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Dispersion is a common phenomenon in miscible displacement flows. In the primary
cementing process displacement takes place in a narrow eccentric annulus. Both turbulent
Taylor dispersion and laminar advective dispersion occur, depending on flow regime.
Since dispersion can cause mixing and contamination close to the displacement front,
it is essential to understand and quantify. The usual modelling approach is a form of Hele-
Shaw model in which quantities are averaged across the narrow annular gap: a so-called
two-dimensional narrow gap (2DGA) model. Zhang & Frigaard (J. Fluid Mech., vol. 947,
2022, A732), introduced a dispersive two-dimensional gap-averaged (D2DGA) model for
displacement of two Newtonian fluids, by modifying the earlier 2DGA model. This brings
a significant improvement in revealing physical phenomena observed experimentally and
in three-dimensional computations, but is limited to Newtonian fluids. In this study we
adapt the D2DGA model approach for two Herschel–Bulkley fluids. We first obtain weak
velocity solutions using the augmented Lagrangian method, while keeping the same two-
layer flow assumption as the Newtonian D2DGA model. These solutions are then used
to define closure relationships that are needed to compute the dispersive two-dimensional
flows. Results reveal that the modified version of the D2DGA model can now predict
expected frontal behaviours for two Herschel–Bulkley fluids, revealing dispersion, frontal
shock, spike and static wall layer solutions. We then explore the displacement behaviour
in more detail by investigating the impact of rheological properties and buoyancy on the
mobility of fluids in a planar frontal displacement flow and their vulnerability to fingering-
type instabilities. As the underlying flows are dispersive, our analysis reveals three distinct
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behaviours: (i) stable, (ii) partial penetration of the dispersing front, and (iii) unstable
regimes. We explore these regimes and how they are affected by the two fluid rheologies.

Key words: complex fluids, instability control, Hele-Shaw flows

1. Introduction
Complete removal of drilling fluids and sealing the space between rock formations and
steel casing with a cement slurry is a critical step in the construction of water, geothermal,
hydrocarbon and waste storage wells (Guillot et al. 1990). This process is called primary
cementing and its foremost purpose is to provide zonal isolation (Nelson & Guillot 2006;
Lavrov & Torsæter 2016), which means that the different geological strata penetrated
by the well are unable to communicate hydraulically along the completed well. This
objective is not always achieved. For example, 28.5 % of wells drilled in British Columbia
between 2010 and 2018 (Trudel et al. 2019) and 28−32 % of wells drilled in Southeastern
Saskatchewan (Baillie et al. 2019), were reported to emit gas. The leakage rates in such
surveys are generally heavily skewed towards low rates (�1 m3 day–1), but nevertheless
indicate that the well integrity is often compromised. Estimates of leakage in other regions
globally may be significantly lower. This can be because the wells considered are not
primarily gas wells. In some jurisdictions data are either not publicly accessible or not
recorded.

The primary cementing operation comprises two main steps; see figure 1. After drilling
the borehole and removing the drill pipe, a steel casing is inserted into the drilled well
that is filled with drilling fluid. Then, a sequence of fluids are pumped from the surface
through the casing, travelling down to the bottom of the well and then returning upwards in
the annular space between the wellbore wall and the outer surface of the casing. To reduce
any chemical incompatibility between the drilling fluid and the cement slurry, preflushes
(called washes and spacers) are commonly pumped ahead of the cement slurry (Nelson &
Guillot 2006; Guillot, Desroches & Frigaard 2007). Therefore, the process relies upon a
sequence of fluid–fluid displacement flows to be effective.

The flow challenges are significant, as the displacement takes place along many 100’s
of metres of a narrow eccentric annulus of changing orientation. The drilling mud has
yield stress and is shear thinning, as with many spacer fluids and the cement slurry. Large
density differences, together with changing orientation of the well mean that buoyancy is
a significant effect, despite a typically small annular gap (0.5−5 cm). The yield stress of
the drilling mud is essential as part of the drilling process, but can cause problems later. It
may resist displacement, allowing the mud to bridge between inner and outer walls of the
annulus (a mud channel), remaining after cementing (McLean, Manry & Whitaker 1967).
Less severe, the yield stress may not be exceeded at the walls allowing a static wall of mud
to persist (Allouche, Frigaard & Sona 2000; Frigaard, Leimgruber & Scherzer 2003; Zare,
Roustaei & Frigaard 2017). These residual layers are called (wet) micro-annuli. As the
cement hydrates, water is extracted from both mud layers and channels, potentially leaving
behind a longitudinal pathway of porous dried mud. Aside from these, chemical shrinkage
and debonding of cement from the walls produce (dry) micro-annuli. A combination of
these defects is likely responsible for some of the larger leakage rates observed (Trudel &
Frigaard 2023).

Fluid mechanics studies of primary cementing flows started in the 1960’s (McLean
et al. 1967). Although three-dimensional computational studies and lab-scale experimental
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Figure 1. Schematic of primary cementing operations: (a) inserting the casing into the drilled well,
(b) injecting the cement slurry into the annulus.

studies are often performed (Malekmohammadi et al. 2010; Renteria & Frigaard 2020;
Sarmadi, Renteria & Frigaard 2021; Zhang & Frigaard 2023), and give detailed
information, the excessive length of cemented sections makes these approaches infeasible
for understanding large-scale features of the process flows. Instead, the main workhorse
for process design is a two-dimensional model that is based on averaging across the
annular gap: effectively a Hele-Shaw cell with a non-uniform gap thickness (Bittleston,
Ferguson & Frigaard 2002). The Hele-Shaw, or two-dimensional gap-averaged (2DGA),
approach was initially developed for laminar flows, assuming a uniform concentration of
fluids across the annular gap. This style of model is useful in including both buoyancy and
rheological effects, e.g. mud channels can be predicted. An iterative solution based on the
augmented Lagrangian method is able to compute these nonlinear effects (Pelipenko &
Frigaard 2004b). Solutions show relevant process features, such as steady travelling wave
displacement fronts that are also to some extent predictable theoretically (Pelipenko &
Frigaard 2004a,c). This method has been extended to transitional, turbulent and mixed
flow regimes, which happen commonly (Maleki & Frigaard 2017, 2018). These models
have also been analysed for horizontal wells, where buoyancy effects are different
(Carrasco-Teja et al. 2008), and have been extended to scenarios where the inner cylinder
(casing) is moved (Carrasco-Teja & Frigaard 2009, 2010).

Models such as the 2DGA model have been used productively for many years, but have
drawbacks. Inherent in the Hele-Shaw approach for laminar flows are assumptions that
the streamlines are aligned in the flow direction and that inertial terms are small. Thus,
multi-dimensional flow features (e.g. extreme rugosity of the outer wall, local effects
near centralisers), are missed and there are many cementing flows where inertia becomes
important in laminar regimes. This paper does not address these features.

The second and important limitation is that the fluid concentrations are not uniform
across the gap thickness. Defining a Péclet number (Pe) based on the molecular
diffusivity, a flow width D̂ and length L̂ , we find that Pe � L̂/D̂ for most cementing
flows. Thus, although fluids are miscible, fluids do not mix on the time scale of the
displacement. Certainly we are far from the classical Taylor dispersion regime where
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1 � Pe � L̂/D̂ (Taylor 1953; Aris 1956). The front between the two Newtonian fluids
displacing in a channel remains very sharp, with the highest velocity at the centre of
the channel, where the velocity is 1.5 times the mean velocity (Chen & Meiburg 1996;
Petitjeans & Maxworthy 1996; Yang & Yortsos 1997). This results in advective dispersion
coming from the underlying Poiseuille velocity profile.

Yang & Yortsos (1997) developed asymptotic solutions for miscible Newtonian flows in
a narrow plane channel to consider the impact of advective dispersion on the fluid flows.
This approach was later extended by Lajeunesse et al. (1999) to include also buoyancy
effects. In this approach, an assumed distribution of displaced and displacing fluids occurs
across the channel. Asymptotic methods are then used to reduce the flow equations to
a one-dimensional quasilinear conservation law that exhibits pure dispersion, kinematic
shocks and other features that can also be found in experiments (Lajeunesse et al. 1999;
Homsy, Scoffoni & Lajeunesse 2001).

To bring this approach into the domain of cementing flows, Zhang & Frigaard
(2022) introduced a new approach, the so-called dispersive two-dimensional gap-averaged
(D2DGA) model, to capture advective dispersion in a narrow eccentric annulus during
the displacement of two Newtonian fluids. The novelty of this method comes from a two-
layer flow assumption for the fluid concentration profile across the gap direction (outlined
below). The comparison between results obtained from a three-dimensional simulation
and numerical experiments with the D2DGA model showed a significant improvement
compared with 2DGA simulations. Not only did this highlight the model’s accuracy,
but also the necessity of including dispersion in modelling the displacement process.
Favourable comparisons with experiments were made in Zhang & Frigaard (2023).

While the D2DGA model of Zhang & Frigaard (2022) brings a significant improvement
over the classical 2DGA model, while retaining a two-dimensional formulation and
consequent numerical efficiency, it neglects the influence of more complex rheological
properties. This is needed for the purposes of simulating primary cementing flows more
fully. Aside from model extension, there are underlying questions to answer and intuition
that is missing once we consider dispersion. On the one hand, there is the intuitive notion
that shear thinning and yield stress results in a blunter velocity profile, which may reduce
dispersion. On the other hand, yield stress fluids can become stuck to the walls of a duct,
which means that the mobile displacing fluid will move faster, increasing dispersion.

To build intuition and extend the D2DGA approach, this paper extends the D2DGA
approach to pairs of Herschel–Bulkley fluids, which encompass the typical range of
cementing fluids. This extension is a formidable modelling task, as although it is
possible to write out the closure equations, their solution is not obvious. Even having
developed the closure expressions, there are questions as to whether the two-dimensional
streamfunction equation can be solved and how. Hence, here we only address a restricted
planar displacement flow. Lastly comes the question of external verification, e.g. as was
performed in Zhang & Frigaard (2022, 2023), which is postponed to a future study.
Therefore, what is presented is the development of a modelling framework.

An outline of the paper is as follows. The underlying principle of the D2DGA model
is first reviewed in § 2.1. The impacts of the two-layer flow on the mobility and other
closure functionals for Newtonian and non-Newtonian fluids are explained in §§ 2.2 and
2.3, respectively. The behaviour of a planar displacement front scenario is analysed in § 3
for wide ranges of rheological properties. In § 3.3 we classify the displacement process
into (i) stable, (ii) partial penetration and (iii) unstable regimes using Muskat’s approach
at various buoyancy numbers (b) and rheological parameters (nk ,κk). The paper ends with
a brief summary in § 4.
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Figure 2. (a) Well geometry, (b) schematic of the eccentric annular space between the outer surface of the
casing and the wellbore wall, (c) mapping the annulus to a Hele-Shaw cell.

2. Methodology
The 2DGA approach highlights the two-dimensional features of the flow by averaging the
velocity and fluid concentration profiles in the radial direction. The derivation of the model
is explained in detail in Bittleston et al. (2002), Maleki & Frigaard (2017) and involves the
use of standard scaling arguments to reduce the Navier–Stokes equations to the following
dimensionless two-dimensional shear flow approximation:

0 = −∂p

∂y
, (2.1)

0 = − 1
ra

∂p

∂φ
+ ∂τφy

∂y
+ ρ sin β sin πφ

Fr∗2 , (2.2)

0 = −∂p

∂ξ
+ ∂τξ y

∂y
− ρ cos β

Fr∗2 . (2.3)

Here φ denotes the azimuthal coordinate and ξ measures distance along the axis of the
inner pipe (casing); p is the pressure, τφy and τξ y are the leading-order shear stresses, ρ

is the dimensionless density and Fr∗ is the Froude number defined by

Fr∗ =
√

τ̂0

ρ̂1ĝd̂∗ , (2.4)

where ρ̂1 is the density of fluid 1, ĝ is the gravitational acceleration and τ̂0 represents a
suitable stress scale for the flows. Throughout this paper we denote dimensional variables
with the ‘·̂’ accent and dimensionless variables without.

