle is 𝜒-bounded. Since a 2ℓ-cycle in 𝐾ℓ,ℓ has ℓ(ℓ − 2)

1Concretely, it suffices to take 𝑘 ≥ 1014.
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Figure 1. Wheels.

chords, taking 𝑘 = ℓ(ℓ − 2) + 2 shows that the family of triangle-free graphs with no cycle with
exactly ℓ(ℓ − 2) chords is 𝜒-bounded. We strengthen the latter statement by removing the triangle-free
requirement.

Theorem 1.2. For every integer ℓ ≥ 3 there is a function 𝑔ℓ such that, if G is a graph with no cycles
with exactly ℓ(ℓ − 2) chords, then 𝜒(𝐺) ≤ 𝑔ℓ (𝜔(𝐺)).

The proof of our main result, Theorem 1.1, is rather technical. We thus include also a proof of a
weaker result, allowing us to find, given large k and a graph whose chromatic number is much larger
than its clique number, a cycle with 𝑘 ′ chords, where 𝑘 ′ ∈ {𝑘, 𝑘 + 1, 𝑘 + 2, 𝑘 + 3}; see Theorem 6.1.
This proof already includes a lot of the main ideas that come into the proof of the main, exact result,
but avoids many of the technical difficulties.

In the next section, we give an outline of the proofs, focusing on the relatively simpler results
Theorems 1.2 and 6.1. After that, in Section 3, we define the basic notions that we shall need and
mention related observations. In Section 4 we show that, given an integer 𝑘 ≥ 1, graphs whose chromatic
number is much larger than their clique number either contain a large induced bipartite graph or a cycle
with exactly k chords. This will allow us to immediately deduce Theorem 1.2, and will also be a key
component in the proofs of Theorems 1.1 and 6.1. In Section 5 we provide two number theoretic lemmas,
related to Lagrange’s four square theorem. Finally, in Section 6 we prove the approximate version of our
main result, namely Theorem 6.1, and in Section 7 we prove the main result, Theorem 1.1.

2. Proof overview

The first step in our proof (accomplished in Section 4) proves the following: given positive integers ℓ
and k, if G is a graph with large enough chromatic number in terms of a function of its clique number,
then it contains either an induced copy of 𝐾ℓ,ℓ or a cycle with exactly k chords (see Corollary 4.2).
Our proof of this result partly follows the proof of a related result due to Bousquet and Thomassé [3],
which asserts that, given ℓ and k, every graph with large enough chromatic number contains a triangle,
an induced 𝐾ℓ,ℓ or a k-wheel. Recall that every (𝑘 + 2)-wheel (defined before Figure 1) contains a
cycle with exactly k chords (see Figure 1). Bousquet–Thomassé’s result implies a weaker version of
our first step, where the graph G is assumed to be triangle-free. To avoid the triangle-free assumption,
we leverage the fact that cycles with a prescribed number of chords are easier to find than wheels. This
immediately implies our second main result, Theorem 1.2.

The next step connects to a classical result in number theory, which may be of independent interests.
Recall that Lagrange’s four square theorem asserts that every natural number can be expressed as the
sum of four integer squares. In Section 5, we prove two variants of this result. The first (Lemma 5.1)
shows that every large enough integer can be expressed as the sum of exactly 20 integer squares that are
all larger than a given constant. The second result, given in Lemma 5.2, is a similar statement, but here
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we aim to express a large number x as the sum of integers of the form 𝑎(𝑎 + 1), for large a. To achieve
this we require that x be divisible by 4 and we express it as a sum of 80 numbers of the aforementioned
form.

In Section 6, we prove an approximate version (Theorem 6.1) of our main result where instead of
finding a cycle with exactly k chords, we find a cycle whose number of chords is in {𝑘, 𝑘 +1, 𝑘 +2, 𝑘 +3}.
To do this, we first find, for some large ℓ, many induced copies of 𝐾ℓ,ℓ with no edges between them,
by applying the first paragraph above several times. To find a cycle with the required number of chords,
we take paths of appropriate lengths in the copies of 𝐾ℓ,ℓ , and join these by unimodal paths (unimodal
paths are a commonly used object in the study of 𝜒-boundedness; we will explain what they are in the
next section). A key point here is that the unimodal connections contribute 𝑂 (

√
𝑘) chords (see Lemmas

6.4 and 6.5). To get the right number of chords, we apply one of the two number-theoretic lemmas from
the previous paragraph, depending on a certain parity condition. The case that requires the use of the
second lemma above is the reason why this approach yields only an approximate result.

In Section 7 we prove the exact version of our main result, Theorem 1.1. To achieve this we proceed
similarly to the paragraph above, but analyse much more carefully the interaction between the various
copies of 𝐾ℓ,ℓ ; this leads to a rather technical proof. We will give an overview of this proof at the
beginning of Section 7.

3. Preliminaries

Recall that a chord in a cycle C is an edge joining two nonconsecutive vertices in C. Analogously, a
chord in a path P is an edge that joins two nonconsecutive vertices in P. It will be convenient to note
that, given a graph G and a cycle C, the number of chords in C is 𝑒(𝐺 [𝑉 (𝐶)]) − |𝐶 |.

We now introduce the notions of extractions and unimodal paths, which are commonly used in the
study of 𝜒-boundedness. The motivation behind these notions is the following observation. For a graph
G, a vertex u and an integer 𝑖 ≥ 0, denote by 𝑁𝑖 (𝑢) the set of vertices in G at distance exactly i from u.
For brevity, given a set of vertices U, we write 𝜒(𝑈) to denote 𝜒(𝐺 [𝑈]).

Observation 3.1. Let u be a vertex in a graph G. Then there is an integer 𝑖 ≥ 1 such that 𝜒(𝑁𝑖 (𝑢)) ≥
𝜒(𝐺)/2.

Proof. Let 𝑈0 =
⋃
𝑖≥0 𝑁2𝑖 (𝑢) and let 𝑈1 =

⋃
𝑖≥0 𝑁2𝑖+1(𝑢). Since there are no edges between distinct

𝑁2𝑖 (𝑢)’s, 𝜒(𝑈0) = max𝑖≥0 𝜒(𝑁2𝑖 (𝑢)). In particular, there exists 𝑖0 such that 𝜒(𝑈0) = 𝜒(𝑁2𝑖0 (𝑢)). By the
same argument, there exists 𝑖1 such that 𝜒(𝑈1) = 𝜒(𝑁2𝑖1+1(𝑢)). Since {𝑈0,𝑈1} is a partition of𝑉 (𝐺), we
have 𝜒(𝐺) ≤ 𝜒(𝑈0)+𝜒(𝑈1) = 𝜒(𝑁2𝑖0 (𝑢))+𝜒(𝑁2𝑖1+1 (𝑢)). Therefore, max{𝜒(𝑁2𝑖0 (𝑢), 𝜒(𝑁2𝑖1+1 (𝑢))} ≥
𝜒(𝐺)/2, as claimed. �

Trivially, every vertex in 𝑁𝑖 (𝑢) has a ‘backward’ neighbour in 𝑁𝑖−1(𝑢). Let 𝑁≤𝑖 (𝑢) :=
⋃

0≤ 𝑗≤𝑖 𝑁𝑖 (𝑢).
By chasing the backward neighbours of two vertices x and y in 𝑁𝑖 (𝑢) repeatedly until they first intersect
or have an edge between, we obtain a path between x and y in 𝑁≤𝑖 (𝑢) that is induced except the edge
𝑥𝑦, if it is an edge in G. If this path has length ℓ, then the distance-j vertices, 𝑗 ≤ 	ℓ/2
, from x or y are
in 𝑁𝑖− 𝑗 (𝑢).

Together with these paths, Observation 3.1 can be reformulated in a more systematic way. Namely,
every graph G has a subgraph 𝐺1 with the following properties:

◦ 𝜒(𝐺1) ≥ 𝜒(𝐺)/2,
◦ every vertex in 𝐺1 has a neighbour in 𝑉 (𝐺) \𝑉 (𝐺1),
◦ for every distinct pair of vertices x and y in 𝐺1, there is a path P between x and y satisfying the

following: the path is induced except for the edge 𝑥𝑦; the interior of P lies in 𝑉 (𝐺) \𝑉 (𝐺1); and the
vertices in P apart from x, y and their neighbours in P send no edges to 𝑉 (𝐺1).

Such a subgraph 𝐺1 is called an extraction (or a 1-extraction) of G, and the path joining two vertices in
𝐺1 with the above properties is called a unimodal path with respect to 𝐺1.
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One can repeat this process to obtain a sequence 𝐺0 = 𝐺 ⊇ 𝐺1 ⊇ . . . ⊇ 𝐺 𝑝 such that 𝐺𝑖 is an
extraction of 𝐺𝑖−1. Such a sequence 𝐺0 ⊇ . . . ⊇ 𝐺 𝑝 is called extractions and 𝐺 𝑝 is a p-extraction of G.
The i-th layer of an extractions means𝑉 (𝐺𝑖−1) \𝑉 (𝐺𝑖). We will often say that 𝐺 𝑝 is a p-extraction of G
without specifying the corresponding sequence of extractions. Once a p-extraction 𝐺 𝑝 of G is fixed, a
unimodal path in the i-th layer is a unimodal path with respect to 𝐺𝑖 with ends in 𝐺 𝑝 . This is an induced
path except for the edges between the ends in 𝐺 𝑝 , whose interior is contained in 𝑉 (𝐺𝑖−1) \ 𝑉 (𝐺𝑖).
Moreover, the vertices in P apart from the end vertices and their neighbours in the path send no edges
to 𝑉 (𝐺𝑖). The following observation is immediate from the definitions, yet crucial for our arguments.

Observation 3.2. Let P and Q be unimodal paths in a p-extraction of a graph G in layers i and j,
respectively, with 𝑖 < 𝑗 . Then the vertices in P other than the end vertices and their neighbours in the
path send no edges to 𝑉 (𝑄).

As a final piece of notation, given an index 𝑖 ∈ [0, 𝑝] and a vertex x in 𝐺𝑖 , an i-father of x is a
neighbour of x in 𝑉 (𝐺𝑖−1) \𝑉 (𝐺𝑖).

We close this section by mentioning the classical Kővari–Sós–Turán theorem, which we shall use
frequently in what follows. The theorem will allow us to find large complete bipartite graphs in bipartite
graphs with positive edge density.

Theorem 3.3 (Kővári–Sós–Turán [12]). For every 𝜀 > 0 and a positive integer ℓ, there exists 𝑛0 such
that the following holds: let G be a bipartite graph with a bipartition 𝐴 ∪ 𝐵 such that |𝐴|, |𝐵 | ≥ 𝑛0.
If G has at least 𝜀 |𝐴| |𝐵 | edges, then G contains a copy of 𝐾ℓ,ℓ .

4. Obtaining large complete bipartite graphs

The main purpose of this section is to prove the following theorem, which finds ‘large’ complete bipartite
graphs in graphs G with large chromatic number which have no cycle with exactly k chords.

Theorem 4.1. For every integers 𝑘, ℓ ≥ 1, there exists a function g such that for every graph G one of
the following holds: 𝜒(𝐺) ≤ 𝑔(𝜔(𝐺)); G contains a 𝐾ℓ,ℓ; or G contains a cycle with exactly k chords.

The following corollary of the previous theorem finds induced copies of 𝐾ℓ,ℓ in graphs G with large
chromatic number and no cycle with k chords.

Corollary 4.2. For every integers 𝑘, ℓ ≥ 1 there exists a function h such that for every graph G one of
the following holds: 𝜒(𝐺) ≤ ℎ(𝜔(𝐺)); G contains an induced 𝐾ℓ,ℓ; or G contains a cycle with exactly
k chords.

Proof. Let 𝑔𝑘,ℓ be a function as in Theorem 4.1 for k and ℓ. For each 𝜔 ≥ 1, we define ℎ𝑘,ℓ (𝜔) :=
𝑔𝑘,𝐿 (𝜔) for some L satisfying 𝐿 
 ℓ, 𝜔. Now consider a graph G. By choice of ℎ𝑘,ℓ , one of the
following holds: 𝜒(𝐺) ≤ 𝑔𝑘,𝐿 (𝜔(𝐺)) = ℎ𝑘,ℓ (𝜔(𝐺)); G contains a 𝐾𝐿,𝐿 ; or G contains a cycle with
exactly k chords. In all but the second case, we are done, so suppose that G contains a 𝐾𝐿,𝐿 and denote
the corresponding bipartition by {𝐴, 𝐵}. By Ramsey’s theorem and the choice of L, each of 𝐺 [𝐴] and
𝐺 [𝐵] contain an independent set of size ℓ. It follows that G contains an induced 𝐾ℓ,ℓ , as required. �

Notice that this corollary immediately implies Theorem 1.2, using the observation that an induced
𝐾ℓ,ℓ contains a cycle with exactly ℓ(ℓ − 2) chords.

Before turning to the proof of Theorem 4.1, we mention two preliminary results. The first one, due
to Thomas and Wollan [17], shows that 10𝑘-connected graphs are k-linked, namely one can join any k
pairs of vertices by pairwise vertex-disjoint paths. This improved on an earlier result of Bollobás and
Thomason [2].

Theorem 4.3 (Thomas–Wollan [17]). Let 𝑘 ≥ 0 and let G be a 10𝑘-connected graph. For every set
of (not necessarily distinct) vertices 𝑥1, . . . , 𝑥𝑘 , 𝑦1, . . . , 𝑦𝑘 there exist paths 𝑄1, . . . , 𝑄𝑘 with pairwise
disjoint interiors, such that 𝑄𝑖 has ends 𝑥𝑖 , 𝑦𝑖 .
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The second preliminary result, due to Kühn and Osthus [11], allows us to find a subdivision of a
𝜅-connected graph.

Theorem 4.4 (Kühn–Osthus [11]). Let 𝜒 
 𝜅, ℓ. Then for every graph G one of the following holds:
𝜒(𝐺) ≤ 𝜒; G contains a 𝐾ℓ,ℓ; or G contains, as an induced subgraph, a 1-subdivision of a 𝜅-connected
graph H.

Recall that a 1-subdivision of a graph H is the graph obtained from H by replacing each edge 𝑢𝑣
by a path 𝑢𝑤𝑢𝑣𝑣, where the vertices 𝑤𝑢𝑣 are distinct. For brevity, denote by 𝐻sb the 1-subdivision of a
graph H.

4.1. Finding a large complete bipartite graph

In the remainder of this section, we prove Theorem 4.1. To do so, we assume that we are given a graph
G with large chromatic number and which contains no large complete bipartite subgraphs. The starting
is Theorem 4.4 that says that under this assumption G contains an induced copy of a 1-subdivision
of a highly connected graph H. In fact, we may assume that this subdivision lies in a p-extraction
of G, for some large p. Our proof splits-off into two cases: either we can emulate the triangle-freeness
assumption that Bousquet and Thomassé [3] impose (when proving that every triangle-free graph with
large chromatic number contains either a large complete bipartite subgraph or a long wheel), or not. In
the former case our proof largely follows [3], and in the latter case we use the abundance of triangles to
construct a cycle with the right number of chords.

Throughout this section, we use the following setup. The parameters are chosen according to the
hierarchy

𝜒 
 𝑝 
 𝜅 
 𝑘1 
 𝑘2 
 𝑘, ℓ, 𝜔.

Let G be a 𝐾ℓ,ℓ-free graph with 𝜒(𝐺) = 𝜒 and 𝜔(𝐺) ≤ 𝜔. Let 𝐺 ⊇ 𝐺1 ⊇ . . . ⊇ 𝐺 𝑝 be a sequence of
extractions, so that 𝜒(𝐺 𝑝) ≥ 2−𝑝𝜒. We will show that G contains a cycle with exactly k chords.

By Theorem 4.4, there is a 𝜅-connected graph H whose 1-subdivision 𝐻sb is an induced subgraph
of 𝐺 𝑝 . Fix an induced copy of 𝐻sb in 𝐺 𝑝 and denote by sub(𝑒) the vertex of the induced copy of 𝐻sb
in 𝐺 𝑝 that subdivides the edge e in H. We also identify vertices in H as corresponding vertices in the
copy of 𝐻sb (and hence, in 𝐺 𝑝). When considering a neighbour z of a vertex x in H, we say that z is an
H-neighbour of x to stress that the adjacency is not in the host graph 𝐺 𝑝 .

The following lemma allows us to deal with the case where at every vertex x in H, for many
H-neighbours z of x, sub(𝑥𝑧) has a common j-father with at least one of x and z.

Lemma 4.5. Suppose that every vertex x in H is incident with at least 2𝑘1 edges 𝑒 = 𝑥𝑦 in H such that
sub(𝑒) has a common j-father with at least one of x and y, for at least 𝑘1 indices j. Then G contains a
cycle with exactly k chords.

We postpone the proof of this lemma until the end of this section. In the light of Lemma 4.5, we may
assume that the particular structure described therein does not appear in the fixed copy of 𝐻sb in 𝐺 𝑝 .
That is, there is a ‘special’ vertex x in H such that for all but at most 2𝑘1 neighbours z of x in H the
following holds: for all but at most 𝑘1 values of j, the vertex sub(𝑥𝑧) does not have a common j-father
with either x or z. Let Z be a set of 𝑘1 neighbours of x in H that satisfy this property, that is, for 𝑧 ∈ 𝑍 ,
there are at most 2𝑘1 indices j such that sub(𝑥𝑧) has a common j-father with x or z.

Then all but at most 2𝑘2
1 values of j satisfy: for every 𝑧 ∈ 𝑍 , the vertex sub(𝑥𝑧) does not have a

common j-father with either x or z. Let J be the set of ‘good’ indices j that satisfy this property. In
particular, |𝐽 | ≥ 𝑝 − 2𝑘2

1. The vertex x, set 𝑍 ⊆ 𝑁𝐻 (𝑥) and set 𝐽 ⊆ [𝑝] will be fixed throughout this
section. Let Y be the set of vertices in the fixed copy of 𝐻sb in 𝐺 𝑝 that are adjacent to x and some vertex
in Z, that is, 𝑌 := {sub(𝑥𝑧) : 𝑧 ∈ 𝑍}. For 𝑦 ∈ 𝑌 , the extended neighbour ext(𝑦) of y is the vertex 𝑧 ∈ 𝑍
such that 𝑦 = sub(𝑥𝑧). In particular, |𝑍 | = |𝑌 | = 𝑘1.
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Following the definition on page 7 of [3], a collection of unimodal paths Q with the set 𝑌 ′ ⊆ 𝑌 of
endpoints is 𝛼-good for 𝛼 > 0 if the following conditions hold:

(G1) For every 𝑦 ∈ 𝑌 ′, there exists a unique path 𝑄 ∈ Q with the endpoint y and moreover, Q is the
only path that contains an edge incident with y.

