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Abstract

Algebraic effects and handlers are a convenient method for structuring monadic effects with prim-
itive effectful operations and separating the syntax from the interpretation of these operations.
However, the scope of conventional handlers is limited as not all side effects are monadic in nature.
This paper generalizes the notion of algebraic effects and handlers from monads to generalized
monoids, which notably covers applicative functors and arrows as well as monads. For this pur-
pose, we switch the category theoretical basis from free algebras to free monoids. In addition, we
show how lax monoidal functors enable the reuse of handlers and programs across different compu-
tation classes, for example, handling applicative computations with monadic handlers. We motivate
and present these handler interfaces in the context of build systems. Tasks in a build system are rep-
resented by a free computation and their interpretation as a handler. This use case is based on the
work of Mokhov et al. [(2018). PACMPL 2(ICFP), 79:1–79:29.].

1 Introduction

Since their introduction to purely functional programming, monads (Wadler, 1990; Moggi,
1991) have monopolized modeling computational effects. This changed with the proposal
of new classes of effectful computations: applicative functors (McBride & Paterson, 2008)
and arrows (Hughes, 2000), which capture types of side effects amenable to static analysis
at the cost of expressiveness.

In a separate development, algebraic effects and handlers (Plotkin & Pretnar, 2009) were
created as a more convenient formulation of monadic effects and programs. Their success
is largely due to their easier integration with impure functional and imperative languages
to enable user-defined effects. This approach encodes effects as operations represented by
the signature of an algebraic theory. The semantics of these effects is represented by an
interpretation for the operations.
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Although the conventional handlers capture monadic effects well, other computation
classes such as applicative functors and arrows are not covered. To remedy this situation,
Lindley (2014) presented a language design supporting handlers for the classic triad of
effects: monad, arrow and applicative functor. This is backed by a type system verifying
the class of expressed computations. However, Lindley’s exposition lacks an extension of
the category theoretical underpinnings that is introduced by Plotkin and Pretnar.

This work aims to provide this extension by reviewing the definition of handlers to
include non-monadic computations, notably applicative functors and arrows. For this pur-
pose, we leverage the framework of Rivas & Jaskelioff (2017) which characterizes the
triad of effects in terms of generalized monoids. This is used to replace the conventional
free algebra approach, with handling rules based on the unique algebra homomorphism, by
a free monoid approach, with handling rules based on the unique monoid homomorphism.

Specifically our contributions are

• We present a generic framework to derive handlers for monoids in monoidal
categories.

• We give a derivation of handlers for the classes of applicative, arrow and monadic
effects. Since the derived monadic handlers are equally expressive as the conven-
tional free algebra handlers, we see the monoidal handlers as an extension to the
free algebra handlers.

• We present a method for reusing handlers and programs, by employing a monoidal
adjunction between the relevant monoidal categories.

• We present the build system model introduced by Mokhov et al. (2018) as a
motivating use case for these generalized handlers.

Section 2 introduces and motivates the concept of non-monadic handlers. Section 3
introduces the relevant category theoretic background related to algebraic effects and han-
dlers, presenting them as free algebras. Section 4 derives these handlers from the perspec-
tive of free monoids. Section 5 derives applicative and arrow handlers from the idea of free
monoids. Section 6 shows an approach to reuse handlers and computations across different
monoidal categories. Section 7 describes the relation with the original Haskell use case and
describes some uses for arrow build systems. Section 8 presents and discusses related work.

This paper is based on two earlier publications: “Handlers for Non-Monadic
Computations” (Pieters et al., 2017) and “Relating Idioms, Arrows and Monads from
Monoidal Adjunctions” (Rivas, 2018). The main change compared to these earlier works
is the addition of the motivating use case of build systems. The build system use case
has replaced the previous motivation section (Section 2). The section showcasing handler
examples has been reworked to fit this new use case (Section 5). The section describ-
ing the reuse of handlers and programs using monoidal adjunctions (Section 6) has been
updated and made consistent with the earlier work on monoidal adjunctions (Rivas, 2018).
Section 7 covers the relation between the build systems paper (Mokhov et al., 2018) and
monoidal effects and handlers in more detail and shows how their work can be extended
using arrows; this section was not present in the earlier publications.
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Generalized monoidal effects and handlers 3

Table 1. Syntax overview

Syntax construct Example

Creating computations
c = do
result <- operation input
return result

Computation types c : A ! {operation, M}

Creating handlers
h = handler
| op1 (param1: T) -> f param1
| op2 (param2: T) -> f param2

Handler types h : A ! {op1, op2, . . .} => A ! {. . .}

Handling computations handle h with c

2 Motivation

The original algebraic effects and effect handlers approach by Plotkin & Pretnar (2009)
covers the space of what we call monadic handlers. These monadic handlers are the
conventional approach currently used when languages implement effect handlers.

This section elaborates on the difference between monadic and non-monadic handlers
and presents a use case involving non-monadic handlers. The examples are given in the
setting of a simple model for build systems.

2.1 Notation in code examples

In the rest of the paper, we use code samples to convey and illustrate our ideas. Code
samples are typeset in a teletype font and typically are located in separate code block. The
syntax is mostly based on Haskell syntax, with differences in several aspects. There is a
short overview of syntax in Table 1.

Type signatures: We deviate from Haskell syntax when giving type signatures by utilizing
a single colon, for example,1 : Int. The double colon is used for list concatenation, for
example, [1, 2] :: [3, 4]. Type variables are also denoted with uppercase characters,
such as x : A, which mimicks the math notation.

Computations: We use Haskell’s do-notation to present more readable syntax for compu-
tations created using various constructors. We assume that the reader is familiar with the
deconstruction of do-syntax into Haskell’s return and >>= constructors.

Additionally, we use the do-notation for expressing computations with different con-
structors, which are limited in expressive power compared to monadic computations. For
applicative computations, this is similar to Haskell’s ApplicativeDo extension (2016),
and for arrow computations there is some similarity to Haskell’s arrow syntax (2001).

Computation types are denoted with an exclamation mark and the effect set after the
return value. For example, c : A ! {operation}, where A is the return value of com-
putation c and operation is an effect that might be present in c. The computation
class is also added as one of the effects, where M denotes monadic computations, Ap
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denotes applicative computations and Ar denotes arrow computations. Pure values, or
computations with no possible effects, can either be denoted as A ! ∅ or simply A.

Handlers: Handlers are the consumers of effects, which in our case are introduced
by computations expressed in do-notation. The addition of handlers induces two syntax
constructs: handler and handle with.

The handler construct defines a new handler and it consists of several clauses which
are preceded by |. These clauses define how certain constructors are interpreted, utilizing
their inputs which are stated in brackets. For example, the clause | op (i : Int) -> f
i interprets the op constructor to f i, which utilizes the input i.

Handler types are denoted with a double arrow: =>. The input for a handler is a compu-
tation where the handled clauses might be present, and the output is a computation where
these effects are possibly removed.

The handle comp with h construct states that the computation comp is to be han-
dled by the handler h. Intuitively the meaning of this is that, whenever a constructor is
encountered while executing the computation, the handler is consulted for the interpreta-
tion of that constructor defined. The behavior is more precisely defined in Section 3.2.

2.2 Motivating use case: Build systems

Build systems automate a series of tasks for building dependent artifacts. Typically, these
artifacts are files on a file system. However, the setting in this article is the spreadsheet
setting following the examples of Mokhov et al. (2018), where the artifacts are cells in
a spreadsheet. Throughout the paper, we illustrate examples with the motivating use case
of build systems. This use case is heavily inspired by the work of Mokhov et al. (2018),
which presents a functional model of build systems.

Describing tasks. The spreadsheet setting views spreadsheets according to the build sys-
tem model. In our examples, cells are uniquely identified by their name with type String
and contain values of type Int. A cell can refer to values of other cells, this is represented
by an operation fetch. The fetch operation takes a name as input and returns the value of
that cell. The computation contained in a cell is called a task, an example of such a task is
taskExample, which fetches the contents of cells "A1" and "A2" and adds them together
to create the value of this cell. Note that similar to Mokhov et al. (2018), we do not
consider cyclic calculations, and thus attaching this task to cell "A1" or "A2" is disallowed.

The computation is annotated with the type Int ! {fetch, Ap}, which means that
it returns an Int and contains the fetch operation. Additionally, it only uses a limited
form of computation expressiveness, namely applicative, so Ap is also present in the set
of effects. The difference between the computation classes is explained in more detail in
Section 2.3.

taskExample : Int ! {fetch, Ap}
taskExample = do

a1 <- fetch "A1"
a2 <- fetch "A2"
return (a1 + a2)
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Running tasks. The operations, such as fetch, used in these computations have no
attached meaning yet. The meaning of these operations are given by the interpretation with
a handler. For example, we can interpret taskExample using the handler fetchConsole
which is defined below.

fetchConsole : A ! {fetch, M} => IO A
fetchConsole = handler
| val (x: A) -> return x (value clause)
| fetch (cell: String, k: Int -> IO A) -> do

print ("cell: " ++ cell)
x <- readLn
k x (operation clause)

This handler requests the user to specify the values via the console for each cell. The
behavior of a handler is specified by a value clause and an operation clause for each
handled operation. The value clause triggers on an evaluated computation without any
operations. This handler wraps the evaluated value of type A to an expected value of
type IO A. The operation clause triggers when the evaluated computation is an operation
with a continuation. It takes the input arguments as parameter p and the continuation as
parameter k. The former contains all data passed to the operation. The latter captures a
resumption point, which resumes the computation where the operation was called and
introduces a result. The computation does not resume if the continuation parameter is not
invoked, resulting in behavior similar to exceptions.

The handler uses the standard monadic interface for handling computations and thus
handles computations with monadic or lower expressiveness. This is signified in the type
signature by the input computation having the M class in its set of effects. This should be
seen as an upper bound on the input computation, since the handler is also applicable to
applicative or arrow computations.

An example of handling taskExample with fetchConsole is given below. The values
for "A1" and "A2" are requested and then the value of the task is given.

λ> handle taskExample with fetchConsole
cell: A1
5<Enter>
cell: A2
10<Enter>
15

Analyzing dependencies. In a build system we would like to analyze tasks, for example,
to compute a list of dependencies for tasks. This information enables some optimizations
in our build system such as avoiding redundant building of duplicate tasks or parallelizing
independent tasks. Let us see what happens if we try to compute the list of dependencies
with a monadic handler.

handlerAnalyze : A ! {fetch, M} => [String]
handlerAnalyze = handler
| val (x: A) -> []
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| fetch (cell: String, k: Int -> [String]) ->
[cell] ++ (k ?)