The inner and outer walls of the annulus have mean radii r̂i and r̂o, both of which might
vary slowly with ξ . Axial and azimuthal distances have been scaled with π r̂∗

a , where r̂∗
a

denotes a ξ -averaged mean radius. The radial distances are measured from a mean radial
position and are scaled instead with a ξ -averaged half-annular gap width, d̂∗, to define the
scaled radial coordinate y; see figure 2 for a sketch of the geometry. In a typical cementing
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set-up a representative flow rate Q̂0 can be defined for the process and used to define a
mean velocity, Q̂0 = 4π r̂∗

a d̂∗ŵ0. This, in turn, can be used with the rheological properties
of the displaced fluid 1 to define τ̂0, e.g. τ̂0 = (μ̂1μ̂2)

1/2ŵ0/d̂∗ for two Newtonian fluids.
Equations (2.2) and (2.3) represent a two-dimensional shear flow in the plane of the
annulus (φ, ξ). After averaging across the annular gap and some simplifying assumptions,
this model leads to a Hele-Shaw-type flow in a two-dimensional region of varying annular
gap width. In general, y ∈ [−H, H ], where H = H(φ, ξ) is an O(1) function.

A key assumption of the 2DGA model is that there is a single fluid present across the
annular gap, i.e. ρ in (2.2) and (2.3) is a concentration-dependent (mixture) density and the
constitutive laws also rely on concentration-dependent rheological parameters. This single
fluid assumption has validity for turbulent shear flows (Maleki & Frigaard 2017), but in
the laminar regime there will be a displacement front within the annular gap that evolves
with the flow. Indeed such flows both exhibit dispersion and are vulnerable to various
fingering and interfacial instabilities (Tabeling, Zocchi & Libchaber 1987; Petitjeans &
Maxworthy 1996). In the primary cementing context, the fluids involved are viscous and
non-Newtonian. The flows are characterised as either high-Péclet-number miscible or
large-Capillary-number immiscible displacement flows. The latter are not considered here.
Where displacement fronts evolve significantly in the flow directions, a modified version
of the 2DGA model is needed to investigate dispersive effects. This modification has been
made by Zhang & Frigaard (2022) for two Newtonian fluids and extending the modelling
approach for two Herschel–Bulkley fluids is the focus here.

2.1. Underlying principle of the dispersive two-layer model (D2DGA)

The mean annular gap, 2d̂ = (r̂o − r̂i ), may vary slowly with ξ but remains of size d̂∗.
The narrow gap assumption is that this is small with respect to the mean circumference:
2π r̂∗

a , i.e. d̂∗/(π r̂∗
a ) = δ/π � 1. Generally speaking, the following three factors contribute

to the 2DGA model limitations. (i) Elimination of inertial terms in (2.2) and (2.3), which
formally needs Reδ/π � 1. (ii) Simplification of the flow to a shear flow, where terms
of O(δ/π) are neglected. (iii) Simplification of the mass transport equation to include
only advective mass transport by the gap-averaged velocity. Both (i) and (ii) lead to
approximations that are well understood (Bittleston et al. 2002; Maleki & Frigaard 2017),
but (iii) is less well explored. In the following, we first explain the underlying principle
of the D2DGA model (Zhang & Frigaard 2022). Then, we extended this model to two
viscoplastic fluids.

With the same lubrication theory scaling assumptions as before, the main difference
to the 2DGA model is in the assumed mass transport. Considering a high-Péclet-number
(Pe) miscible laminar flow, the thickness of diffusive layers scales with

√
1/Pe, meaning

that distinct fluid layers may persist across the annulus gap. To capture the impact
of advective dispersion on the displacement, it is assumed that fluid 2 can disperse
symmetrically along the centre of the annular gap, between interfaces at y = ±yi , and
a thin film of fluid 1 remains near the walls, in [−H, yi ) and (yi , H ], as shown in figure 3.
Thus, in the D2DGA model a jump of fluid properties at the interface appears, which is
neglected in the 2DGA model via the assumption of transverse mixing. The dimensionless
governing equations for fluid 1 (displaced fluid) and fluid 2 (displacing fluid) are

Fluid 1

⎧⎪⎪⎨
⎪⎪⎩

0 = − 1
ra

∂p

∂φ
+ ∂τφy,1

∂y
+ ρ1 sin β sin πφ

Fr∗2 ,

0 = −∂p

∂ξ
+ ∂τξ y,1

∂y
− ρ1 cos β

Fr∗2 , y ∈ (yi , H ],
(2.5)
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Figure 3. Schematic of 2DGA and D2DGA models.

Fluid 2

⎧⎪⎨
⎪⎩

0 = − 1
ra

∂p

∂φ
+ ∂τφy,2

∂y
+ ρ2 sin β sin πφ

Fr∗2 ,

0 = −∂p

∂ξ
+ ∂τξ y,2

∂y
− ρ2 cos β

Fr∗2 , y ∈ [0, yi ).

(2.6)

Note that in (2.5) and (2.6) the equations are valid only within each fluid layer, as indicated,
but the densities and rheological properties are also constant in each layer. In addition,
the radial momentum (2.1) is satisfied across each layer. We now introduce the density
difference between the two fluids, 
ρ̂ = ρ̂1 − ρ̂2, and the mean density,

ρ̂ = (1 − c̄)ρ̂1 + c̄ρ̂2 = ρ̂1 − c̄
ρ̂, (2.7)

as well as their dimensionless versions, obtained by dividing with ρ̂1. We define the
concentration c̄ = yi/H such that it corresponds directly to the fraction of displacing fluid;
see figure 3.

The leading-order velocity is (v, w) in (φ, ξ) directions, and the leading-order strain rate
comes from the y derivatives of (v, w). The derivatives of (v, w) in (φ, ξ) directions come
from variations in the annular gap geometry, which are small due to scaling arguments. For
a generalised Newtonian fluid k,

(τφy,k, τξ y,k) = ηk(γ̇ )

(
∂v

∂y
,
∂w

∂y

)
, γ̇ =

[(
∂v

∂y

)2

+
(

∂w

∂y

)2
]1/2

, (2.8)

where τk = ηk(γ̇ )γ̇ is the constitutive law and τk = [τ2
φy,k, τ2

ξ y,k]1/2. Note that for
monotone flow curves, we may equally write the effective viscosity as ηk = ηk(τk), or
below as ηk = ηk(y), implicitly recognising the linear stress variation with y.

By integrating (2.5) and (2.6) with respect to y we arrive at

(τφy,2, τξ y,2) = τ2 = [−G + (1 − c̄)Gb]y, y ∈ [0, yi ], (2.9)
(τφy,1, τξ y,1) = τ1 = τi − [G + c̄Gb](y − yi ), y ∈ (yi , H ]. (2.10)
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Here τi is the interfacial shear stress, τi = [−G + (1 − c̄)Gb]yi . The expressions for G
and Gb are defined as

G = −
(

1
ra

∂p

∂φ
− ρ sin β sin πφ

Fr∗2 ,
∂p

∂ξ
+ ρ cos β

Fr∗2

)
, (2.11)

Gb = −b( fξ , − fφ) : b = − 
ρ

raFr∗2 , (2.12)

where f = ( fφ, fξ ) = (ra cos β, ra sin β sin πφ). The vector G we shall call the modified
pressure gradient. Observe that in the case of the 2DGA model, τ = −Gy (see (2.2) and
(2.3)), i.e. G is the frictional pressure gradient felt by the volume-averaged mixture of the
two fluids. However, for the D2DGA model, there is also the vector Gb that explicitly
represents the buoyancy force. Note that at y = H the buoyancy term (Gb) plays no part
and τ1(H) = −G H , i.e. |G|H gives the wall shear stress, just as in the 2DGA model.

We have separated Gb into its direction and amplitude. Regarding the direction, note
that both ra and β are assumed to vary only slowly with ξ . The consequence of this is that
primarily it is gradients in concentration that produce buoyancy effects and not changing
orientation of the well. The amplitude b has been signed so that typically we have b > 0
in a primary cementing flow, where denser fluids typically displace lighter fluids in the
upwards direction. Observe that b represents a ratio of the buoyancy stress (−
ρ̂ ĝd̂∗) to
the viscous stress used to scale the flow (τ̂0).

Equation (2.10) indicates that the jump in fluid properties at the interface between the
two fluids leads to a deviation in shear stress direction within the displaced fluid, compared
with that of the displacing fluid. Since the shear stresses determine the strain rate, via
constitutive laws for each fluid, this directional jump will also be felt in the fluid velocity
components. To elaborate more, the buoyancy vector can independently change the flow
direction, and the mean flow is not along the direction of the modified pressure gradient
(G). In figure 4(a) as an example, we have plotted the stress components that result from
(2.9) and (2.10) for a particular parameter set. These equations have used symmetry at
y = 0 and continuity of shear stress at y = yi . The distance across the channel is indicated
by the varying colour of the lines. We see the two linear segments, representing the two
fluid layers, for the case of a non-zero Gb. The single linear line comes from using only
G, (with Gb = 0), which can also be thought of as representing the stress variation in
the 2DGA model. At the wall the two realisations coincide, since the wall shear stress is
determined only by G H .

Using the constitutive laws of a Herschel–Bulkley fluid for each fluid, we may also
compute the two components of the velocity gradient as we traverse the channel. These
are shown in figure 4(b). Again two examples are shown: with and without non-zero Gb.
Here the fluid properties selected include a yield stress in both fluids. Due to the symmetry
condition at y = 0, the yield stress is not exceeded close to the centre of the channel and
we see that a finite interval of y values map to zero velocity gradient, i.e. a central plug
region, for both cases. Again the case with non-zero buoyancy shows a jump in velocity
gradients at the interface, whereas the isodense case keeps a constant ratio between the
two velocity gradients.

From the velocity gradient, using the no slip boundary condition at y = H , and
continuity of velocity at y = yi , the velocity profile may be calculated directly (see
Appendix A). Instead, the gap-averaged velocity can be calculated directly, using
integration by parts, as in Zhang & Frigaard (2022):

H ū = (H v̄, Hw̄) = I1G − I2

H
Gb. (2.13)
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Figure 4. (a) Variation of shear stresses at G = [6 1], n = [1 1], τY = [0 0], κ = [1 1], c̄ = 0.5, and (b) shear
strain at G = [6 1], n = [0.5 0.5], τY = [1 1], κ = [1 1], c̄ = 0.5 for various 0 � y � 1, the colour bar illustrates
values associated to y. In the straight line Gb = [0 0] and in the deviated line Gb = [1 1]. The change in the
direction of flow comes from the sudden jump in fluid properties at the interface (Gb yi /y).

The functions I1 and I2 are

I1 =
∫ yi

0

ỹ2

η2(ỹ)
dỹ +

∫ H

yi

ỹ2

η1(ỹ)
dỹ = H3 I1(c̄; ·), (2.14)

I2 = (H − yi )

∫ yi

0

ỹ2

η2(ỹ)
dỹ + yi

∫ H

yi

ỹ(H − ỹ)

η1(ỹ)
dỹ = H4 I2(c̄; ·). (2.15)

Note that, unlike the Newtonian case in Zhang & Frigaard (2022), the effective viscosity
of the fluids varies with the shear stress, which means that (2.14) and (2.15) also depend
explicitly on G and Gb. The expressions for I1(c̄; ·) and I2(c̄; ·) are given later in
Appendix A. Unlike Zhang & Frigaard (2022), here we use I1 and I2 in place of I1 and
I2 as they separate out the dependency on the local gap thickness from that on c and the
dimensionless rheological groups, represented above by the ‘·’. Observe that physically
both I1 and I2 represent mobilities. We refer to I1 as the mean mobility and I2 as the
buoyant mobility.

The streamfunction for the incompressible flow is defined as ∇aΨ = (2Hw̄, −2H v̄).
By rearranging (2.13) based on the streamfunction and cross-differentiating, we eliminate
the pressure and obtain the partial differential equation

∇a · [S + b] = 0, (2.16)

which is analogous to the 2DGA model. Here S contains pressure gradient terms and is
defined as

S = ra∇aΨ

2I1
= ra∇aΨ

2H3 I1
. (2.17)

Assuming that the flow is non-zero it can be shown that there is a unique mapping between
G and ∇aΨ (see Appendix A), so that I1 and I2 may instead be considered to depend
implicitly on ∇aΨ .
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The second term, in the direction f , can be written as

b =
(

ρ

Fr∗2 + b

H

I2

I1

)
f =

(
1

Fr∗2 + b

[
c̄ + I2

I1

])
f . (2.18)

Observe that with our assumption on the slow variation with ξ , the first term can be
neglected, i.e. since ∇a · f = 0. The second term bc̄ f gives the buoyancy gradients of the
mean density and is also present in the 2DGA model. The last part comes directly from the
layered flow assumption, i.e. advective dispersion directly gives rise to a buoyancy source
term (b f · ∇a[I2/I1]), that is completely absent from the 2DGA model.

