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Abstract

It is well known that for a ring with identity the Brown-McCoy radical is the maximal small
ideal. However, in certain subrings of complete matrix rings, which we call structural matrix
rings, the maximal small and minimal essential ideals coincide.

In this paper we characterize a class of commutative and a class of non-commutative rings
for which this coincidence occurs, namely quotients of Priifer domains and structural matrix
rings over Brown-McCoy semisimple rings. A similarity between these two classes is obtained.

1980 Mathematics subject classification (Amer. Math. Soc): 13 F 05, 16 A 42, 16 A 66.

1. Introduction

The purpose of this paper is to characterize the essential ideals in certain classes
of commutative and non-commutative rings and to characterize those rings in
these classes for which the maximal small and minimal essential ideals coincide.

Throughout this paper ring will mean associative ring with identity, and ideal
will mean two-sided ideal. Recall that an ideal A in a ring R is

(i) small if A + B / R for every proper ideal B in R, and, dually,
(ii) essential if A intersects every non-zero ideal in R contrivially.
Loi and Wiegandt [3] showed that the Brown-McCoy radical &(R) of R is the

maximal small ideal. However, if R is not Brown-McCoy semisimple, then
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may even be the minimal essential ideal. (As the intersection of two essential
ideals is essential, a minimal essential ideal, if such an ideal exists, is unique.)

In Section 2 we give a characterization of the essential ideals in the quotients of
a Priifer domain. Necessary and sufficient conditions are given for the existence
of the minimal essential ideal. The characterization of those quotients having
the property tha t the maximal small and minimal essential ideals coincide, shows
tha t such quotients are atypical in the class of rings which are quotients of Priifer
domains.

In Section 3 we contrast the results of Section 2 with those obtained in subrings
of complete mat r ix rings which are rings solely by vir tue of the shape (structure)
of the matrices. We call t hem st ructural ma t r ix rings. It is shown t h a t a struc-
tural mat r ix ring has a minimal essential ideal if and only if t he underlying ring
has a minimal essential ideal. In tha t case it coincides wi th the Brown-McCoy
radical if and only if the underlying ring is Brown-McCoy semisimple with no
proper essential ideals and a partially ordered set (poset) describing the shape
of the matrices has the same proper ty as a certain partially ordered set of ideals
in the valuation rings determined by the Priifer domains in Section 2.

2. Essential ideals in quotients of Priifer domains

Throughout this section D will be a Priifer domain with quotient field K. If P
is a prime ideal in D we use e (superscript) to denote the extension (localization)
of an ideal in D to the valuation ring Dp, and c (superscript) to denote the
contraction of an ideal in Dp to D. Also I will be an ideal in D and <j>: D —• D/I
the canonical epimorphism. We denote the set of maximal ideals in D containing
I by {MT}T€T. Then (see [2, page 43]) / = f)Ter IT, where IT = Ie^.

It will also be useful to recall some basic properties from the theory of val-
uations, the details of which can be found in [2] or [4]. Let V be a valua-
tion ring with valuation v and value group F. Then there is a one-to-one cor-
respondence between the ideals J in V and the upper classes of F given by
J <-• v(J) = {7 € F: 7 = v(a) for some a € J}, where an upper class is
a set n of positive elements of F such that /3 > a for a € fi implies that
/? £ f2. If 7 is a non-negative element of F, then fi7 will denote the upper
class {/? € F: /? > 7}. Two valuation rings Vi and Vj having the same quo-
tient field K are said to be independent if 0 is the only common prime ideal.
We use vT and FT for the valuation and value group of DMT, T G T. For a
finite set of pairwise independent valuation rings we shall frequently make use
of the approximation theorem for independent valuations (see [2, page 282]).
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If D is a Priifer domain such that
(i) every non-zero ideal in D is contained in at most finitely many maximal

ideals in D, and
(ii) for distinct maximal ideals Mi and M2 in D the valuation rings D\fi and

DM2 are independent, then D will be said to satisfy Condition 1.

THEOREM 2 . 1 . Let A be an ideal in D. The ideal <p(A) is essential in D/I
if and only if for some E C T with I = f l^es I<r> Ie° § Ae° for every a € E.