(G2) For every 𝑦 ∈ 𝑌 ′, no vertex in any of the paths inQ contains a neighbour of the extended neighbour
ext(𝑦) of y other than y itself.

(G3) For any distinct 𝑄,𝑄 ′ ∈ Q, there is no edge between a father (in Q) of an endpoint in Q and a
father (in 𝑄 ′) of an endpoint in 𝑄 ′.

(G4) For every 𝑦 ∈ 𝑌 ′ and every 𝑄 ∈ Q, there are at most 𝛼 |𝑁𝐻sb (ext(𝑦)) | vertices in 𝑁𝐻sb (ext(𝑦))
that are adjacent to a vertex in Q.

We say that a collection of unimodal paths Q is independent if there are no edges between distinct
paths in Q. The following is a variant of the first part of (the proof of) Lemma 9 in [3].

Lemma 4.6. There is a 1
4𝑘2

-good collection of unimodal paths Q of size at least 𝑘2 in G.

Proof. Let 𝑘 ′, 𝑘 ′′, 𝑐 be such that 𝑘1 
 𝑘 ′ 
 𝑘 ′′ 
 𝑐 
 𝑘2. For each 𝑦 ∈ 𝑌 and 𝑗 ∈ 𝐽, choose a j-father
of y and denote it by 𝑓 𝑗 (𝑦). We wish to find ‘large’ subsets 𝑌 ′ ⊆ 𝑌 and 𝐽 ′ ⊆ 𝐽 such that, for every
fixed j, the fathers 𝑓 𝑗 (𝑦) are distinct for 𝑦 ∈ 𝑌 ′. To this end, we construct sequences 𝑌 = 𝑌0 ⊇ . . . ⊇ 𝑌ℓ
and 𝑗1, . . . , 𝑗ℓ ∈ 𝐽 recursively as follows: given 𝑌0, . . . , 𝑌𝑡 and 𝑗1, . . . , 𝑗𝑡 for 𝑡 < ℓ, if there exists
𝑗 ∈ 𝐽 \ { 𝑗1, . . . , 𝑗𝑡 } and a subset 𝑌 ′ ⊆ 𝑌𝑡 of size at least

√
|𝑌𝑡 | such that 𝑓 𝑗 (𝑦) is the same for all 𝑦 ∈ 𝑌 ′,

define 𝑗𝑡+1 = 𝑗 and 𝑌𝑡+1 = 𝑌 ′. Otherwise, stop the process.
Suppose first that 𝑗1, . . . , 𝑗ℓ and 𝑌ℓ are well-defined through the recursive process. Then 𝑓 𝑗 (𝑦) is the

same for all 𝑦 ∈ 𝑌ℓ , for every 𝑗 ∈ { 𝑗1, . . . , 𝑗ℓ }. Then { 𝑓 𝑗 (𝑦) : 𝑗 ∈ { 𝑗1, . . . , 𝑗ℓ }} is a set of size ℓ that
is fully joined to 𝑌ℓ . Since |𝑌ℓ | ≥ |𝑌 |2−ℓ = (𝑘1)2−ℓ ≥ ℓ, there is a copy of 𝐾ℓ,ℓ in G, contradicting the
assumption that G is 𝐾ℓ,ℓ-free.

Now suppose that the process stops at the t-th step for some 𝑡 < ℓ with the outputs 𝑗1, . . . , 𝑗𝑡 and 𝑌𝑡 .
Let 𝐽 ′ := 𝐽 \ { 𝑗1, . . . , 𝑗𝑡 }. Then for every 𝑗 ∈ 𝐽 ′, each element in the multiset { 𝑓 𝑗 (𝑦) : 𝑦 ∈ 𝑌𝑡 } repeats
at most

√
|𝑌𝑡 | times. Since |𝑌𝑡 | ≥ |𝑌 |2−ℓ = (𝑘1)2−ℓ ≥ (𝑘 ′′)2, for every 𝑗 ∈ 𝐽 ′ there is a subset 𝑌 ′

𝑗 ⊆ 𝑌𝑡
of size 𝑘 ′′ such that 𝑓 𝑗 (𝑦) are distinct for all 𝑦 ∈ 𝑌 ′

𝑗 . Let 𝑌 ′ ⊆ 𝑌𝑡 be the most popular choice for 𝑌 ′
𝑗 . By

averaging, 𝑌 ′
𝑗 = 𝑌 ′ for at least |𝐽 ′ |/

( |𝑌𝑡 |√
|𝑌𝑡 |

)
≥ (𝑝 − 𝑘2

1 − ℓ)/2𝑘1 ≥ 𝑘 ′ indices 𝑗 ∈ 𝐽 ′; let 𝐽 ′′ ⊆ 𝐽 ′ be a set
of size 𝑘 ′ such that 𝑌 ′

𝑗 = 𝑌 ′ for every 𝑗 ∈ 𝐽 ′′.
Let 𝑊 := { 𝑓 𝑗 (𝑦) : 𝑦 ∈ 𝑌 ′, 𝑗 ∈ 𝐽 ′′}. We claim that for every 𝑦 ∈ 𝑌 ′ there are at most 𝑘 ′′ elements

𝑤 ∈ 𝑊 such that w sends at least 1
4𝑘2

|𝑁𝐻sb (ext(𝑦)) | edges to 𝑁𝐻sb (ext(𝑦)). Suppose to the contrary that
this is not the case for 𝑦 ∈ 𝑌 ′. Write 𝑁 := 𝑁𝐻sb (ext(𝑦)) for brevity and let 𝑊 ′ be the set of vertices
𝑤 ∈ 𝑊 such that w sends at least 1

4𝑘2
|𝑁 | edges to N satisfying |𝑊 ′ | ≥ 𝑘 ′′. By Theorem 3.3, 𝐺 [𝑁,𝑊 ′]2

contains a copy of 𝐾ℓ,ℓ , a contradiction. Consider the set
{
𝑗 ∈ 𝐽 ′′ : for all 𝑧, 𝑦 ∈ 𝑌 ′, 𝑓 𝑗 (𝑧) sends at most

1
4𝑘2

|𝑁𝐻sb (ext(𝑦)) | edges to 𝑁𝐻sb (ext(𝑦))
}
.

By the above statement, this set has size at least |𝐽 ′′ | − |𝑌 ′ | · 𝑘 ′′ ≥ 𝑘 ′ − (𝑘 ′′)2 ≥ 𝑘2. Let 𝐽final be a subset
of the above set of size 𝑘2.

For every 𝑗 ∈ 𝐽final, define a graph 𝐹𝑗 on vertices𝑌 ′ whose edges are pairs 𝑦1𝑦2 where 𝑦1, 𝑦2 ∈ 𝑌 ′ are
distinct and one of the following holds: 𝑓 𝑗 (𝑦𝑖) is adjacent to 𝑦3−𝑖 for some 𝑖 ∈ [2]; 𝑓 𝑗 (𝑦𝑖) is adjacent to
ext(𝑦3−𝑖); or 𝑓 𝑗 (𝑦1) and 𝑓 𝑗 (𝑦2) are adjacent. By Ramsey’s theorem, the graph 𝐹 =

⋃
𝑗∈𝐽final 𝐹𝑗 contains

either an independent set of size 2𝑘2 or a clique of size c. Assume the latter case and suppose that U is

2Here 𝐺 [𝐴, 𝐵] denotes the bipartite induced subgraph, that is, we only take those edges that cross between A and B.
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a subset of 𝑌 ′ of size c that induces a clique. Then for some 𝑗 ∈ 𝐽final the graph 𝐹𝑗 has at least 1
𝑘2

( |𝑈 |
2
)

edges. Let 𝑈 ′ := 𝑈 ∪ {ext(𝑦) : 𝑦 ∈ 𝑈} ∪ { 𝑓 𝑗 (𝑦) : 𝑦 ∈ 𝑈}. Then, by definition of 𝐹𝑗 ,

𝑒(𝐺 [𝑈 ′]) ≥ 𝑒(𝐹𝑗 ) ≥
1
𝑘2

(
|𝑈 |
2

)
≥ 1

𝑘2

(
|𝑈 ′ |/3

2

)
.

By Theorem 3.3, 𝐺 [𝑈 ′] contains a copy of 𝐾ℓ,ℓ , a contradiction.
It remains to consider the case where F contains an independent set U of size 2𝑘2. Write

𝑈 = {𝑦1, . . . , 𝑦2𝑘2 } and 𝐽final = { 𝑗1, . . . , 𝑗𝑘2 }. Let 𝑄𝑖 be a unimodal path between 𝑓 𝑗𝑖 (𝑦2𝑖−1) and
𝑓 𝑗𝑖 (𝑦2𝑖), for 𝑖 ∈ [𝑘2]. By construction, one may easily check that {𝑄1, . . . , 𝑄𝑘2 } is a 1

4𝑘2
-good collection

of size at least 𝑘2. �

Recall that a k-wheel in a graph F is an induced cycle C along with an additional vertex that has at
least k neighbours in C. We note that a (𝑘 + 2)-wheel contains a cycle with exactly k chords. Indeed,
suppose that C is an induced cycle and v is a vertex (not in C) with at least 𝑘 + 2 neighbours in C. Let
𝑢0, . . . , 𝑢𝑘+1 be 𝑘 + 2 consecutive neighbours of u in C. Let P be the subpath in C that starts at 𝑢0, ends
in 𝑢𝑘+1 and contains the vertices 𝑢1, . . . , 𝑢𝑘 , and let 𝐶 ′ be the cycle obtained by concatenating P and
the path 𝑢𝑘+1𝑣𝑢0. Then 𝐶 ′ is a cycle with exactly k chords; its chords are 𝑣𝑢1, . . . , 𝑣𝑢𝑘 .

The following lemma obtains a collection of independent good paths from a collection of good paths.
We use this as a black box.
Lemma 4.7 (Lemma 17 in [3]). Let Q be an 𝛼-good collection of unimodal paths of size 𝑘2. If G is
k-wheel-free, then there exists an independent 2𝛼-good collection of unimodal paths of size at least k.

The following lemma, together with the lemmas above, will complete the proof of Theorem 4.1.
Lemma 4.8 (Lemma 12 in [3]). If there is a collection of �𝑘/2� independent (1/2𝑘)-good unimodal
paths with endpoints in 𝑁𝐻sb (𝑥) for a vertex x in H, then the graph G has a k-wheel.
Proof of Theorem 4.1. Recall that, while assuming Lemma 4.5, the parameters are chosen according to
the hierarchy 𝜒 
 𝑝 
 𝜅 
 𝑘1 
 𝑘2 
 𝑘, ℓ, 𝜔. By Lemma 4.6, there is a collection Q that consists of
𝑘2 paths that are 1

4𝑘2
-good. Then by Lemma 4.7, there is a collection of 𝑘2 independent 1

2𝑘2
-good paths;

however, Lemma 4.8 then finds a 𝑘2-wheel in G, and hence, a cycle with k chords. �

4.2. Dealing with triangles

It remains to prove Lemma 4.5. The following lemma will be useful in the proof.
Lemma 4.9. Suppose that G does not have a cycle with exactly k chords. Then for every vertex u in G,
there exists a subset 𝑅 ⊆ 𝑉 (𝐻) of at most 3(𝑘 + 1) vertices such that u does not have any edges to the
copy of (𝐻 \ 𝑅)sb in G.
Proof. Let X be the set of vertices in H that are neighbours of u in G. We claim that |𝑋 | ≤ 𝑘 +1. Suppose
to the contrary that 𝑥1, . . . , 𝑥𝑘+2 are distinct vertices in X. As H is 𝜅-connected with 𝜅 
 𝑘 , Theorem 4.3
guarantees that there exist pairwise internally vertex-disjoint paths 𝑄1, . . . , 𝑄𝑘+2 such that each 𝑄𝑖 ends
at 𝑥𝑖 and 𝑥𝑖+1, where the addition of indices taken modulo 𝑘 + 2. Let 𝑄 ′

𝑖 be the path in the copy of 𝐻sb
in G that corresponds to the 1-subdivision of 𝑄𝑖 . Then by concatenating the paths 𝑄 ′

1, . . . , 𝑄
′
𝑘+2, we

obtain an induced cycle in G that contains at least 𝑘 + 2 neighbours of u. Then there exists a cycle with
exactly k chords, which contradicts the assumption.

Let M be a maximum matching in H such that, for each edge e in M, sub(𝑒) is adjacent to u in G. Our
next claim is |𝑀 | ≤ 𝑘+1. Suppose to the contrary that 𝑥1𝑦1, . . . , 𝑥𝑘+2𝑦𝑘+2 are vertex-disjoint edges in M.
By using Theorem 4.3 as before, there exist vertex-disjoint paths𝑄1, . . . , 𝑄𝑘 in 𝐻\{𝑥1𝑦1, . . . , 𝑥𝑘+2𝑦𝑘+2}
such that each 𝑄𝑖 ends at 𝑦𝑖 and 𝑥𝑖+1. Again, let 𝑄 ′

𝑖 be the 1-subdivision of 𝑄𝑖 in the copy of 𝐻sb in G.
Then 𝑥1𝑦1𝑄

′
1 . . . 𝑥𝑘+2𝑦𝑘+2𝑄

′
𝑘+2𝑥1 is an induced cycle in G that contains at least 𝑘 + 2 neighbours of u,

which again yields a contradiction.
Take 𝑅 = 𝑋 ∪𝑉 (𝑀). Then |𝑅 | ≤ 3(𝑘 + 1) and u has no neighbours in (𝐻 \ 𝑅)sb, as required. �
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Figure 2. Case 1: 𝑓𝑖 not adjacent to 𝑦𝑖 .

Proof of Lemma 4.5. Let 𝑘3, 𝑘4 be such that Let 𝑘1 
 𝑘2 
 𝑘3 
 𝑘4 
 𝜔 
 𝑘 . Say that an edge
𝑒 = 𝑥𝑦 of H is triangulated if sub(𝑒) and at least one of x and y have a common j-father, for at least 𝑘1
indices j. Then every vertex in H is incident with at least 2𝑘1 triangulated edges and hence, there is a
matching 𝑀1 in H that consists of 𝑘1 triangulated edges.

For each 𝑒 ∈ 𝑀1 let 𝑥(𝑒) and 𝑦(𝑒) be the two ends of e, let 𝑓 (𝑒) be a 𝑗 (𝑒)-father of sub(𝑒)
which is adjacent to 𝑥(𝑒) or 𝑦(𝑒), so that the indices 𝑗 (𝑒) are all distinct for 𝑒 ∈ 𝑀1. Let U be the set
{ 𝑓 (𝑒) : 𝑒 ∈ 𝑀1}; then |𝑈 | = 𝑘1. Since 𝑘1 
 𝑘2, 𝜔 and G is 𝐾𝜔+1-free, the set U contains an independent
set of size 𝑘2. Let 𝑀2 be a submatching of 𝑀1 of size 𝑘2 such that { 𝑓 (𝑒) : 𝑒 ∈ 𝑀2} is independent.

Let F be the auxiliary graph whose vertices are the edges of 𝑀2, where 𝑒1𝑒2 is an edge in F whenever
𝑓 (𝑒3−𝑖) is adjacent to at least one of sub(𝑒𝑖), 𝑥(𝑒𝑖) and 𝑦(𝑒𝑖) for some 𝑖 ∈ [2]. By Lemma 4.9, the vertex
sub(𝑒) is adjacent to at most 3(𝑘 + 1) vertices in the copy of 𝐻sb in G, for every 𝑒 ∈ 𝑀2. In particular,
every 𝑒 ∈ 𝑀2 has neighbours in at most 3(𝑘 + 1) of the sets {sub(𝑒′), 𝑥(𝑒′), 𝑦(𝑒′)} with 𝑒′ ∈ 𝑀2. Thus,
F has at most 3(𝑘 + 1) |𝐹 | edges. Turán’s theorem then implies that F contains an independent set of
size at least |𝐹 |/6(𝑘 + 1) ≥ 𝑘3. Let 𝑀3 be a submatching of 𝑀2 of size 𝑘3 that forms an independent set
in F. That is, for every distinct 𝑒, 𝑒′ ∈ 𝑀3, 𝑓 (𝑒) is not adjacent to any sub(𝑒′), 𝑥(𝑒′) or 𝑦(𝑒′).

For each 𝑒 ∈ 𝑀3, let 𝑅(𝑒) be a set of vertices in H of size at most 3(𝑘+1) such that 𝑥(𝑒′), 𝑦(𝑒′) ∉ 𝑅(𝑒)
for all 𝑒′ ∈ 𝑀3 and 𝑓 (𝑒) has no neighbours in (𝐻 \ 𝑅(𝑒))sb except for possibly sub(𝑒), 𝑥(𝑒) and 𝑦(𝑒);
the existence of such a set is guaranteed by the choice of 𝑀3 and by Lemma 4.9.

We consider three cases. Throughout the case analysis, we abuse notation by writing e for the vertex
sub(𝑒) for simplicity. Whenever we consider indexed edges 𝑒1, 𝑒2, . . ., we shall denote 𝑥𝑖 := 𝑥(𝑒𝑖),
𝑦𝑖 := 𝑦(𝑒𝑖), 𝑓𝑖 := 𝑓 (𝑒𝑖) and 𝑅𝑖 := 𝑅(𝑒𝑖). The 1-subdivision of a path 𝑄𝑖 in H is denoted by 𝑄 ′

𝑖 , and is
again a path in the copy of 𝐻sb.

Case 1: there are k edges 𝑒 ∈ 𝑀3 such that 𝑓 (𝑒) is not adjacent to 𝑦(𝑒).