2.1.1. Evolution of the concentration
To advance the fluid concentration, the gap-averaged velocity in the transport equation is
replaced by a flux function

∂[Hrac̄]
∂t

+ ∇a · q = 0, (2.19)

where q is the volumetric flux passing through the displacing fluid layer:

q = (qφ, qξ ) = ra

(∫ yi

0
vdy,

∫ yi

0
wdy

)
. (2.20)

The volumetric flux function can be evaluated by expressing (v, w) in terms of integrals of
their y derivatives, then using (2.9) and (2.10), and finally, (2.13) to eliminate the modified
pressure gradient. The expression is

(qφ, qξ ) = ra

2

(
−∂Ψ

∂ξ
,

1
ra

∂Ψ

∂φ

)
q0(c̄) − bH3 I3(c̄)( fξ , − fφ). (2.21)

The isotropic flux q0(c̄) is given by

q0(c̄; ·) = 1
H3 I1

(∫ yi

0

ỹ2

η2(ỹ)
dỹ + yi

∫ H

yi

ỹ

η1(ỹ)
dỹ

)
. (2.22)

By construction, q0(0; ·) = 0 and q0(1; ·) = 1. Note that the H3 power normalises the two
integrals. In the case of the 2DGA model, q0(c̄; ·) = c̄. The buoyancy component of the
volumetric flux is governed by I3(c̄; ·):

I3(c̄; ·) = 1
H7 I1

[(∫ yi

0

ỹ2

η2(ỹ)
dỹ + yi

∫ H

yi

ỹ

η1(ỹ)
dỹ

)
I2

−
(

(H − yi )

∫ yi

0

ỹ2

η2(ỹ)
dỹ + y2

i

∫ H

yi

(H − ỹ)

η1(ỹ)
dỹ

)
I1

]

= 1
H7 I1

[(
yi

∫ yi

0

ỹ2

η2(ỹ)
dỹ

∫ H

yi

(ỹ − yi )

η1(ỹ)
dỹ

)
+

+y2
i

([∫ H

yi

ỹ

η1(ỹ)
dỹ

]2

−
[∫ H

yi

1
η1(ỹ)

dỹ

] [∫ H

yi

ỹ2

η1(ỹ)
dỹ

])]
. (2.23)

Again, the H7 power normalises all the integral terms, which now depend only on c and
rheological parameters. We refer to I3 as the buoyancy flux distribution.
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2.2. Newtonian fluids
Zhang & Frigaard (2022) evaluated I1 and I2 analytically for two Newtonian fluids. Our
formulae are slightly different, as our scaling is chosen with a view to the non-Newtonian
fluid pairs, considered later. We use the geometric mean viscosity (μ̂1μ̂2)

0.5 to define the
stress scale τ̂0. The viscosity ratio is defined as m = μ̂1/μ̂2. Hence, we find that η1 = m0.5,
η2 = m−0.5 and the following expressions result:

I1 =
(

y3
i

3η2
+ H3 − y3

i

3η1

)
= H3 m0.5c̄3 + m−0.5 (1 − c̄3)

3
= H3 I1(c̄; m), (2.24)

I2 =
[

(H − yi )y3
i

3η2
+ yi (H − yi )

2(H + 2yi )

6η1

]

= H4 2m0.5c̄3(1 − c̄) + m−0.5c̄(1 − c̄)2(1 + 2c̄)

6
= H4 I2(c̄; m). (2.25)

The flux function in (2.21) can be simplified to

q0(c̄; m) = c̄

[
mc̄2 + 1.5(1 − c̄2)

mc̄3 + 1 − c̄3

]
(2.26)

and

I3(c̄; m) = c̄2(1 − c̄)3 [4mc̄ + 3(1 − c̄2)
]

12[mc̄3 + 1 − c̄3] . (2.27)

Observe that, for m = 1 and 
ρ = 0, the flux function is equal to

(qφ, qξ ) = ra

2

(
−∂Ψ

∂ξ
,

1
ra

∂Ψ

∂φ

)
c̄(1.5 − 0.5c̄2), (2.28)

which is (1.5 − 0.5c̄2) times the flux function coming from the 2DGA model, where
q0 = c̄. This amplified term is associated with the underlying Poiseuille flow, which
disperses the flow. This is similar to the flux term previously calculated analytically
using a transverse flow equilibrium assumption to capture the dispersion of two miscible
Newtonian fluids in a long channel (Yang & Yortsos 1997). Note however that here the gap
thickness (H ) in an eccentric annulus depends on both azimuthal and axial directions, and
the local mean velocity may also vary.

Comparing the mean mobility I1 expression from the 2DGA model (I1 = [m0.5c̄ +
m−0.5(1 − c̄)]/3) with (2.24), we can interpret the D2DGA model as a form of
interpolation of the viscosity at intermediate concentrations; see figure 5(a). In the absence
of the buoyancy force, q0(c̄) determines the frontal behaviour of the displacement; see
figure 5(b). Since d2q0/dc̄2 < 0 for the D2DGA model, the front with lower concentration
travels at the higher speed, which disperses the interface. The straight line in figure 5(b)
corresponds to the uniform front speed of the 2DGA model. This clearly highlights the
limitation of the 2DGA model in capturing the dispersive fronts. Evidently, prediction of
non-dispersive frontal behaviours using the 2DGA model can result in overestimating the
volumetric efficiency, as noted in Zhang & Frigaard (2022).

The effect of the viscosity ratio on the variation of mean mobility I1(c̄) and isotropic
flux q0(c̄) are illustrated in figures 5(a) and 5(b) for the D2DGA model. The constant
value of mean mobility for m = 1 is the same as that from the 2DGA model. On the other
hand, whenever m �= 1, the new expression defined for the mean mobility of fluids (I1(c̄))
leads to a variation with concentration, between the 2DGA values, which are recovered at

1022 A15-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
77

3 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10773


F. Bararpour and I.A. Frigaard

(a)

0 0.2 0.4 0.6 0.8 1.0

0.8

0.6

0.4

0.2

1.0
2DGA, m = 5
D2DGA, m = 5
D2DGA, m = 1
D2DGA, m = 0.2

2DGA, m = 5
D2DGA, m = 5
D2DGA, m = 1
D2DGA, m = 0.2

c̄

I1

(b)

0 0.2 0.4 0.6 0.8 1.0

0.8

0.6

0.4

0.2

1.0

c̄
q 0

(c̄
)

Figure 5. Variation of I1(c̄) and q0(c̄) by c̄ for Newtonian fluids at m = 5, 1, 0.2, w̄ = 1, b = 0 (isodensity).

c̄ = 0 and c̄ = H . When the viscosity of the displacing fluid is higher than the displaced
fluid (m < 1), the front becomes more stable and the mean mobility of fluids decreases
with c̄. For invasion of a low viscous fluid into a high viscous fluid (m > 1), the front is
less stable and the mean mobility of fluids increases with c̄. We can also observe this in
the behaviour of the isotropic flux q0(c̄). The wavespeeds (q ′

0(c̄)) at low c̄ increase with
m, implying increased dispersion of the finger of fluid 2 into fluid 1. The buoyant mobility
component I2 always vanishes at both c̄ = 0 and 1, since buoyancy arises only from having
two fluids present, but here this is irrelevant as b = 0.

2.3. Non-Newtonian fluids
Cementing fluids are typically modelled as Herschel–Bulkley fluids, in which the
consistency, power-law index and yield stress of fluid k are denoted by κ̂k , nk and τ̂Y,k ,
respectively: k = 1 for the displaced fluid and k = 2 for the displacing fluid. As an effective
viscosity scale we use

μ̂e =
[
κ̂1 ˆ̇γ n1−1

0 κ̂2 ˆ̇γ n2−1
0

]0.5
, ˆ̇γ0 = ŵ0/d̂∗. (2.29)

We then define the stress scale τ̂0 as

τ̂0 = μ̂e ˆ̇γ0 + max{τ̂Y,1, τ̂Y,2}. (2.30)

The scaled constitutive laws for fluid k are

τk =
(

κk

∣∣∣∣du
dy

∣∣∣∣
nk−1

+ τY,k

∣∣∣∣du
dy

∣∣∣∣
−1
)

du
dy

, ⇔ |τk| > τY,k,

du
dy

= 0, ⇔ |τk|� τY,k .

(2.31)

The scaled parameters can be written as

κ1 = κ̂1 ˆ̇γ n1
0

τ̂0
= m0.5

1 + B
, κ2 = κ̂2 ˆ̇γ n2

0
τ̂0

= m−0.5

1 + B
, τY,k = τ̂Y,k

τ̂0
, (2.32)
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Figure 6. Variation of mean mobility I1(c̄) and isotropic flux and q0(c̄) with c̄ based on D2DGA model
for shear-thinning fluids at m = 1, w̄ = 1, b = 0 (isodensity). As the power-law index of the fluids reduces,
the effective viscosity (μ̂e) decreases leading to a growth in the mean mobility value. The first and second
components of n = [n1 n2] represent the power-law index of the displaced and displacing fluids, respectively.

where m = κ̂1 ˆ̇γ n1−n2
0 /κ̂2 is the generalisation of the Newtonian viscosity ratio. The

Bingham number B here is

B = max{τ̂Y,1, τ̂Y,2}
μ̂e ˆ̇γ0

. (2.33)

Note that the parameters above simplify to the Newtonian definitions. The point of using
max{τ̂Y,1, τ̂Y,2} is that the resulting scaled yield stresses are bounded within [0, 1), which
is useful for numerical evaluation and tabulation.

Note that each Ik(c̄) and q0(c̄) now depend on the constitutive laws of the fluids. In
yielded regions, ηk(ỹ) is defined as

ηk =
(

κk

∣∣∣∣du
dy

∣∣∣∣
nk−1

+ τY,k

∣∣∣∣du
dy

∣∣∣∣
−1
)

. (2.34)

It follows that (2.13) becomes nonlinear, either considered as an equation in terms of ū
(equivalently ∇aΨ ) or G. An explicit analytical solution is not possible in general, and
the solution u is needed in order to evaluate the different closure functionals (Ik(c̄) and
q0(c̄)). The solution can be found, either for fixed ū or fixed G, via the iterative solution
of an equivalent convex minimisation problem. This is discussed in Appendix A.

As an example, figure 6 displays the variation of the mean mobility and isotropic flux
for two shear-thinning fluids with equal power-law indexes and with no buoyancy. As the
effective viscosities of the two fluids are identical there is no c̄ dependency in figure 6(a).
As the power-law index of both fluids reduces (n → 0.2), the effective viscosity decreases
and leads to an increase in the mean mobility value. The variation of isotropic flux is
illustrated in figure 6(b). The broken straight line corresponds to a planar interface between
the two fluids. At the lowest power-law index of the fluids, the isotropic flux gets closer
to the broken straight line. This coincides with the fluid velocity becoming progressively
plug-like, as observed in the inset of figure 6(b).
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Figure 7. The effect of the yield stress of the displacing fluid (a,b) and the displaced fluid (c,d) on the variation
of mean mobility I1(c̄) and isotropic flux q0(c̄) with c̄. The results are obtained using the D2DGA model for
Herschel–Bulkley fluids and isodense flows (b = 0) at m = 1, B = 18.3 for n = [0.5 0.5] and B = 17.66 for
n = [0.7 0.7]. The first and second components of n = [n1 n2] and τY = [τY,1 τY,2] represent the power-law
index and the yield stress of the displaced and displacing fluids, respectively.

The impact of yield stress of both fluids on mean mobility and isotropic flux are
shown in figure 7, again with no buoyancy. In figure 7(a,b) the yield stress of the
displaced fluid is fixed at τY,1 = 0.94, and the yield stress of the displacing fluid is
varied: τY,2 = 0.23, 0.33, 0.71, 0.94. Looking at the low range of c̄ in figure 7(a), the
yield stress of the displacing fluid is not exceeded. The contribution of the displacing
fluid (i.e.

∫ yi
0 [ỹ2/η2(ỹ)] dỹ) to the mean mobility is therefore zero since η2 → ∞ and

γ̇ → 0. Therefore, the mean mobility of the fluids is initially constant and comes only
from the displaced fluid (i.e.

∫ H
yi

[ỹ2/η1(ỹ)] dỹ), and specifically from a yielded layer close
to the wall. This contribution is identical to that for when the channel is fully filled with
the displaced fluid I1(c̄) ≈ 0.9. To illustrate these constant regions at small c̄, we have
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separated out the contributions to the mean mobility (I1) from displaced and displacing
fluids and plotted these against c̄ in the inset of figure 7(a) for τY = [0.94 0.23], n =
[0.5 0.5].