We encounter a problem in implementing the operation clause for fetch: we want
to combine the currently encountered dependency cell with the recursively computed
dependencies in the continuation k. However, to know what these dependencies are, we
have to pass the value of the current cell.

The problem is that we are implementing a monadic handler, which must be able to
handle all monadic computations. Consider taskDyn, a task which fetches the cell content
dynamically, meaning which cell is fetched is dependent on values from other cells.

taskDyn : Int ! {fetch, Ar}
taskDyn = do

a1 <- fetch "A1"
fetch ("B" ++ show a1)

For this case it is not possible to determine the list of fetched cells upfront since this is
dependent on the contents of "A1". Instead, we can use an applicative or arrow handler,
which is limited to computations with that respective expressiveness. This paper looks
at different handler interfaces derived from the category theoretical perspective of free
monoids, subsuming monadic handlers.

2.3 Different classes of computations

Before we continue, we want to give a better intuition for the different computation classes
used throughout the paper. We follow the distinction made by Lindley (2014) based on
having/not having data and control flow. Data flow implies that input to operations is
dependent on the results of previous operations. Control flow implies a dependency of
subsequent operations on results of previous operations.

Applicative computations. We start with the applicative computations. These compu-
tations are a static list of operations which can compute a final value from each of the
results. The taskExample computation, repeated below, is an example of an applicative
computation since the exact list of operations in the computation is completely static.

taskExample : Int ! {fetch, Ap}
taskExample = do

a1 <- fetch "A1"
a2 <- fetch "A2"
return (a1 + a2)

Arrow computations. Arrow computations introduce data flow, which means that the
input to operations can depend on results from previous operations. The taskDyn compu-
tation, repeated below, is an example of an arrow computation since the fetch operation
in the second line depends on the result of the previous fetch operation.
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taskDyn : Int ! {fetch, Ar}
taskDyn = do

a1 <- fetch "A1"
fetch ("A" ++ show a1) (data flow)

Monadic computations. Monadic computations additionally have control flow, which
means that the choice of which subsequent operations should be invoked is dependent
on the result of previous operations.

A simple example showcasing control flow is to use a conditional statement. In the
example taskControlFlow1, the contents of cell C1 are fetched and if it contains a 1
then the contents of cell A1 are returned, otherwise the constant -1 is returned.

taskControlFlow1 : Int ! {fetch, M}
taskControlFlow1 = do

c1 <- fetch "C1"
if c1 == 1 (control flow)

then fetch "A1"
else return -1

These conditional statements have been considered separately before, such as in the
ArrowChoice class or the Selective class (Mokhov et al., 2019). However, conditional
statements on their own do not fully capture the expressiveness of monadic computations.

The taskControlFlow2 example below exhibits both data and control flow. The con-
tents of cell A1 contains the amount of times the fetch operation needs to be executed. The
for function aggregates the results of calling fetch on each of the cell locations.

taskControlFlow2 : [Int] ! {fetch, M}
taskControlFlow2 = do

n <- fetch "A1"
repeat n (control/data flow)

where
repeat : Int -> [Int] ! {fetch, M}
repeat 0 = return []
repeat n = do

result <- fetch ("B" ++ show n)
return (result : repeat (n - 1))

Note that the above computation can technically be encoded using only infinite branch-
ing and data flow. However, we consider it as a monadic computation here as operationally
it is ineffecient to evaluate massively nested branches and analysis on infinite branches is
not likely to give a productive result.

2.4 Analysis with non-monadic handlers

Analyzing dependencies with applicative handler. The simplest computations to ana-
lyze are applicative computations like taskExample. To do this, we use use an applicative
handler. The applicative handler interface exposes the continuation differently, since we
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have access to the recursively computed dependencies with the parameter l. It is possible
to access these dependencies, since this is statically known when restricted to applicative
computations. A simplified version of the handler implementation is given below, the full
version is discussed as iAnalyzeAp in Example 5.1.

handlerAnalyzeI : A ! {fetch, Ap} => [String]
handlerAnalyzeI = handler
| val (x: A) -> []
| fetch (cell: String, l: [String]) ->

cell :: l

Handling the taskExample computation with this handler evaluates to the list of
dependencies, which is "A1" and "A2".

λ> handle taskExample with handlerAnalyzeI
["A1", "A2"]

Analyzing dependencies with arrow handler. While applicatives are easy to analyze,
they are also limited in what they can express. This might prevent us to describe the com-
putation we want. For example, the taskDyn computation earlier does not respect the
limitations of an applicative computation. Of course, arrow computations on the other
hand, have extra limitations on the analysis side. It is no longer possible to determine
all dependencies upfront. However, it is still possible to analyze the affected columns of
dependencies. To do this we have to distinguish between statically available parts of the
computation, the columns, and the dynamically available parts of the computation, the
rows. A simplified version of the handler implementation is given below, and the full
version is discussed as iAnalyzeAr in Example 5.2.

handlerAnalyzeA : A ! {fetch, Ar} => [String]
handlerAnalyzeA = handler
| val (f: A -> B) -> []
| fetch (col: String, l: [String]) ->

col :: l

Handling the taskDyn computation with this handler evaluates to the list of affected
columns, which is "A" and "B".

λ> handle taskDyn with handlerAnalyzeA
["A", "B"]

Of course, any analysis which does not depend on the input to the operations, for
example, counting the fetch operations, is equally applicable to applicative and arrow
computations.

Conclusion. Attempting to handle a computation with an inappropriate handler, for
example, handle taskDyn with handlerAnalyzeI should result in a runtime or,
preferably, a type error.

We have illustrated simple use cases of analysis with a non-monadic handler. More
complicated analysis includes parallelizing/batching operations, calculating a heat map
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of operations/parameters such as location, or other calculations on statically available
information.

3 Background

This section introduces the necessary background on which the remainder of the paper is
based. We assume basic familiarity with common category theoretical concepts such as
functors, natural transformations and monads.

3.1 Notational conventions

We highlight some of the more specific notation here.

Category. We reserve C to mean the category of the programming language under con-
sideration, with types as objects and functions between those types as morphisms. We
assume that this base category has (co-)products, exponentials and (co-)ends.

Morphisms. Components of natural transformations usually have a subscript mentioning
their naturality, for example, idA : A → A is natural in A. Identity morphisms are denoted
as the more compact A : A → A instead of idA : A → A.

Isomorphisms. We denote an isomorphism with f : A ∼= B : g, where f : A → B and g :
B → A are part of the two-sided inverse g ◦ f = A and f ◦ g = B. We leave out the names
of the functions if they are not important.

(Co-)products. We use A × B to denote products, in C this represents the tuple type
(A,B). We use A + B to denote coproducts, and [ f , g] to denote the unique morphism
A + B → X constructed from f : A → X and g : B → X .

Exponential objects. We use AB to denote the exponentiation of A with B. In C ,
exponential AB is the function type B -> A.

Algebra of a functor. An F-algebra with carrier A and action b is denoted by 〈A, b :
FA → A〉.

(Co-)ends. We denote ends as
∫

A F(A, A) and co-ends as
∫ A F(A, A), for a bifunctor

F : A op × A → B. In C , ends can be understood as a universal type quantification
∀A. F(A,A), while co-ends correspond to existential type quantification ∃A. F(A,A).
Usually, the type quantifier ∀ is omitted when it is clear from context.

3.2 Algebraic effects and handlers

Plotkin & Pretnar’s definition of algebraic effects and handlers consists of two parts: the
operations, which introduce effects, and the handlers, which interpret them (Plotkin &
Pretnar, 2009).
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Operations as functors. Operations, such as fetch, are to be abstracted by endofunctors
of the form �i = Pi × −Ni , where Ni is the arity of the operation, and Pi contains the
parameters of the operation. The former refers to the type of values which the operation
introduces into the computation, the latter refers to the type of values which the operation
takes as input. For example, fetch introduces an Int value, the cell content, and takes a
String value, the cell name. So, its corresponding functor is �fetch = String× −Int.

The representation of all operations is obtained by constructing the coproduct of their
respective functors � = (P0 × −N0 ) + . . .+ (Pn × −Nn ).

Operation clauses as �-algebras. Each of the operation clauses in a monadic handler
gives an algebra for �i, where i is the operation of interest. For example, the clause

| fetch (p: String,k: Int -> B) -> b: B (cfetch)

is represented by 〈B, cfetch :�iB→ B〉, a �i-algebra. To refer to the function defined by
this clause, which is λ(p: String,k: Int -> B). b, we indicate its name after the
clause in brackets.

The combination of all operation clauses

| opi (pi: Pi,ki: Ni -> B) -> b: B (ci)

forms the �-algebra 〈B, c = [c0, . . . , cn] :�B→ B〉.
The value clause

| val (a: A) -> b: B (v)

defines the function v : A→ B= λ(a: A). b .

Handling rules as equations. Evaluating handle x with h, given a handler h, requires
both the value and operation rules. For example, if h is defined as:

h = handler
| val (a: A) -> . . .: B (v)
| opi (pi: Pi,ki: Ni -> B) -> . . .: B (ci)

The value rule triggers when no operations are left in a fully evaluated x, usually in the
form of return y. The result is defined as:

handle (x: A) with h = v x

The operation rule triggers when the evaluated computation is an operation opi. The
result is defined as:

handle (opi (p: Pi,k: Ni -> �∗A)) with h
= ci p (λn. handle (k n) with h)

Here, the structure �∗A represents a computation built from operations present in �,
which aims to return a value of type A. The parameter k denotes the continuation of the
operation call. For example, in:

taskExample = do
a1 <- fetch "A1"
a2 <- fetch "A2"
return (a1 + a2)
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the continuation k of fetch "A1" is the function:

λ(a1: Int). do
a2 <- fetch "A2"
return (a1 + a2)

Syntax constructors. Desugaring of the do-notation is possible with the constructors
valA and opA. The former valA embeds an evaluated value of type A into �∗A, and
the latter opA embeds an operation into �∗A. With these constructors, the computation
taskExample is defined as:

taskExample =
opInt (fetch ("A1",(λ(a1: Int).

opInt (fetch ("A2",(λ(a2: Int).
valInt (a1 + a2)

)))
)))

These two constructors enable expressing the handling rules as point-free equations. The
point-free value and operation rules are respectively: handle ◦ valA = v and handle ◦
opA = ci ◦� handle.