Let 𝑒1, . . . , 𝑒𝑘 ∈ 𝑀3 be distinct edges such that 𝑓𝑖 is not adjacent to 𝑦𝑖 for 𝑖 ∈ [𝑘] (by choice of 𝑀3
this means that 𝑓𝑖 is adjacent to 𝑥𝑖 for 𝑖 ∈ [𝑘]). Let 𝑅 := 𝑅1 ∪ . . . ∪ 𝑅𝑘 . As H is 𝜅-connected, 𝐻 \ 𝑅 is
10𝑘-connected and thus, by Theorem 4.3, there exist pairwise vertex-disjoint paths 𝑄1, . . . , 𝑄𝑘 in 𝐻 \ 𝑅
such that 𝑄𝑖 has ends 𝑦𝑖 and 𝑥𝑖+1 for 𝑖 ∈ [𝑘], where the addition of indices is taken modulo k. Let C be
the cycle 𝑥1 𝑓1𝑒1𝑦1𝑄

′
1 . . . 𝑥𝑘 𝑓𝑘𝑒𝑘𝑄

′
𝑘𝑥1. Then C has exactly k chords, namely: 𝑥1𝑒1, . . . , 𝑥𝑘𝑒𝑘 .

Case 2: k is even and 𝑓 (𝑒) is adjacent to 𝑥(𝑒) and 𝑦(𝑒) for at least 𝑘/2 values of e in 𝑀3.

Write 𝑘 = 2𝑠. Let 𝑒1, . . . , 𝑒𝑠 ∈ 𝑀3 be distinct edges such that 𝑓𝑖 is adjacent to 𝑥𝑖 and 𝑦𝑖 for 𝑖 ∈ [𝑠].
Let 𝑅 := 𝑅1 ∪ . . . ∪ 𝑅𝑠 . As before, there exist pairwise vertex-disjoint paths 𝑄1, . . . , 𝑄𝑠 in 𝐻 \ 𝑅
such that 𝑄𝑖 has ends 𝑦𝑖 and 𝑥𝑖+1 for 𝑖 ∈ [𝑠], where the addition of indices is taken modulo s. Then
𝑥1 𝑓1𝑒1𝑦1𝑄

′
1 . . . 𝑥𝑠 𝑓𝑠𝑒𝑠𝑦𝑠𝑄

′
𝑠𝑥1 is a cycle in G with exactly k chords: 𝑥1𝑒1, . . . , 𝑥𝑠𝑒𝑠 and 𝑓1𝑦1, . . . , 𝑓𝑠𝑒𝑠 .

Case 3: k is odd and 𝑓 (𝑒) is adjacent to 𝑥(𝑒) and 𝑦(𝑒) for at least 𝑘4 + 1 values of e in 𝑀3.
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Figure 3. Case 2: k even 𝑓𝑖 adjacent to 𝑥𝑖 and 𝑦𝑖 .

Note that if 𝑘 = 1 then 𝑓 (𝑒) 𝑥(𝑒) 𝑒 𝑦(𝑒) is a cycle with exactly one chord, for any 𝑒 ∈ 𝑀3 where 𝑓 (𝑒)
is adjacent to 𝑥(𝑒) and 𝑦(𝑒). We may thus assume that 𝑘 ≥ 3; write 𝑘 = 2𝑠 − 1 with 𝑠 > 1.

Let 𝑀4 be a submatching of 𝑀3 of size 𝑘4 that consists of edges e where 𝑓 (𝑒) is adjacent to 𝑦(𝑒)
and 𝑗 (𝑒) > 1 (recall that 𝑀3 contains at most one edge e with 𝑗 (𝑒) = 1). For each 𝑒 ∈ 𝑀4, let 𝑔(𝑒) be
a 1-father of 𝑓 (𝑒). Here the 𝑔(𝑒)’s are not necessarily distinct. We claim that each 𝑔(𝑒), with 𝑒 ∈ 𝑀4,
is adjacent to at most 𝑘 + 1 of the vertices 𝑓 (𝑒′) with 𝑒′ ∈ 𝑀4. Indeed, suppose that 𝑒1, . . . , 𝑒𝑘+2 are
distinct edges in 𝑀4 such that each 𝑓 𝑗 , with 𝑗 ∈ [𝑠], is adjacent to 𝑔(𝑒). As usual, we can find paths
𝑄1, . . . , 𝑄𝑘+2 in 𝐻 \ (𝑅(𝑒1) ∪ . . . ∪ 𝑅(𝑒𝑘+2)) that are pairwise vertex-disjoint and 𝑄𝑖 has ends 𝑦𝑖 and
𝑥𝑖+1 for 𝑖 ∈ [𝑘 + 2]. Then 𝑥1 𝑓1𝑦1𝑄

′
1 . . . 𝑥𝑘+2 𝑓𝑘+2𝑦𝑘+2𝑄

′
𝑘+2𝑥1 is an induced cycle in G that contains at

least 𝑘 + 2 neighbours of 𝑔(𝑒). Thus, a cycle with exactly k chords exists.
Let F be the auxiliary graph on the edges in 𝑀4, where 𝑒1 and 𝑒2 form an edge if 𝑔(𝑒3−𝑖) is adjacent

to at least one of 𝑒𝑖 , 𝑥(𝑒𝑖), 𝑦(𝑒𝑖) and 𝑓 (𝑒𝑖) for some 𝑖 ∈ [2]. By Lemma 4.9 and the previous paragraph,
each 𝑔(𝑒), with 𝑒 ∈ 𝑀4, is adjacent to at most 4𝑘+4 vertices amongst {𝑒′, 𝑥(𝑒′), 𝑦(𝑒′), 𝑓 (𝑒′) : 𝑒′ ∈ 𝑀4}.
Therefore, F has at most (4𝑘 + 4) |𝐹 | edges and thus, it has an independent set of size at least
|𝐹 |/(8𝑘 + 4) ≥ 𝑘4/(8𝑘 + 4) ≥ �𝑘/2�. Let 𝑒1, . . . , 𝑒𝑠 be distinct edges in 𝑀1 that form an independent
set in F. Write 𝑔𝑖 := 𝑔(𝑒𝑖) and let 𝑅′

𝑖 be a set of at most 3(𝑘 + 1) vertices in H such that 𝑔𝑖 has no neigh-
bours in (𝐻 \ 𝑅′

𝑖)sb except for possibly 𝑥𝑖 , 𝑦𝑖 , 𝑒𝑖 , and 𝑥 𝑗 , 𝑦 𝑗 , 𝑒 𝑗 ∉ 𝑅′
𝑖 for 𝑗 ∈ [𝑠]. Such a set 𝑅′

𝑖 exists by
Lemma 4.9 and the fact that 𝑒𝑖’s form an independent set in F. Observe that the 𝑔𝑖’s are distinct (since 𝑔𝑖
is adjacent to 𝑓𝑖 but not to 𝑓 𝑗 with 𝑗 ∈ [𝑠] \ {𝑖}), and 𝑔𝑖 sends no edges to {𝑥 𝑗 , 𝑦 𝑗 , 𝑒 𝑗 , 𝑓 𝑗 } for 𝑗 ≠ 𝑖. Let
𝑅 = 𝑅1 ∪ . . .∪ 𝑅𝑠 ∪ 𝑅′

1 ∪ . . .∪ 𝑅′
𝑠 . As usual, let 𝑄1, . . . , 𝑄𝑠−1 be pairwise vertex-disjoint paths in 𝐻 \ 𝑅

such that each 𝑄𝑖 ends at 𝑦𝑖 and 𝑥𝑖+1. Then the path 𝑦1𝑄
′
1𝑥2 𝑓2𝑒2𝑦2𝑄

′
2 . . . 𝑥𝑠−1 𝑓𝑠−1𝑒𝑠−1𝑦𝑠−1𝑄𝑠−1𝑥𝑠 has

exactly 2(𝑠−2) = 𝑘 −3 chords. Similarly, paths with exactly 𝑘 −3 chords exist between any 𝑢 ∈ {𝑥1, 𝑦1}
and 𝑣 ∈ {𝑥𝑠 , 𝑦𝑠}. To extend one such path to a cycle with exactly k chords, we need the following claim.

Claim 4.10. There exist paths 𝑃1 and 𝑃𝑠 such that 𝑃𝑖 has ends 𝑔𝑖 and one of 𝑥𝑖 , 𝑦𝑖 and
𝑉 (𝑃𝑖) ⊆ {𝑥𝑖 , 𝑦𝑖 , 𝑒𝑖 , 𝑓𝑖 , 𝑔𝑖}, for 𝑖 ∈ {1, 𝑠}, and 𝑃1 and 𝑃𝑠 have three chords in total.

Proof of the claim. Write 𝑥 = 𝑥𝑖 , 𝑦 = 𝑦𝑖 , 𝑒 = 𝑒𝑖 , 𝑓 = 𝑓𝑖 , 𝑔 = 𝑔𝑖 for some 𝑖 ∈ {1, 𝑠}, and let 𝜎 be the
number of neighbours of g in {𝑥, 𝑦, 𝑒}. We aim to show that there are paths P with vertices in {𝑥, 𝑦, 𝑒, 𝑓 , 𝑔}
whose ends are g and one of 𝑥, 𝑦 satisfying the following requirements (separately, namely P varies).

(0) P has no chords, if 𝜎 = 1;
(1) P has exactly one chord, if 𝜎 ≠ 1;
(2) P has exactly two chords;
(3) P has three chords, if 𝜎 = 1.

By using this, Claim 4.10 easily follows. Indeed, unless 𝜎 = 1 for both 𝑖 = 1 and s, we can take one of
𝑃1 and 𝑃𝑠 to have one and two chords, respectively, using (2) and (1). Otherwise, we can take one to
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Figure 4. Proof of Claim 4.10.

have no chords and the other to have three, using (0) and (3). To show that paths P that satisfies (0)–(3)
exist, we consider the four possible values of 𝜎.
◦ 𝜎 = 0. For (1) take 𝑃 = 𝑔 𝑓 𝑒𝑦, and for (2) take 𝑃 = 𝑔 𝑓 𝑥𝑒𝑦.
◦ 𝜎 = 1. Without loss of generality, g is not adjacent to x. For (0), (2), and (3), take 𝑃 = 𝑔 𝑓 𝑥,

𝑃 = 𝑔 𝑓 𝑒𝑦, and 𝑃 = 𝑔 𝑓 𝑥𝑒𝑦, respectively.
◦ 𝜎 = 2. Without loss of generality, g is adjacent to x. For (1) and (2), take 𝑃 = 𝑔𝑥𝑒𝑦 and 𝑃 = 𝑔 𝑓 𝑒𝑦,

respectively.
◦ 𝜎 = 3. For (1) and (2), take 𝑃 = 𝑔𝑒𝑦 and 𝑃 = 𝑔𝑥𝑒𝑦, respectively. �

Let 𝑃1 and 𝑃𝑠 be as in Claim 4.10. Without loss of generality, we may assume that 𝑦1 is an end of
𝑃1 and 𝑥𝑠 is an end of 𝑃𝑠 . Let P be a unimodal path with ends 𝑔1 and 𝑔𝑠 . Then the interior of P sends
no edges to the copy of 𝐻sb or { 𝑓1, . . . 𝑓𝑠}, since each 𝑔𝑖 is a 1-father of 𝑓𝑖’s, whereas the 𝑓𝑖’s and the
copy of 𝐻sb are in 𝐺2. Finally, augmenting the path 𝑦1𝑄

′
1𝑥2 𝑓2𝑒2𝑦2𝑄

′
2 . . . 𝑥𝑠−1 𝑓𝑠−1𝑒𝑠−1𝑦𝑠−1𝑄

′
𝑠−1𝑥𝑠 by

adding the path 𝑥𝑠𝑃𝑠𝑔𝑠𝑃𝑔1𝑃1𝑦1 gives a cycle with exactly k chords. �

5. Number theory lemmas

In this section we prove two results which are variants of Lagrange’s four-square theorem, which asserts
that every positive integer can be written as the sum of at most four integer squares.
Lemma 5.1. For every c, every large enough k can be written as a sum of exactly 20 squares larger
than 𝑐2.

Proof. Given a non-negative integer x, let 𝑓 (𝑥) = 𝑥2 + 2500𝑐2 + (4𝑐 + 1)2. We first claim that for every
integer 𝑥 ≥ 0, the number 𝑓 (𝑥) can be written as the sum of exactly five squares larger than 𝑐2. If 𝑥 ≥ 𝑐,
this follows by writing

𝑓 (𝑥) = 𝑥2 + (30𝑐)2 + (24𝑐)2 + (32𝑐)2 + (4𝑐 + 1)2.
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Figure 5. Case 3: odd k and 𝑓𝑖 adjacent to 𝑥𝑖 and 𝑦𝑖 .

If 𝑥 ≤ 𝑐 and x is even, we have

𝑓 (𝑥) = 2
(

50𝑐 + 𝑥

2

)2
+ 2

(
50𝑐 − 𝑥

2

)2
+ (4𝑐 + 1)2,

which readily implies that 𝑓 (𝑥) is the sum of five squares larger than 𝑐2. Finally, if 𝑥 ≤ 𝑐 and x is odd,
we use the following equality to reach the same conclusion.

𝑥2 + (4𝑐 + 1)2 = 2
(

4𝑐 + 1 + 𝑥

2

)2
+ 2

(
4𝑐 + 1 − 𝑥

2

)2
.

Let ℓ := 𝑘 − 4
(
2500𝑐2 + (4𝑐 + 1)2) and suppose that k is large enough so that ℓ ≥ 0. By the

four-square theorem, there exist non-negative integers 𝑥1, . . . , 𝑥4 such that ℓ = 𝑥2
1 + 𝑥2

2 + 𝑥2
3 + 𝑥2

4.
Equivalently,

𝑘 =
4∑
𝑖=1

(
𝑥2
𝑖 + 2500𝑐2 + (4𝑐 + 1)2

)
=

4∑
𝑖=1

𝑓 (𝑥𝑖).

By using the fact that each 𝑓 (𝑥𝑖) is the sum of five squares larger than 𝑐2, we conclude that k is the sum
of 20 squares larger than 𝑐2, as required. �

Lemma 5.2. For every c, for every large enough k which is divisible by 4, there exist 𝑎1, . . . , 𝑎80 ≥ 𝑐
such that 𝑘 =

∑
𝑖∈[80] 𝑎𝑖 (𝑎𝑖 + 1).

Proof. By Lemma 5.1, the integer 𝑘/4 can be written as the sum of twenty squares larger than (𝑐 + 1)2.
Write 𝑘/4 =

∑20
𝑖=1 𝑥

2
𝑖 , where 𝑥𝑖 ≥ 𝑐 + 1. Then 𝑘 =

∑20
𝑖=1 4𝑥2

𝑖 , that is, k is the sum of 20 even squares
larger than 4(𝑐 + 1)2. Observe now that every even square larger than 4(𝑐 + 1)2 can be written as a sum∑4
𝑖=1 𝑎𝑖 (𝑎𝑖 + 1) with 𝑎𝑖 ≥ 𝑐, as 4𝑎2 = 2 ·

(
𝑎(𝑎 + 1) + 𝑎(𝑎 − 1)

)
. Thus, k is a sum

∑80
𝑖=1 𝑎𝑖 (𝑎𝑖 + 1) with

𝑎𝑖 ≥ 𝑐, as required. �
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6. Proof of approximate result

The aim of this section is to prove the following result, that allows us to find a cycle of almost the required
number of chords, in any graph whose chromatic number is much larger than the clique number.

Theorem 6.1. Let k be large enough. Then there is a function f such that for every graph G either
𝜒(𝐺) ≤ 𝑓 (𝜔(𝐺)) or G has a cycle with exactly 𝑘 ′ chords for some 𝑘 ′ ∈ {𝑘, 𝑘 + 1, 𝑘 + 2, 𝑘 + 3}.

The proof relies on results from previous sections, as well as the following two lemmas. The next
lemma allows us to assume that there is a large collection of pairwise disjoint large induced balanced
bipartite subgraphs with no edges between them.

Lemma 6.2. Every graph G contains either ℓ pairwise vertex-disjoint induced copies of 𝐾ℓ,ℓ with
no edges between them or an induced subgraph H with 𝜒(𝐻) ≥ 𝜒(𝐺)/(2ℓ2) − 1 such that either
𝜔(𝐻) < 𝜔(𝐺) or it is induced 𝐾ℓ,ℓ-free.

Proof. Let 𝐾1, . . ., 𝐾𝑡 be a maximal collection of pairwise vertex-disjoint induced copies of 𝐾ℓ,ℓ with
no edges between them; write 𝐾 = 𝑉 (𝐾1 ∪ . . .∪𝐾𝑡 ). We are done if 𝑡 ≥ ℓ, so suppose that 𝑡 < ℓ. Notice
that one of the subgraphs 𝐺 [𝑁 (𝑣) ∪ {𝑣}] for some 𝑣 ∈ 𝐾 or the graph 𝐺 \ (𝐾 ∪ 𝑁 (𝐾)) has chromatic
number at least 𝜒(𝐺)/(2ℓ2), since the union of these 2ℓ𝑡 + 1 graphs covers all the vertices in G and
2ℓ𝑡 + 1 ≤ 2ℓ2.

Suppose first that some𝐺 [𝑁 (𝑣)∪{𝑣}] has chromatic number at least 𝜒(𝐺)/(2ℓ2). Then 𝜒(𝐺 [𝑁 (𝑣)])
is at least 𝜒(𝐺)/(2ℓ2) − 1 and 𝜔(𝐺 [𝑁 (𝑣)]) < 𝜔(𝐺), so we can take 𝐻 := 𝐺 [𝑁 (𝑣)]. Otherwise, if
𝐺 \ (𝐾 ∪ 𝑁 (𝐾)) has chromatic number at least 𝜒(𝐺)/(2ℓ2), then 𝐻 := 𝐺 \ (𝐾 ∪ 𝑁 (𝐾)) is induced
𝐾ℓ,ℓ-free subgraph by maximality of t. �

The next lemma is the key ingredient in proving Theorem 6.1, whose proof will be given in Section 6.2.

Lemma 6.3. Let ℓ 
 𝑘 
 1,3 and let 𝑝 > 300. In a p-extraction of a graph G, suppose that there are
101 induced copies of 𝐾ℓ,ℓ with no edges between them. Then there is a cycle with 𝑘 ′ chords, for some
𝑘 ′ ∈ {𝑘, 𝑘 + 1, 𝑘 + 2, 𝑘 + 3}.

We now prove Theorem 6.1 by using the previous lemmas.