As the concentration increases, the displacing fluid starts yielding, and the impact of the
mobility of the displacing fluid on the mean mobility (I1(c̄)) increases. We observe that I1
is approximately linear over a range of c̄, with growth rate a, which reduces as the yield
stress of the displacing fluid approaches that of the displaced fluid (τY,2 → 0.94). From
the inset of figure 7(a), we see that the approximately linear growth of the mean mobility
starts as the concentration exceeds c̄ ≈ 0.52, and coincides with the emergence of a static
wall layer in fluid 1 (within which the mobility of fluid 1 is zero).

Figure 7(b) displays the impact of the yield stress of the displacing fluid on the
frontal behaviour, felt via the isotropic flux function q0(c̄). The rheological parameters
are identical with figure 7(a) and the fluids have the same density (b = 0). At small values
of τY,2, e.g. 0.23, 0.33, due to the high yield stress of the displaced fluid, there is an
interval of c̄ for which the displaced fluid is completely unyielded and, consequently, the
isotropic flux increases linearly with c̄ (given by the plug velocity multiplying c̄). As the
displacing fluid begins to yield, we see a transfer to fluid 2. The minimum concentration
for which q0(c̄) = 1 is denoted c̄min and can be directly calculated. For c̄ > c̄min, fluid 1
remains static and q0(c̄) = 1.

In figure 7(c,d) the impact of the yield stress of the displaced fluid is investigated, where
the yield stress of the displacing fluid is fixed at τY,2 = 0.94. Unlike Figure7(a), the mean
mobility I1 is approximately c̄ independent for a wide range of concentrations. Fluids with
lower τY,1 have higher mean mobility values. Figure 7(d) shows the analogous variations
in isotropic flux, which are close to linear. This comes from the high plasticity and central
plug region of the displacing fluid.

2.3.1. Variations of mean mobility (I1(c̄)) with static wall layers
We have still not explained the apparent linear growth of I1 for c̄ � c̄min, although this
appears to be associated with the regime of static wall layers. Assuming that c̄ � c̄min,
only fluid 2 is flowing. Since the flow is still computed for a fixed flow rate, but now with
a single fluid, we may use the earlier results from the 2DGA model to find the relation
between Gξ and c̄, i.e. the displacing fluid is injected into a channel with a half-width c̄ at
a mean velocity of w̄ = 1: ∫ c̄

0
wdỹ = F2(Gξ ). (2.35)

Here F2(Gξ ) is defined as

F2(Gξ ) =

((
1
n2

+ 1
)

c̄Gξ + τY,2

)

G2
ξ

(
1
n2

+ 1
)(

1
n2

+ 2
) (c̄Gξ − τY,2)

(
1

n2
+1

)
+

κ(1/n2)
, c̄Gξ > τY,2. (2.36)

When the displaced fluid is static, (2.14) can also be simplified to (2.37) using integration
by parts, such that the flow rate constraint is satisfied:

I1(c̄; .) =
∫ c̄

0

ỹ2

η2(ỹ)
dỹ = −

∫ c̄

0

ỹγ̇

Gξ (c̄)
dỹ = (

∫ c̄
0 wdỹ) = 1

Gξ (c̄)
. (2.37)
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(a)

Newtonian (fluid 2), fluid 1: τY,1 = 0.94, n1= 0.5,

with c̄min = 0.59, and fitted curve 1/ac̄3 + b

τY,1 = 0.94, τY,2 = 0.23, n1 = n2 = 0.5

with c̄min = 0.52, and fitted curve 1/ac̄ + ba

Power-law (fluid 2) n2 = 0.4, fluid 1: τY,1 = 0.94, n1 = 0.5

with c̄min = 0.28, and fitted curve 1/ac̄1.8 + b 

Power-law (fluid 2) n2 = 0.6, fluid 1: τY,1 = 0.94, n1 = 0.5

with c̄min = 0.39, and fitted curve 1/ac̄2.2 + b 

(b)

I1Gξ

c̄ c̄
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2

4

6

8

10

12
Newtonian (fluid 2), fluid 1: τY,1 = 0.94, n = 0.5

Power-law (fluid 2) n = 0.6 fluid 1: τY,1 = 0.94, n = 0.5

Fitted curve (Newtonian) ac̄3 + b

Fitted curve (n = 0.6) ac̄2.2 + b
Power-law (fluid 2) n = 0.4, fluid 1: τY,1 = 0.94, n = 0.5

Fitted curve (n = 0.4) ac̄1.8 + b

Fitted curve (n2 = 0.5, τY,2 = 0.23) ac̄ + b
τY,1 = 0.94, τY,2 = 0.23, n1 = n2 = 0.5

Figure 8. Variation of Gξ (c̄) (a) and the mean mobility I1(c̄) (b) by c̄ for isodense flows (b = 0) for invasion
of Newtonian, power-law (n2 = 0.6 and n2 = 0.4) and Herschel–Bulkley fluids (n2 = 0.5, τY,2 = 0.23) into the
displaced fluid with a yield stress of τY,1 = 0.94 and power-law index of n1 = 0.5.

Replacing Gξ (c̄) in (2.37) with (2.36) leads to

I1(c̄; .) = 1
Gξ (c̄)

=

√√√√√√√√
κ

1/n2
2

(
1
n2

+ 1
)(

1
n2

+ 2
)

(c̄Gξ − τY,2)
1

n2
+1

+ (c̄Gξ

(
1
n2

+ 1
)

+ τY,2)

. (2.38)

To verify this approach, we consider when the yield stress of the displacing fluid is
negligible, in which case (2.36) and (2.38) can be simplified further to give

Gξ = 1
ac̄2n2+1 + b

, I1(c̄; .) = (ac̄2n2+1 + d), (2.39)

where a = 1/((1/n2 + 2)κ
(1/n2)
2 )n2 and d is a constant, e.g. for Newtonian fluids, Gξ ≈

(1/ac̄3 + d). Figure 8(a,b) displays the variation of the axial modified pressure gradient
(Gξ ) and the mean mobility (I1(c̄)), with concentration for various displacing fluid
rheological properties, with the yield stress and the power-law index of the displaced
fluid fixed at τY,1 = 0.94 and n1 = 0.5. The green lines illustrate the curves fitted to
expressions of the form 1/[ac̄2n2+1 + d] for the modified pressure gradient, for c̄ � c̄min.
We find excellent agreement. Note that c̄min can be calculated analytically with c̄min =
[H/(aτY,1)](1/2n2+1) for power-law displacing fluids. This is obtained when Gξ (c̄min) is
equal to τY,1/H , which is required to overcome the yield stress of the displaced fluid. As
the rheological properties of the displaced fluid are identical in all the investigated cases,
Gξ (c̄min) = 0.94, at all c̄min values in figure 8(a).

From figures 7(a) and 8(b), we can note that I1 ≈ ac̄ + d for c̄min � c̄ when τY,2 = 0.23
and n2 = 0.5. This is only compatible with the power fluid expressions in the limit of
n2 → 0. This gives a hint for where the linear behaviour might come from.
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(a)

τY,1 = 0.94, τY,2 = 0.23, n1 = 0.5, n2 = 0.3

with c̄min = 0.42, and fitted curve 1/ac̄ + b

τY,1 = 0.94, τY,2 = 0.23, n1 = n2 = 0.5

with c̄min = 0.52, and fitted curve 1/ac̄ + b

τY,1 = 0.94, τY,2 = 0.23, n1 = 0.5, n2 = 0.7

with c̄min = 0.62, and fitted curve 1/ac̄ + b

τY,1 = 0.94, τY,2 = 0.23, n1 = n2 = 0.5

with c̄min = 0.52, and fitted curve 1/ac̄ + b

τY,1 = 0.94, τY,2 = 0.71, n1 = n2 = 0.5

with c̄min = 0.96, and fitted curve 1/ac̄ + b

τY,1 = 0.94, τY,2 = 0.33, n1 = n2 = 0.7

with c̄min = 0.69, and fitted curve 1/ac̄ + b

τY,1 = 0.94, τY,2 = 0.33, n1 = n2 = 0.5

with c̄min = 0.61, and fitted curve 1/ac̄ + b

τY,1 = 0.94, τY,2 = 0.23, n1 = n2 = 0.7

with c̄min = 0.62, and fitted curve 1/ac̄ + b

Gξ

0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0
(b)

Gξ

c̄ c̄
0 0.2 0.4 0.6 0.8 1.0

0.5
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1.5
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Figure 9. Variation of Gξ with c̄ for isodense flows (b = 0) during invasion of Herschel–Bulkley fluids into the
displaced fluid with a yield stress of τY,1 = 0.94 and power-law index of n1 = 0.5. (a) Displacing fluid with (i)
n2 = 0.7, (ii) n2 = 0.5, (iii) n2 = 0.3 and τY,2 = 0.23. (b) Displacing fluid with the same rheological properties
as figure 7(a).

We assume that, for some range of c̄ > c̄min, particularly when the fluid 1 yield stress is
close to 1, meaning that the shear stress at the interface (c̄Gξ ) is only slightly larger than
τY,2. Using (2.36) we find that

c̄Gξ − τY,2 ≈
[
κ

1
n2

2

(
1
n2

+ 1
)

τY,2

c̄2

] n2
n2+1

� τY,2. (2.40)

On substituting into (2.38) this can be simplified to

I1(c̄; .) =

√√√√√√√√
κ

1
n2

2

(
1
n2

+ 1
)(

1
n1

+ 2
)

κ

1
n2

2

(
1
n2

+ 1
)

τY,2

c̄2

[
τY,2

(
1
n2

+ 2
)

+ O(ε)

] ≈ c̄

τY,2
, (2.41)

i.e. the linear regime observed corresponds to a thin layer of yielded displacing fluid with
a static wall layer of displaced fluid.

Figure 9(a,b) illustrates the impact of the power-law index and the yield stress of the
displacing fluid on the variation of Gξ with concentration. Comparing figure 9(a) with
figure 9(b), we observe a better matching between the fitted curve and the calculated Gξ (c̄)
at c̄ � c̄min when the yield stress of the displacing fluid increases (e.g. τY,2 = 0.33, 0.71).
The inset of figure 9(a,b) shows the matching between the fitted curves with Gξ for c̄ �
c̄min. For a small yield stress of the displacing fluid and various power-law indexes, the
fitted curves deviate slightly from the calculated Gξ close to c̄ = 1. However, this deviation
is reduced when the yield stress of the displacing fluid is increased (e.g. τY,2 = 0.33, 0.71).
The larger yield stresses correspond to cases with a relatively thin layer of yielded fluid 2
close to the interface.
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ξ = L

ξ

y = –H

N

W
y = H

φ

y

ξ = 0

c̄  = 0

c̄  = 1

w̄

(a) (b)

Fluid 1

Fluid 2

Figure 10. The invasion of fluid 2 into a Hele-Shaw cell filled with fluid 1 (a). Here N and W represent the
narrow and wide sides of the cell and the colour displays the gap-averaged concentration. The evolution of the
finger into the dispersive front at the (φ, ξ ) plane is illustrated in panel (b).

3. Planar displacement flows with the D2DGA model
To build our physical intuition on a flow of practical importance, we consider the simplest
possible flow: that of a planar displacement. Since the concentrations are always dispersing
in the D2DGA model, we must first define what is meant by a planar displacement. The
criterion used is that c̄ ≈ c̄(ξ, t). For the 2DGA model, this occurs frequently, in so-called
steady-state displacements, even in cases of strong inclination and eccentricity. For the
D2DGA model, this possibility is less clear. We focus on a scenario where the annulus is
both uniform in ξ and is vertical. We assume that the streamlines are quasi-parallel:

|v̄| � |w̄| ⇐=
∣∣∣∣∂Ψ

∂ξ

∣∣∣∣�
∣∣∣∣ 1
ra

∂Ψ

∂φ

∣∣∣∣ . (3.1)

For clarity, we shall assume that |v̄| = O(ε) for some unspecified streamline aspect ratio
ε � 1. At leading order we can simplify (2.13) to

Hw̄ = H3[I1(c̄)Gξ − I2(c̄)Gb,ξ ] = H3
[
−I1(c̄)

(
∂p

∂ξ
+ ρ

Fr∗2

)
− bra I2(c̄)

]
. (3.2)

The azimuthal buoyancy term is zero and the azimuthal pressure gradient is also O(ε) to
be compatible with |v̄| = O(ε).