Handlers for free algebras. The elements from the previous section enable viewing
monadic handlers as free algebras:

Definition 3.1 (Free �-Algebra).
A free �-algebra on A in C consists of an object 〈�∗A, opA :�(�∗A) →�∗A〉 in
�-Alg(C ) together with a morphism valA : A →�∗A in C such that for any 〈B, c :�B →
B〉 in �-Alg(C ) and morphism v : A → B in C , there exists a unique algebra morphism
handle : 〈�∗A, opA〉 → 〈B, c〉 in �-Alg(C ) with handle ◦ valA = v.

The diagrams for the conditions are

A �∗A �(�∗A) �B

B �∗A B

valA

v handle

� handle

opA c

handle

The diagram on the left-hand side is the condition mentioned in the definition and cor-
responds to the value rule equation. The diagram on the right-hand side is the condition
for a morphism in �-Alg(C ), namely a �-algebra homomorphism, and corresponds to the
operation rule equation.

3.3 Monoids in monoidal categories

Rivas & Jaskelioff (2017) present a framework for different classes of side effects as (gen-
eralized) monoids in various monoidal categories. We reintroduce the relevant definitions
relating to monoidal categories in the following paragraphs.
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Monoidal category. A monoidal category is a category which contains a notion of
monoids generalizing the monoids in Set, replacing the cartesian product with a general
bifunctor.

Definition 3.2 (Monoidal Category).
A monoidal category is a tuple (D , ⊗, I , α, λ, ρ), consisting of

(a) a category D

(b) a bifunctor ⊗ : D × D → D (also called the tensor)
(c) a designated object I of D

(d) three natural isomorphisms

αA,B,C : A ⊗ (B ⊗ C) → (A ⊗ B) ⊗ C

λA : I ⊗ A → A

ρA : A ⊗ I → A

such that the following diagrams commute:

A ⊗ (B ⊗ (C ⊗ D)) α ��

A⊗α
��

(A ⊗ B) ⊗ (C ⊗ D) α �� ((A ⊗ B) ⊗ C) ⊗ D

A ⊗ ((B ⊗ C) ⊗ D) α
�� (A ⊗ (B ⊗ C)) ⊗ D

α⊗D

��

A ⊗ (I ⊗ B) α ��

A⊗λ ����
���

���
��

(A ⊗ I) ⊗ B

ρ⊗B�����
���

���
�

A ⊗ B

When it is clear from the context, we omit α, ρ and λ.

Monoid in monoidal category. A monoid in a monoidal category is a generalization of
monoids in Set. The monoids from high school algebra coincide with the notion of monoids
in Set with cartesian product. However, from this point on, whenever we mention monoid,
we mean the more general concept monoid in monoidal category.

Definition 3.3 (Monoid in Monoidal Category).
A monoid in a monoidal category is a tuple (M , e, m) where M is an object in a monoidal
category (D , ⊗, I , α, λ, ρ). The unit e : I → M and the multiplication m : M ⊗ M → M are
morphisms in D such that the following diagrams commute:

(M ⊗ M) ⊗ M
m⊗M �� M ⊗ M

m

��
M ⊗ (M ⊗ M)

α

��

M⊗m
�� M ⊗ M m

�� M

M ⊗ M
m

����
���

���
���

M ⊗ I
M⊗e��

ρ

��
I ⊗ M

e⊗M

��

λ
�� M

Exponentials for monoidal categories. The characterizing isomorphism of exponentials
can be generalized with tensors instead of products. This results in the isomorphism:
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�−
 : D(X ⊗ B, A) ∼= D(X , AB) : �−�. The evaluation morphism is generalized to evA :
AB ⊗ B → A = �AB�.

Example 3.1.
The main examples of monoidal categories we consider are

1. The category of endofunctors, End◦, with functor composition (F ◦ G)A = F(GA)
as tensor and the identity functor Id as designated object. This monoidal category
is strict, neaning that α, λ and ρ are identities. Monoids in this monoidal category
are known as monads.

2. The category of endofunctors End�, with Day convolution (F �G)A = ∫ Z F(AZ) ×
GZ as tensor and the identity functor Id as designated object. Monoids in this
monoidal category are known as applicative functors. We use this alternative pre-
sentation to aid readability in the code samples, and it is isomorphic to the more
traditional presentation

∫ X ,Y FX × GY × A(X×Y ) in our setting.
3. The category of strong profunctors, SPro, with profunctor composition

(P ⊗ Q)(A, B) = ∫ Z P(A, Z) × Q(Z, B) as tensor and the Hom profunctor as desig-
nated object. Monoids in this monoidal category are known as arrows.

Category of monoids. For a monoidal category (D , ⊗, I), we have the category of
monoids Mon(D) which consists of all monoids (M , e, m) in that monoidal category and
monoid homomorphisms between them.

4 Handlers for free monoids

In order to include other classes of effects, this section derives a notion of handlers for free
monoids. We begin by recalling the definition of the free monoid on an object:

Definition 4.1 (Free Monoid).
A free monoid on an object � in a category D consists of an object (�∗, ε,μ) in Mon(D)
together with a morphism ins :�→�∗ in D such that for any (M , e, m) in Mon(D) and
morphism f :�→ M in D , there exists a unique morphism free f : (�∗, ε,μ) → (M , e, m)
in Mon(D) with free f ◦ ins = f .

The condition represented in a diagram is

� �∗

M

ins

f
free f

The diagrams corresponding to the monoid homomorphism condition, a morphism in
Mon(D), are

I �∗ �∗ ⊗�∗ M ⊗ M

M �∗ M

ε

e
free f

free f ⊗free f

μ m

free f
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More categorically, free monoids arise as the left adjoint to the forgetful functor from
Mon(D) to D .

4.1 Monoidal handlers

Monoidal basis. We can interpret the carrier �∗ of a free monoid as the syntax of com-
putations. Instead of using val and op from Section 3.2, we can construct programs in this
monoidal syntax from the constructors ε, μ and ins provided by the free monoid.

Example 4.1. In the following example, we set the category D as End◦(C ), the monoidal
category of monads on C . From the general monoidal syntax (left) follows the specialized
syntax (right) for this setting:

ε : I →�∗

μ :�∗ ⊗�∗ →�∗

ins :�→�∗
�

εA : A →�∗A

μA :�∗(�∗A) →�∗A

insA :�A →�∗A

The constructor εA is the same as valA: it embeds a value into a computation.
Constructor insA embeds an operation into a computation. To embed an operation return-
ing another computation, of type �(�∗A), we use naturality of insA to obtain ins�∗A :
�(�∗A) →�∗(�∗A). Lastly, μA converts a computation returning a computation into a
flat computation.

Consider the taskExample computation again:

taskExample = do
a1 <- fetch "A1"
a2 <- fetch "A2"
return (a1 + a2)

which was constructed using val/op as:

example =
opInt (fetch ("A1",(λ(a1: Int).

opInt (fetch ("A2",(λ(a2: Int).
valInt (a1 + a2)

)))
)))

The same program can be constructed with the monoidal constructors, namely ε/μ/ins:

μInt (ins�∗Int (fetch ("A1",(λ(a1: Int).
μInt (ins�∗Int (fetch ("A2",(λ(a2: Int).
εInt (a1 + a2)

))))
))))

Monoidal handler. Monoidal programs are interpreted by monoidal handlers. Monoidal
handlers are defined by a clause for the constructors ε and μ, and one other clause for
each operation; each clause evaluates programs to a monoid (M , e, m). The unit e : I → M
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and multiplication m : M ⊗ M → M of this monoid are defined by the clauses for the ε
and μ constructor, respectively. This definition is expected to satisfy the monoid laws,
but the notation does not enforce this. All operation clauses are combined to define the
morphism f :�→ M , which interprets the constructor ins. This makes free f , the unique
monoid morphism induced by a morphism f :�→ M , the handler construct for monoidal
programs.

In the example, monads on C , the clauses to define are

mh = mhandler
| ε (a: A) -> . . .: MA (eA)
| μ (mma: M(MA)) -> . . .: MA (mA)
| opi (pi: Pi,k: Ni -> A) -> . . .: MA ( fA)

Notably, the handling construct is named mhandler, as opposed to handler, to signify a
monoidal handler.

The evaluation rules are determined by the conditions in the free monoid definition.
The ε rule is similar to the val rule.

mhandle (x: A) with mh = eA x

The μ rule forwards the handling to both �∗ structures and then combines the result using
multiplication m from the monoid (M , e, m).

mhandle (s: �∗(�∗A)) with mh
= mA (mhandle (�∗(mhandle _ with mh) s) with mh)

The ins rule interprets an operation opi with a function f .

mhandle (opi (p: Pi) (k: Ni -> A)) with mh
= fA (p, k)

Example 4.2. As an example, we give the monoidal implementation for fetchConsole,
which interprets fetch operations to user queries on the console. The monoid for IO is
assumed to be defined in the internal functions returnIO and joinIO.

mFetchConsole : A ! {fetch, M} => IO A
mFetchConsole = mhandler
| ε (a: A) -> returnIO a
| μ (mma: IO(IO A)) -> joinIO mma
| fetch (cell: String, k: Int -> A) -> do

print("cell: " ++ cell)
x <- readLn
return (k x)

4.2 Inductive handlers

Initial algebra basis. The free monoid can be represented constructively as the initial
algebra of the I +� ⊗ − functor. Concretely, this gives us an alternative set of construc-
tors: ε : I →� and ι :� ⊗�∗ →�∗. These morphisms are the two elements of the initial
algebra [ε, ι] : I +� ⊗�∗ →�∗.
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Using this alternative syntax, the example computation is constructed as:

example =
ιInt (fetch ("A1",(λ(a1: Int).
ιInt (fetch ("A2",(λ(a2: Int).
εInt (a1 + a2)

)))
)))

Initial algebra handler. This alternative basis derives its handler using the unique algebra
homomorphism from the initial algebra. This unique morphism is denoted �[a, b]� :�∗ →
X for a morphism a : I → X and b :� ⊗ X → X . It is the unique morphism for which the
following diagrams commute:

I �∗ � ⊗�∗ � ⊗ X

X �∗ X

ε

a
�[a,b]�

�⊗�[a,b]�

ι b

�[a,b]�

This results in a new handling construct ihandler. For the monads on C example, it
requires the following clauses:

ih = ihandler
| ε (a: A) -> . . .: XA (eA)
| opi (p: Pi,k: Ni -> XA) -> . . .: XA (gA)

which has no laws attached.
The evaluation rules follow from the algebra homomorphism conditions.