Proof of Theorem 6.1. We prove by induction on 𝜔 that there exists 𝑓 (𝜔) such that, for a graph
G with clique number 𝜔, if 𝜒(𝐺) > 𝑓 (𝜔) then G has a cycle with exactly 𝑘 ′ chords for some
𝑘 ′ ∈ {𝑘, 𝑘 + 1, 𝑘 + 2, 𝑘 + 3}. For 𝜔 = 1, we can take 𝑓 (1) = 2, for which the statement is vacuously true
as there are no graphs with clique number 1 and chromatic number at least 2.

Suppose that for 𝜔0 ≥ 1, 𝑓 (𝜔) is defined for 𝜔 ≤ 𝜔0 so that the above statement holds. Let p and ℓ
be sufficiently large, for example, 𝑝 ≥ 300 and ℓ ≥ 2500√𝑘 , and let g be a function as in Corollary 4.2
for k and ℓ; namely, if 𝜒(𝐺) > 𝑔(𝜔(𝐺)) then G contains either an induced 𝐾ℓ,ℓ or a cycle with exactly k
chords. Now set 𝑓 (𝜔0+1) = 2𝑝+1ℓ2 · (max{𝑔(𝜔0), 𝑓 (𝜔0)} + 1). Consider a graph G with 𝜔(𝐺) = 𝜔0+1
and 𝜒(𝐺) > 𝑓 (𝜔0 + 1). Our goal is to show that G contains a cycle with exactly 𝑘 ′ chords, for some
𝑘 ′ ∈ {𝑘, 𝑘 + 1, 𝑘 + 2, 𝑘 + 3}. Let 𝐺 ′ be a p-extracted graph of G. In particular, 𝜒(𝐺 ′) ≥ 𝜒(𝐺)/2𝑝 .
By Lemma 6.2, one of the following three cases holds for 𝐺 ′.

(G1) there are ℓ pairwise vertex-disjoint induced copies of 𝐾ℓ,ℓ with no edges between them,
(G2) there is an induced subgraph 𝐻 ⊆ 𝐺 ′ with 𝜒(𝐻) ≥ 𝜒(𝐺 ′)/(2ℓ2) − 1 and 𝜔(𝐻) < 𝜔(𝐺 ′),
(G3) there is an induced subgraph 𝐻 ⊆ 𝐺 ′ with 𝜒(𝐻) ≥ 𝜒(𝐺 ′)/(2ℓ2) − 1 which is 𝐾ℓ,ℓ-free.

If (G2) holds, then 𝜒(𝐻) ≥ 𝜒(𝐺)/(2𝑝+1ℓ2) − 1 > 𝑓 (𝜔0) and 𝜔(𝐻) ≤ 𝜔0. Thus, by the inductive
hypothesis, H contains a cycle with exactly 𝑘 ′ chords, for some 𝑘 ′ ∈ {𝑘, 𝑘 + 1, 𝑘 + 2, 𝑘 + 3}.

If (G3) holds, then 𝜒(𝐻) ≥ 𝜒(𝐺)/(2𝑝+1ℓ2) − 1 > 𝑔(𝜔0). Since H is 𝐾ℓ,ℓ-free in this case, by choice
of g there is a cycle with exactly k chords in H.

3concretely, it suffices to take 𝑘 ≥ 1012.
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Figure 6. Lemma 6.4.

We may now assume that (G1) holds. In particular, there are 101 copies of 𝐾ℓ,ℓ in H that are pairwise
vertex-disjoint with no edges between them. By Lemma 6.3, using the choice of 𝐺 ′ as a p-extraction
of G, there is a cycle in G with exactly 𝑘 ′ chords, with 𝑘 ≤ 𝑘 ′ ≤ 𝑘 + 3. �

6.1. Few edges between unimodal paths

For the proof of Lemma 6.3, we need the following two lemmas that allow us to assume that there are
only few edges between two unimodal paths connected to a large induced balanced bipartite subgraph.

Lemma 6.4. Let ℓ 
 𝑘 , 𝑝 ≥ 1, and let K be an induced copy of 𝐾ℓ,ℓ in a p-extraction of a graph G.
If P is a unimodal path starting in K and u is a vertex outside of P with an edge into 𝐾 \ 𝑉 (𝑃), then
either there is a cycle in G with exactly k chords or there are at most 8

√
𝑘 edges from u to P.

Proof. Let x and y be the ends of P with 𝑥 ∈ 𝑉 (𝐾) and let 𝑥− and 𝑦− be the unique neighbours of x and
y in P. By unimodality, vertices in K do not send any edges to 𝑃 \ {𝑥, 𝑥−, 𝑦, 𝑦−}. Let w be a neighbour
of u in K distinct from x, which exists by the assumption on u.

Suppose that u sends more than 8
√
𝑘 edges to P. Let Q be a path in K with ends x and w on 2𝑎 or

2𝑎 + 1 vertices, where 𝑎 = 	
√
𝑘 − 2
. Let 𝑘 ′ be the number of chords in the path Q. Then 𝑘 ′ is between

𝑎2 − (2𝑎 − 1) = (𝑎 − 1)2 and 𝑎(𝑎 + 1) − 2𝑎 = 𝑎2 − 𝑎. In particular,

𝑘 ′ ≥ (𝑎 − 1)2 ≥ (
√
𝑘 − 4)2 ≥ 𝑘 − 8

√
𝑘.

Let 𝑘 ′′ be the number of chords in the path 𝑢𝑤𝑄𝑥𝑥−. Then, as 𝑒𝐺 ({𝑥−, 𝑢}, 𝑉 (𝑄)) ≤ 2(2𝑎 + 1),

𝑘 ′′ = 𝑘 ′ + 𝑒𝐺 ({𝑥−, 𝑢}, 𝑉 (𝑄)) − 2 ≤ 𝑎2 + 3𝑎 ≤ (𝑎 + 2)2 ≤ 𝑘.

Take 𝑏 = 𝑘 − 𝑘 ′′, so that 0 ≤ 𝑏 ≤ 8
√
𝑘 . Let 𝑃′ be the subpath of P that starts at x and ends at the

(𝑏 + 1)-th neighbour 𝑢𝑏 of u in 𝑃 \ 𝑥. Then 𝑢𝑤𝑄𝑥𝑃′𝑢𝑏𝑢 is a cycle with exactly k chords. �

Lemma 6.5. Let ℓ 
 𝑘 
 1, 𝑝 ≥ 3, and let K and 𝐾 ′ be vertex-disjoint induced copies of 𝐾ℓ,ℓ , with
no edges between them, in a p-extraction of a graph G. For a unimodal path P that starts in K and is
not in the last two layers, let u be a vertex with a neighbour 𝑤 ∈ 𝐾 ′ \𝑉 (𝑃). Then either there is a cycle
in G with exactly k chords, or u sends at most 30

√
𝑘 edges to P.

Proof. Let 𝑥, 𝑦 be the ends of P, where 𝑥 ∈ 𝐾 , and let 𝑥−, 𝑦− be the neighbours of 𝑥, 𝑦 in P. Take z to
be any vertex in K other than x and take v to be any vertex in 𝐾 ′ on the opposite side to w. Let Q be a
unimodal path with ends z and v from a later layer than P and a different layer than u, and let 𝑧−, 𝑣− be
the neighbours of 𝑧, 𝑣 in Q, respectively. By choice of Q, there are no edges between 𝑃 \ {𝑥, 𝑥−, 𝑦, 𝑦−}
and Q (see Observation 3.2).
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Figure 7. Lemma 6.5.

Suppose that there is no cycle with exactly k chords and that u has more than 30
√
𝑘 neighbours in P.

By Lemma 6.4, there are at most 8
√
𝑘 edges between 𝑥− and Q and at most 8

√
𝑘 edges between u and Q.

Let 𝑄 ′ be a path in K with ends x and z on either 2𝑎 or 2𝑎 + 1 vertices, where 𝑎 = 	
√
𝑘 − 13
. Denote

by 𝑘 ′ the number of chords in the path 𝑅 := 𝑢𝑤𝑣𝑄𝑧𝑄 ′𝑥𝑥−, excluding the edge 𝑢𝑥− if it exists. Then

𝑘 ′ ≥ #{chords in 𝑄 ′} ≥ (𝑎 − 1)2 ≥ (
√
𝑘 − 15)2 ≥ 𝑘 − 30

√
𝑘.

As 𝑥−, 𝑧−, 𝑣−, and u are the only vertices in 𝑉 (𝑅) that may have neighbours in 𝑄 ′,

𝑘 ′ ≤ #{chords in 𝑄 ′} + 𝑒𝐺 ({𝑥−, 𝑧−, 𝑣−, 𝑢}, 𝑉 (𝑄 ′)) + 𝑒𝐺 ({𝑥−, 𝑢}, 𝑉 (𝑄)) + 𝑒𝐺 ({𝑥−, 𝑧−, 𝑣−, 𝑣, 𝑢, 𝑤})

≤ (𝑎2 − 𝑎) + 4 · (2𝑎 + 1) + 16
√
𝑘 +

(
5
2

)
≤ (𝑎 + 4)2 + 16

√
𝑘 ≤ (

√
𝑘 − 9)2 + 16

√
𝑘

= 𝑘 − 2
√
𝑘 + 81 ≤ 𝑘,

where the last inequality follows from the assumption that k is large. Take 𝑏 = 𝑘 − 𝑘 ′, so that 0 ≤ 𝑏 ≤
30
√
𝑘 . Let 𝑃′ be the subpath of P that starts at x and ends at the (𝑏+1)-th neighbour 𝑢𝑏 of u in 𝑃\{𝑥, 𝑥−}.

Then, as there are no edges between 𝑃 \ {𝑥, 𝑥−, 𝑦, 𝑦−} and K, 𝐾 ′ or Q, the cycle 𝑢𝑤𝑣𝑄𝑧𝑄 ′𝑥𝑃′𝑢𝑏𝑢 has
exactly k chords. �

6.2. Proof of Lemma 6.3

We now prove Lemma 6.3. Roughly speaking, the idea is to find many disjoint induced 𝐾ℓ,ℓ’s with no
edges between them, and join them via unimodal paths, to obtain a cycle whose length we can control
by choosing subpaths of the 𝐾ℓ,ℓ’s of appropriate lengths. Variants of the arguments used in this proof
will appear in the following section.

Proof of Lemma 6.3. Let 𝐾0, . . . , 𝐾100 be a collection of vertex-disjoint induced copies of 𝐾ℓ,ℓ in the
p-extraction of G such that there are no edges across distinct copies. Denote the bipartition of 𝐾𝑖 by
{𝑈𝑖,1,𝑈𝑖,2}. Let 𝑃𝑖, 𝑗 be vertex-disjoint unimodal paths from 𝑈𝑖, 𝑗 to 𝑈0, 𝑗 , for 𝑖 ∈ [100] and 𝑗 ∈ [2]. We
take all the unimodal paths from different layers that are not the last two. Let 𝑢𝑖, 𝑗 be the first internal
vertex on 𝑃𝑖, 𝑗 from 𝐾𝑖 , for each 𝑖 ∈ [100] and 𝑗 ∈ [2]. Denote by 𝑢′𝑖, 𝑗 the unique neighbour of 𝑢𝑖, 𝑗
in 𝑉 (𝑃𝑖, 𝑗 ) ∩ 𝑉 (𝐾𝑖). That is, the end vertex of 𝑃𝑖, 𝑗 in 𝐾𝑖 . A vertex u is said to be complete (resp. anti-
complete) to 𝑈𝑖, 𝑗 if it is adjacent to all (resp. none) of the vertices in 𝑈𝑖, 𝑗 \ {𝑢′𝑖, 𝑗 }, for 𝑖 ∈ [100] and
𝑗 ∈ [2].
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Figure 8. Part of the cycle C (𝑎1, . . . , 𝑎100).

We first claim that, by possibly shrinking ℓ to ℓ′ = ℓ/2200, we may assume that each 𝑢𝑖, 𝑗 is either
complete or anti-complete to 𝑈𝑠,𝑡 , for each 𝑖, 𝑠 ∈ [100] and 𝑗 , 𝑡 ∈ [2]. For each 𝑣 ∈

⋃100
𝑠=1(𝑈𝑠,1 ∪𝑈𝑠,2),

write a 0-1 vector 𝑥𝑣 ∈ {0, 1}200 to encode its adjacency to 𝑢𝑖, 𝑗 . That is, the (𝑖, 𝑗)-coordinate is 1 if
𝑣𝑢𝑖, 𝑗 ∈ 𝐸 (𝐺) and 0 otherwise. Then each 𝑈𝑠,𝑡 \ {𝑢𝑠,𝑡 } can be partitioned into at most 2200 subsets
according to the value of 𝑥𝑣 . Replacing𝑈𝑠,𝑡 by the largest amongst these subsets and adding 𝑢𝑠,𝑡 suffices
for our purpose.

Let 𝑣𝑖, 𝑗 be the first internal vertex on 𝑃𝑖, 𝑗 from 𝐾0, and let 𝑣′𝑖, 𝑗 be the unique vertex in𝑉 (𝑃𝑖, 𝑗 )∩𝑉 (𝐾0).
By using the same argument possibly shrinking ℓ even further, we may assume that each 𝑣𝑖, 𝑗 is either
complete or anti-complete to 𝑈𝑠,𝑡 , for 𝑖, 𝑠 ∈ [100] and 𝑗 , 𝑡 ∈ [2].

Our plan is to make a cycle in the following way. We will choose integers 𝑎1, . . . , 𝑎100 ≥ 0, depending
on k and the structure we have just found. Starting from 𝑣′1,1 ∈ 𝑈0,1, we take 𝑃1,1 to reach 𝑢′1,1 ∈ 𝑈1,1,
then go through a path of length 2𝑎1 +1 in 𝐾1 to reach 𝑢′1,2 ∈ 𝑈1,2. The journey goes back to 𝐾0 through
𝑃1,2. Then we move to 𝑣′2,1 to iterate. After 100 iterations, we close the cycle by moving from 𝑣′100,2 to
𝑣′1,1 by an edge.

Let us calculate how many chords exist in such a cycle, which we call C (𝑎1, . . . , 𝑎100) (note that the
number of chords depends only on 𝑎1, . . . , 𝑎100, and not on the choice of the paths in 𝐾𝑖 for 𝑖 ∈ [100], by
previous assumptions). Firstly, a (2𝑎𝑖+1)-edge path in a copy of 𝐾𝑎𝑖+1,𝑎𝑖+1 gives (𝑎𝑖+1)2−(2𝑎𝑖+1) = 𝑎2

𝑖
chords and the path in 𝐾0 has at most 1002 chords. Second, each 𝑢𝑖, 𝑗 or 𝑣𝑖, 𝑗 that is complete to 𝑈𝑠,𝑡
contributes 𝑎𝑠 chords (to 𝑈𝑠,𝑡 \ {𝑢′𝑠,𝑡 }), and there are at most 1002 chords between vertices 𝑢𝑖, 𝑗 or 𝑣𝑖, 𝑗
and the path in 𝐾0. Third, each 𝑢𝑖, 𝑗 or 𝑣𝑖, 𝑗 adjacent to 𝑢′𝑠,𝑡 , with (𝑖, 𝑗) ≠ (𝑠, 𝑡), contributes one chord.
Finally, there are at most 𝑂 (

√
𝑘) chords between internal vertices of 𝑃𝑖, 𝑗s (by Lemmas 6.4 and 6.5,

because otherwise there is a cycle with exactly k chords and then, we are done). Overall, the cycle
C (𝑎1, . . . , 𝑎100) has the following number of chords

100∑
𝑠=1

𝑎2
𝑠 +

100∑
𝑠=1

𝑡𝑠𝑎𝑠 +𝑂 (
√
𝑘), (1)
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where 𝑡𝑠 is the number of vertices 𝑢𝑖, 𝑗 or 𝑣𝑖, 𝑗 that are complete to 𝑈𝑠,1 plus the number of vertices 𝑢𝑖, 𝑗
or 𝑣𝑖, 𝑗 that are complete to 𝑈𝑠,2, and 𝑂 (

√
𝑘) is a function that only depends on the graph structure that

we have found, that is, the 101 induced 𝐾ℓ,ℓ’s and the unimodal paths in between.
In (1), the 𝑂 (

√
𝑘) term and the terms 𝑡𝑠, with 𝑠 ∈ [100], are all fixed parameters, that is, they do not

depend on the choice of 𝑎1, . . . , 𝑎100. Also 𝑡𝑠 ≤ 400 for each 𝑠 ∈ [100]. Thus, one may write (1) as

𝑓𝐺 (𝑘) +
100∑
𝑠=1

(𝑎2
𝑠 + 𝑡𝑠𝑎 : 𝑠), (2)

where 𝑓𝐺 (𝑘) = 𝑂 (
√
𝑘) is a parameter depending on k and G, but not on 𝑎1, . . . , 𝑎100.

Among 𝑡1, . . . , 𝑡100, at least 20 values are even, or at least 80 are odd. If the former happens, we may
assume 𝑡1, . . . , 𝑡20 are the even numbers by relabelling the indices. Then, by Lemma 5.1, we can choose
𝑏𝑠 ≥ 200 for 𝑠 ∈ [20], such that

20∑
𝑠=1

𝑏2
𝑠 = 𝑘 − 𝑓𝐺 (𝑘) +

20∑
𝑠=1

𝑡2𝑠
4
.

Indeed, large enough k guarantees the right-hand side is a large enough positive integer that can be
expressed as the sum of exactly 20 squares at least 2002. Now let 𝑎𝑠 = 𝑏𝑠 − 𝑡𝑠/2 for 𝑠 ∈ [20] and 0
otherwise (notice that 𝑎𝑠 ≥ 200 − 𝑡𝑠/2 ≥ 0). Then the cycle C (𝑎1, 𝑎2, . . . , 𝑎100) has exactly k chords,
since (2) becomes

𝑓𝐺 (𝑘) +
100∑
𝑠=1

(𝑎2
𝑠 + 𝑡𝑠𝑎 : 𝑠) = 𝑓𝐺 (𝑘) +

20∑
𝑠=1

(
𝑏2
𝑠 −

𝑡2𝑠
4

)
= 𝑘.

Otherwise, there are at least 80 odd 𝑡𝑠’s, say 𝑡1, . . . , 𝑡80. Let r be the unique integer divisible by 4 such that

𝑟 − 3 ≤ 𝑘 − 𝑓𝐺 (𝑘) +
80∑
𝑠=1

𝑡2𝑠 − 1
4

≤ 𝑟.