PROOF. Suppose </>(A) is essential in D/I. As DMr is a valuation ring for
every r € T, either Ie* § Ae* or Aer C Je-\ Let $ = {r € T : 4 e ' C Ie'}.
Note that $ ^ T, or we would have A C D r e r ^ - H T S T ^ = >̂ contradicting
the essentiality of 4>{A). Set E = T - $ and J = fl^es V K J = I, we are
finished. Suppose / £ J. Then J n ^ C (f)^ Ia) n (f l r eT ^ r ) C n ^ e s C ^ n
^<r) n ( n T 6 T

 7r) = /• This implies that 4>(A) D 0( J ) = 0 while 0( J) £ 0, a
contradiction.

Conversely, suppose that for some E C T with J = H^es <̂n ^e" S •^e" f°r

every <r € E. Let iV be any non-zero ideal in D/I, and set J = <f>~1(N). We show
that 4>{A) n N ^ 0. If 0(4) D JV = 0, then (A + / ) D J C / , so A n J C / . Since
/ § J it follows that / e» ' ^ ^e"' for some a' e E. (If Ie" = Je" for every a 6 E,
then / a = J^ and J C f l ^ s ^ = f laes I<r = I-) But then Je"' g Ae°' n J e ' ' as
the ideals in .DM,,/ form a chain. Furthermore, Ae°' D Je"' =(j4fl J)e"', and so
Ie"' ^ / e » ' , a contradiction.

THEOREM 2 .2 . £e< 4 and I be non-zero ideals in a Priifer domain D sat-
isfying Condition 1. The ideal <j>(A) is essential in D/I if and only if Pr § A"T

for every r € T.

PROOF. We prove only the necessity, sufficiency being as in Theorem 2.1.
Suppose <f>(A) is essential and Ae'' C Ie*' for some r' e T. Applying the ap-
proximation theorem for independent valuations ( { M T } T S T is finite), we choose
x € K such that

vT{x) € vT{Ier) if T^T', and vT.{x) $ iv(Je ' ' ) .

Let J = i D n D . Then J <£ I, for if it were, then Je' C F* for every r e T,
contradicting the fact that Je^' = {xDC\D)er' = xDMr, n % , ^ Ie''• We have

\

A n J c ( f ) 4T j n ( f | JT j c f | (4T n JT)

a contradiction to the essentiality of <j>{A).
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In the theorems above the linearity of inclusion of ideals when passing to
the localization is of crucial importance. The most classic examples of Priifer
domains are of course Dedekind domains. If instead of relaxing the conditions
for a Dedekind domain (omitting the Noetherian assumption) so that one still
has a Priifer domain, we omit the requirement tha t the domain be integrally
closed, then the characterization given above is no longer true in general, as is
illustrated by the example below.

EXAMPLE 2.3. Let F be a field and R = F[[t2, t3}], the ring of formal power
series in t2 and t3. This is a 1-dimensional local noetherian ring with maximal
ideal M = t2R + t3R. Let / = t2M,A = t2R and J = t3R. Then / % A and
J <£ I. However A n J § / , and so (j>{A) is not essential in R/I, <j> being the
canonical epimorphism.

We next consider the existence of a minimal essential ideal in the quotient of
a Priifer domain.

THEOREM 2.4. Let I be a non-zero ideal in a Priifer domain D satisfying
Condition 1. The following are equivalent.

(i) D/I has a minimal essential ideal.
(ii) For every r € T the upper class vT(Ier) has an immediate predecessor.

PROOF, (i)—•(ii) Let N be the minimal essential ideal in D/I, and let A =
</>~1(N). Suppose that for some r' e T, vT>(Ie^') does not have an immediate
predecessor. By Theorem 2.2, J*r ^ A"T for every r e T. For each r € T, choose
7T € FT, the value group of DMT, such that

lT e vT(Ae') - vT{Ie') and vT.{Ae^) £ Qlr, $ vT,{V*').