The ε rule is unchanged:

ihandle (x: A) with ih = eA x

The ι rule differs slightly from the ins rule, and it handles operations returning a com-
putation �∗A instead of a value A. Thus, it forwards the handling before combining the
results.

ihandle (opi (p: Pi,k: Ni -> �∗A)) with ih
= gA (p, λn. ihandle (k n) with ih)

Example 4.3. The inductive handler for the fetchConsole example is implemented as:

iFetchConsole : A ! {fetch, M} => IO A
iFetchConsole = ihandler
| ε (a: A) -> returnIO a
| fetch (cell: String,k: Int -> IO A) -> do

print("cell: " ++ cell)
x <- readLn
k x
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4.3 Expressiveness of monoidal and inductive handlers

Both the free monoid and initial algebra bases have an equal expressiveness. Either can
present the interface of the other. There are also two properties to ensure the consistency
between each basis: the roundtrip and coherency properties. The former requires that a
roundtrip conversion, namely converting to one basis and then back to the other basis, is
the identity. The latter requires that the handlers behave in a consistent manner in both
bases.

Initial algebra basis from free monoid basis. The following definitions represent the
constructor/handler from the initial algebra basis:

ι = � ⊗�∗ ins⊗�∗−−−−→�∗ ⊗�∗ μ−→�∗

evalX e = X X ρ−1−−→ X X ⊗ I
X X ⊗e−−−→ X X ⊗ X

evX−−→ X

�[e, g]� = �∗ free �g
−−−→ X X evalX e−−−→ X

where the use of free �g
 is justified, since it interprets to the endomorphism monoid
(X X , ė : I → X X , ṁ : X X ⊗ X X → X X ).

Free monoid basis from initial algebra basis. The following definitions represent the
constructors/handler from the free monoid basis:

ins = �
ρ−1
�−−→� ⊗ I

�⊗ε−−→� ⊗�∗ ι−→�∗

μ = ��[ �I ⊗�∗ λ�∗−−→�∗
,

�(� ⊗�∗�∗
) ⊗�∗ α−1−−→� ⊗ (�∗�∗ ⊗�∗)

�⊗ev�∗−−−−→� ⊗�∗ ι−→�∗
 ]��
free f = �[I

e−→ M ,� ⊗ M
( f ⊗M)−−−→ M ⊗ M

m−→ M]�

where (M , e, m) is a monoid.

Properties. The roundtrip properties are obtained by deriving the definition of the con-
structors, from the other basis, as a property. The proofs of these properties are in Appendix
B.3, B.4, C.3, C.4 and C.5.

The coherency properties are obtained by deriving the evaluation rules of the handler,
from the other basis, as a property. The proofs of these properties are in Appendix B.5
and C.6.

4.4 Expressiveness of monoidal and free algebra handlers

The monoidal handler for monads is slightly different from the original handlers based on
free algebras. At first sight, it seems that the carriers of the two handlers only coincide when
the carrier B of the free algebra handler is of the form MA where M is the monad carrier
of the monoidal handler and the free algebra handler is natural in A. This might suggest
that the monoidal handler is less expressive than its free algebra counterpart, which is not
restricted to this particular form of carrier. However, both handlers are equally expressive.
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The continuation monad enables translating the handle interface in terms of ihandle
or mhandle. The continuation monad is defined as X X A

, which is the type (A -> X) ->
X in C . The translation of handle in terms of ihandle is

handle x with
(handler
| val (a: A) -> . . .: X (v)
| opi (pi: Pi,k: Ni -> X) -> . . .: X (ci)

)
= (ihandle x with

(ihandler
| ε (a: A)

-> λ(f: A -> X). f a
| opi (pi: Pi,k: Ni -> ((A -> X) -> X))

-> λ(f:A -> X). ci (pi, λ(n: Ni). k n f)
)) v

where the ihandler interprets to the (A -> X) -> X type and is then evaluated with v.
The consistency property of this translation is proven in Appendix D.1 and D.2.

4.5 Summary

An overview of the free algebra and free monoid approach can be seen in Table 2. Since
free monoid handlers are equivalent to free algebra handlers, when the former is instanti-
ated for monads, we consider it a natural extension of the latter approach. By instantiating
the free monoid handlers for other effects such as applicative functors or arrows it is
possible to define handlers for non-monadic effects, which we call non-monadic handlers.

5 Non-monadic handlers

This section explores the monoidal handlers for applicatives and arrows. We instantiate
the monoidal categories accordingly and specialize the definitions of the derived handlers.

5.1 Applicative handlers

Applicative computations are very restricted in what they can express. They can only
express computations which correspond to a list of operations to execute, returning a value
combining the results of these operations.

Instantiating the syntax morphisms for End�(C ) with Day convolution � gives

εA : A →�∗A

ιA : (� ��∗)(A) →�∗A

=
(∫ Z

�(Z → A) ×�∗Z

)
→�∗A

or an alternative formulation for ι is ιZ,A :�(Z → A) ×�∗Z →�∗A.
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Table 2. Overview of handlers

Free algebra Free monoid ( free) Free monoid (�−�)

Syntax/
computation

valA : A →�∗A
opA :�(�∗A) →�∗A

ε : I →�∗
ins :�→�∗
μ :�∗ ⊗�∗ →�∗

ε : I →�∗
ι :� ⊗�∗ →�∗

Handler
�-algebra:
〈B, c = [c0, . . . , cn] :�B → B〉
v : A → B

monoid: (M , e, m)
f = [ f0, . . . , fn] :�→ M

I +� ⊗ −-algebra:
〈X , [e, g] : I +� ⊗ X → X 〉
g = �[ �g0
, . . . , �gn
 ]�

Handler
(clauses)

| val A -> B (v)
| opi �iB -> B (ci)

| ε I -> M (e)
| opi �i -> M (fi)
| μ M ⊗ M -> M (m)

| ε I -> X (e)
| opi �i ⊗ X -> X (gi)

Handling a
computation

handle :�∗A → B free f :�∗ → M �[e, g]� :�∗ → X

Handling
rules

handle ◦ valA = v

handle ◦ opA = c ◦�handle

free f ◦ ε= e
free f ◦ ins = f
free f ◦μ=
m ◦ ( free f ⊗ free f )

�[e, g]� ◦ ε= e
�[e, g]� ◦ ι= g ◦ (� ⊗ �[e, g]�)
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This results in the following inductive handler interface:

ihAp = ihandler
| ε (a: A) -> . . .: FA
| opi (p: Pi, k: Ni -> Z -> A, l: FZ) -> . . .: FA

and the following monoidal handler interface:

mhAp = mhandler
| ε (a: A) -> . . .: FA
| μ (mza: F(Z -> A), mz: FZ) -> . . .: FA
| opi (pi: Pi, k: Ni -> A) -> . . .: FA

To show how this corresponds to the intuitive explanation, we will transform the
following applicative program into the primitive syntax.

taskExample = do
a1 <- fetch "A1"
a2 <- fetch "A2"
return (a1 + a2)

We introduce the fetch "A1" operation with ιZ,A. Specifically for this operation, ιZ,A

has the form String× (Z → A)Int ×�∗Z →�∗A. The first parameter, of type String,
is the cell identifier "A1". The second parameter, of type Int -> Z -> A, is a function
describing how to combine the current cell value with the result from the rest of the com-
putation. The third parameter �∗Z is the rest of the computation. In this case, we take Z to
be Int, since that is the result of the remaining fetch "A2" operation, and A to be Int,
since that is the final result type of the computation. This continuation is a1 + z, where
a1 is the result of fetch "A1" and z is the result of the remaining computation.

The fetch "A2" operation follows a similar pattern. But now, Z is the type () since
the rest of the computation does not contain any more operations. The continuation for this
operation is a2, since it is passed to the continuation for fetch "A1".

This results in the following desugaring of the applicative computation:

ιint,int (fetch ("a1",λ(a1:int).λ(z:int).a1 + z)) (
ι(),int (fetch ("a2",λ(a2:int).λ(z:()).a2))) (
ε() ()

)
)

Example 5.1. In the applicative syntax representation, all parameters and operations are
immediately accessible, meaning that they are not inside a lambda-expression. Due to
this we can express handlers which analyze computations, for example, to return all
dependencies of a task.

The inductive handler analyzes dependencies by starting from an empty list [] and
adding the cell name of each fetch operation. Note that we interpret to the constant
applicative functor 	A, where A must be a monoid, and use lifted operations, such as
:̇: and +̇+, to operate on values inside this functor.
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iAnalyzeAp : A ! {fetch, Ap} => 	[String] A
iAnalyzeAp = ihandler
| ε (a: A) -> 	[String] []
| fetch (cell: String, k: Int -> Z -> A, l: 	[String] Z) -> cell :̇: l

The monoidal handler interprets each fetch operation to a list with the cell name as its
only element, then the μ operation appends all of these lists together.

mAnalyzeAp : A ! {fetch, Ap} => 	[String] A
mAnalyzeAp = mhandler
| ε (a: A) -> 	[String] []
| μ (mza: 	[String] Z -> A, mz: 	[String] Z) -> mza +̇+ mz
| fetch (cell: String, k: Int -> A) -> 	[String] [cell]

Handling taskExample with iAnalyzeAp or mAnalyzeAp gives the cells on which it
depends:

λ> handle taskExample with iAnalyzeAp
["A1", "A2"]
λ> handle taskExample with mAnalyzeAp
["A1", "A2"]

Since applicative computations are a subset of monadic computations, we can adapt the
handler fetchConsole to its applicative version. The inductive version is given below.

iFetchConsoleAp : A ! {fetch, Ap} => IO A
iFetchConsoleAp = ihandler
| ε (a: A) -> return a
| fetch (cell: String, k: Int -> Z -> A, r: IO Z) -> do

print ("cell: " ++ cell)
x <- readLn
fmap (k x) r

The monoidal version is given below.

mFetchConsoleAp : A ! {fetch, Ap} => IO A
mFetchConsoleAp = mhandler
| ε (a: A) -> return a
| μ (mza: IO (Z -> A), mz: IO Z) -> do

za <- mza
z <- mz
return (za z)

| fetch (cell: String, k: Int -> A) -> do
print ("cell: " ++ cell)
x <- readLn
return (k x)
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5.2 Arrow handlers

Arrow computations are more restricted compared to monads, but more permissive than
applicatives. They again express a static list of operations to execute, but the parameters
which are passed to these operations can depend on result values from previous opera-
tions. To work with arrows, we require to change our view on operations from functors to
profunctors.

Operations as profunctors. Signature functors, defined as �iB = Pi × BNi , can be
extended to signature profunctors as ��i(A, B) = (Pi × BNi)A. For example, the profunctor
version of fetch is ��fetch(A, B) = (String× BInt)A.