By our choice of 𝑡1, . . . , 𝑡80, (𝑡2𝑠 −1)/4 is an integer for each 𝑠 ∈ [80]. Lemma 5.2 then shows that, since
r is a large enough integer divisible by 4, there exist integers 𝑏𝑠 ≥ 300, for 𝑠 ∈ [80], such that

𝑟 =
80∑
𝑠=1

𝑏𝑠 (𝑏𝑠 + 1).

Now take 𝑎𝑠 = 𝑏𝑠 − (𝑡𝑠 − 1)/2 if 𝑠 ∈ [80] (so 𝑎𝑠 ≥ 300 − (𝑡𝑠 − 1)/2 ≥ 0), and 0 otherwise. Then the
number 𝑘 ′ of chords in C (𝑎1, 𝑎2, . . . , 𝑎100), using (2), is

𝑘 ′ = 𝑓𝐺 (𝑘) +
100∑
𝑠=1

(𝑎2
𝑠 + 𝑡𝑠𝑎𝑠)

= 𝑓𝐺 (𝑘) +
80∑
𝑠=1

(
𝑏𝑠 (𝑏𝑠 + 1) −

𝑡2𝑠 − 1
4

)
= 𝑓𝐺 (𝑘) + 𝑟 −

80∑
𝑠=1

𝑡2𝑠 − 1
4

.

By our choice of r, 𝑘 ≤ 𝑘 ′ ≤ 𝑘 + 3. Therefore, there is a cycle with exactly 𝑘 ′ chords for some
𝑘 ′ ∈ {𝑘, 𝑘 + 1, 𝑘 + 2, 𝑘 + 3}, as required. �
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7. Exact result

In this section we will prove Theorem 1.1, our main result. To do so, we will prove Lemma 7.7 below,
which asserts that if a p-extraction of a graph G contains ℓ pairwise disjoint induced copies of 𝐾ℓ,ℓ with
no edges between them, where 𝑝, ℓ 
 𝑘 
 1, then there is a cycle with exactly k chords. Notice that
Theorem 1.1 can be deduced from this lemma, along with Corollary 4.2 and Lemma 6.2, following the
proof of Theorem 6.1 in Section 6 and replacing the call to Lemma 6.3 by a call to Lemma 7.7.

7.1. Overview of the proof

The basic idea for the proof of Lemma 7.7 is similar to that of Lemma 6.3. Given ℓ induced copies
𝐾1, . . . , 𝐾ℓ of 𝐾ℓ,ℓ with no edges between them, we clean them up so that we can build cycles, taking
paths 𝑃𝑖 ⊆ 𝐾𝑖 and connecting them by unimodal paths, in such a way that the number of chords depends
only on the lengths of the 𝑃𝑖’s. However, as seen in the previous section, in some cases a parity issue
may cause this strategy to fail to give the precise desired number of chords.

To fix this, when cleaning up the 𝐾𝑖’s we take into account, for each vertex u in one of the 𝐾𝑖’s and
each triple 𝑇 = { 𝑗1, 𝑗2, 𝑗3} of layers (with 𝑗1 > 𝑗2 > 𝑗3), a 𝑗1-father 𝑓1(𝑢;𝑇) of u, a 𝑗2-father 𝑓2 (𝑢;𝑇)
of 𝑓1 (𝑢;𝑇), and a 𝑗3-father 𝑓3(𝑢;𝑇) of 𝑓2(𝑢;𝑇) (recall that in the previous section we considered just
one father of one vertex per 𝐾ℓ,ℓ).

Lemma 7.2 allows us to assume that there are no edges between { 𝑓1(𝑢;𝑇), 𝑓2(𝑢;𝑇), 𝑓3 (𝑢;𝑇)} and
𝐾𝑖’s not containing u. An important step towards the proof of Lemma 7.2 is Lemma 7.1. The latter
lemma considers a case where there is a collection of 31 pairwise vertex-disjoint induced 𝐾ℓ,ℓ’s with
no edges between them, and a collection of 31 vertices that are each complete to each of these 𝐾ℓ,ℓ’s,
or are each complete to one part of each 𝐾ℓ,ℓ and anti-complete to the other. The proof of this lemma
follows the usual scheme of building a cycle and controlling the number of its chords by controlling the
number of vertices used from each 𝐾ℓ,ℓ . The proof here is, in fact, a bit simpler as instead of connecting
the 𝐾ℓ,ℓ’s using unimodal paths we can use the 31 vertices.

With the above assumption at hand, namely that there are no edges between the set of parents
{ 𝑓1 (𝑢;𝑇), 𝑓2(𝑢;𝑇), 𝑓3(𝑢;𝑇)} and 𝐾𝑖’s not containing u, we now wish to analyse the interaction between
any 𝐾𝑖 and the sets { 𝑓 𝑗 (𝑢;𝑇) : 𝑢 ∈ 𝐾𝑖}, 𝑗 = 1, 2, 3, for any fixed T. This is done in Lemma 7.4. The full
statement of the lemma is quite long. In short, it allows us to assume that one of six cases holds, each
describing a concrete well-structured graph.

We then turn to the proof of Lemma 7.7, which is the main result of the section. By applying
Lemma 7.4 to sufficiently many triples of layers, we can assume that one of the six cases mentioned
above holds for enough 𝐾𝑖’s and enough layers. In four of these cases (which we analyse simultaneously),
we build the cycles as usual and can reach the desired number of chords without encountering parity
issues. In the remaining two cases, we require a few small gadgets to adjust the number of chords in
case of a parity issue.

7.2. Removing cross edges

As mentioned above, our first step towards Lemma 7.7 is Lemma 7.2 which allows us to assume that,
given a collection of induced 𝐾ℓ,ℓ’s with no edges between them, there are no edges between parents of
one copy of 𝐾ℓ,ℓ and any other copy of 𝐾ℓ,ℓ . Before proving Lemma 7.2, we prove the following lemma
which considers the other extreme, where there are many ‘well-connected’ vertices that are each fully
joined to at least one part of each such 𝐾ℓ,ℓ .

The proof is similar to other proofs in this paper, where we build a cycle using paths from each 𝐾ℓ,ℓ .
However, instead of using unimodal paths to connect these paths, we use the well-connected vertices,
which simplifies the proof.

Lemma 7.1. Let ℓ 
 𝑘 
 1. In a graph G, suppose that 𝐾1, . . . , 𝐾31 are pairwise vertex-disjoint
induced copies of 𝐾ℓ,ℓ with no edges between them. Denote by {𝑈𝑖,1,𝑈𝑖,2} the bipartition of 𝐾𝑖 . Let X
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Figure 9. Part of the cycle C in Case (a).

be set of 31 vertices such that one of the following holds:

(a) every 𝑥 ∈ 𝑋 is complete to 𝐾𝑖 , for 𝑖 ∈ [31] or
(b) every 𝑥 ∈ 𝑋 is complete to 𝑈𝑖,1 and anti-complete to 𝑈𝑖,2, for 𝑖 ∈ [31].

Then there is a cycle in G with exactly k chords.

Proof. Suppose first that (a) is the case. Let 𝑥1, . . . , 𝑥20 ∈ 𝑋 be distinct. Let x be the number of edges
in the induced subgraph 𝐺 [{𝑥1, . . . , 𝑥20}]. For non-negative integers 𝑎1, . . . , 𝑎20, let 𝑄𝑖 be a path in
𝐾𝑖 of length 2𝑎𝑖 + 1. Then each 𝑥𝑖 is adjacent to the ends of 𝑄 𝑗 for 𝑖, 𝑗 ∈ [20]. Let C to be the cycle
𝑥1𝑄1𝑥2 . . . 𝑥20𝑄20𝑥1.

We now wish to count the number of chords in C, which only depends on 𝑎1, . . . , 𝑎20 and x. First, by
counting the edges induced on 𝑉 (𝑄𝑖), the edges from 𝑥𝑖 to 𝑄 𝑗 , and the edges induced on {𝑥1, . . . , 𝑥20},
the number of edges with both ends in 𝑉 (C) is

20∑
𝑖=1

(𝑎𝑖 + 1)2 +
20∑
𝑖=1

20 · 2(𝑎𝑖 + 1) + 𝑥,

whereas the length of the cycle is
∑20
𝑖=1(2𝑎𝑖 + 3). Subtracting the cycle length from the number of edges

induced on 𝑉 (C), the number of chords equals to

20∑
𝑖=1

(𝑎2
𝑖 + 40𝑎𝑖 + 38) + 𝑥 =

20∑
𝑖=1

(𝑎𝑖 + 20)2 + 𝑥 − 𝑐,

where 𝑐 = 20 · (400−38). By using Lemma 5.1 for large enough k, there exist integers 𝑏1, . . . , 𝑏20 ≥ 20
such that

∑20
𝑖=1 𝑏2

𝑖 = 𝑘 − 𝑥 + 𝑐. Given such 𝑏1, . . . , 𝑏20, take 𝑎𝑖 = 𝑏𝑖 − 20 for 𝑖 ∈ [20]. Then the cycle C
has exactly k chords, as required.

Suppose now that (b) happens. Let 𝑥1, . . . , 𝑥21 ∈ 𝑋 be distinct. Let x be the number of edges in the
induced subgraph 𝐺 [{𝑥1, . . . , 𝑥20}]. Given integers 𝑎1, . . . , 𝑎20 ≥ 0, let 𝑄𝑖 be a path in 𝐾𝑖 of length
2𝑎𝑖 , with both ends in 𝑈𝑖,1. Let C be the cycle 𝑥1𝑄1𝑥2 . . . 𝑥21𝑄21𝑥1.

Then the number of edges with both ends in the cycle C is

21∑
𝑖=1

𝑎𝑖 (𝑎𝑖 + 1) +
21∑
𝑖=1

21(𝑎𝑖 + 1) + 𝑥,
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Figure 10. Part of the cycle C in Case (b).

where the length of the cycle is
∑21
𝑖=1(2𝑎𝑖 + 2). Thus, the number of chords in C, obtained by subtracting

the number of the C-edges from the number of induced edges on 𝑉 (C), is

21∑
𝑖=1

(𝑎2
𝑖 + 20𝑎𝑖 + 19) + 𝑥 =

21∑
𝑖=1

(𝑎𝑖 + 10)2 + 𝑥 − 𝑐,

where 𝑐 = 21· (100−19). Again by Lemma 5.1, there exist 𝑏1, . . . , 𝑏21 ≥ 10 such that
∑20
𝑖=1 𝑏2

𝑖 = 𝑘−𝑥+𝑐.
Given such 𝑏1, . . . , 𝑏21, choosing 𝑎𝑖 = 𝑏𝑖 − 10 yields a cycle C with exactly k chords. �

The next lemma allows us to assume that there is a collection of many disjoint induced 𝐾ℓ,ℓ’s with no
edges between them, such that for many triples of layers 𝑇 = { 𝑗1 > 𝑗2 > 𝑗3} and every vertex u in one
of these 𝐾ℓ,ℓ’s, there are no edges between { 𝑓1(𝑢;𝑇), 𝑓2(𝑢;𝑇), 𝑓3(𝑢;𝑇)} and 𝐾ℓ,ℓ’s not containing u
(where 𝑓1(𝑢;𝑇) is a 𝑗1-father of u, 𝑓2(𝑢;𝑇) is a 𝑗2-father of 𝑓1(𝑢;𝑇), 𝑓3(𝑢;𝑇) is a 𝑗3-father of 𝑓2(𝑢;𝑇),
and 𝑇 = { 𝑗1 > 𝑗2 > 𝑗3}).

Roughly speaking, to prove this lemma we choose a collection { 𝑓1(𝑢;𝑇), 𝑓2(𝑢;𝑇), 𝑓3 (𝑢;𝑇)} for
each u and T. We then clean up the 𝐾ℓ,ℓ’s using Ramsey’s theorem to assume that each 𝑓 𝑗 (𝑢;𝑇) is
either complete or anti-complete to each part of each 𝐾ℓ,ℓ . Finally, using the previous lemma we may
assume that for the vast majority of choices of u, T and 𝐾ℓ,ℓ-copy K, there are no edges between
{ 𝑓1 (𝑢;𝑇), 𝑓2(𝑢;𝑇), 𝑓3(𝑢;𝑇)} and K. The Kövari–Sós–Turán theorem then allows us to find the required
structure.

Lemma 7.2. Let 𝑝, ℓ 
 𝑚 
 𝑘 
 1 and let 𝐺 𝑝 be a p-extraction of G. Suppose that, in 𝐺 𝑝 , 𝐾1, . . . , 𝐾ℓ
are pairwise vertex-disjoint induced copies of 𝐾ℓ,ℓ with no edges between them. Then either there is a
cycle with exactly k chords, or there exist a collection 𝐾 ′

1, . . . , 𝐾
′
𝑚 of pairwise vertex-disjoint induced

𝐾𝑚,𝑚’s in 𝐺 𝑝 and a subset 𝐽 ⊆ [𝑝] of m indices such that, for every triple 𝑇 = { 𝑗1, 𝑗2, 𝑗3} ⊆ 𝐽 with
𝑗1 > 𝑗2 > 𝑗3, every 𝑖 ∈ [𝑚] and every 𝑢 ∈ 𝑉 (𝐾 ′

𝑖 ), there exist vertices 𝑓1 (𝑢;𝑇), 𝑓2(𝑢;𝑇), 𝑓3 (𝑢;𝑇) as
follows:

◦ 𝑓1(𝑢;𝑇) is a 𝑗1-father of u,
◦ 𝑓2(𝑢;𝑇) is a 𝑗2-father of 𝑓1(𝑢;𝑇),
◦ 𝑓3(𝑢;𝑇) is a 𝑗3-father of 𝑓2(𝑢;𝑇),
◦ there are no edges between { 𝑓1(𝑢;𝑇), 𝑓2(𝑢;𝑇), 𝑓3(𝑢;𝑇)} and

⋃
𝑠≠𝑖 𝑉 (𝐾 ′

𝑠).

Proof. We shall choose 𝑎, 𝑏, ℓ′ with ℓ, 𝑝 
 𝑀 
 𝑎 
 𝑏 
 𝑚 
 ℓ′ 
 𝑘 . For each 𝑢 ∈ 𝐾1 ∪ · · · ∪ 𝐾ℓ
and a triple 𝑇 = { 𝑗1, 𝑗2, 𝑗3} in [𝑎] (with 𝑗1 > 𝑗2 > 𝑗3), choose 𝑓𝑖 (𝑢;𝑇), for 𝑖 ∈ [3], arbitrarily from
those vertices such that 𝑓1(𝑢;𝑇) is a 𝑗1-father of u and 𝑓𝑖 (𝑢;𝑇) is a 𝑗𝑖-father of 𝑓𝑖−1(𝑢;𝑇) for 𝑖 ∈ {2, 3}.
Let 𝐹 (𝑢) be the collection of all 𝑓𝑖 (𝑢;𝑇) chosen.
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Let {𝑋𝑖 , 𝑌𝑖} be the bipartition of 𝐾𝑖 . We claim that for 𝑖 ∈ [𝑏] we can find subsets 𝑋 ′
𝑖 ⊆ 𝑋𝑖 and

𝑌 ′
𝑖 ⊆ 𝑌𝑖 of size m so that for all 𝑢 ∈ 𝑋 ′

𝑖 ∪𝑌 ′
𝑖 and 𝑗 ≠ 𝑖, each 𝑣 ∈ 𝐹 (𝑢) is either complete or anti-complete

to 𝑋 ′
𝑗 and either complete or anti-complete to 𝑌 ′

𝑗 .
This can be done by an analogous technique to the one used in the proof of Lemma 6.3. Namely,

for a vertex w and a set Z, let x(𝑤, 𝑍) ∈ {0, 1}𝑍 be the 0-1 vector that encodes the adjacency between
vertices in Z and w. That is, the corresponding coordinate to 𝑣 ∈ 𝑍 is 1 if w and v are adjacent and
0 otherwise. Then one can partition 𝑋𝑖 (resp. 𝑌𝑖) according to the values of x(𝑤, 𝑍) with 𝑤 ∈ 𝑋𝑖
(resp. 𝑋𝑖). By choosing the largest subset in the partition, we have subsets 𝑋 ′

𝑖 ⊆ 𝑋𝑖 and 𝑌 ′
𝑖 ⊆ 𝑌𝑖 such

that |𝑋 ′
𝑖 | ≥ 2−|𝑍 | |𝑋𝑖 | and |𝑌 ′

𝑖 | ≥ 2−|𝑍 | |𝑌𝑖 |, and each 𝑧 ∈ 𝑍 is either complete or anti-complete to each
𝑤 ∈ 𝑋 ′

𝑖 ∪ 𝑌 ′
𝑖 .

First, choose arbitrary subsets 𝑋1
𝑏 ⊆ 𝑋𝑏 and 𝑌1

𝑏 ⊆ 𝑌𝑏 with |𝑋1
𝑏 | = |𝑌1

𝑏 | = 𝑀 . Then for each 𝑖 < 𝑏, it
is possible to choose 𝑋1

𝑖 ⊆ 𝑋𝑖 and 𝑌1
𝑖 ⊆ 𝑌𝑖 of size M such that each vertex 𝑣 ∈ 𝐹 (𝑢), with 𝑢 ∈ 𝑋1

𝑗 ∪ 𝑌1
𝑗

and 𝑗 > 𝑖, is either complete or anti-complete to 𝑋1
𝑖 ∪ 𝑌1

𝑖 (indeed, the previous paragraph tells us that
there exist such subsets of size at least ℓ · 2−𝑎3𝑏𝑀 ≥ 𝑀).

Next, we repeat in the reverse order. That is, starting with 𝑖 = 1, we choose subsets 𝑋 ′
𝑖 ⊆ 𝑋1

𝑖 and
𝑌 ′
𝑖 ⊆ 𝑌1

𝑖 of size m such that each vertex 𝑣 ∈ 𝐹 (𝑢), with 𝑢 ∈ 𝑋 ′
𝑗 ∪ 𝑌 ′

𝑗 and 𝑗 < 𝑖, is either complete
or anti-complete to 𝑋 ′

𝑖 ∪ 𝑌 ′
𝑖 (this is possible since we are guaranteed such subsets of size at least

𝑀 · 2−𝑎3𝑏𝑚 ≥ 𝑚). The sets 𝑋 ′
𝑖 and 𝑌 ′

𝑖 satisfy the requirements.
We then collect all ‘fathers’ 𝑣 ∈ 𝐹 (𝑢) for some 𝑢 ∈ 𝑋 ′

𝑖 ∪𝑌 ′
𝑖 . That is, we set 𝐹 :=

⋃𝑏
𝑖=1

⋃
𝑢∈𝑋 ′

𝑖∪𝑌
′
𝑖
𝐹 (𝑢).