Turning to the transport problem (2.19), we see that (2.21) simplifies to

(qφ, qξ ) = ra Hq0(c̄)(v̄, w̄) + rabH3 I3(c̄)(0, 1). (3.3)

If we write

c̄(φ, ξ, t) = c̄0(ξ, t) + εc̄1(φ, ξ, t), (3.4)
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and substitute into (2.19) we find that

0 = ∂[Hrac̄0]
∂t

+ ∂

∂ξ
[ra Hw̄q0(c̄0) + rabH3 I3(c̄0)] + ∂

∂φ
[H v̄q0(c̄0)]

+ ε
∂

∂ξ
[ra Hw̄q ′

0(c̄0)c̄1 + rabH3 I ′
3(c̄0)c̄1] + O(ε2), (3.5)

with ′ denoting the derivative with respect to c̄. It is interesting to note that since v̄ = O(ε),
ra = 1 and H = H(φ) for a uniform annulus, the leading-order equation is

0 = ∂ c̄0

∂t
+ ∂

∂ξ
[q0(c̄0) + bH2 I3(c̄0)]. (3.6)

This equation allows for a parametric φ dependence, i.e. due to H(φ), while the advective
dispersion is only in the ξ direction. Potentially, this might allow conditions where the
dispersive behaviour might be suppressed, e.g. by buoyancy and in a different manner for
large and small H .

A first-order perturbation solution might also be calculable for H = H(φ). The terms
involving c̄1 are also advective and v̄ can be reconstructed from w̄, using incompressibility.
However, instead we proceed assuming that H(φ) is near uniform, e.g. if the eccentricity
e = O(ε): H ∼ 1. The φ-derivative term is then O(ε2). We may consider that the fluids
are pumped at speed w̄ = 1 (effectively due to the scaling adopted). The leading-order
evolution equation for c̄0 becomes

0 = ∂ c̄0

∂t
+ ∂

∂ξ
[q0(c̄0) + bI3(c̄0)]. (3.7)

3.1. Characterising the dispersive front
Equation (3.7) is a quasilinear hyperbolic equation. Using kinematic wave theory
(Whitham 1974), the front velocity can be calculated by (3.8) provided that c̄(ξ, t)
remains differentiable:

w f (c̄0) = q ′
0(c̄0) + bI ′

3(c̄0). (3.8)

We recall that the premise of the D2DGA model is that a central finger of fluid 2 disperses
along the channel. Provided w f (c̄) decreases monotonically with c̄, the concentration
will disperse. In other situations a shock may form, e.g. between two concentrations c̄m
and c̄M . The interval [c̄m, c̄M ] moves with constant shock velocity ws , which is also the
limiting value of w f (c̄) from each end. The shock velocity and its height (c̄M − c̄m) can
be determined by the equal-areas rule or the Rankine–Hugoniot conditions (Whitham
1974). Similar methods have been applied in the cementing context by Pelipenko &
Frigaard (2004c), Zare et al. (2017).

In order to explore the behaviour of solutions to (3.7), we use two methods. First, we cal-
culate the isotropic flux function q0(c̄0) and the buoyancy flux distribution I3(c̄0) by solv-
ing for the velocity profile and pressure gradient, imposing the velocity (v̄, w̄) = (0, 1),
reflecting the mean imposed speed, as described in Appendix A.2.2. We then analyse these
functions to understand the wavespeeds w f (c̄) and occurrence of shocks. Here, we have
benchmarked our solution method against those of Zare et al. (2017), who develop a lu-
brication theory displacement model for two Bingham fluids displacing along a channel at
high Péclet number. Secondly, (3.7) is solved numerically as an evolution problem, here us-
ing a total variation diminishing method with a minmod flux limiter to eliminate numerical
oscillations at steep concentration gradients (Blunt & Rubin 1992; Yang & Yortsos 1997).

As examples, figure 11 plots the displacing fluid flux function q0(c̄0) + bI3(c̄0) against
c̄0, and plots c̄0(ξ, t) against the similarity variable ξ/t . For the latter, once distant
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(a)
q 0

(c̄
0
) 

+
 b

I 3
(c̄

0
) 

(b)

c̄0

c̄0

0 0 1 2 3 40.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0
Spike

Shock

Dispersion

Static wall layer

wf ≈ 1.5

c̄2

c̄1

ξ/t

wf ≈ 1.15

wf ≈ 2

Spike

Shock

Dispersion

Static wall layer

Figure 11. Four flow regimes are identified by plotting (a) the displacing fluid flux function q0(c̄0) + bI3(c̄0)

against c̄0, and (b) c̄0 against the similarity variable (ξ/t). The dimensionless variables are fixed at w̄ = 1,

H = 1, Dispersion: Newtonian fluids at κ = [1 1], b = 0, Spike: κ = [3 1], τY = [0.25 0], b = 50, n =
[1 1], Shock: κ = [10 1], τY = [12.5 0], b = 100, n = [1 1], Static wall layer: κ = [1 1], τY = [20 5], b = 0,

n = [0.5 0.5].

from any initial condition, c̄0(ξ, t) collapses quickly to a function of ξ/t , illustrating
both wavespeeds and shocks. Four regimes can be observed for the different rheological
properties studied: dispersive front, shock, spike and static wall layers. These regimes are
as defined previously for Bingham–Newtonian fluids (Zare et al. 2017). In the dispersive
regime, the front speed decreases monotonically from the centre of the channel to the
walls (no shock). In the shock regime, the front speed is constant at the shock speed and
we observe a shock in the interval (0 < c̄0 < c̄M ), where c̄M is the shock height. Similarly,
in the spike regime, the front speed is constant between c̄m < c̄ < c̄M , but now c̄m > 0 and
the tip of the front (at small c̄) moves ahead of the shock. In the static wall layer regime,
the layer of fluid 1 is not removed (this only occurs for positive yield stress).

As we move between regimes, we can observe corresponding changes in the flux:
q0(c̄0) + bI3(c̄0). The flux function is concave in the dispersive regime. As a shock
emerges, it becomes convex over an interval [c̄1, c̄2], which lies within the shock interval
[c̄m, c̄M ]. Equation (3.8) implies that larger concentrations within [c̄1, c̄2] travel faster,
eventually leading to the disappearance of the dispersive finger. Thus, to satisfy mass
conservation, instead a shock emerges with a velocity equal to the front velocity (3.8)
and joining the two points c̄m and c̄M :

q(c̄M ) − q(c̄m) = ws(c̄M − c̄m). (3.9)

As expected, there is good agreement between the shock velocity obtained directly from
(3.9) and the functions in figure 11(a), compared with those plotted in figure 11(b), which
are computed from the evolution problem.

3.2. Results: dispersive flow regimes
We now explore more generally the parametric dependency of the four identified dispersive
flows. We first compute the front speed w f (c̄0) at c̄0 = 0 for both Newtonian and
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shear-thinning fluids for a wide range of buoyancy number (b), viscosity ratio (m), and
power-law index (nk). Our main goal here is to find a critical b value to reduce the impact
of dispersion and accordingly result in a more stable front in the range studied.

Figure 12 explores the impact of m = κ1/κ2 and b on the front speed for two Newtonian
fluids. The shaded contours give the centreline front speed w f (c̄0 = 0). Note that the effect
of the buoyancy number and the viscosity ratio on q ′

0(c̄0) + bI ′
3(c̄0) is negligible at c̄0 =

0, and it maintains a constant value of 1.5 at the centre of the channel for Newtonian
fluids, coming from the maximum velocity of the Poiseuille flow between two parallel
plates. However, when shock develops, the shock velocity might be greater (or less) than
q ′

0(0) + bI ′
3(0) and w f can be changed by both b and m.

Generally speaking, the shock velocity approaches the mean velocity (w f (c̄0) → 1), and
the front becomes more stable when b � 1; see figure 12. There is less dispersion for larger
b and larger m. Figure 12(a) shows the transition from dispersive front to shock regime
based on the viscosity ratio of fluids at b = 0. This transition happens at a critical viscosity
ratio (Mmin

3 = 1.5), which is identical with the predictions of Lajeunesse et al. (1999), who
considered Newtonian fluids only. To translate from our dimensionless parameters to the
(U, M) of Lajeunesse et al. (1999), we have b = 3m0.5/U and m = M . Here Mmax

1 and
Mmin

3 represent the upper limit for the dispersion regime and the lower limit for the shock
regime, respectively. In the region between Mmin

3 and Mmax
1 = 2.25, the shock speed is

equal to 1.5 and exceeds 1.5 when m = M > Mmax
1 .

Examples of the effect of the viscosity ratio on the front speed are illustrated as
subfigures in figure 12 for Newtonian fluids. In the second subfigure of figure 12(a), a
more viscous fluid is injected into a less viscous fluid; hence, m � 1 and flow is viscosity
stable. As the viscosity ratio reduces, the front velocity at large concentration increases,
implying that the wall’s residual fluid starts to move at a higher speed. In the first subfigure
of figure 12(a), the viscosity ratio between the displacing and the displaced fluid is
unfavourable, meaning that the displacing fluid is less viscous than the displaced fluid.
The front is dispersive at m = 1 and a shock develops at m = 2, 3, 4, 5.

The increase in the front speed results in a more unstable regime, making the primary
cementing operations less effective. In figure 12(b–d) the displacing fluid is denser than the
displaced fluid, i.e. b > 0. Similar to the defined regions of the (U, M) plane in (Lajeunesse
et al. 1999), at low U (or high b) values, the flow regime is mainly spike. In figures 12(c)
and 12(d), buoyancy completely suppresses the spike regime as b increases from 100 to
1000.

Figure 13 shows the front speed at c̄0 = 0 for two shear-thinning fluids at different
nk and b. We have fixed κ1 = κ2 = 1. Similar to the Newtonian fluids, in figure 13 we
investigate the influence of the buoyancy number on the front speed for shear-thinning
fluids. The effects are somewhat similar to those for Newtonian fluids. The general trend
is that increasing the buoyancy number can improve the displacement process as the front
velocity at c̄0 = 0 approaches the mean velocity. This also happens as n1 is reduced, simply
because the displaced fluid becomes progressively shear thinning with a plug-like velocity
profile.

For b = 0, the main transition in flow type is between dispersive and spike, as n2
decreases; see figure 13(a). At larger b the dispersive regimes are suppressed, there are
some spike regime flows, but these too are suppressed in favour of shock regimes at larger
b; see figure 13(b–d).

These trends at b = 0 are illustrated more clearly in the subfigures of figure 13(a). For
a fixed n2, the front height increases (or the front speed reduces) as n1 decreases; see
the second subfigure of figure 13(a). This trend has been previously observed, where the
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Figure 12. Shaded contours of the front speed (w f (c̄0)) at c̄0 = 0 for Newtonian fluids with (a) b = 0,
(b) b = 10, (c) b = 100, (d) b = 1000. The contour lines in (a) represent the front speed and the broken red
lines correspond to the critical viscosity ratios of Lajeunesse et al. (1999). The subfigures (middle and right-
hand side plots) give examples of q ′

0(c̄0) + bI ′
3(c̄0) and consequent w f (c̄0), at indicated values of (κ1, κ2).

The first column of subfigures (middle plots) explore m � 1 (viscosity-unstable flow) and the second column
of subfigures (right-hand side plots) explore m � 1 (viscosity-stable flow).
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Figure 13. Front speed (w f (c̄0)) at c̄0 = 0 for power-law fluids with (a) b = 0, (b) b = 10, (c) b = 20,
(d) b = 70. The shaded contour lines represent the front speed. The subfigures (middle and right-hand side
plots) give examples of q ′

0(c̄0) + bI ′
3(c̄0) and consequent w f (c̄0), at indicated values of (n1, n2). The first

(middle plots) and second (right-hand side plots) column of subfigures explore the impact of the power-law
index of displacing and displaced fluids on the front speed, respectively.
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front velocity reduction is attributed to the downstream plug velocity, which can limit
the velocity of the displacement front (Taghavi et al. 2009; Zare et al. 2017). Conversely,
the front velocity can increase, and flow can become less stable as n2 decreases for a
fixed n1; see the first subfigure of figure 13(a). This clearly stems from the lower effective
viscosity of the displacing fluid compared with the displaced fluid.