Instantiating the syntax morphisms for SPro(C ) with profunctor composition ⊗ gives:

εA,B : BA → ��∗(A, B)

ιA,B : ( �� ⊗ ��∗)(A, B) → ��∗(A, B)

=
(∫ Z ��(A, Z) × ��∗(Z, B)

)
→ ��∗(A, B)

where the notation �� denotes a profunctor signature. An alternative formulation of ι is
ιZ,A,B : ��(A, Z) × ��∗(Z, B) → ��∗(A, B). The output Z of the embedded operation ��(A, Z)
is linked to the input of the rest of the computation ��∗(Z, B).

An example arrow program is given below. The program consists of two fetch
operations, but the parameter of the second operation depends on the result of the first.

taskDyn = do
a1 <- fetch "A1"
fetch ("B" ++ show a1)

We can desugar this program with the more primitive arrow syntax. We introduce the
fetch "A1" operation with ιZ,A,B. For this operation, it has the form (String× ZInt)A ×
��∗(Z, B) → ��∗(A, B). The first parameter, of type A -> (String, Int -> Z), is the
cell name and the continuation in a function with input A. The second parameter is the rest
of the computation. The parameter A is the current input from the previous operations, so
for the first operation this is (). The output Z is Int since we need to use the current result
value of the output operation later in the computation.

For the second fetch operation, the input A from the previous operations is Int. This
value can be used in the cell name passed as operation parameter. The output Z is again
Int, since we only return the value from the last fetch operation.

This results in the following desugaring:

ιInt,(),Int (fetch (λ(_:()).("A1",λ(a1:Int).a1))) (
ιInt,Int,Int (fetch (λ(i:Int).("B" ++ show i,λ(ax:Int).ax))) (
εInt,Int (λ(v:Int).v)

)
)
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Static and dynamic parameters. The earlier profunctor operation considered the whole
cell name as a dynamic parameter, meaning that all information was behind the input
parameter A. This is too restrictive for our use case. Instead, we split the information passed
to the operation into a static and dynamic parameter. So, a signature functor�iB = Pi × BNi

can be extended to ��i(A, B) = Si × (Di × BNi )A, where Si, the static parameter, and Di, the
dynamic parameter, can be combined to create Pi.

With this change in operation, the desugaring for taskDyn is slightly different. The
static parameter Si is the cell column. The dynamic parameter Di is the cell row, since the
row is dependent on previous results in taskDyn. The static operation parameter moves to
the outside of the lambda taking the A input parameter.

ιInt,(),Int (fetch ("A", λ(_:()).("1",λ(a1:Int).a1))) (
ιInt,Int,Int (fetch ("B", λ(i:Int).(show i,λ(ax:Int).ax))) (
εInt,Int (λ(v:Int).v)

)
)

Considering the static and dynamic parameters, we get the following inductive handler
interface as a result:

ihAp = ihandler
| ε (f: A -> B) -> . . .: P(A,B)
| opi (p: Si, k: A -> (Di, Ni -> Z), l: P(Z,B)) -> . . .: P(A,B)

and the following monoidal handler interface:

mhAp = mhandler
| ε (a: A -> B) -> . . .: P(A,B)
| μ (maz: P(A,Z), mzb: P(Z,B)) -> . . .: P(A,B)
| opi (pi: Si, f: A -> (Di, Ni -> B)) -> . . .: P(A,B)

Example 5.2. In the arrow syntax representation, the operations are accessible but the
parameters to these operations are not. This is because these can be dependent on previous
operation results. However, due to the distinction between static and dynamic parameters,
we regain some applicative capabilities and can access the static part of the operation
parameters. We use this to extract the column information from arrow computations where
this is the static parameter.

As with the applicative handler, the inductive version builds the list by concatenating
elements while the monoidal version creates one-element lists which are combined later.

iAnalyzeAr : A -> B ! {fetch, Ar} => �	[String] (A,B)
iAnalyzeAr = ihandler
| ε (f: A -> B) -> �	[String] []
| fetch (col: String, k: A -> (String, Int -> Z), l: �	[String] (Z,B))

-> col :̇: l

mAnalyzeAr : A -> B ! {fetch, Ar} => �	[String] (A,B)
mAnalyzeAr = mhandler
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| ε (f: A -> B) -> �	[String] []
| μ (maz: �	[String] (A,Z) -> A,mzb: �	[String] (Z,B)) -> maz +̇+ mzb
| fetch (col: String, f: A -> (String, Int -> B)) -> �	[String] col

Handling taskDyn with iAnalyzeAr or mAnalyzeAr gives ["A", "B"], which are
the columns on which taskDyn depends.

Arrow computations are also a subset of monadic computations, which means that we
can adapt the handler fetchConsole to its arrow version. The arrow version makes use
of the KleisliM(A,B) arrow, where M is a monad. The constructor KleisliM takes a
function A -> M B and converts it to KleisliM(A,B), while the function runKleisli
takes a KleisliM(A,B) value and converts it to A -> M B.

iFetchConsoleAr : A -> B ! {fetch, Ar} => KleisliIO(A,B)
iFetchConsoleAr = ihandler
| ε (f: A -> B) -> KleisliIO (λ(a: A). return (f a))
| fetch (col: String,f: A -> (String, Int -> Z),k: KleisliIO(Z,B))

-> KleisliIO (λ(a: A). do
let (row: String, g: Int -> Z) = f a
print ("cell: " ++ col ++ row)
x <- readLn
runKleisli k (g x)

)

The monoidal version is given below.

mFetchConsoleAr : A -> B ! {fetch, Ar} => KleisliIO(A,B)
mFetchConsoleAr = mhandler
| ε (f: A -> B) -> KleisliIO (λ(a: A). return (f a))
| μ (maz: KleisliIO(A,Z), mzb: KleisliIO(Z,B)) ->

KleisliIO (λ(a: A). do
z <- maz a
mzb z

)
| fetch (col: String, f: A -> (String, Int -> B)) ->

KleisliIO (λ(a: A). do
let (row: String, g: Int -> Z) = f a
print ("cell: " ++ col ++ row)
x <- readLn
return (g x)

)

6 Reusing handlers and programs

In Section 5, we have seen handlers for different computation classes, interpreting pro-
grams to IO. There is no essential difference in how these handlers operate. For these cases,
a reuse of handler definitions across the computation classes can be useful. Dually, pro-
grams from different computation classes may express the same computation. For example,
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an applicative computation can be identical to a monadic computation that does not use
the full monadic expressiveness. Again it is raising the concern of reuse, but now for
computation definitions.

This section accomplishes both forms of reuse by means of an adjunction whose right
adjoint is a lax monoidal functor. As we saw in Section 3, our model of computations is
based on monoids in monoidal categories. In order to reuse monoids, we need to have a
connection between the monoidal categories. The categorical ingredients for establishing
such connections are twofold: adjunctions and lax monoidal functors. An adjunction is a
pair of functors together with a weakened form of equivalence between the two categories.
These functors are used to translate the underlying object of a monoid from one category to
another, while the lax monoidal structure of the functor guarantees that the monoidal struc-
ture on top of the object is preserved. We present adjunctions and lax monoidal functors
between the monoidal categories End◦, SPro and End�.

We will see that not every form of reuse is possible. We can only reuse programs from
less expressive classes in more expressive classes, for example, applicative → arrow →
monad. The handler reuse opportunities are dual, that is, monad → arrow → applicative.

6.1 Monoidal functors & adjunctions

Before explaining how to reuse handlers and programs, we introduce the two key concepts.

Adjunction. The pair of functors L : A → B and R : B → A map between two monoidal
categories A and B. These functors are related by the adjunction L � R:

B �

R

��
A

L

		

This adjunction is characterized by a natural isomorphism on A and B:

�−� : B(LA, B) ∼= A (A, RB) : �−�

(Co-)lax monoidal functors. If we have two monoidal categories and a functor between
them, we can consider those structures that make the functor interact coherently with the
monoidal structures as in the following definition.

Definition 6.1 (Lax Monoidal Functor).
Let (A , ⊗, I) and (B, ⊕, J ) be two monoidal categories. A lax monoidal functor between
them is

(a) a functor F : A → B

(b) a morphism φ0 : J → FI
(c) a natural transformation φA,B : FA ⊕ FB → F(A ⊗ B)

satisfying coherence conditions with respect to unitality and associativity. There is a dual
notion of colax monoidal functor in which the directions of φ0 and φA,B are inverted.

https://doi.org/10.1017/S0956796820000106 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000106


26 R. P. Pieters et al.

A key property of lax monoidal functors is their mapping of monoids (M , e, m) in A to
monoids (FM , e′, m′) in B, where e′ and m′ are defined as:

e′ = J
φo−→ FI

F e−→ FM

m′ = FM ⊕ FM
φM ,M−−−→ F(M ⊗ M)

F m−→ FM

Monoidal adjunction. When there is an adjunction L � R, there is a bijection between
the lax monoidal structures on R and colax monoidal structures on L, that is, if R is lax
monoidal, then L has a colax monoidal structure, and dually, if L is colax monoidal, then
R has a lax monoidal functor. We refer to such adjunctions as monoidal adjunctions here.

6.2 Transformation-based approach

This section presents our approach, based on transforming the programs/handlers in one
category to programs/handlers in the other category.

Let (A , ⊗, I) and (B, ⊕, J ) be two monoidal categories with an adjunction L � R such
that R : B −→ A is lax monoidal.

Notation. To prevent confusing the category of signatures and of programs, we use the
following notational convention.

Signatures that originate in category A are denoted �, and free monoids are super-
scripted with ⊗: �⊗, rather than �∗. Signatures from category B are denoted � and free
monoids have a superscript ⊕: �⊕.

Also, B is the category with less expressive handlers, but more expressive programs.
The opposite is true for A : it has more expressive handlers, but less expressive programs.

Algebra conversion. We now show how to convert a handler algebra [i : J → X , a :
� ⊕ X → X ] in B to a handler algebra [i′ : I → RX , a′ : R� ⊗ RX → RX ] in A . We pre-
compose the R-mapped algebra morphisms with φ0 and φ�,X , respectively, to obtain the
converted algebra.

i′ = I
φ0−→ RJ

Ri−→ RX

a′ = R� ⊗ RX
φ�,X−−→ R(� ⊕ X )

Ra−→ RX

In other words, we can obtain an A -handler h′ : (R�)⊗ → RX = �[i′, a′]� from a B-handler
h :�⊕ → X = �[i, a]�.

For example, using this algebra conversion we can convert the handler
iFetchConsoleAr from Example 5.2 to a handler equivalent to iFetchConsoleAp from
Example 5.1, allowing the handling of applicative computations with iFetchConsoleAr.