That this is possible follows immediately from the remarks at the beginning of
this section. Applying the approximation theorem for independent valuations
there exists x & K such that vT(x) = 7T, r € T. Then x € DTeT-^er- ^ e t

J = xD n D. Then for each r e T, Jer = xDMr n DMr = xDMr as x € DMj.
Furthermore, vT (XDMT ) = Q^T. Hence PT § Jer, from the fact that x € J"T -I"T

and the linearity of inclusion of ideals in DMT • Therefore #(J + I) = <j>{J) is
essential in D/I. But (J + I)er = Jer + Ie' C Aer for every r € T, and
(J + 7)e'' J Ae*'. This contradicts the fact that <t>{A) is the minimal essential
ideal in D/I.

(ii)-+(i) Suppose that for every r € T, the upper class VT(ICT) has an im-
mediate predecessor iT. Applying the approximation theorem for independent
valuations we choose x € K such that vT(x) = qT,r e T. Let A = xDF\D. Then

https://doi.org/10.1017/S144678870003072X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870003072X


266 B. W. Green and L. Van Wyk [5]

ABT = XDMT for every r e T . One easily sees that <j>{A) is the minimal essential
ideal in D/I.

The next result shows that the minimal essential ideal (if it exists) and the
maximal small ideal, that is the Brown-McCoy radical, in D/I coincide if and
only if M*r is principal for every r S T and every maximal chain in the poset
{(M*')x: T € T , / e r C M*r,i > 0} has precisely two elements. This assertion
follows directly from the following theorem if one notes that M*r, (M*r )2 $£ M^f
for r ^ T' . (Note the similarity between this condition on the poset and the pair
condition in Section 3 (the sentence just before Theorem 3.5).)

THEOREM 2 .5 . Let I be a non-zero ideal in a Prufer domain D satisfying
Condition 1. Then the maximal small and minimal essential ideals coincide in
D/I if and only if M*T is principal and FT = (M*r)2 for every T € T.

PROOF. Suppose the maximal small and minimal essential ideals coincide in
D/I, and call it iV. Let A = (j>~1{N). Then A = f|r6T

 MT, and by Theorem
2.2, Ie' ^ Aer = M*r for every r € T. We shall prove the implication by
contradiction.

Suppose first that Me
Tf is not principal for some r' G T. Then the first

isolated subgroup of the value group of DMT, is not discrete, and so by the
approximation theorem for independent valuations we may choose x € K such
that

efJe ' £ xDMr C M°* for T^T', and /e-' § XDMT, C Me
Tf

Let J = xDDD. Then Jer C Aer for every r € T, and Jer' § Ae''. Hence J § A.
But <j)( J) is essential by Theorem 2.2, contradicting the choice of TV = 4>{A).

Secondly, if for some r ' € T, Me
Tj' is principal and Ie*' ^ (M*,r')2, then the

first isolated subgroup of the value group of DMT, is discrete, and

Again we may choose an ideal J mD such that <j>{ J) is essential and <j>( J) ^ <i>{A).
Conversely, suppose M*r is principal and IBr = (M*r)2 for every r e T. Then

the first isolated subgroup of the value group of DMT is discrete, and so vT(Ier)
has an immediate predecessor for every r € T. By Theorem 2.4, D/I has a
minimal essential ideal. Clearly this ideal is the maximal small ideal.

Note that, since we deal with commutative rings in this section, the Brown-
McCoy radical is just the Jacobson radical.

In the next section we shall see that certain matrix rings over a ring R with
3?(R) = 0 and no proper essential ideals also have the property described in
Theorem 2.5. We conclude this section by showing that the factor rings D/I,
with D satisfying Condition 1, provide examples of such rings.
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PROPOSITION 2.6. Let I be a non-zero ideal in a Priifer domain D satisfying
Condition 1. Then 2/(D/I) = 0 if and only if D/I has no proper essential ideals.

PROOF. It is easy to see that if R is any commutative ring with only finitely
many maximal ideals, then 3?{R) — 0 implies that R has no proper essential
ideals.

Conversely, suppose &{D/I) # 0, that is / § fixer Mr- T h e n / < v 5 MT>'
for some r' € T. We assert that 0(MT<) is essential in D/I. This follows directly
from Theorem 2.1, with E = T, if one notes that ICr £ DMr = M*J for T ̂  r'.