3.3. Stability of the dispersive front: Muskat analysis
We now explore the stability of the dispersive planar front to an advancing narrow finger
of fluid 2 in the (φ, ξ) plane. Our dispersive model is built on the premise that a dispersive
finger advances along the centre of the annular gap, so that a finger in the (φ, ξ) plane
appears slightly contradictory. Our working assumption is that (3.7) describes the base
flow completely, which leads to the dispersing planar flow. We then simply question the
stability of this mathematical system. The underlying approach is attributed to Muskat
(1938). A similar approach has been applied by Pascal (1984) in considering stability of a
frontal porous media displacement and also by Pelipenko & Frigaard (2004c) in analysing
stability of the 2DGA model. However, neither has considered a dispersive front.

The uniform velocity assumption is applied to (3.2), which means that the underlying
pressure gradient as we move through the dispersing front is controlled by c̄0, and
given by

∂p

∂ξ
= −ρ(c̄0)

Fr∗2 − 1 + bI2(c̄0)

I1(c̄0)
. (3.10)

Assuming that the finger is thin in the φ direction, the pressure transmits across the finger:

∂pfinger

∂ξ
= −ρ(c̄0)

Fr∗2 − 1 + bI2(c̄0)

I1(c̄0)
. (3.11)

However, the finger is full of fluid 2. Hence, the velocity of the fluid within the finger
w̄finger is given by (3.2) with c̄0 = 1 and the pressure gradient from (3.11):

w̄finger(c̄0) = = −I1(1)

(
∂pfinger

∂ξ
+ ρ(1)

Fr∗2

)
− bI2(1)

= I1(1)

I1(c̄0)
+ bI1(1)

(
I2(c̄0)

I1(c̄0)
+ c̄0 − 1

)
. (3.12)

Note that we have used the fact that I2(1) = 0 in the above. We observe that the finger
velocity is driven both by a form of mobility ratio I1(1)/I1(c̄0) (first term) and by buoyancy
(second term).

Having found the finger velocity, the usual approach is to compare with a suitable
wavespeed to determine stability or otherwise. However, in our case the front is dispersing
with speed w̄ f (c̄0). We consider that w̄ f (c̄0) has been computed to include any segments
of c̄0 over which there is a shock front, as described in § 3.1. We then define


w(c̄0) = w̄finger(c̄0) − w̄ f (c̄0) > 0. (3.13)

The simplest regime to classify is when the flow is unstable. For an unstable regime,
�w(c0) > 0 for all c0 ∈ [0, 1]. In this case, the finger of fluid 2 advances through the
dispersive front at all concentrations.
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Figure 14. (a) Schematic of flow classification. (b) Schematic comparison of the finger velocity with the front
velocity for Newtonian fluids on the (b, m) plane at three distinct flow regimes: (i) stable (green), (ii) partial
penetration (blue) and (iii) unstable (red) regimes. (c) The frontal speed (w f (c̄)) is decoupled into two parts:
(i) q ′

0(c̄0) and b ∗ I ′
3(c̄0) and then plotted on the (b, m) plane.

The notion of stability is harder to define. Conceptually at least, we can conceive that
the finger might not penetrate the dispersing front at all or might penetrate for some range
of concentrations. Loosely, we call these eventualities stable and partial penetration. These
are illustrated schematically in figure 14(a).

To aid in classification, first note that w(c̄0), after processing to take account of shocks,
is always a decreasing function of c̄0. On the other hand, little can be said in general
regarding the behaviour of w̄finger(c̄0). There may be one or more concentrations for
which 
w(c̄0) = 0. We define ccritical to be the largest value of c̄0 ∈ [0, 1] for which

w(c̄0) = 0. Observe that, as c̄0 → 1, the derivatives of both flux functions q0 and I3
vanish, so that w f (1) = 0. On the other hand, since as c̄0 → 1, I2(c̄0) → 0, we can see
from (3.12) that w̄finger(1) = 1. Therefore, 
w(1) = 1 and the finger will always start to
penetrate the dispersive front. If there is no ccritical then it follows that 
w(c̄0) > 0 for all
c̄0 ∈ [0, 1] and the flow is unstable.

In terms of specifying a stable flow, a necessary condition is that there exists a ccritical ∈
[0, 1). One might select a threshold concentration such that, e.g. ccritical � 0.9 designates
stability, i.e. the finger is allowed to penetrate through at most 10 % of the dispersive front.
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In this way the influence of buoyancy in stabilising the flow can be assessed. Increasing
b tends to suppress w̄finger. Also, for c̄0 close to 1, it is found that I ′

3(c̄0) > 0. Thus,
although q ′

0(1) = 0, sufficiently large b results in w f (c̄0) > 0 in an interval close to 1,
i.e. large enough b > 0 can result in 
w(c̄0) < 0 and stability for any fixed c̄0 < 1. This
motivates the idea of adopting a threshold value, but the actual threshold adopted lacks
meaning.

Therefore, we turn to the mean displacement speed in order to identify a threshold.
We denote by c̄∗ the value of c̄0 for which w f (c̄0) = 1, i.e. c̄∗ is the concentration that
disperses at the mean speed. Note that w f (c̄0) − 1 integrates to zero over [0, 1], i.e. c̄∗ is
a volume-weighted mean concentration: the same volume disperses ahead of c̄∗ as behind
c̄∗. Indeed if there is shock moving at speed 1, we would need to define c̄∗ in this way. With
the above explanation and meaning, we define stable and partial penetration as follows.

For a stable regime, the displacement is regarded as stable if 
w(c̄0) < 0 for all
c̄0 ∈ [0, ccritical] and c∗ < ccritical. Thus, fingers of fluid 2 do not penetrate ahead of the
mean pumping speed, which is dispersing at concentration c̄∗. Fingers will penetrate in
the interval (ccritical, 1], but at least 50 % of the front is unaffected. As the front advances,
the penetrated interval (ccritical, 1] will recede behind the front advancing at the mean
speed.

For a partial penetration regime, 
w(c̄0) > 0 for c̄0 > ccritical and c∗ � ccritical. In other
words, the finger penetrates through at least 50 % of the front, but fails to penetrate through
to the pure fluid 1 layer, halting at some critical value.

3.4. Results
For Newtonian fluid pairs, due to linear superposition buoyancy effects are not closely
coupled to viscous effects. Figure 14(b) presents variations in stability classification due
at nine different m and b values. Broadly speaking, small m and larger b enhance stability.
The limit values and monotonicity discussed above are illustrated in these subfigures, as
is the treatment of the q ′

0(c̄0) + bI ′
3(c̄0) in order to determine shocks. In figure 14(c) we

plot the individual contributions q ′
0(c̄0) and bI ′

3(c̄0). From this we can see how buoyancy
comes to dominate q ′

0, increasing w f .
Now, turning to the results of the Muskat analysis/classification of the flow regimes, we

compared the front velocity with the finger speed for all ranges of concentrations. Then, we
classified them based on the explained criteria. Figure 15 displays the flow classification
based on Muskat’s analysis for two Newtonian fluids. In the isodense displacements, the
front becomes unstable for values of m higher than a cutoff mc, where mc ∼ 1.5. This
implies that the finger velocity is higher than the front speed at c̄ = 0 when m � mc, as
shown in figure 15(a). Under a favourable density ratio between two fluids, i.e. b > 0, the
unstable region reduces, and finally, at b = 1000, the buoyancy force dominates, and the
front becomes stable for all ranges of the viscosity ratio.

At high values of the viscosity ratios, a much larger buoyancy number is required to
stabilise the flow. Therefore, a transition from unstable regime to stable occurs, and the
mud removal process becomes more effective when the displacing fluid becomes denser
and more viscous than the displaced fluid, as is indeed physically intuitive.

The influence of the power-law index values on the frontal behaviour of two shear-
thinning fluids is illustrated in figure 16. Essentially, as the shear thinning of the displaced
fluid decreases and the shear-thinning fluid of the displacing fluid increases, i.e. n1 → 1
and n2 → 0.2, the front becomes less stable and the displacement effectiveness reduces.
Furthermore, as the effective viscosity of fluids is smaller than in the previous scenario
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Figure 15. Flow regimes classification based on Muskat’s analysis for Newtonian fluid flows at various
viscosity ratios (m) and buoyancy numbers (b): (a) b = 0, (b) b = 10, (c) b = 100, (d) b = 1000. Red triangles
denote unstable; blue squares denote partial penetration; green circles are stable.

(Newtonian fluids), the critical buoyancy number required to stabilise the flow (b ≈ 70) is
far below the threshold for Newtonian flows (b ≈ 1000).

Finally, we explore some of the effects of yield stress on the displacement. Including
a yield stress creates more possibilities for either fluid to be unyielded over part or all of
the layer thickness, which can combine with buoyancy in either direction to produce many
effects. Therefore, the results presented are primarily intended as examples.

In figure 17 we fix a modest stabilising buoyancy b = 1, set n1 = n2 = 1 and consider an
unstable ratio of the consistencies. Figures 17(a) and 17(b) show the results of increasing
τY,1 from zero, keeping τY,2 = 0. Initially the displacement has a spike flow, but as τY,1
increases the spike changes to a shock. The velocity profile develops a static wall layer of
fluid 1. The shock velocity increases with τY,1 in this case (panel a). Considering now the
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Figure 16. Flow regimes classification based on Muskat’s analysis for power-law fluid flows at various power-
law index (nk ) and buoyancy numbers (b): (a) b = 0, (b) b = 10, (c) b = 20, (d) b = 70. Red triangles denote
unstable; blue squares denote partial penetration; green circles are stable.

effects on stability, we have plotted 
w(c̄0) against τY,1 in the form of a colour map. We
see that initially for low τY,1 we have a band of low concentrations for which 
w(c̄0) < 0,
but this does not extend to c̄∗. Consequently, these flows show partial penetration and are
not stable. As the yield stress is increased, we find that 
w(c̄0) > 0 for all c̄0 and the flows
become unstable. This is illustrated within the inset figures of figure 17(b),

In figures 17(c) and 17(d) we explore instead the effect of increasing τY,2 from zero,
keeping τY,1 = 0.05. In terms of flow type (panel c), we always find spike-type frontal
displacements, with the spike region growing larger as τY,2 increases. As the shock front
speed moves below 1 there is a sudden change in c̄∗, which drops below 0.5. At the same
time, c̄critical steadily increases so that we transition from partial penetration to a stable
fingering regime (panel d).
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Figure 17. (a,c) Front speed (w f (c̄0)) is plotted against c̄0 at b = 1, κ1 = 0.3, κ2 = 0.1. The colour map
represents 
w(c̄0) for (b) various c̄0 and τY,1 at fixed τY,2 = 0 and for (d) different c̄0 and τY,2 at fixed
τY,1 = 0.05. The inset figures give examples of a comparison between finger and front speeds.

4. Conclusions
The main focus of this study has been the extension of the D2DGA approach of Zhang &
Frigaard (2022) to a wide range of non-Newtonian fluids, such as are commonly used
in primary cementing flows. The underlying approach is illustrated in figure 3, namely
developing a closure expression for the functional relationship of the pressure gradient
to the gap-averaged velocity (streamfunction), based on the assumption that the fluids
are layered across the annular gap. As shown in Zhang & Frigaard (2022, 2023), this
approach leads to a greatly improved physical representation of dispersion that takes
place on the scale of the annular gap. Although there is no reason to suspect that
validity of the D2DGA approach fails due to adoption of different generalised Newtonian
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fluid rheologies, we admit that external verification is an important missing step so far.
Computation of three-dimensional annular displacement flows using Herschel–Bulkley
fluid models is underway, with the purpose of making these comparisons. We also have
ongoing experimental displacement work that may eventually be used for this purpose.
This will complete the modelling framework developed here.

We have developed the underlying closure expressions needed to compute the
streamfunction, given in terms of the mobility functions I1 and I2, and explored their
parametric variations. Unlike the Newtonian fluid pairs, an analytical solution to find
the velocity field is no longer possible. Instead it is necessary to compute the velocity
numerically, and here we have used an augmented Lagrangian method. The velocity
solutions can have plug regions of unyielded fluid, either in the centre of the annular gap
or at the walls. Also, the shear stress direction changes across the gap width, due to the
different effects of buoyancy in each layer. In general, the result of finding the closure
expressions is that the mean mobility I1 > 0 and (2.16) remains elliptic. The solution
method for the gap-scale velocity is detailed in Appendix A.

We have also derived the general expressions needed for evolution of the displacing fluid
concentration c̄. The volumetric flux function splits into two parts: a flux that partitions the
total areal flow rate locally and is in the direction of the mean velocity (q0), and a buoyancy
driven term bI3. This differs from the Newtonian case in that the two components are
coupled through the streamfunction as well as the concentration, i.e. the linearity is
lost. The resulting nonlinear evolution problem closure expressions must be evaluated
computationally from the local gap-scale velocity solution.