Program conversion. The dual conversion, using the same elements, takes a program
written in terms of the free monoid �⊗ on the signature � in A to a program R

(
(L�)⊕

)
:

�insL�� : �→ R((L�)⊕)

convert = �⊗ free �insL��−−−−−−→ R((L�)⊕)
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Using free requires that R((L�)⊗) induces a monoid, which it does since R is a lax
monoidal functor.

For example, using this program conversion, we can convert the program taskExample
represented with applicative syntax from Section 5.1 to a representation with the arrow
syntax, allowing the use of arrow handlers on taskExample.

Overview. Now, we assume that the two signatures � in A and � in B are related by
a morphism f : L�→�, which through the adjunction has transpose �f � = g :�→ R�.
There are two conversions that enable alternative paths for handling a program �⊗ to a
result RX ,

�⊗ convert ��

hoistg

��

R((L�)⊕)
R(hoistf )�� R(�⊕)

Rh

��
(R�)⊗

h′
�� RX

where hoist is defined on a morphism x : A → B as

hoist x : A∗ → B∗ = �[ε, ι ◦ (x ⊗ B∗)]�

Appendix E proves that both paths of this diagram are equivalent to the fused morphism
�[i′, a′ ◦ (g ⊗ RX )]�. This means that converting a handler and handling a program, or con-
verting this program and then handling it with the handler, give the same result. The fused
morphism is a likely optimization to the previous two, more intuitive, approaches.

6.3 Instances

This section instantiates the approach for three conversions: applicative ↔ arrow, arrow
↔ monad and applicative ↔ monad.

Applicative ↔ arrow. For this conversion, we are in the setting of the adjunction
between the categories SPro and End. The left adjoint functor -! : End → SPro is defined
as F!(A, B) = F(BA), which creates a (strong) profunctor by putting a contravariant argu-
ment inside the transformed functor. The right adjoint functor -∗: SPro → End is defined
as P∗(A) = P((), A), which transforms a profunctor into a functor by putting the unit value
() in the contravariant position1.

SPro �

-∗




End

-!

��

The -∗ functor has lax monoidal structure and is characterized by the following
morphisms:

φP,Q : P∗�Q∗→ (P ⊗ Q)∗, φ0 : Id → Hom∗.

1 In the Haskell module Control.Arrow it is called ArrowMonad, https://hackage.haskell.org/package/
base-4.10.0.0/docs/src/Control.Arrow.html#ArrowMonad.

https://doi.org/10.1017/S0956796820000106 Published online by Cambridge University Press

https://hackage.haskell.org/package/base-4.10.0.0/docs/src/Control.Arrow.html#ArrowMonad
https://hackage.haskell.org/package/base-4.10.0.0/docs/src/Control.Arrow.html#ArrowMonad
https://doi.org/10.1017/S0956796820000106


28 R. P. Pieters et al.

This results in the Cayley (monoidal) adjunction introduced by Pastro & Street (2007).

SPro �

-∗
��
End�

-!

��

We can apply the handler and program conversion to this adjunction. Given a handler
described by morphisms of type Hom → P and � ⊗ P → P, we obtain the converted han-
dler in End� of the form Id → P∗and �∗� P∗→ P∗. For a signature � in End�, the program
conversion is implemented by the morphism convert�� :�� → (

�⊗
!
)∗

.
This monoidal adjunction is the basis to justify that an applicative functor is a static

arrow (Lindley et al., 2011): using -∗ and -! we can write an idempotent comonad on
SPro. Monoids in SPro which carry a coalgebra structure for this comonad are applica-
tive functors. This last affirmation is captured at the code level by an arrow a x y which
additionally satisfies the equation a x y = a () (x -> y) (Rivas, 2018).

Arrow ↔ monad. For this conversion, the adjunction is again between the categories
SPro and End. The left adjoint is the -∗ functor, which was present as right adjoint in the
previous paragraph. The right adjoint functor -∗ : End◦ → SPro is defined as F∗(A, B) =
(FB)A, which creates a profunctor by putting a contravariant argument on the transformed
functor as an exponent.

End �

-∗
��
SPro

-∗

��

The -∗ functor has lax monoidal structure and is characterized by the following
morphisms:

ψF,G : F∗ ⊗ G∗ → (F ◦ G)∗, ψ0 : Hom → Id∗.

When seen as a monoidal functor, -∗ was called KLEISLI (Rivas & Jaskelioff, 2017). We
instead use the name Kleisli to refer to the monoidal adjunction arising due this functor.

End◦ �

-∗
��
SPro

-∗




This adjunction results in a handler algebra conversion: given Id → X and � ◦ X → X ,
it forms Hom → X∗ and �∗ ⊗ X∗ → X∗. It also results in a program conversion morphism
convert⊗� :�⊗ → (

(�∗)◦
)
∗ for a signature signature � in SPro.

As in the previous case, this monoidal adjunction is the basis to justify that a monad
is is a higher-order arrow (Lindley et al., 2011): using -∗ and -∗ we can write an idem-
potent monad on SPro. Monoids in SPro which carry an algebra structure for this monad
are monads. This last affirmation is captured at the code level by an arrow a x y which
additionally satisfies the equation a x y = x -> a () y (Rivas, 2018).
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Applicative ↔ monad. The two previous adjunctions can be composed:

End �

-∗
��
SPro �

-!




-∗

�� End

-∗

��

It is a classical result that a composition of two adjunctions gives a new adjunction:

End �

-∗ ◦ -∗



End

-∗ ◦ -!

��

In this particular case, we can calculate the action of these composed functors on objects,
(
-∗ ◦ -!

)
(F)(Z) = (F!)∗(Z) = F!((), Z) = F(Z()) ∼= F(Z) (1)

(
-∗ ◦ -∗

)
(F)(Z) = (F∗)∗(Z) = F∗((), Z) = F(Z)() ∼= F(Z) (2)

which means that the adjunction is just the trivial identity adjunction.
However, at the level of monoidality, the situation is more interesting. The lower

morphism has a lax monoidal structure inherited from (ψF,G,ψ0) and (φP,Q, φ0) as χ =
ψF,G

∗◦ φP,Q and χ0 = (
ψ0

)∗◦ φ0. This monoidal structure on identity is not trivial, and it
was called DAY previously (Rivas & Jaskelioff, 2017).

Given i : Id → X and a :� ◦ X → X , we have the algebra conversion

i′ = Id
φ0−→ Hom∗

(
ψ0

)∗

−−−→ (Id∗)∗
(i∗)∗−−→ (X∗)∗

a′ = (�∗)∗� (X∗)∗
φP,Q−−→ (�∗ ⊗ X∗)∗

ψF,G
∗

−−−→ ((� ◦ X )∗)∗
(a∗)∗−−→ (X∗)∗

and given a signature � in End�, we have the program conversion

convert =�
convert��−−−−→ ((�!)⊗)

∗ (convert⊗�! )
∗

−−−−−−→ (((
(�!)∗

)◦)
∗
)∗

These two can be simplified using Equations 1 and 2. The handler algebra conversion trans-
forms a monad action with components of type Id → X and� ◦ X → X into an applicative
action with components of type Id → X and � � X → X . The program conversion results
in a morphism �� →�◦.

7 Use of non-monadic handlers in build systems

In this section, we relate the original build system use case to the approach used in this
paper. First, we relate the approach used in the original use case (Mokhov et al., 2018) and
the framework used in this paper. Second, we discuss possibilities enabled by arrow build
systems.

Code. This section contains Haskell code, which is formatted in colored teletype text.
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7.1 Task in original build system model

A build system consists of various Tasks. Each task is a representation of how to build a
certain artifact. Artifacts are uniquely determined by their key of type k and building them
results in a value of type v. For a traditional build system based on a file system, k might
be file paths and v might be file contents. In the case of spreadsheet, k is the cell name and
v is the cell content.

The Task type itself is represented as a function:

newtype Task c k v = Task {
run :: forall f. c f => (k -> f v) -> f v

}

This function yields a result of type v wrapped in type constructor f since building the
artifact is likely to have side effects. The type constructor f is kept abstract to allow for
interpreting the same task with different kinds of side effects. Similarly, the constraint
imposed on f is a parameter that can be instantiated in multiple ways, such as with Monad
or Applicative. The task may depend on other artifacts. To access these, it receives
a fetch operation of type k -> f v. This fetch operation either simply retrieves the
dependency’s value, if it is on hand, or first builds it, if it is not.

Task monad. A monadic task is represented by a Task Monad. In testTM we first fetch
the cell "C1" and then depending on its value we fetch either cell "A1" or "A2".

testTM :: Task Monad String Integer
testTM = Task $ \fetch -> do

c1 <- fetch "C1"
if c1 == 1

then fetch "A1"
else fetch "A2"

The computation testTM utilizes the yet unspecified effect f from the Task type. The
actual effects will be determined once we decide how to run them, which is done by giv-
ing an interpretation. We give an interpretation by supplying the handler as a parameter.
For example, the handler fetchConsole interprets each fetch operation in a Task as a
request on the console to the user.

fetchConsole :: String -> IO Integer
fetchConsole cell = do

print ("cell: " ++ cell)
readLn

Running run testTM fetchConsole requests cell information twice: first the data in
cell "C1" is requested, which then determines if we have to pass the data in cell "A1" or
"A2".
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Task applicative. An applicative task is represented by a Task Applicative, for
example testTI.

testTI :: Task Applicative String Integer
testTI = Task $ \fetch -> do

a1 <- fetch "A1"
a2 <- fetch "A2"
return (a1 + a2)

The above example uses the ApplicativeDo extension to sugar applicative computa-
tions in Haskell (Marlow et al., 2016). The desugared version is as follows:

testTI' :: Task Applicative String Integer
testTI' = Task $ \fetch ->

(+) <$> fetch "A1" <*> fetch "A2"

For example, we can write the handler fetchStatic which gathers all static informa-
tion, in this case task dependencies, into a list. This utilizes the Applicative instance of
Const to fully determine the handler behavior.

fetchStatic :: a -> Const [a] b
fetchStatic a = Const [a]

instance (Monoid c) => Applicative (Const c) where
pure a = Const mempty
(Const ma) <*> (Const mb) = Const (ma <> mb)

Running getConst (run testTI fetchStatic) evaluates to ["A1", "A2"],
which are the dependencies of the testTI task.