3. Essential ideals in structural matrix rings

Throughout this section R will be an associative ring with identity.
Let B = [bij] be an n x n Boolean matrix. For a non-empty subset S of R we

set M{B,S) := {X = [xij] € Mn{S): b^ = 0 -• xi5 = 0}, and we call M{B,S)
the set associated with B and S.

Henceforth B will be a reflexive and transitive n x n Boolean matrix. The
subring M(B, R) of the complex matrix ring Mn(R) is called a structural matrix
ring. The matrix B determines and is determined by the binary relation < B on
n :— {1,2,..., n} defined by

i <B j :<-+ b^ = 1.

This quasi-order relation gives naturally rise to the equivalence relation ~ B on
n defined by

i ~ B j :«-• i <B j and j <B i-

Let b be the number of equivalence classes induced by ~ B , and let z\, z?,..., z\,
denote their representatives. Then <B is a partial order relation on {za: a 6
b}. For all a, a' £ b such that za <B za>, we set A.aa> := {k € b: za <B Zk
and Zk <B za'}. The ideals in M(B,R) are, by [5, Proposition 1.2], the sets
J1/ := {X = [xij] e M(B, R): x^ E /(Aaa<) if i ~ B za, j ~ B za> and za <B za>},
corresponding to the set-inclusion preserving functions / : {Aaa': a, a' E b and
za <B za>} —> {/: / is an ideal in R}, that is the functions / such that Aaa< C
A^' implies /(Aaa') C /(Add')- We use /, g and h as generic symbols for these
set-inclusion preserving functions.

The essential ideals in M(B,R) can be characterized in terms of those in R
and the maximal elements in the partially ordered (with respect to set-inclusion)
set {Aaa': a, a' E b and za <B za>}.

THEOREM 3.1. ^ is an essential ideal in M(B, R) if and only if /(Aaa/) is
essential in R for every maximal Aaa>.
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PROOF. Let f(Aaa>) be essential in R for every maximal AOO', and let J ^ be
any non-zero ideal in M(B,R), say g{Add>) ¥" 0- Let A.kk' be a maximal element
containing Add1- Then /(Afcfc/) D g(Akk>) i1 0, and so J^- D J j ^ 0.

Conversely, let J ^ be essential in M(B,R), and consider any maximal Aoa/.
Let A be a non-zero ideal in R, and let g be the function that maps Aaa> onto A
and everything else onto 0. Then J ^ n J ^ ^ O , and so /(Aao<) n A ^ O .

COROLLARY 3.2. M(B,R) has a minimal essential ideal if and only if R
has a minimal essential ideal.

PROOF. It follows directly from Theorem 3.1 that if N is the minimal essential
ideal in R, then J^ is the minimal essential ideal in M(B, R), where /i(Aaa<) = N,
if Aaa< is maximal, and 0, otherwise.

The antisymmetric radical sf(M(B, R)) of a structural matrix ring M(B,R)
was introduced in [5], and is an ideal in M(B,R), viz the set associated with
B — C and R, where C is the largest symmetric nxn Boolean matrix satisfying
C < B. Then M(B,R)/sf{M{B,R)) S M{C,R).

COROLLARY 3.3. Sf (M(B, R)) is essential in M(B, R) if and only if no Aaa

is maximal, a € b.

PROOF. Note that j/(M(B,i?)) = J*f, where /(Aoa-) = 0 if a = a' and

Let Afcfc be maximal for some k € b, and let g be the function mapping
A** onto R and everything else onto 0. Then g is set-inclusion preserving and
J ^ n J ^ = 0, which implies that <?f is not essential.

For the converse, suppose no Aoa is maximal, a € b. Then f(A.dd') = R for
every maximal Add1, and so by Theorem 3.1, Jf is essential.

EXAMPLE 3.4. If

B =

then ~ B induces two equivalence classes on {1,2,3} and no Aaa(= {a}) is max-
imal, and so

J*{M{B,R)) =

is essential in M(B,R).
If B is such that every maximal chain in the poset {za: a € b} has precisely

two elements, then B is said to satisfy the pair condition.

1
1

.0

1
1
0

1"
1
1_

0
0
0

0
0
0

R'
R
0
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THEOREM 3.5. s/(M(B,R)) is the minimal essential ideal in M(B,R) if
and only if B satisfies the pair condition and R has no proper essential ideals.