Consider the auxiliary bipartite graph B between F and [𝑏] where 𝑣 ∈ 𝐹 and 𝑗 ∈ [𝑏] are adjacent
whenever v is complete to 𝑋 ′

𝑗 or 𝑌 ′
𝑗 . Colour each edge (𝑣, 𝑗) by red, blue, or green if v is complete to 𝑋 ′

𝑗
only, 𝑌 ′

𝑗 only, or both 𝑋 ′
𝑗 ∪ 𝑌 ′

𝑗 , respectively. By Lemma 7.1, if there is no cycle with exactly k chords,
then B contains no monochromatic 𝐾ℓ′,ℓ′ . Since 𝑚 
 ℓ′, the bipartite Ramsey Theorem tells us that
B contains no copy of 𝐾𝑚,𝑚. In particular, there are at most 𝑚

(𝑏
𝑚

)
vertices 𝑓 ∈ 𝐹 with deg𝐵 ( 𝑓 ) ≥ 𝑚.

Since 𝑎 
 𝑚
(𝑏
𝑚

)
+ 𝑚, we can choose a set J of m indices so that for 𝑗 ∈ 𝐽, all j-fathers 𝑓 ∈ 𝐹 have

deg𝐵 ( 𝑓 ) < 𝑚. For each 𝑢 ∈
⋃𝑏
𝑖=1 𝑋 ′

𝑖 ∪ 𝑌 ′
𝑖 , let 𝐹 ′(𝑢) ⊆ 𝐹 (𝑢) be the subset of fathers 𝑓𝑖 (𝑢;𝑇) with

𝑖 ∈ {1, 2, 3} and 𝑇 ∈
(𝐽

3
)
. Note that |𝐹 ′(𝑢) | ≤ |𝐽 |3 ≤ 𝑚3.

Consider an auxiliary directed graph D on [𝑏] where we join i to j if there is some 𝑢 ∈ 𝑋 ′
𝑖 ∪ 𝑌 ′

𝑖 and
𝑣 ∈ 𝐹 ′(𝑢) with v complete to 𝑋 ′

𝑗 or 𝑌 ′
𝑗 . As

�� ⋃
𝑢∈𝑋 ′

𝑖∪𝑌
′
𝑖
𝐹 ′(𝑢)

�� ≤ |𝑋 ′
𝑖 ∪ 𝑌 ′

𝑖 |𝑚3 = 2𝑚4 for each i and each
𝑓 ∈ 𝐹 ′(𝑢) is adjacent to at most m of the sets 𝑋 𝑗 ∪𝑌 𝑗 , the digraph D has maximum out-degree at most
2𝑚5 ≤ 𝑏/(2𝑚+1). Therefore, D has an independent set I of size m. Letting 𝐾 ′

1, . . . , 𝐾
′
𝑚 be the complete

bipartite graphs induced by 𝑋 ′
𝑖 ∪ 𝑌 ′

𝑖 for 𝑖 ∈ 𝐼, we get a set of complete bipartite graphs satisfying the
lemma. �

7.3. Analysing the structure of a complete bipartite subgraph and its parents

Our next task is to prove Lemma 7.4, which will be used to analyse the interaction between a complete
bipartite subgraph and its parents, ‘grandparents’ and ‘great-grandparents’.

The following simple lemma will be useful in what follows.

Lemma 7.3. Let 𝐺2 be a bipartite graph on the bipartition 𝐴 ∪ 𝐵, where |𝐴| = |𝐵 | = 𝑚, and let 𝐺1
be its subgraph. Suppose that 𝑑𝐺1 (𝑎) ≥ 1 for every 𝑎 ∈ 𝐴 and 𝑑𝐺2 (𝑏) ≤ 𝑑 for every 𝑏 ∈ 𝐵. Then
there exist 𝐴′ ⊆ 𝐴 and 𝐵′ ⊆ 𝐵, such that |𝐴′ | = |𝐵′ | ≥ 𝑚/4𝑑2 and each induced subgraph 𝐺𝑖 [𝐴′, 𝐵′],
𝑖 = 1, 2, is a perfect matching.

Proof. Let 𝐴0 := {𝑎 ∈ 𝐴 : 𝑑𝐺2 (𝑎) ≤ 2𝑑}. Then 𝑒(𝐺2) ≤ 𝑑 |𝐵 | implies |𝐴 \ 𝐴0 | ≤ 𝑒(𝐺2)/2𝑑 ≤ |𝐵 |/2 =
𝑚/2 and hence, |𝐴0 | ≥ 𝑚/2. Let 𝐴′ ⊆ 𝐴0 be a maximal subset such that there exists 𝐵′ ⊆ 𝐵 such
that each 𝐺𝑖 [𝐴′, 𝐵′], 𝑖 = 1, 2, induces a perfect matching. We claim that every vertex in 𝐴0 \ 𝐴′ has a
𝐺2-neighbour in 𝑁𝐺2 (𝐴′). Indeed, if 𝑎 ∈ 𝐴0 \ 𝐴′ has no 𝐺2-neighbour in 𝑁𝐺2 (𝐴′) then it has a
𝐺1-neighbour 𝑏 ∈ 𝐵 \𝑁𝐺2 (𝐴′), which makes each 𝐺𝑖 [𝐴′ ∪ {𝑎}, 𝐵′ ∪ {𝑏}], 𝑖 = 1, 2, a perfect matching.
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This contradicts the maximality of 𝐴′. Thus, 𝐴0 ⊆ 𝑁𝐺2 (𝑁𝐺2 (𝐴′)), which implies |𝐴0 | ≤ 𝑑 |𝑁𝐺2 (𝐴′) | ≤
2𝑑2 |𝐴′ |. As |𝐴0 | ≥ 𝑚/2, |𝐵′ | = |𝐴′ | ≥ 𝑚/4𝑑2, as desired. �

Lemma 7.4. For ℓ 
 𝜔, let K be an induced copy of 𝐾ℓ,ℓ with bipartition 𝑋 ∪ 𝑌 . Suppose that 𝑅, 𝑆, 𝑇
are pairwise disjoint sets outside K such that every vertex in K has a neighbour in R, every vertex in R has
a neighbour in S, and every vertex in S has a neighbour in T. Let 𝑈 := 𝑅 ∪ 𝑆 ∪𝑇 and ℓ′ := log ℓ/10000.

Then there exist sets 𝑋 ′ and 𝑌 ′ of size ℓ′, each of which is contained in a different set amongst X and
Y, sets 𝐴, 𝐴′, 𝐴′′ ⊆ 𝑈, each of which contained in a different set amongst 𝑅, 𝑆, 𝑇 , and vertices 𝑎, 𝑏 ∈ 𝑈
such that one of the following holds:

(K1) The vertex a is complete to 𝑋 ′ ∪ 𝑌 ′.
(K2) The vertex a is complete to 𝑋 ′ and anti-complete to 𝑌 ′, and b is complete to 𝑌 ′ and anti-complete

to 𝑋 ′.
(K3) Both the induced bipartite graphs 𝐺 [𝐴, 𝑋 ′] and 𝐺 [𝐴′, 𝑌 ′] are perfect matchings, A is anti-

complete to 𝑌 ′, and 𝐴′ is anti-complete to 𝑋 ′.
(K4) The induced bipartite graph 𝐺 [𝐴, 𝑋 ′] is a perfect matching and A is complete to 𝑌 ′.
(K5) The induced bipartite graph 𝐺 [𝐴, 𝑋 ′] is a perfect matching, A is anti-complete to 𝑌 ′, 𝐴′ is anti-

complete to 𝑋 ′ and either complete or anti-complete to 𝑌 ′, every vertex in A has a neighbour in
𝐴′, and b is complete to 𝑌 ′ and anti-complete to 𝑋 ′.

(K6) Each component in 𝐺 [𝐴, 𝐴′, 𝐴′′, 𝑋 ′] consists of four vertices 𝑢, 𝑢′, 𝑢′′, 𝑥 in 𝐴, 𝐴′, 𝐴′′, 𝑋 ′,
respectively, such that all pairs in {𝑢, 𝑢′, 𝑢′′, 𝑥}, except for possibly 𝑢𝑢′′, form edges. Additionally,
𝐴 ∪ 𝐴′ ∪ 𝐴′′ is anti-complete to 𝑌 ′, and b is complete to 𝑌 ′ and anti-complete to 𝑋 ′.

Proof. We begin by proving the following claim.

Claim 7.5. Let ℓ0 := ℓ1/7/10. There exist 𝑅1, 𝑆1, 𝑇1 ⊆ 𝑈 of size ℓ0, each of which is contained in a
different set amongst 𝑅, 𝑆, 𝑇, 𝑄1 ⊆ 𝑋 of size ℓ0, and a vertex 𝑢1 ∈ 𝑈 such that one of the following holds:

(a) The vertex 𝑢1 is complete to 𝑄1.
(b) The vertex 𝑢1 is complete to 𝑅1 and anti-complete to 𝑄1 and 𝐺 [𝑄1, 𝑅1] induces a perfect matching.
(c) Every component in 𝐺 [𝑄1, 𝑅1, 𝑆1] is an induced path 𝑞𝑟𝑠 with 𝑞, 𝑟, 𝑠 in 𝑄1, 𝑅1, 𝑆1, respectively.
(d) Every component in 𝐺 [𝑄1, 𝑅1, 𝑆1, 𝑇1] consists of four vertices 𝑞, 𝑟, 𝑠, 𝑡 from 𝑄1, 𝑅1, 𝑆1, 𝑇1,

respectively, such that all pairs in {𝑞, 𝑟, 𝑠, 𝑡} are edges, except for possibly 𝑟𝑡.

Proof of the claim. We shall use ℓ = (10ℓ0)7 implicitly throughout the proof.
If a vertex in U has at least ℓ0 neighbours in X then we may take 𝑢1 to be this vertex and 𝑄1 to be a

set of ℓ0 of its neighbours in X, which satisfies (a). In this case, the sets 𝑅1, 𝑆1, 𝑇1 are chosen arbitrarily,
as they play no role in what follows. We may hence assume that every vertex in U sends at most ℓ0 edges
to X.

By Lemma 7.3, there are subsets 𝑄 (1) ⊆ 𝑄 and 𝑅1 ⊆ 𝑅 with |𝑄 (1) | = |𝑅 (1) | ≥ ℓ/4ℓ2
0 such that

𝐺 [𝑄 (1) , 𝑅 (1) ] induces a perfect matching. For 𝑟 ∈ 𝑅 (1) , denote by 𝑞(𝑟) the unique neighbour of r in
𝑄 (1) ; define 𝑟 (𝑞) similarly for each 𝑞 ∈ 𝑄 (1) .

Suppose that there is a vertex 𝑢 ∈ 𝑆 ∪ 𝑇 with at least 2ℓ0 neighbours in 𝑅 (1) . As u has at most ℓ0
neighbours in Q, there are at least ℓ0 neighbours r of u such that 𝑞(𝑟) is not adjacent to u. Let 𝑅1 ⊆ 𝑅 (1)

be a set of ℓ0 such vertices r. Then taking 𝑄1 := {𝑞(𝑟) : 𝑟 ∈ 𝑅1} and 𝑢1 := 𝑢 proves b. Thus, we may
assume that every vertex in 𝑆 ∪ 𝑇 has at most 2ℓ0 neighbours in 𝑅 (1) .

Let 𝑆 (1) ⊆ 𝑆 be a set of size |𝑅 (1) | such that each vertex in 𝑅 (1) has a neighbour in 𝑆 (1) . Let
𝐺1 = 𝐺 [𝑅 (1) , 𝑆 (1) ] and let 𝐺2 be the bipartite graph on 𝑅 (1) ∪ 𝑆 (1) where 𝑟𝑠, 𝑟 ∈ 𝑅 (1) and 𝑠 ∈ 𝑆 (1) , is
an edge if s has a neighbour in {𝑟, 𝑞(𝑟)}. By Lemma 7.3, there exist subsets 𝑅 (2) ⊆ 𝑅 (1) and 𝑆 (2) ⊆ 𝑆 (1)

with |𝑆 (2) | = |𝑅 (2) | ≥ |𝑅 (1) |/36ℓ2
0 ≥ ℓ/144ℓ4

0 , such that 𝐺𝑖 [𝑅 (2) , 𝑆 (2) ] induces a perfect matching, for
𝑖 = 1, 2.

Let 𝑄 (2) := {𝑞(𝑟) : 𝑟 ∈ 𝑅 (2) } and let 𝑟 (𝑠), 𝑠(𝑟), 𝑞(𝑠), 𝑠(𝑞) be defined similarly as above for
𝑠 ∈ 𝑆 (2) , 𝑟 ∈ 𝑅 (2) , and 𝑞 ∈ 𝑄 (2) . That is, 𝑟 (𝑠) is the unique neighbour of s in 𝑅 (2) ; 𝑞(𝑠) is the
unique neighbour of 𝑟 (𝑠) in 𝑄 (2) ; etc. Then each component in 𝐺 [𝑄 (2) , 𝑅 (2) , 𝑆 (2) ] consists of vertices
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𝑞, 𝑟, 𝑠 with 𝑞 ∈ 𝑄 (2) , 𝑟 ∈ 𝑅 (2) , 𝑠 ∈ 𝑆 (2) such that 𝑞𝑟 and 𝑟𝑠 are edges. If 𝑞𝑠 is a nonedge for at
least half of the components, then c holds. We may thus assume that 𝑞𝑠 is an edge for at least half
of the components, implying that there are subsets 𝑄 (3) ⊆ 𝑄 (2) , 𝑅 (3) ⊆ 𝑅 (2) and 𝑆 (3) ⊆ 𝑆 (2) , with
|𝑄 (3) | = |𝑅 (3) | = |𝑆 (3) | ≥ ℓ/288ℓ4

0 , such that 𝐺 [𝑄 (3) , 𝑅 (3) , 𝑆 (3) ] induces a 𝐾3-factor.
Suppose that 𝑢 ∈ 𝑇 has at least 2ℓ0 neighbours in 𝑆 (3) . Let 𝑅1 ⊆ 𝑆 (3) be a set of ℓ0 neighbours such

that 𝑞(𝑠) is not a neighbour of u. Indeed, such a set exists because u has at most ℓ0 neighbours in 𝑄 (3) .
Then taking 𝑄1 := {𝑞(𝑠) : 𝑠 ∈ 𝑅1} and 𝑢1 := 𝑢 makes b hold. We thus assume that every vertex in T
has at most 2ℓ0 neighbours in 𝑆 (3) .

Now Lemma 7.3 implies that there exist subsets 𝑄 (4) , 𝑅 (4) , 𝑆 (4) , 𝑇 (4) of 𝑄 (3) , 𝑅 (3) , 𝑆 (3) , 𝑇 , respec-
tively, which are of the same size at least |𝑄 (3) |/100ℓ2

0 ≥ ℓ/28800ℓ6
0 , such that each component in

𝐺 [𝑄 (4) , 𝑅 (4) , 𝑆 (4) , 𝑇 (4) ] consists of vertices 𝑞, 𝑟, 𝑠, 𝑡 from𝑄, 𝑅, 𝑆, 𝑇 , respectively, such that 𝑞𝑟, 𝑞𝑠, 𝑟𝑠, 𝑡𝑠
are edges. If 𝑞𝑡 is a nonedge for at least half of the components, then c holds by taking subsets of
𝑄 (4) , 𝑆 (4) , 𝑇 (4) that induce 2-edge paths. Otherwise, d holds. �

An analogous claim that produces subsets 𝑄2, 𝑅2, 𝑆2, 𝑇2 ⊆ 𝑌 and vertex 𝑢2 also holds for Y. We
may hence fix the vertex sets 𝑄𝑖 , 𝑅𝑖 , 𝑆𝑖 , 𝑇𝑖 and vertices 𝑢𝑖 , 𝑖 = 1, 2, that satisfy the claim above and the
analogous statement for Y. We then proceed to further refine these subsets.
Claim 7.6. Let ℓ1 = log ℓ0/100. There exist subset 𝑄 ′

𝑖 , 𝑅
′
𝑖 , 𝑆

′
𝑖 , 𝑇

′
𝑖 of 𝑄𝑖 , 𝑅𝑖 , 𝑆𝑖 , 𝑇𝑖 , respectively, for

𝑖 = 1, 2, which are of the same size ℓ1 and satisfy one of (the obvious analogues of) (a) to (d), and,
additionally, each of 𝑢𝑖 , 𝑅′

𝑖 , 𝑆
′
𝑖 , 𝑇

′
𝑖 is either complete or anti-complete to 𝑄3−𝑖 , for 𝑖 ∈ [2].

Proof of the claim. For 𝑞 ∈ 𝑄1, let 𝑟 (𝑞) be the unique neighbour of q in 𝑅1, assuming that one of b to
d holds; otherwise, choose 𝑟 (𝑞) arbitrarily (say, from 𝑅1; it will play no role). Similarly, let 𝑠(𝑞) be the
unique neighbour of 𝑟 (𝑞) in 𝑆1, if one of c and d holds, and let 𝑡 (𝑞) be the unique neighbour of 𝑠(𝑞)
if d holds. For the cases when 𝑠(𝑞) or 𝑡 (𝑞) are not defined, we again choose them arbitrarily as they will
play no role. For 𝑞 ∈ 𝑄2, we define 𝑟 (𝑞), 𝑠(𝑞), 𝑡 (𝑞) analogously with respect to 𝑄2, 𝑅2, 𝑆2, 𝑇2.

We then consider an auxiliary edge-coloured complete bipartite graph H on 𝑄1 ∪𝑄2 as follows: for
𝑞1 ∈ 𝑄1 and 𝑞2 ∈ 𝑄2, colour 𝑞1𝑞2 by the 0-1 vector of length eight that encodes which of the pairs in
{𝑞3−𝑖} × {𝑟 (𝑞𝑖), 𝑠(𝑞𝑖), 𝑡 (𝑞𝑖), 𝑢𝑖} are edges in G or not, for 𝑖 = 1, 2.