7.2 Relation to monoidal effects and handlers

This idea of different computation classes with their own interpretation interface is of
course exactly the idea of the monoidal effects and handlers. In fact, this relation becomes
much more apparent when we instantiate the constraint c with Monad. Then, Task becomes
a specialization of the Van Laarhoven Free Monad (O’Connor, 2014), which is defined as:

newtype VLFree ops v = VLFree {
unVLFree :: forall f. Monad f => ops f -> f v

}

where ops is instantiated with data Fetch a b x = Fetch (b -> x) a.
The Van Laarhoven representation is equivalent to the traditional-free monad repre-

sentation (Jaskelioff & O’Connor, 2015), used in the rest of this paper. In Haskell, this
traditional representation is defined as:
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data Free ops v = Ret v | Con (ops (Free ops v))

This equivalent representation opens a different perspective on the Task type used to
model build systems. A Task is a free computation describing how to calculate the values
of a cell, which we presented in Section 2 using the fetch operation. In the next two para-
graphs, we cover the Monad and Applicative instantiations and show how the Haskell
concepts instantiate the monoidal handlers and effects framework.

Monad task. A monadic task is represented by a value of type Task Monad k v, for
example, testTM. Its interpretation is given by a handler, which for a monoidal handler
consists of three parts: f , ε and μ. The function fetchConsole corresponds to f , while ε
and μ are the Monad implementations for IO.

Applicative task. For an applicative task, a computation is represented by a value of type
Task Applicative k v, for example, testTI. Its interpretation is also given by a han-
dler, which again consists of f , ε and μ. The function fetchStatic corresponds to f ,
while the Applicative implementation for Const gives ε and μ.

7.3 Arrow tasks

The Task representation nicely fits both applicative and monadic computations and their
handlers, but cannot represent arrow computations and handlers. To accommodate arrow
computations as well, we can adapt the Task type to use a profunctor operation as seen in
Section 5.2. We also introduce the distinction between static and dynamic parameters.

newtype TaskA c si di o = TaskA {
runA :: forall p. c p => (si -> p di o) -> p () o

}

TaskA Arrow. Consider, for example, the following arrow task:

testA :: TaskA Arrow String String Integer
testA = TaskA $ \fetch -> proc () -> do

a1 <- fetch "A" -< "1"
fetch "B" -< show a1

This example uses the arrow notation introduced by Paterson (2001). The desugared
version of this example is

testA' :: TaskA Arrow String String Integer
testA' = TaskA $ \fetch ->

arr (\_ -> "1") >>>
fetch "A" >>>
arr (\o -> show o) >>>
fetch "B"

https://doi.org/10.1017/S0956796820000106 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000106


Generalized monoidal effects and handlers 33

Defining the handler requires a definition for f :

fetchStaticA :: a -> ConstArr [a] b c
fetchStaticA a = ConstArr [a]

This ConstArr type is similar to the Const functor, but lifted to profunctors. It can
implement the Arrow typeclass, for which we show Paterson’s version (Paterson, 2001).
This corresponds to the monoidal handler as follows: the ε is given by the arr function,
while the μ is given by (>>>). The first operation is also called strength, which this
paper does not cover but is handled in more detail by, for example, Rivas & Jaskelioff
(2017).

newtype ConstArr c i o = ConstArr { getConstArr :: c }

instance (Monoid c) => Arrow (ConstArr c) where
arr f = ConstArr mempty
(ConstArr a) >>> (ConstArr b) = ConstArr (a <> b)
first (ConstArr c) = ConstArr c

Evaluating getConstArr (runA testA fetchStaticA) gives ["A", "B"], which
are all columns used by testA.

TaskA ArrowChoice. The computation testTM was shown earlier with a monadic con-
straint. However, as we saw in Section 2, computations with limited control flow can also
be represented as a weaker computation such as ArrowChoice. The ArrowChoice class
enables us to add conditionals as a control flow construct into computations expressed with
if then else in the arrow sugar syntax.

testAC :: TaskA ArrowChoice String () Integer
testAC = TaskA $ \fetch -> proc () -> do

c1 <- fetch "C1" -< ()
if c1 == 1

then fetch "A1" -< ()
else fetch "A2" -< ()

The desugared version is shown below, using the +++ function from the ArrowChoice
class.

testAC' :: TaskA ArrowChoice String () Integer
testAC' = TaskA $ \fetch ->

fetch "C1" >>>
arr (\x -> if x == 1 then Left () else Right ()) >>>
(fetch "A1" +++ fetch "A2") >>>
arr untag
where

untag :: Either a a -> a
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untag (Left a) = a
untag (Right a) = a

The adapted computation testAC can be analyzed using the previous fetchStaticA
handler by evaluating getConstArr (runA testAC fetchStaticA), giving all possible
dependencies ["C1", "A1", "A2"]. Using this handler requires an instance implemen-
tation of ArrowChoice for ConstArr.

instance (Monoid c) => ArrowChoice (ConstArr c) where
(ConstArr c1) +++ (ConstArr c2) = ConstArr (c1 <> c2)

7.4 Overview build systems

This section gives an overview of the different possible and existing types of build systems
corresponding to each computation class.

Monad build system. A monadic build system is the most straightforward build system.
It starts from a target that needs to be built and executes the task corresponding to that
target. The building of that task can execute the building of other tasks or request the value
of an input. An improvement, implemented by the Shake (Mitchell, 2012) build system, is
to keep track of targets which have already been built.

Applicative build system. The applicative build system uses dependency analysis to
determine an optimal building graph. This is possible because applicative tasks are
restricted in such a way that it is always possible to determine their dependencies. An
example of such build system is Make (Feldman, 1979), where the dependencies for each
rule must be specified upfront. This allows make to construct the dependency graph before
any building step is executed and enables certain optimizations such as omitting unneeded
steps.

Arrow build system. An arrow build system is able to express computations where input
to build tasks can depend on output from earlier build tasks. For example, in the tempFile
example below, a user builds the file folder/createTemp which creates a temporary file
with a random name. As the next step, the user builds the created temporary file by referring
to the returned output name tempfileName.

tempFile = do
tempfileName <- fetch "folder/createTemp"
fetch ("folder/" ++ tempfileName)

It is no longer possible to statically determine every dependency, but it is possible to
determine that this build task only executes tasks located in the path folder/, which
could be used to automate the cleanup of the temporary files. This is similar to the partially
static information example such as seen in taskDyn from Section 5.2.

https://doi.org/10.1017/S0956796820000106 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000106


Generalized monoidal effects and handlers 35

ArrowChoice/selective build system. A build system allowing conditional expressions
cannot build the exact dependency graph, but it can build a pessimistic dependency graph.
By aggregating all possible dependencies throughout all branching statements, it can
construct all dependencies which might possibly be needed. Then, all independent depen-
dencies can be constructed in parallel. This build system increases the overall throughput
of the system since dependencies which are independent do not have to wait for a branch
instruction to be built. Dune (Jane Street, 2018) is an example build system using this idea
to do overapproximation of dependencies.

8 Related work

Algebraic effects and handlers. This paper is an exploration in the space of interfaces
which a language with algebraic effects and handlers could provide. The currently devel-
oped languages and libraries in this area (such as by Plotkin & Pretnar 2009, Brady
(2013), Bauer & Pretnar (2015), Kiselyov & Ishii (2015), Leijen (2017) and Lindley
et al. (2017)) present the conventional monadic effects to the user, or only distinguish
between applicative and monadic effects, resulting in an interpretation limited to these
effect classes.

The interest in abstractions for effects such as applicative and arrow motivates a broader
handler interface, one which allows interpretations utilizing these, and potentially more,
alternative abstractions. The motivation given at the start of the paper is a simple use
case, but the overarching motivation is to port the use of these alternative abstractions to
algebraic effects and handlers.

The methodology of derivation could be applied to other structures such as free near-
semirings as explored by Rivas et al. (2015). Future work could explore the space
of interfaces further to find a presentation which feels intuitive to a wide range of
programmers.

Handlers for idioms and arrows. Lindley (2014) introduces the calculus λflow which
has handler constructs for monadic, applicative and arrow computations. The calculus has
separate handling constructs for each of the different computation classes. We approach
the same idea as a derivation from a general category theoretic framework. Lindley’s and
our interface slightly differ. The handler interfaces in λflow originate based on the intuition
behind their behavior. We give a short summary of the λflow interfaces below. For the full
details, we refer to the original work by Lindley (2014).

The λflow calculus is based on a call-by-push-value approach, and so there is a distinction
between values and computations. The types of thunks are denoted with curly brackets
{. . .} and the types of computations are denoted with square brackets [. . .]. Thunks are
annotated with a list of effects and flow types, and the flow types indicate whether data
and/or control flow is used in the computation. We omit these annotations below, since
they are not necessary for the overview given here.

The monad handler presents the traditional interface as was discussed before in the
background section (Section 3).
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Table 3. Handler interface ccomparison

Class Lindley Derived inductive handlers

Monad
| return (x: A) -> . . .: C
| opi (p: Ai, k: {Bi -> C})

-> . . .: C

| ε (a: A) -> . . .: FA
| opi (p: Pi,k: Ni -> FA)

-> . . .: FA

Arrow
| return (x: X -> [Ai]) -> . . .: F X
| opi (p: {X -> [Ai]},

k: {F(X × Bi)}) -> . . .: F X

| ε (f: A -> B) -> . . .: P(A,B)
| opi (p: Si, k: A -> (Di, Ni -> Z),

l: P(Z,B)) -> . . .: P(A,B)

App-
licative

| return (x: X -> [Ai]) -> . . .: F X
| opi (p: Ai, k: {F(X × Bi)})

-> . . .: F X

| ε (a: A) -> . . .: FA
| opi (p: Pi, k: Ni -> Z -> A,

l: FZ) -> . . .: FA

| return (x: A) -> . . .: C
| opi (p: Ai, k: {Bi -> C}) -> . . .: C

The arrow handlers are applicable to computations with an input, thus an arrow handler
is applied using handle (λz. comp) with h. This results in the return clause taking a
computation rather than a value. The continuation k is a thunk of type {F(X × Bi)}, and
the functor F will be instantiated with the appropriate functor depending on the handler.
The input to the operation p cannot be statically inspected, since it requires an input of X,
which is not readily available, since parameters of operations of arrow computations are
not statically inspectable.

| return (x: X -> [Ai]) -> . . .: F X
| opi (p: {X -> [Ai]}, k: {F(X × Bi)}) -> . . .: F X

The applicative handler is similar to the arrow handler, but the input for the parameter
p in the operation clause does not require an input. This is because the parameters of
operations in applicative computations can be statically inspected.

| return (x: X -> [Ai]) -> . . .: F X
| opi (p: Ai, k: {F(X × Bi)}) -> . . .: F X

In contrast, our work derives the interfaces based on the theoretical background of free
monoids. We believe that the resulting handlers are equivalent, but leave defining of the
exact mapping for future work. A comparison of the interfaces by Lindley, and our derived
inductive handlers can be found in Table 3. In addition, this work could also serve as a basis
to give a denotational semantics for λflow.