The need to calculate each closure expression numerically makes computation of the
complete D2DGA displacement flow impractical without, e.g. tabulating each function.
Instead, to gain physical insight into the effects of dispersion, we have analysed a planar
displacement flow using the D2DGA model. The analysis consists of two parts. First, we
are able to compute the dispersive wavespeeds of the planar displacement front. In the
Newtonian case, this incorporates the earlier results of Yang & Yortsos (1997), Lajeunesse
et al. (1999), but builds on this for power-law and Herschel–Bulkley fluids. Similar to
the displacement flow of Bingham fluids by Newtonian fluids (Zare et al. 2017), frontal
behaviours in Herschel–Bulkley fluid displacements can be categorised into (a) dispersion,
(b) spike, (c) shock and (d) static wall layers. Fluid rheological properties and buoyancy
control the transition from one regime to another. Shear thinning in the displaced fluid
tends to reduce dispersion, while shear thinning of the displacing fluid has little effect.
Increasing the yield stress of the displacing fluid enhances the velocity of the displaced
fluid layers, without necessarily changing the flow regime. As the yield stress of the
displaced fluid is increased, eventually the static wall layer regime arises. The effects on
dispersion are less clear.

Including positive buoyancy b > 0 tends to reduce dispersion, moving from fully
dispersive flows, through spike regimes to central shocks of widening extent. The
suppression of dispersion and the shock development, on applying a positive buoyancy,
stems from the change of the flux function (q0(c̄) + bI3(c̄)) from concave into convex at
small values of c̄. The height and velocity of the shock are determined using the Rankine–
Hugoniot conditions. On the other hand, shock speeds are always positive regardless of
how large b is, due to the behaviour of the buoyancy flux distribution I3, as c̄ → 0 and 1.

Secondly, we conducted a dispersive Muskat-style analysis to calculate the velocity of a
narrow finger penetrating the dispersing front. Since in the Muskat analysis it is assumed
that the finger is very thin, the pressure gradient within the finger is the same as that in the
external fluid, and accordingly, the finger velocity depends on c̄. We classify the behaviour
as unstable, when the finger penetrates through the front and into the layer of fluid 1. The
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finger velocity is always faster than the front velocity at c̄ = 1, so the finger can always
penetrate into the frontal regime. We then find the concentration c̄∗ that disperses at the
mean speed. If the finger velocity at c̄∗ does not exceed the mean velocity, we regard the
flow as stable. Otherwise, the flow is classified as a partial penetration.

Applying this analysis to frontal displacement flows of two Newtonian fluids gives
results that are somewhat intuitive. Increasing displacing fluid viscosity tends to stabilise
the front. For an isodense displacement, unstable flows are found for m > 1.5. Adding
buoyancy to the displacement (b > 0) progressively stabilises the displacement. This
stabilisation via positive buoyancy is attributed to both suppression of the frontal
dispersion and reduction of the finger velocity, by at most bI1(1).

For two power-law fluids with identical κ j , on varying n1 and n2, we find that reduced
n2 at fixed n1 can lead to instability. In this case the displacing fluid in the finger feels
stress gradients that are controlled by the less responsive fluid 1: it may shear thin and
move faster in the centre of the annular gap. Again, as we increase b > 0, the flows become
progressively stabilised. The shear-thinning scenario appears to be more sensitive to b than
two Newtonian fluids.

Our future work is directed towards developing a two-dimensional numerical
implementation of the non-Newtonian D2DGA model derived here, in such a way that
it can be used for systematic computations of cementing displacement flows on the scale
of the well. In order to compute the full two-dimensional model, we need to solve (2.16) at
each time step and evolve the fluid concentration via (2.19). The majority of this paper
has been concerned with formulating the underlying D2DGA model, to show that it
has a similar two-dimensional form to the earlier 2DGA models, exploring the closure
relationships via the unctions I1, I2, I3 and q0, and studying the planar displacement
flow. We have also studied the underlying y-dependent two-dimensional shear flow; (see
Appendix A), needed in order to evaluate I1, I2, I3 and q0. Since the computation of
these functions is itself time consuming, when eventually solving (2.16) and (2.19), it
is likely that these functions need to be evaluated and tabulated so that a more speedy
interpolation of their values can be used. Even given this, we note that, for the 2DGA
model, (2.16) is properly posed as a convex minimisation problem or the equivalent elliptic
variational inequality. It is likely that a similar approach will need developing here for the
fully two-dimensional annular flow.

Funding. The authors gratefully acknowledge the financial support of NSERC, Sanjel Energy Services and
Geonomic Ltd. via Alliance Project No. ALLRP 572089-22 ‘Well Integrity Canada 2030’.

Declaration of interests. The authors report no conflict of interest.

Appendix A. Solving the two fluid problem
We now describe the solution of the two fluid layered flow in detail. Whereas the model has
been derived using variables that are scaled globally, i.e. using process variables relevant
to the annular displacement flow, here we consider only the local flow in a plane channel of
width 2H . This is governed by the momentum (2.5), (2.6) and the constitutive laws (2.31).
In order to reduce the dimension of the parameter space, we define ỹ = y/H , so that the
interfaces are now at ỹ = ±c̄. The governing equations are then identical with (2.5), (2.6)
and (2.31), except that the parameters and variables are accented with a tilde and H = 1,
i.e. we solve

0 = dτ̃2

dỹ
+ G̃ − (1 − c̄)G̃b, ỹ ∈ [0, c̄), (A1)
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0 = dτ̃1

dỹ
+ G̃ + c̄G̃b, ỹ ∈ (c̄, 1]. (A2)

The constitutive laws for fluid k are

τ̃k =
(

κ̃k

∣∣∣∣dũ
dỹ

∣∣∣∣
nk−1

+ τ̃Y,k

∣∣∣∣dũ
dỹ

∣∣∣∣
−1
)

dũ
dỹ

, ⇔ |τ̃k| > τ̃Y,k,

dũ
dỹ

= 0, ⇔ |τ̃k|� τ̃Y,k .

(A3)

At ỹ = 0, we have τ̃2 = 0. At ỹ = 1, we have ũ = 0. The stresses and velocity are
continuous at ỹ = c̄. The variables with the tilde accent are identical to the unaccented
variables earlier, with the following exceptions:

κ̃k = κk/Hnk , G̃ = H G, G̃b = H Gb. (A4)

Thus, the velocity, yield stresses and power-law indices are unchanged.

A.1. Variational formulation
Aside from special cases (e.g. Newtonian), it is not possible to find an analytical solution.
Due to the yield stress, it is common to use a variational formulation. We take a test
space V :

V = {ṽ : ṽ(1) = 0, ṽ continuous at ỹ = c̄}. (A5)

We may expect that V is a subspace of the Sobolev space [W 1,p(0, 1)]2, where p =
1 + min{n1, n2}, but we proceed only formally here. On taking the dot product of the
momentum equations with ṽ, integrating across [0, 1] and summing, we arrive at

0 =
〈

dτ̃

dy
· ṽ

〉
+ 〈G̃.ṽ〉 − (1 − c̄)〈G̃b · ṽ〉2 + c̄〈G̃b · ṽ〉1, (A6)

where the angle bracket notation is as follows:

〈 f 〉2 =
∫ c̄

0
f dỹ, 〈 f 〉1 =

∫ 1

c̄
f dỹ, 〈 f 〉 =

∫ 1

0
f dỹ = 〈 f 〉2 + 〈 f 〉1. (A7)

The shorthand τ̃ is taken to mean τ̃k when in fluid k.
On integrating by parts, using the boundary and interfacial conditions, and noting that

both G̃ and G̃b are constant, we arrive at〈
dṽ

dỹ
· τ̃

〉
= G̃ · 〈ṽ〉 − (1 − c̄)G̃b · 〈ṽ〉2 + c̄G̃b · 〈ṽ〉1. (A8)

To treat the left-hand side, we define the following functionals for fluid k:

ak(ũ, ṽ) = κ̃k

〈∣∣∣∣dũ
dỹ

∣∣∣∣
nk−1 dũ

dỹ
· dṽ

dỹ

〉
k

, k = 1, 2, (A9)

jk(ṽ) = τ̃Y,k

〈∣∣∣∣dṽ

dỹ

∣∣∣∣
nk−1

〉
k

, k = 1, 2. (A10)
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Then a(ũ, ṽ) = a1(ũ, ṽ) + a2(ũ, ṽ); j (ṽ) = j1(ṽ) + j2(ṽ). Using (A9) and (A10), (A8)
leads to the following variational inequality:

a(ũ, ṽ − ũ) + j (ṽ) − j (ũ)� G̃ · 〈ṽ − ũ〉 − (1 − c̄)G̃b · 〈ṽ − ũ〉2 + c̄G̃b · 〈ṽ − ũ〉1,

ũ ∈ V ∀ṽ ∈ V . (A11)

This second-order elliptic variational inequality is of classical form and can be used to
ensure the existence and uniqueness of the solution. Here we simply assume this. The
variational inequality (A11) is also equivalent to the following minimisation:

min
ṽ∈V

J (ṽ) = a1(ṽ, ṽ)

n1 + 1
+ a2(ṽ, ṽ)

n2 + 1
+ j (ṽ) − G̃ · 〈ṽ〉 + (1 − c̄)G̃b · 〈ṽ〉2 − c̄G̃b · 〈ṽ〉1.

(A12)
In both variational inequality and minimisation formulations, we observe that the
buoyancy vector acts in the opposite directions within each fluid layer.

In practice, we solve the minimisation formulation, using an augmented Lagrangian
approach, which we outline in Appendix A.2. Our main aim in finding the solution is so
that we define the closure expressions needed for the D2DGA model earlier. The pointwise
values of ũ are needed to evaluate functions such as I1, I2, q0, etc. There is also direct
interest in the mean velocity 〈ũ〉, which gives ∇aΨ = 2H(〈ũξ 〉, −〈ũφ〉.

There are generally two scenarios in which we might wish to compute a solution as part
of the D2DGA model. Firstly, it can be that the modified pressure gradient (G̃) is specified
and we wish to find the velocity ũ (hence, the mean velocity and other functionals). The
second way in which we need to compute the solution is when 〈ũ〉 is specified, i.e. via
∇aΨ from the D2DGA model. In this case, the modified pressure gradient G̃ is unknown
and must be found along with the solution ũ.

To establish that this second problem can theoretically have a solution, consider
solving (A11) for two modified pressure gradients G̃ A and G̃B . Let ũA and ũB be the
corresponding solutions. We can see that ũA is a test function for ũB and ũB is a test
function for ũA. On substituting into (A11) for both the ũA and ũB problems, summing
the inequalities and rearranging, we find that

[G̃B − G̃ A] · [〈ũB〉 − 〈ũA〉]� a(ũA, ũA − ũB) − a(ũB, ũA − ũB)� 0. (A13)

The last inequality in (A13) follows from the monotonicity of the operator a that is the
sub-differential of a convex functional. The inequality is strict unless ũA = ũB = 0, which
can happen for different G̃ A and G̃B , in the case that the yield stresses are large enough
to prevent motion. The positivity of [G̃B − G̃ A] · [〈ũB〉 − 〈ũA〉] suggests that one can
simply increase G̃ in the right direction to either increase/decrease 〈ũ〉 towards a target
mean velocity.

A.2. Augmented Lagrangian method
A common solution method for the minimisation problem (A12) involves a relaxation of
dṽ/dỹ �−→ q in the definition of J (ṽ), which removes the non-differentiability of j (ṽ).
The constraint dṽ/dỹ = q is then enforced by a Lagrange multiplier and the minimisation
is usually also stabilised by augmenting with an additional penalty term. This results in
the following saddle point problem:

max
λ

, min
ṽ,q

Lr (ṽ, q, λ). (A14)
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Here the functional Lr is as follows:

Lr (ṽ, q, λ) = κ̃1
〈|q|n1+1〉

1
n1 + 1

+ κ̃2
〈|q|n2+1〉

2
n2 + 1

+ τ̃1,Y 〈|q|〉1 + τ̃2,Y 〈|q|〉2 − G̃ · 〈ṽ〉

+ (1 − c̄)G̃b · 〈ṽ〉2 − c̄G̃b · 〈ṽ〉1 +
〈
λ ·

(
dṽ

dỹ
− q

)〉

+ r

2

〈(
dṽ

dy
− q

)
·
(

dṽ

dy
− q

)〉
. (A15)

This is resolved iteratively using an Uzawa algorithm, in which new values of ũ, q and λ
are found, independently at each iteration.