By the classical Kövari–Sós–Turan theorem, there exist subsets 𝑄 ′
1 ⊆ 𝑄1 and 𝑄 ′

2 ⊆ 𝑄2 of size ℓ1
each, such that 𝐻 [𝑄 ′

1, 𝑄
′
2] is monochromatic. Taking 𝑅′

𝑖 := {𝑟 (𝑞) : 𝑞 ∈ 𝑄 ′
𝑖}, 𝑆′𝑖 = {𝑠(𝑞) : 𝑞 ∈ 𝑄 ′

𝑖}, and
𝑇 ′
𝑖 = {𝑡 (𝑞) : 𝑞 ∈ 𝑄 ′

𝑖} proves the claim. �

For brevity, let us rename 𝑄 ′
𝑖 , 𝑅

′
𝑖 , 𝑆

′
𝑖 , 𝑇

′
𝑖 to 𝑄𝑖 , 𝑅𝑖 , 𝑆𝑖 , 𝑇𝑖 , respectively, for 𝑖 = 1, 2.

A simple (though somewhat tedious) case analysis now shows that one of (K1) to (K6) above holds
by using ℓ1 ≥ log ℓ/10000 = ℓ′.
◦ Property (a) holds for 𝑖 = 1, 2.

We claim that one of (K1) and (K2) holds. Indeed, take 𝑋 ′ := 𝑄1 and 𝑌 ′ := 𝑄2. If one of 𝑢1 and 𝑢2 is
complete to both 𝑄1 and 𝑄2 for some 𝑖 ∈ [2], then (K1) holds. Otherwise, taking 𝑎 := 𝑢1 and 𝑏 := 𝑢2
makes (K2) hold.

◦ Property (a) holds for neither 𝑖 = 1 nor 2.
We claim that one of (K3) and (K4) holds. Indeed, if 𝑅𝑖 is anti-complete to 𝑄3−𝑖 for both 𝑖 = 1 and
2, then (K3) holds by taking 𝑋 ′, 𝑌 ′, 𝐴, 𝐴′ to be 𝑄1, 𝑄2, 𝑅1, 𝑅2, respectively). Otherwise, without loss
of generality 𝑅1 is complete to 𝑄2, and (K4) holds by taking 𝑋 ′, 𝑌 ′, 𝐴 to be 𝑄1, 𝑄2, 𝑅1.

Without loss of generality, it remains to consider the case where property (a) holds for 𝑖 = 2 but not for
𝑖 = 1. At every step of the following case analysis, we iteratively assume that the previous cases do not
hold.
◦ The vertex 𝑢2 is complete to 𝑄1. Then (K1) holds.
◦ The set 𝑅1 is complete to 𝑄2. Then (K4) holds.
◦ Property (b) holds for 𝑖 = 1.

Then (K5) holds: take 𝑋 ′, 𝑌 ′, 𝐴, 𝐴′, 𝑏 to be 𝑄1, 𝑄2, 𝑅1, {𝑢1}, 𝑢2.
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◦ Property (d) holds for 𝑖 = 1.
Again (K5) holds: take 𝑋 ′, 𝑌 ′, 𝐴, 𝐴′, 𝑏 to be 𝑄1, 𝑄2, 𝑅1, 𝑆1, 𝑢2.

◦ Property (d) holds for 𝑖 = 1.
Here we may assume that 𝑅1, 𝑆1, 𝑇1 are anti-complete to 𝑄2, as otherwise (K4) holds. It follows that
(K6) holds: take 𝑋 ′, 𝑌 ′, 𝐴, 𝐴′, 𝐴′′, 𝑏 to be 𝑄1, 𝑄2, 𝑅1, 𝑆1, 𝑇1, 𝑢2, respectively. �

7.4. Finding a cycle with exactly k chords

Finally, we prove the following lemma, which finds a cycle with exactly k chords given a large collection
of pairwise vertex-disjoint 𝐾ℓ,ℓ’s with no edges between them. As mentioned previously, we will use a
similar approach to that used in the previous section and earlier in this section, connecting the 𝐾ℓ,ℓ’s by
unimodal paths and closing a cycle by choosing a path of the right length from each 𝐾ℓ,ℓ . The difference
here is the much more careful analysis of the interaction between a single 𝐾ℓ,ℓ , and a collection of
parents, ‘grandparents’ and ‘great-grandparents’ of its vertices. This analysis will give rise to three
cases (the first corresponding to the first four cases in Lemma 7.4 and the last two each corresponding
to one of the last two cases in Lemma 7.4). In the last two cases we will sometimes need to adjust the
cycle lengths slightly. For that we build our cycle so as to contain certain small ‘gadgets’ that will allows
us to do so.

Lemma 7.7. Let 𝑝, ℓ 
 𝑘 
 1. Suppose that, in a p-extraction of G, there are ℓ pairwise vertex-disjoint
induced copies of 𝐾ℓ,ℓ with no edges between them. Then there is a cycle in G with exactly k chords.

Proof. Suppose that there is no cycle with exactly k chords. Let m satisfy 𝑝, ℓ 
 𝑚 
 𝑘 . Then by
Lemma 7.2, there exist a collection 𝐾1, . . . , 𝐾200 of pairwise vertex-disjoint copies of induced 𝐾𝑚,𝑚’s
in the p-extraction of G, a subset 𝐽 ⊆ [𝑝] of size 200 · 75 that satisfy: for every triple 𝑇 = { 𝑗1, 𝑗2, 𝑗3}
in J with 𝑗1 > 𝑗2 > 𝑗3, every 𝑖 ∈ [200] and every 𝑢 ∈ 𝐾𝑖 , there exist vertices 𝑓1(𝑢;𝑇), 𝑓2(𝑢;𝑇), and
𝑓3(𝑢;𝑇) such that 𝑓𝑡 (𝑢;𝑇) is 𝑗𝑡 -father of 𝑓𝑡−1 (𝑢;𝑇), 𝑡 = 1, 2, 3, where 𝑢 = 𝑓0(𝑢;𝑇). Moreover, there
are no edges between { 𝑓1(𝑢;𝑇), 𝑓2(𝑢;𝑇), 𝑓3(𝑢;𝑇)} and ∪𝑠≠𝑖𝑉 (𝐾𝑠). Let 𝑆1, . . . , 𝑆200 ⊆ 𝐽 be pairwise
disjoint subsets of size 75.

Fix 𝑖 ∈ [200] and let𝑇1, . . . , 𝑇25 be disjoint triples that partition 𝑆𝑖 . Now repeatedly apply Lemma 7.4
twenty five times to each 𝐾𝑖: at the beginning, let 𝐾 = 𝐾𝑖 with the bipartition 𝑋 (0)

𝑖 ∪ 𝑌 (0)
𝑖 . At the j-th

iteration, we apply Lemma 7.4 with 𝑋 = 𝑋
( 𝑗−1)
𝑖 , 𝑌 = 𝑌

( 𝑗−1)
𝑖 , 𝑅 = { 𝑓1(𝑢;𝑇𝑗 ) : 𝑢 ∈ 𝑋

( 𝑗−1)
𝑖 ∪ 𝑌

( 𝑗−1)
𝑖 },

𝑆 = { 𝑓2(𝑢;𝑇𝑗 ) : 𝑢 ∈ 𝑋
( 𝑗−1)
𝑖 ∪ 𝑌

( 𝑗−1)
𝑖 } and 𝑇 = { 𝑓3(𝑢;𝑇𝑗 ) : 𝑢 ∈ 𝑋

( 𝑗−1)
𝑖 ∪ 𝑌

( 𝑗−1)
𝑖 }. Denote the output of

the lemma by 𝑋 ′
𝑗 , 𝑌

′
𝑗 , 𝐴 𝑗 , 𝐴

′
𝑗 , 𝐴

′′
𝑗 and vertices 𝑎 𝑗 , 𝑏 𝑗 . Recall that either 𝑋 ′

𝑗 ⊆ 𝑋 and 𝑌 ′
𝑗 ⊆ 𝑌 , or 𝑋 ′

𝑗 ⊆ 𝑌

and 𝑌 ′
𝑗 ⊆ 𝑋 . In the former case, take 𝑋

( 𝑗)
𝑖 = 𝑋 ′

𝑗 and 𝑌
( 𝑗)
𝑖 = 𝑌 ′

𝑗 and otherwise take 𝑋
( 𝑗)
𝑖 = 𝑌 ′

𝑗 and
𝑌
( 𝑗)
𝑖 = 𝑋 ′

𝑗 ; so that 𝑋 ( 𝑗)
𝑖 ⊆ 𝑋

( 𝑗)
𝑖−1 and 𝑌

( 𝑗)
𝑖 ⊆ 𝑌

( 𝑗)
𝑖−1 .

Notice that there exists 𝐿 ⊆ [25] of size 3 such that the same case among (K1) to (K6) occurred
in all iterations indexed by L, and moreover either for all ℓ ∈ 𝐿 we have 𝑋 (ℓ)

𝑖 = 𝑋 ′
ℓ or we always have

𝑋 (ℓ)
𝑖 = 𝑌 ′

ℓ . We assume that 𝑋 (ℓ)
𝑖 = 𝑋 ′

ℓ for all ℓ ∈ 𝐿; the other case can be handled analogously. We
consider three cases, as follows. For brevity, write 𝑋𝑖 = 𝑋 (25)

𝑖 and 𝑌𝑖 = 𝑌 (25)
𝑖 ; so 𝑋𝑖 and 𝑌𝑖 are the

shrunken sets at the end of the 25 iterations, each of which has size at least (log(50) 𝑚)/106.4

(1) One of (K1) to (K4) occurred in all iterations indexed by L.
Let ℓ1, ℓ2 ∈ 𝐿 be distinct. We choose vertices 𝑢𝑖,1, 𝑢𝑖,2, 𝑢

′
𝑖,1, 𝑢

′
𝑖,2 as follows.

◦ (K1): Take 𝑢𝑖,1 = 𝑎ℓ1 and 𝑢𝑖,2 = 𝑎ℓ2 , so that 𝑢𝑖,1 and 𝑢𝑖,2 are complete to 𝑋𝑖 ∪𝑌𝑖; choose 𝑢′𝑖,1 ∈ 𝑋𝑖
and 𝑢′𝑖,2 ∈ 𝑌𝑖 .

◦ (K2): Take 𝑢𝑖,1 = 𝑎ℓ1 and 𝑢𝑖,2 = 𝑏ℓ2 , so that 𝑢𝑖,1 is complete to 𝑋𝑖 and anti-complete to 𝑌𝑖 and
𝑢𝑖,2 is complete to 𝑌𝑖 and anti-complete to 𝑋𝑖; choose 𝑢′𝑖,1 ∈ 𝑋𝑖 and 𝑢′𝑖,2 ∈ 𝑌𝑖 .

4Here log(ℓ) 𝑥 denotes ℓ compositions of logarithm, for example, log(2) 𝑥 = log log 𝑥.
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◦ (K3): Pick 𝑢′𝑖,1 ∈ 𝑋𝑖 and 𝑢′𝑖,2 ∈ 𝑌𝑖 arbitrarily, and let 𝑢𝑖,1 be the unique neighbour of 𝑢′𝑖,1 in 𝐴ℓ1

and 𝑢𝑖,2 to be the unique neighbour of 𝑢′𝑖,2 in 𝐴′
ℓ2

. Notice that 𝑢′𝑖,𝑠 is the unique neighbour of 𝑢𝑖,𝑠
in 𝑋𝑖 ∪ 𝑌𝑖 , for 𝑠 ∈ [2].

◦ (K4): Let 𝑢′𝑖,1, 𝑢
′
𝑖,2 ∈ 𝑋𝑖 be distinct, and let 𝑢𝑖,𝑠 be unique neighbour of 𝑢′𝑖,𝑠 in 𝐴ℓ𝑠 , for 𝑠 ∈ [2].

Then 𝑢𝑖,𝑠 is complete to 𝑌𝑖 and 𝑢′𝑖,𝑠 is its only neighbour in 𝑋𝑖 , for 𝑠 ∈ [2].
Notice that 𝑢𝑖,1, 𝑢𝑖,2 belong to different layers with indices in 𝑆𝑖 and are anti-complete to 𝑋 𝑗 for
𝑗 ∈ [200] \ {𝑖}.

(2) Case (K5) occurred in all cases indexed by L.
Write 𝐿 = {ℓ1, ℓ2, ℓ3}. Let 𝑢′𝑖,1, 𝑢

′
𝑖,3 ∈ 𝑋𝑖 be distinct and let 𝑢𝑖,𝑠 be the unique neighbour of 𝑢′𝑖,𝑠 in

𝐴ℓ𝑠 , for 𝑠 ∈ {1, 3}. Take 𝑢𝑖,4 to be a neighbour of 𝑢𝑖,3 in 𝐴′
ℓ3

, take 𝑢𝑖,2 = 𝑏ℓ2 and choose 𝑢′𝑖,2 ∈ 𝑌𝑖 .
Then
◦ 𝑢𝑖,1, . . . , 𝑢𝑖,4 belong to four distinct layers with indices in 𝑆𝑖 and are anti-complete to 𝑋 𝑗 ∪ 𝑌 𝑗 ,

for 𝑗 ∈ [200] \ {𝑖}.
◦ 𝑢𝑖,1 and 𝑢𝑖,3 are anti-complete to 𝑌𝑖 , and 𝑢′𝑖,𝑠 is the unique neighbour of 𝑢𝑖,𝑠 in 𝑋𝑖 , for 𝑠 ∈ {1, 3}.
◦ 𝑢𝑖,2 is complete to 𝑌𝑖 and anti-complete to 𝑋𝑖 .
◦ 𝑢𝑖,4 is anti-complete to 𝑋𝑖 and either complete or anti-complete to 𝑌𝑖 .

(3) Case (K6) occurred in all cases indexed by L.
Write 𝐿 = {ℓ1, ℓ2, ℓ3}. Let 𝑢′𝑖,1, 𝑢

′
𝑖,3 ∈ 𝑋𝑖 be distinct and let 𝑢𝑖,𝑠 be the unique neighbour of 𝑢′𝑖,𝑠 in

𝐴ℓ𝑠 , for 𝑠 ∈ {1, 3}. Take 𝑢𝑖,4 to be the unique neighbour of 𝑢𝑖,3 in 𝐴′
ℓ3

and 𝑢𝑖,5 the unique neighbour
of 𝑢𝑖,4 in 𝐴′′

ℓ3
. Finally, let 𝑢𝑖,2 = 𝑏ℓ2 and pick 𝑢′𝑖,2 ∈ 𝑌𝑖 . Then

◦ 𝑢𝑖,1, . . . , 𝑢𝑖,5 are in distinct layers with indices in 𝑆𝑖 and are anti-complete to 𝑋 𝑗 ∪ 𝑌 𝑗 for
𝑗 ∈ [200] \ {𝑖}.

◦ 𝑢′𝑖,𝑠 is the unique neighbour of 𝑢𝑖,𝑠 in 𝑋𝑖 and is anti-complete to 𝑌𝑖 , for 𝑠 ∈ {1, 3}.
◦ 𝑢𝑖,2 is complete to 𝑌𝑖 and anti-complete to 𝑋𝑖 .
◦ 𝑢𝑖,4 is a neighbour of 𝑢𝑖,3 and 𝑢′𝑖,3 and is anti-complete to (𝑋𝑖 ∪ 𝑌𝑖) \ {𝑢′𝑖,3}.
◦ 𝑢𝑖,5 is a neighbour of 𝑢′𝑖,3 and 𝑢𝑖,4 and is anti-complete to (𝑋𝑖 ∪ 𝑌𝑖) \ {𝑢′𝑖,3}.

Notice that one of the following holds: (1) holds for 20 values of 𝑖 ∈ [200]; (2) holds for 100 values of
𝑖 ∈ [200]; or (3) holds for 80 values of 𝑖 ∈ [200]. We show how to find the desired cycle with k chords
in each of these cases separately.

Case (1) holds for at least 20 values of 𝑖 ∈ [200].

By relabelling the indices of the 200 copies of 𝐾𝑚,𝑚 if necessary, we may assume that (1) holds for
𝑖 ∈ [20]. To construct a cycle with k chords, we need one more copy of 𝐾𝑚,𝑚, so we shall use 𝐾21 too.
For simplicity, let 𝐾0 = 𝐾21 be the copy of 𝐾𝑚,𝑚 on 𝑋0 ∪ 𝑌0, where 𝑋0 = 𝑋21 and 𝑌0 = 𝑌21.

We want to take a set of distinct vertices 𝑤𝑖, 𝑗 , 𝑖 ∈ [20] and 𝑗 ∈ [2], where each 𝑤𝑖, 𝑗 is at the same
layer as 𝑢𝑖, 𝑗 and has a neighbour 𝑤′

𝑖, 𝑗 in 𝐾0 which are all distinct too, and there are no edges between⋃
𝑖∈[20] (𝑋𝑖∪𝑌𝑖) and {𝑤𝑖, 𝑗 : 𝑖 ∈ [20], 𝑗 ∈ [2]}. Here the index 𝑗 = 1, 2 indicates 𝑤′

𝑖,1 ∈ 𝑋0 and 𝑤′
𝑖,2 ∈ 𝑌0,

as was done for 𝑢′𝑖, 𝑗 ’s. Indeed, this is possible since one can greedily take 𝑤′
𝑖,1 and 𝑤′

𝑖,2 disjoint from
the previous choices in 𝑋0 and 𝑌0, respectively, and let 𝑤𝑖, 𝑗 = 𝑓1(𝑤′

𝑖, 𝑗 ;𝑇) where T is any triple whose
smallest index is the index of the layer containing 𝑢𝑖, 𝑗 . Let 𝑃𝑖, 𝑗 be a unimodal path between 𝑢𝑖, 𝑗 and
𝑤𝑖, 𝑗 , taken in the same layers as the two end vertices so that they are in different layers from the 𝐾𝑖’s.

Given integers 𝛼1, . . . , 𝛼20, we define a cycle C (𝛼1, . . . , 𝛼20) as follows. Let 𝑄𝑖 be the path from
𝑤′
𝑖,1 to 𝑤𝑖+1,1 for 𝑖 ∈ [20] (addition of indices taken modulo 20), obtained by concatenating the paths

𝑤′
𝑖,1𝑤𝑖,1, 𝑃𝑖,1, 𝑢𝑖,1𝑢′𝑖,1, 𝑄∗

𝑖 , 𝑢
′
𝑖,2𝑢𝑖,2, 𝑃𝑖,2, 𝑤𝑖,2𝑤′

𝑖,2𝑤
′
𝑖+1,1, where 𝑄∗

𝑖 is a path in 𝐺 [𝑋𝑖 , 𝑌𝑖] with ends 𝑢′𝑖,1
and 𝑢′𝑖,2 of length 2𝛼𝑖 + 1. Now let C (𝛼1, . . . , 𝛼20) be the cycle obtained by concatenating 𝑄1, . . . , 𝑄20.