PROOF. First, if R has an essential ideal E ^ R, then M(B - C,E) §
M{B - C,R) =Af(M(B,R)). If sf(M{B,R)) is essential, then by Theorem 3.1
and Corollary 3.3 the ideal M(B — C, E) is essential.

Secondly, suppose the pair condition does not hold and J/(M(£?, R)) is es-
sential. Let o, a' and a" be different elements of b such that za <B za> <g
za",haa' = {<*,a'} and A.a>a» = {a1,a"}. Let / be as in Corollary 3.3, and let
/ ' be the function differing from / only in mapping Aa>a» onto 0. It is easily
checked that / ' is set-inclusion preserving, and so J1}' § J/(M(5, R)). We show
that J*fi is essential. Let J^ be a non-zero ideal in M(2?, R), and consider the
following two possibilities: <?(Aa<a») = 0 or g(Aaia") ^ 0. In the first case the
construction of / ' and the fact that ^j is essential show that ^fi V\ ^fg ^ 0.
In the second case </(Aaa») ^ 0, since Aa>a" C Aaa". Hence J^< f l J j / 0 as
/'(Aaa") = R- Thus in both cases J^ ' is essential.

The converse follows directly from Theorem 3.1 and Corollary 3.3.

The characterization of the ideals in a structural matrix ring in terms of the
mentioned set-inclusion preserving functions proves immediately

PROPOSITION 3.6. J^ is small in M(B,R) if and only if f{kaa) is small in
R for every 0 6 b.

Corollary 3 of [3] leads to the description of the Brown-McCoy radical of
M(B, R) in terms of that of R, a result which can also be obtained as a special
case of [5, Theorem 2.7].

COROLLARY 3.7. &(M(B,R)) = M(B,&{R)) + J*{M(B,R)).

If B is symmetric, then M(B, R) is a direct sum of complete matrix rings, and
so it is easy to see that in this case the problem of characterizing the structural
matrix rings M(B, R) having the property that the maximal small and minimal
essential ideals coincide is equivalent to the problem of characterizing the rings
R having this property, although R is not Morita equivalent to M(B, R) if B is
not the universal n x n Boolean matrix. The main result of this section shows
that the picture is different when B is not symmetric.

THEOREM 3.8. If B is not symmetric, then the maximal small and minimal
essential ideals coincide in M(B,R) if and only if B satisfies the pair condition
and R is Brown-McCoy semisimple with no proper essential ideals.
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PROOF. Note that &(M(B,R)) =Jr
g, where

[9]

') = \ _ . . .
I R, otherwise.

Since B is not symmetric, A^ is not maximal for some d € b.
Suppose that S?(M(B, R)) is the minimal essential ideal. Then g = h, with h

as in Corollary 3.2. Hence &(R) = 0, and so by Corollary 3.7, &{M(B,R)) =
s/{\A(B,R)). Therefore by Theorem 3.5, B satisfies the pair condition and R
has no proper essential ideals.

The converse of the assertion follows directly from Theorem 3.5 and Corollary
3.7.

Note the similarity between the pair condition and the remark just before
Theorem 2.5.

EXAMPLE 3.9. (a) Let R be the quotient ring Zm of Z, with m — P1P2 •• pr

(r > 1) and all the p, prime, and let B be as in Example 3.4. Then by Proposition
2.6 and Theorem 3.8 the Brown-McCoy radical

is the minimal essential ideal.
(b)if

B -

»))

"1
1
0

.0

=

1
1
0
0

then £? does not satisfy the pair condition,
radical

'3?(R) &
S'iR) 9

0
0

[R)
[R)
0
D

s

0
0

.0

1
1
1
0

and

R
R

?(R
0

0
0
0

r
I
I
I.

so,

)

zm
0 .

for evt

R '
R
R

is not the minimal essential ideal in M(B, R). In fact, M(^i4+£^24, R) is essential
in M(B,R) and M(E14 + E24,R) % &(M(B,R)). (Here Ei:j denotes the Boolean
matrix with 1 in position (i,j) and 0 elsewhere.)
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