A.2.1. Fixed pressure gradient problem
We first treat the problem in which G̃ and G̃b are specified. At the (k + 1)th
iteration,assuming that qk and λk are known from the previous iteration, the optimality
condition for ṽ, which defines ũk+1, is given by

r
d2ũk+1

dỹ2 = r
dqk

dỹ
− dλk

dỹ
− G̃ + (1 − c̄)G̃b, ỹ ∈ [0, c̄),

r
d2ũk+1

dỹ2 = r
dqk

dỹ
− dλk

dỹ
− G̃ − c̄G̃b, ỹ ∈ (c̄, 1], (A16)

with conditions of symmetry at ỹ = 0, continuity at ỹ = c̄ and ũk+1 = 0 at ỹ = 1.
Since we expect that the sequence λk converges to τ̃, which varies linearly with ỹ, we

split λk = λ0 + λ̃k
, where we select λ0 to be piecewise linear and balance the G̃ and G̃b

terms:

λ0(ỹ) =
{−G̃ ỹ + (1 − c̄)G̃b ỹ, ỹ ∈ [0, c̄),

−G̃ ỹ + (1 − ỹ)G̃bc̄, ỹ ∈ (c̄, 1]. (A17)

Using (A17), we now simplify (A16) to

r
d2ũk+1

dỹ2 = r
dqk

dỹ
− dλ̃

k

dỹ
, ⇒ r

dũk+1

dỹ
= rqk(ỹ) − λ̃k

(ỹ) − rqk(0) + λ̃k
(0). (A18)

This is integrated from the wall, where ũk+1(1) = 0.
To find qk+1, we may minimise locally, i.e.

K (q) = κ̃ j |q|n j +1

n j + 1
+ r |q|2

2
+ τ̃Y, j |q| − m · q, (A19)

where m = λ+ λ̃k + r(dũk+1/dy) and j = 1, 2 according to which fluid layer we solve in.
The optimality conditions for qk+1 are

qk+1 =
⎧⎨
⎩

0, |m|� τY, j ,

θm, |m| > τY, j .

where κ̃ jθ
n j |m|n j + rθ |m| = |m| − τY, j ,

(A20)
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which requires iterative solution of an equation of one variable to find θ . Finally, we
update λ̃:

λ̃
k+1 = λ̃k + ρ(

duk+1

dy
− qk+1). (A21)

The positive constant parameters r and ρ represent the numerical parameters of the
Uzawa algorithm and can be selected to guarantee convergence (Fortin & Glowinski 2000;
Glowinski 2013).

A.2.2. Fixed average velocity
In the second closure model scenario it is necessary to calculate the pressure gradient G̃
for an imposed average velocity ū∗ and buoyancy G̃b. There are a number of ways in which
this may be solved. For example, one could guess G̃

k
and then use the monotonicity result

(A13) to update G̃
k+1

in the direction of the discrepancy between ū∗ and the computed ūk .
Instead, our underlying approach is to use the saddle point problem (A14), but exploit

the linearity of the first step to satisfy the flow rate constraint by assigning a new value
G̃

k+1
tied to the velocity solution at each iteration. To start, let us define ūP,0 as the

solution of the following plane channel Newtonian Poiseuille flow:

r
d2uP,0

dy2 = −G̃0,
duP,0

dy
(0) = 0, uP,0(1) = 0. (A22)

Here G̃0 = (1, 1), i.e. unit pressure gradient. This may be solved analytically, but generally
we solve computationally using the same discretisation as for the velocities below. Having
solved, we also calculate the average velocity ūP,0, which analytically is given by ūP,0 =
(1/3r, 1/3r). We also define λ0 to balance the buoyancy G̃b:

λ0(ỹ) =
{

(1 − c̄)G̃b ỹ, ỹ ∈ [0, c̄),
(1 − ỹ)G̃bc̄, ỹ ∈ (c̄, 1]. (A23)

At the (k + 1)th iteration for (A14), assuming that qk and λk are known from the
previous iteration, the optimality condition for ṽ is given by

r
d2ũk+1

dỹ2 = r
dqk

dỹ
− dλk

dỹ
− G̃

k+1 + (1 − c̄)G̃b, ỹ ∈ [0, c̄),

r
d2ũk+1

dỹ2 = r
dqk

dỹ
− dλk

dỹ
− G̃

k+1 − c̄G̃b, ỹ ∈ (c̄, 1], (A24)

again with symmetry at ỹ = 0, continuity conditions at ỹ = c̄ and ũk+1 = 0 at ỹ = 1. Now,

however, we must solve this such that ¯̃uk+1 = ū∗. To do this we split ũk+1, i.e.

ũk+1 = ũk+1
I + uk+1

P , (A25)

where ũk+1
I takes care of the inhomogeneities in (A24) and uk+1

P ensures that the mean
velocity condition is satisfied.

More concretely, we again define λ̃
k

as λ̃
k = λk − λ0 and find ũI from

r
d2ũk+1

I

dỹ2 = r
dqk

dỹ
− dλ̃

k

dỹ
⇒ r

dũk+1
I

dỹ
= rqk(ỹ) − λ̃k

(ỹ) − rqk(0) + λ̃k
(0). (A26)
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This is integrated from the wall, where ũk+1
I (1) = 0. We now average over [0, 1] to give

¯̃uk+1
I . Therefore, we must select uk+1

P in order that

ūk+1
P = ū∗ − ¯̃uk+1

I . (A27)

This is accomplished by taking ūk+1
P = (αφu P,0,φ, αξ u P,0,ξ ), where

αφ = ū∗
φ − ¯̃uk+1

I,φ

ū P,0,φ

, αξ = ū∗
ξ − ¯̃uk+1

I,ξ

ū P,0,ξ

, (A28)

and G̃
k+1 = (αφ, αξ ).

The optimality conditions for qk+1 are again

qk+1 =

⎧⎪⎨
⎪⎩

0, |m|� τY, j ,

θm, |m| > τY, j .

where κ̃ jθ
n j |m|n j + rθ |m| = |m| − τY, j ,

(A29)

where m = λ+ λ̃k + r(dũk+1/dy) and j = 1, 2 according to which fluid layer we solve in.
Note that the pressure gradient G̃

k+1
now comes into this via ūk+1

P whereas buoyancy is
represented via λ0. Finally, we update λ̃:

λ̃
k+1 = λ̃k + ρ

(
dũk+1

dy
− qk+1

)
. (A30)

The overall iteration is thus quite similar to the fixed pressure gradient problem.

A.2.3. Discretisation and illustrations of convergence
We discretise the equations using a finite difference discretisation with a staggered regular
rectangular mesh, i.e. we divide the width of the channel into approximately Ny mesh
points with ≈ Ny(1 − c̄) for the displaced fluid and ≈ Nyc̄ for the displacing fluid. We
define the discretised function ũk at the cell edges and λk, qk , c̄ at the cell centre. This
definition is useful for calculating the gradients arising in the equations (for both fixed G
and ū closures).

We use a simple bisection method for calculating qk+1 and the constant numerical
parameters of the Uzawa algorithm (ρ, r ) are fixed at ρ = 1, r = 1 that satisfies the
convergence condition:

ρ <
1 + √

5
2

r (A31)

(Fortin & Glowinski 2000). We then monitor the norms, ||ũk+1 − ũk ||p, ||q̃k+1 − q̃k ||p

and ||λ̃k ||p, iterating until a desired tolerance value is achieved. Here ||.||p corresponds to
the p norm of the variables, with p = 1 + min{n1, n2}.

Figures 18 and 19 illustrate the convergence of the algorithm. For two identical fluids,
from figure 18(a–c), it can be seen that increasing the power-law index (n) improves the
convergence as does reducing the yield stress, i.e. the Newtonian flow converges fastest.

In figure 19 the impact of the buoyancy number (b) and the viscosity ratio (m) on the
convergence is explored. For the isodense flows, the convergence rate increases when the
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‖ũ

k+
1
 –

 ũ
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Figure 18. The norms of ũ, q̃, and λ̃ are plotted against the number of iterations (k) for Newtonian, shear-
thinning and Herschel–Bulkley fluids for isodense flows (b = 0) at κ1 = κ2 = 1. Here, c̄ = 0.5 and the mesh size
is set to NY = 100. The broken blue line plotted in (a) represents the stopping tolerance for these computations.

displaced fluid is more viscous than the displacing fluid; see figure 19(a). The convergence
also improves when the density of the displacing fluid becomes higher than the displaced
fluid, as shown in figure 19(b). Comparing figure 19(c) with figure 19(b), the negative b
slows convergence, where buoyancy has a destabilising effect on the flow.

The other physical parameter that has an impact on the convergence rate is the initial
guess for G̃ and q̃. There can also be sensitivity to the numerical parameters (ρ, r ), which
we have not explored.

In choosing a tolerance, our integration method is second order in the mesh size 1/Ny ,
so tolerances much smaller than 1/N 2

y do not improve the physical representation. Even
though the iterations here are relatively fast, if one is considering using this solution
method to calculate the D2DGA closure expressions as part of the (no doubt iterative)
solution of an evolution problem for the streamfunction and concentration(s) in a long
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Herschel–Bulkley fluids, n = [0.5 0.5], τy = [0.5 0.5], m = 1 Herschel–Bulkley fluids, n = [0.5 0.5], τy = [0.5 0.5], m = 1, b = 0

Herschel–Bulkley fluids, n = [0.5 0.5], τy = [0.5 0.5], m = 1, b = 0

Shear-thinning fluids, n = [0.6 0.4], m = 1
Shear-thinning fluids, n = [0.6 0.4], m = 5

Shear-thinning fluids, n = [0.6 0.4], m = 1, b = 15
Shear-thinning fluids, n = [0.6 0.4], m = 5, b = 15

Shear-thinning fluids, n = [0.6 0.4], m = 1, b = –15
Shear-thinning fluids, n = [0.6 0.4], m = 5, b = –15
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Herschel–Bulkley fluids, n = [0.6 0.4], τy = [0.9 0.5], m = 5, b = 15

Herschel–Bulkley fluids, n = [0.6 0.4], τy = [0.9 0.5], m = 0.2, b = 15

Shear-thinning fluids, n = [0.6 0.4], m = 0.2
Herschel–Bulkley fluids, n = [0.6 0.4], τy = [0.9 0.5], m = 5

Herschel–Bulkley fluids, n = [0.6 0.4], τy = [0.9 0.5], m = 0.2

Figure 19. The norm of ũ is plotted against the number of iterations (k) for Newtonian, shear-thinning and
Herschel–Bulkley fluids at (a) b = 0 (isodensity), (b) b = 15 (displacing fluid heavier than displaced) and (c)
b = −15 (displaced fluid heavier than displacing). Here, c̄ = 0.5 and the mesh size is set to NY = 100. The
black lines represent the tolerance of this computation.

wellbore domain, it is not feasible. Instead, it is advisable to pre-compute the closure
expressions needed for a full range of reduced rheological parameters and over restricted
ranges of b, G̃, etc.

A.3. Examples of axial velocity profiles
Figure 20 illustrates various axial velocity profiles (w(y)) obtained using the fixed
average velocity closure, i.e. the pressure gradient is found with the student. Note that
in figure 20(a–e) the modified pressure gradient is higher than the buoyancy number
(Gξ > b), and accordingly, fluids are pushed upwards (in the positive direction). Flow
reversal is displayed in figure 20( f ) under the condition of b < 0, where the displaced
fluid is denser than the displacing fluid.
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(a) (b) (c) (d ) (e) ( f )
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yi = 0.5

yi = 0.5 yi = 0.5 yi = 0.5 yi = 0.5
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b = –2.68b = 0.154b = 0

Figure 20. Newtonian fluid flows at κ1 = κ2 = 1 (a), viscoplastic fluid flows with n1 = n2 = 0.5
at (b) τY,1 = 0, τY,2 = 0.89, κ1 = κ2 = 0.105, (c) τY,1 = 0.123, τY,2 = 0.98, κ1 = κ2 = 0.014, (d) τY,1 =
0.77, τY,2 = 0.038, κ1 = κ2 = 0.227, (e) τY,1 = 0.98, τY,2 = 0.123, κ1 = κ2 = 0.014, ( f ) τY,1 = 0, τY,2 =
0.89, κ1 = κ2 = 0.105.
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