While the cycle C (𝛼1, . . . , 𝛼20) is not uniquely defined, its number of chords depends only on
𝛼1, . . . , 𝛼20. To evaluate the number of chords in this cycle, 𝑄∗

𝑖 contributes (𝛼𝑖 + 1)2 − (2𝛼𝑖 + 1) = 𝛼2
𝑖

chords; the number of chords with one end in {𝑢𝑖,1, 𝑢𝑖,2} and one end in 𝑋𝑖 ∪𝑌𝑖 is one of the four values
2(2𝛼𝑖 + 1), 2𝛼𝑖 , 0, and 2(𝛼𝑖 + 1), depending on the four cases described in (1); there are at most 1202

chords with both ends in
⋃
𝑖∈[20], 𝑗∈[2] {𝑤𝑖, 𝑗 , 𝑤′

𝑖, 𝑗 , 𝑢𝑖, 𝑗 }; and we may assume that the number of chords
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Figure 11. The path 𝑄𝑖 in Case (1).

with ends in
⋃
𝑖∈[20], 𝑗∈[2] 𝑉 (𝑃𝑖, 𝑗 ) is 𝑂 (

√
𝑘) by Lemmas 6.4 and 6.5. Note that there are no chords

between distinct sets 𝑋𝑖 ∪ 𝑌𝑖 , between a set 𝑋𝑖 ∪ 𝑌𝑖 and {𝑢 𝑗 ,1, 𝑢 𝑗 ,2, 𝑤 𝑗 ,1, 𝑤 𝑗 ,2} for distinct 𝑖, 𝑗 ∈ [20],
or between {𝑢𝑖,1, 𝑢𝑖,2} and {𝑤 𝑗 ,1, 𝑤

′
𝑗 ,1, 𝑤 𝑗 ,2, 𝑤

′
𝑗 ,2}. In total, the number of chords is

𝑓𝐺 (𝑘) +
∑
𝑖∈[20]

(𝛼2
𝑖 + 2𝜎𝑖𝛼𝑖) = 𝑓𝐺 (𝑘) +

∑
𝑖∈[20]

(
(𝛼𝑖 + 𝜎𝑖)2 − 𝜎2

𝑖

)
= ℎ𝐺 (𝑘) +

∑
𝑖∈[20]

(𝛼𝑖 + 𝜎𝑖)2.

where 𝜎𝑖 ∈ {0, 1, 2} for 𝑖 ∈ [20], and 𝑓𝐺 (𝑘) and ℎ𝐺 (𝑘) are functions that do not depend on 𝛼1, . . . , 𝛼20
and satisfy 𝑓𝐺 (𝑘), ℎ𝐺 (𝑘) = 𝑂 (

√
𝑘). By Lemma 5.1, there is a choice of integers 𝛽1 . . . , 𝛽20 ≥ 2 such

that
∑
𝑖∈[20] 𝛽

2
𝑖 = 𝑘 − ℎ𝐺 (𝑘). A cycle C (𝛼1, . . . , 𝛼20) with 𝛼𝑖 = 𝛽𝑖 − 𝜎𝑖 has k chords, as desired.

Case (2) holds for at least 100 values of 𝑖 ∈ [200].

Again by possible relabelling, we may assume that (2) holds for 𝑖 ∈ [100]. We also need an extra
copy, denoted by 𝐾0, taken from 𝐾𝑖 , 𝑖 > 100, on the bipartition 𝑋0 ∪ 𝑌0. Let 𝑤𝑖, 𝑗 , with 𝑖 ∈ [100] and
𝑗 ∈ [4], satisfy the following: 𝑤𝑖, 𝑗 is at the same layer as 𝑢𝑖, 𝑗 ; it is anti-complete to 𝑋𝑖 ∪𝑌𝑖 for 𝑖 ∈ [100];
𝑤𝑖, 𝑗 has a neighbour 𝑤′

𝑖, 𝑗 such that 𝑤′
𝑖, 𝑗 ∈ 𝑋0 if 𝑗 ∈ {1, 3} and otherwise 𝑤′

𝑖, 𝑗 ∈ 𝑌0; and the vertices
𝑤𝑖, 𝑗 , 𝑤

′
𝑖, 𝑗 , with 𝑗 ∈ [4] and 𝑖 ∈ [100], are all distinct. Indeed, such choices of 𝑤𝑖, 𝑗 and 𝑤′

𝑖, 𝑗 are possible
since one can again take 𝑤𝑖, 𝑗 = 𝑓1(𝑤′

𝑖, 𝑗 ;𝑇) with any triple T whose smallest index is the index of the
layer containing 𝑢𝑖, 𝑗 , while maintaining all 𝑤′

𝑖, 𝑗 being distinct.
Let 𝑃𝑖, 𝑗 be a unimodal path with ends 𝑢𝑖, 𝑗 and 𝑤𝑖, 𝑗 in the same layer as the end vertices, for each

𝑖 ∈ [100] and 𝑗 ∈ [4]. Given positive integers 𝛼1, . . . , 𝛼100, we define a cycle C (𝛼1, . . . , 𝛼100) as follows.
Let 𝑄𝑖 be the path from 𝑤′

𝑖,1 to 𝑤′
𝑖+1,1 (index addition taken modulo 100), obtained by concatenating

the paths 𝑤′
𝑖,1𝑤𝑖,1, 𝑃𝑖,1, 𝑢𝑖,1𝑢′𝑖,1, 𝑄∗

𝑖 , 𝑢
′
𝑖,2𝑢𝑖,2, 𝑃𝑖,2, 𝑤𝑖,2𝑤′

𝑖,2𝑤
′
𝑖,3𝑤𝑖,3, 𝑃𝑖,3, 𝑢𝑖,3𝑢𝑖,4, 𝑃𝑖,4, 𝑤𝑖,4𝑤′

𝑖,4𝑤
′
𝑖+1,1,

where 𝑄∗
𝑖 is a path in 𝐺 [𝑋𝑖 \{𝑢′𝑖,3}, 𝑌𝑖] with ends 𝑢′𝑖,1 and 𝑢′𝑖,2, and of length 2𝛼𝑖 +1. Let C (𝛼1, . . . , 𝛼100)

be the cycle obtained by concatenating 𝑄1, . . . , 𝑄100.
As above, the cycle C (𝛼1, . . . , 𝛼100) is not uniquely defined, but the number of its chords depends

only on 𝛼1, . . . , 𝛼100. Let us evaluate the number of chords precisely as follows: 𝑄∗
𝑖 contributes 𝛼2

𝑖
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Figure 12. The path 𝑄𝑖 in Case (2).

chords; the number of chords between {𝑢𝑖,1, . . . , 𝑢𝑖,4} and 𝑋𝑖 ∪ 𝑌𝑖 is either 𝛼𝑖 or 2𝛼𝑖 + 1 depending on
how 𝑢𝑖,4 connects to 𝑌𝑖 (either complete or anti-complete); there are at most 12002 chords with ends in⋃
𝑖∈[100], 𝑗∈[4] {𝑤𝑖, 𝑗 , 𝑤′

𝑖, 𝑗 , 𝑢𝑖, 𝑗 }; and we may assume that the number of chords in
⋃
𝑖∈[100], 𝑗∈[4] 𝑉 (𝑃𝑖, 𝑗 )

is 𝑂 (
√
𝑘) by Lemmas 6.4 and 6.5. In total, the number of chords in the cycle is

𝑓𝐺 (𝑘) +
∑

𝑖∈[100]
(𝛼2
𝑖 + 𝜎𝑖𝛼𝑖),

where 𝜎𝑖 ∈ {1, 2} and 𝑓𝐺 (𝑘) = 𝑂 (
√
𝑘). Here 𝜎𝑖’s and 𝑓𝐺 (𝑘) do not depend on 𝛼𝑖’s.

Suppose that 𝜎𝑖 = 2 for at least 20 values of 𝑖 ∈ [100]; let I be a set of 20 such values of i. Set
𝛼𝑖 = 1 for 𝑖 ∈ [100] \ 𝐼. Each 𝛼𝑖 , 𝑖 ∈ 𝐼, is not yet determined. Then the number of chords in a cycle
C (𝛼1, . . . , 𝛼100) reduces to

ℎ𝐺 (𝑘) +
∑
𝑖∈𝐼

(𝛼𝑖 + 1)2,

for some ℎ𝐺 (𝑘) = 𝑂 (
√
𝑘) that does not depend on 𝛼𝑖’s with 𝑖 ∈ 𝐼. By Lemma 5.1, there exist integers

𝛽𝑖 , for 𝑖 ∈ 𝐼, such that 𝛽𝑖 ≥ 2 and
∑
𝑖∈𝐼 𝛽

2
𝑖 = 𝑘 − ℎ𝐺 (𝑘). Set 𝛼𝑖 = 𝛽𝑖 − 1. The cycle C (𝛼1, . . . , 𝛼100)

then has exactly k chords.
It remains to consider the case where 𝜎𝑖 = 1 for at least 80 values of 𝑖 ∈ [100]. Let I be a set of

80 values of i such that 𝜎𝑖 = 1. Set 𝛼𝑖 = 1 for 𝑖 ∈ [100] \ 𝐼. Then the number of chords in the cycle
C (𝛼1, . . . , 𝛼100) is

ℎ𝐺 (𝑘) +
∑
𝑖∈𝐼

(𝛼2
𝑖 + 𝛼𝑖),

where ℎ𝐺 (𝑘) = 𝑂 (
√
𝑘) is independent of the 𝛼𝑖’s. Let 𝜏 ∈ {0, 1, 2, 3} be the remainder of 𝑘 − ℎ𝐺 (𝑘)

modulo 4. Let C𝜏 (𝛼1, . . . , 𝛼100) be a cycle obtained by replacing an inner vertex of 𝑉 (𝑄∗
𝑖 ) ∩ 𝑋𝑖
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Figure 13. The path 𝑄𝑖 in Case (3).

by 𝑢′𝑖,3, for 𝜏 values of i. One can readily check that the number of chords in C𝜏 (𝛼1, . . . , 𝛼100) is
ℎ𝐺 (𝑘) + 𝜏 +

∑
𝑖∈𝐼 (𝛼2

𝑖 + 𝛼𝑖)m as we gain the additional chord 𝑢𝑖,3𝑢
′
𝑖,3 for 𝜏 values of i. Now, since

𝑘 − ℎ𝐺 (𝑘) − 𝜏 is divisible by 4, Lemma 5.2 implies that there exist integers 𝛼𝑖 , 𝑖 ∈ 𝐼, such that 𝛼𝑖 ≥ 1
and

∑
𝑖∈𝐼 (𝛼2

𝑖 + 𝛼𝑖) = 𝑘 − ℎ𝐺 (𝑘) − 𝜏. In particular, there is a cycle with exactly k chords.

Case (3) holds for at least 80 values of 𝑖 ∈ [200].

Without loss of generality, (3) holds for 𝑖 ∈ [80] and let 𝐾0 = 𝐾81 be another copy of 𝐾𝑚,𝑚 on
𝑋0 ∪𝑌0. Analogously to the previous cases, choose 𝑤𝑖, 𝑗 , 𝑖 ∈ [80] and 𝑗 ∈ [5], that satisfy the following
conditions: 𝑤𝑖, 𝑗 is in the same layer as 𝑢𝑖, 𝑗 ; it is anti-complete to 𝑋𝑖 ∪ 𝑌𝑖 for 𝑖 ∈ [80]; 𝑤𝑖, 𝑗 has a
neighbour 𝑤′

𝑖, 𝑗 such that 𝑤′
𝑖, 𝑗 ∈ 𝑋0 for 𝑗 ∈ {1, 3} and 𝑤′

𝑖, 𝑗 ∈ 𝑌0 for 𝑗 ∈ {2, 4, 5}; and the vertices
𝑤𝑖, 𝑗 , 𝑤

′
𝑖, 𝑗 , with 𝑖 ∈ [80] and 𝑗 ∈ [5], are all distinct. As before, such choices for 𝑤𝑖, 𝑗 and 𝑤′

𝑖, 𝑗 exist.
One can find a path 𝑃𝑖, 𝑗 between 𝑢𝑖, 𝑗 and 𝑤𝑖, 𝑗 in the same layer as the two ends, for each 𝑖 ∈ [80]

and 𝑗 ∈ [5]. In fact, we do not make use of 𝑤𝑖,4, 𝑤′
𝑖,4 and 𝑃𝑖,4, but we took them to preserve the

correspondence between indices.
Given positive integers 𝛼1, . . . , 𝛼80, we choose a cycle C0(𝛼1, . . . , 𝛼80) as follows. Let 𝑄𝑖 be the

path from 𝑤′
𝑖,1 to 𝑤′

𝑖+1,1 (addition modulo 80), obtained by concatenating the paths 𝑤′
𝑖,1𝑤𝑖,1, 𝑃𝑖,1,

𝑢𝑖,1𝑢
′
𝑖,1, 𝑄∗

𝑖 , 𝑢
′
𝑖,2𝑢𝑖,2, 𝑃𝑖,2, 𝑤𝑖,2𝑤′

𝑖,2𝑤
′
𝑖,3𝑤𝑖,3, 𝑃𝑖,3, 𝑢𝑖,3𝑢𝑖,4𝑢𝑖,5, 𝑃𝑖,5, 𝑤𝑖,5𝑤′

𝑖,5𝑤
′
𝑖+1,1; where 𝑄∗

𝑖 is a path
in 𝐺 [𝑋𝑖 \ {𝑢′𝑖,3}, 𝑌𝑖] with ends 𝑢′𝑖,1 and 𝑢′𝑖,2 and of length 2𝛼𝑖 + 1. Let C0(𝛼1, . . . , 𝛼80) be the cycle
obtained by concatenating 𝑄1, . . . , 𝑄80. For 𝜏 = 1, 2, 3, let C𝜏 (𝛼1, . . . , 𝛼80) be the cycle obtained from
C0(𝛼1, . . . , 𝛼80) by replacing one of the internal vertices of 𝑄∗

𝑖 in 𝑋𝑖 by 𝑢′𝑖,3, for 𝑖 ∈ [𝜏].
The cycle C𝜎 (𝛼1, . . . , 𝛼80) for each 𝜎 = 0, 1, 2, 3 is not necessarily unique, but all the choices have

the same number of chords. To verify, let us evaluate the number of chords in C0(𝛼1, . . . , 𝛼80) first, as
follows: 𝑄∗

𝑖 contributes 𝛼2
𝑖 chords; there are exactly 𝛼𝑖 chords between {𝑢𝑖,1, . . . , 𝑢𝑖,5} and 𝑋𝑖 ∪ 𝑌𝑖 , all

of which are incident to 𝑢𝑖,2; there are at most 12002 chords with ends in
⋃
𝑖∈[80], 𝑗∈[5] {𝑤𝑖, 𝑗 , 𝑤′

𝑖, 𝑗 , 𝑢𝑖, 𝑗 };
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and we may assume that the number of chords in
⋃
𝑖∈[80], 𝑗∈[5] 𝑉 (𝑃𝑖, 𝑗 ) is 𝑂 (

√
𝑘), by Lemmas 6.4 and

6.5. The cycle C𝜏 (𝛼1, . . . , 𝛼80) has precisely 3𝜏 more chords than C0(𝛼1, . . . , 𝛼80), as 𝑢′𝑖,3 gives three
extra chords to 𝑢𝑖,3, 𝑢𝑖,4, and 𝑢𝑖,5 (see Figure 13). The total number of chords in C𝜏 (𝛼1, . . . , 𝛼80) is hence

𝑓𝐺 (𝑘) +
∑
𝑖∈[80]

(𝛼2
𝑖 + 𝛼𝑖) + 3𝜏,

where 𝑓𝐺 (𝑘) = 𝑂 (
√
𝑘). Now choose 𝜏 ∈ {0, 1, 2, 3} to be such that 3𝜏 equals 𝑘 − 𝑓𝐺 (𝑘) modulo 4. By

Lemma 5.2, there exist positive integers 𝛼1, . . . , 𝛼80, such that
∑
𝑖∈[80] 𝛼𝑖 (𝛼𝑖 + 1) = 𝑘 − 𝑓𝐺 (𝑘) − 3𝜏.

The cycle C𝜏 (𝛼1, . . . , 𝛼80) has exactly k chords. �

8. Conclusion

We showed that the family of graphs with no cycle with exactly k chords is 𝜒-bounded, for every integer
k which is either sufficiently large or of form 𝑘 = ℓ(ℓ − 2), where ℓ ≥ 3 is an integer. This was already
known to hold for 𝑘 ∈ {1, 2, 3} (see [19, 1]). An obvious follow-up problem, which is a conjecture due
to Aboulker and Bousquet [1], would be to extend this to all 𝑘 ≥ 1.

Conjecture 8.1 (Aboulker–Bousquet [1]). For every 𝑘 ≥ 1 there is a function 𝑓𝑘 such that, if G is a
graph with no cycle with exactly k chords, then 𝜒(𝐺) ≤ 𝑓𝑘 (𝜔(𝐺)).

It would also be interesting to get a better understanding of whether graphs with small clique number
and large chromatic number contain cycles with k chords that have some sort of further structure.
Whereas our proof essentially just produces a cycle with k chords, there are conjectures that it should be
possible to find more. A k-fan is defined as a path P with one additional vertex v added that has exactly
k neighbours on P. It is easy to see that k-fans contain a cycle with 𝑘 − 2 chords. Thus the following
would be a strengthening of the results in this paper and of Conjecture 8.1.

Conjecture 8.2 (Davies [5]). For every 𝑘 ≥ 1 there is a function 𝑓𝑘 such that, if G is a graph with k-fan,
then 𝜒(𝐺) ≤ 𝑓𝑘 (𝜔(𝐺)).

Currently, this conjecture is only known to hold for 𝑘 = 1 (where it is equivalent to the ‘𝑘 = 1’ case
of Conjecture 8.1).
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