Free monad/arrow/applicative. The currently obtained interface for applicative and
arrow handlers is similar to representing computations by expressing the free monad/ar-
row/applicative explicitly, since it is based on the same principles. These topics have
been covered before, by for example Capriotti & Kaposi (2014) and Gibbons (2016). Free
applicatives and arrows can be expressed in various ways and an alternative formulation
is given by for example Lindley (2013). Compared to these works, we derive the handler
interfaces from the general framework of monoids in monoidal categories and intend to
expose this interface via specialized language syntax. The alternative formulations are an

https://doi.org/10.1017/S0956796820000106 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000106


Generalized monoidal effects and handlers 37

interesting avenue to explore the various intefaces which could be exposed by a language
supporting handlers with generalized monoidal effects.

9 Conclusion

This paper has presented interfaces for applicative and arrow handlers derived from a
unifying principle from which we also derived the conventional monadic handlers. This
unifying principle is monoids in monoidal categories and was explored in detail by Rivas
& Jaskelioff (2017). We have shown an equivalence between the initial algebra and free
monoid syntax in the monoidal setting, as well as the initial algebra and free algebra
approach in the monadic setting. We have expanded on the idea of lax monoidal functors
with an adjunction to create a conversion of programs and handlers, enabling the reuse of
handlers and programs across different monoidal categories. We have presented this work
in the context of build systems to motivate and illustrate the approach.
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A Properties eval

This section proves some auxiliary properties related to eval.

ė = �λX 
 (A.1)

ṁ = ��X X � ◦ (X X ⊗ �X X �) ◦ α−1
 (A.2)

evalX e = evX ◦ (X X ⊗ e) ◦ ρ−1
X X (A.3)

evalX a ◦ �λX 
 = a (A.4)

Proof

evalX a ◦ �λX 

= (def. evalX & def. evX )

�X X � ◦ (X X ⊗ a) ◦ ρ−1
X X ◦ �λX X 


= (ρ−1 is a natural transformation)
�X X � ◦ (X X ⊗ a) ◦ (�λX 
 ⊗ I) ◦ ρ−1

I

= (bifunctor ⊗)
�X X � ◦ (�λX 
 ⊗ X ) ◦ (I ⊗ a) ◦ ρ−1

I

= (naturality �−�)
��λX 
� ◦ (I ⊗ a) ◦ ρ−1

I

= (inverses)
λX ◦ (I ⊗ a) ◦ ρ−1

I

= (λ is a natural transformation)
a ◦ λI ◦ ρ−1

I

= (def. monoidal category)
a ◦ ρI ◦ ρ−1

I

= (inverses)
a

�
a : I → X

b : A ⊗ X → X

evalX a ◦ �b
 = b ◦ (A ⊗ a) ◦ ρ−1
A (A.5)

Proof

evalX a ◦ �b

= (def. evalX )

�X X � ◦ (X X ⊗ a) ◦ ρ−1
X X ◦ �b


= (ρ−1 is a natural transformation)
�X X � ◦ (X X ⊗ a) ◦ (�b
 ⊗ I) ◦ ρ−1

A

= (bifunctor ⊗)
�X X � ◦ (�b
 ⊗ I) ◦ (A ⊗ a) ◦ ρ−1

A
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= (naturality �−�)
��b
� ◦ (A ⊗ a) ◦ ρ−1

A

= (inverses)
b ◦ (A ⊗ a) ◦ ρ−1

A �

B Initial algebra basis

This section proves the roundtrip and coherency properties for the initial algebra basis.
first some relevant definitions are repeated, then each property related to a constructor or
handler is proven in its own subsection.

B.1 Defining properties �−�

�[a, b]� ◦ ε = a (B.1)

�[a, b]� ◦ ι = b ◦ (� ⊗ �[a, b]�) (B.2)

B.2 Definition μ/ins/free

μ = ��[�λ�∗
, �ι ◦ (� ⊗ ev�∗ ) ◦ α−1
]�� (B.3)

ins = ι ◦ (� ⊗ ε) ◦ ρ−1
� (B.4)

free f = �[e, m ◦ ( f ⊗ M)]� (B.5)

B.3 Roundtrip property ι

The roundtrip property is ι=μ ◦ (ins ⊗�∗), the definition of ι in the free monoid basis.
We use the following local definitions to save some space:

b1 = �λ�∗

b2 = �ι ◦ (� ⊗ ev�∗ ) ◦ α−1

b = [b1, b2]

Proof

μ ◦ (ins ⊗�∗)
= (def. μ and ins)

��b�� ◦ ((ι ◦ (� ⊗ ε) ◦ ρ−1
� ) ⊗�∗)

= (naturality of �−�)
��b� ◦ ι ◦ (� ⊗ ε) ◦ ρ−1

� �
= (property �−� & bifunctor)

��ι ◦ (� ⊗ ev�∗ ) ◦ α−1
 ◦ (� ⊗ �b� ◦ ε) ◦ ρ−1
� �

= (property �−�)
��ι ◦ (� ⊗ ev�∗ ) ◦ α−1
 ◦ (� ⊗ �λ�∗
) ◦ ρ−1

� �
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= (naturality of �−
)
��ι ◦ (� ⊗ ev�∗ ) ◦ α−1 ◦ ((� ⊗ �λ�∗
) ⊗�∗)
 ◦ ρ−1

� �
= (α−1 is a natural transformation)

��ι ◦ (� ⊗ ev�∗ ) ◦ (� ⊗ (�λ�∗
 ⊗�∗)) ◦ α−1
 ◦ ρ−1
� �

= (bifunctor ⊗)
��ι ◦ (� ⊗ (ev�∗ ◦ (�λ�∗
 ⊗�∗))) ◦ α−1
 ◦ ρ−1

� �
= (definition ev�∗ )

��ι ◦ (� ⊗ (��∗�∗ � ◦ (�λ�∗
 ⊗�∗))) ◦ α−1
 ◦ ρ−1
� �

= (naturality of �−�)
��ι ◦ (� ⊗ ��λ�∗
�) ◦ α−1
 ◦ ρ−1

� �
= (inverses)

��ι ◦ (� ⊗ λ�∗) ◦ α−1
 ◦ ρ−1
� �

= (naturality of �−
)
��ι ◦ (� ⊗ λ�∗) ◦ α−1 ◦ (ρ−1

� ⊗�∗)
�
= (definition monoidal category, 3.2)

��ι
�
= (inverses)
ι

�

B.4 Roundtrip property �−�

The roundtrip property is �[e, g]� = evalX e ◦ free �g
, the definition of �−� in the free
monoid basis. We show that the right-hand side is an algebra homomorphism �∗ → X .
They are equal due to uniqueness of �[e, g]�.

Proof

evalX e ◦ free �g
 ◦ ε
= (defs. free �g
)

evalX e ◦ �[ė, ṁ ◦ (�g
 ⊗ X X )]� ◦ ε
= (property �−�)

evalX e ◦ ė
= (def. ė)

evalX e ◦ �λX 

= (property evalX )

e

evalX e ◦ free �g
 ◦ ι
= (def. free �g
)

evalX e ◦ �[ė, ṁ ◦ (�g
 ⊗ X X )]� ◦ ι
= (property �−�)

evalX e ◦ ṁ ◦ (�g
 ⊗ X X ) ◦ (� ⊗ �[ė, ṁ ◦ (�g
 ⊗ X X )]�)
= (introduce . . . to save some space)

evalX e ◦ ṁ ◦ (�g
 ⊗ X X ) ◦ (� ⊗ . . .)
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= (def. ṁ)
evalX e ◦ ��X X � ◦ (X X ⊗ �X X �) ◦ α−1
 ◦ (�g
 ⊗ X X )

◦(� ⊗ . . .)
= (property evalX )

�X X � ◦ (X X ⊗ �X X �) ◦ α−1 ◦ ((X X ⊗ X X ) ⊗ e)
◦ρ−1

X X ⊗X X ◦ (�g
 ⊗ X X ) ◦ (� ⊗ . . .)

= (α−1 is a natural transformation)
�X X � ◦ (X X ⊗ �X X �) ◦ (X X ⊗ (X X ⊗ e)) ◦ α−1

◦ρ−1
X X ⊗X X ◦ (�g
 ⊗ X X ) ◦ (� ⊗ . . .)

= (α−1 and ρ−1 are natural transformations)
�X X � ◦ (X X ⊗ �X X �) ◦ (X X ⊗ (X X ⊗ e))

◦(�g
 ⊗ (X X ⊗ I)) ◦ α−1 ◦ ρ−1
�⊗X X ◦ (� ⊗ . . .)

= (bifunctor ⊗)
�X X � ◦ (�g
 ⊗ X ) ◦ (� ⊗ �X X �) ◦ (� ⊗ (X X ⊗ e))

◦α−1 ◦ ρ−1
�⊗X X ◦ (� ⊗ . . .)

= (naturality �−� & inverses)
g ◦ (� ⊗ �X X �) ◦ (� ⊗ (X X ⊗ e)) ◦ α−1 ◦ ρ−1

�⊗X X ◦ (� ⊗ . . .)

= (property α−1 ◦ ρ−1 = (id ⊗ ρ−1))
g ◦ (� ⊗ �X X �) ◦ (� ⊗ (X X ⊗ e)) ◦ (� ⊗ ρ−1

X X ) ◦ (� ⊗ . . .)
= (bifunctor ⊗)

g ◦ (� ⊗ (�X X � ◦ (X X ⊗ e) ◦ ρ−1
X X )) ◦ (� ⊗ . . .)

= (def. evalX e)
g ◦ (� ⊗ evalX e) ◦ (� ⊗ . . .)

= (remove . . . & bifunctor ⊗)
g ◦ (� ⊗ (evalX e ◦ �[ė, ṁ ◦ (�g
 ⊗ X X )]�))

= (def. free �g
)
g ◦ (� ⊗ (evalX e ◦ free �g
))

�

B.5 Coherency properties free f

The free f morphism should have the same properties as in the free monoid basis, resulting
in three coherency properties.

B.5.1 Property 1

We prove that free f ◦ ε= e.

Proof
free f ◦ ε

= (def. of free, B.5)
�[e, m ◦ ( f ⊗ M)]� ◦ ε

= (B.1)
e

�
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B.5.2 Property 2

We prove that free f ◦ ins = f .

Proof
free f ◦ ins

= (defs. of ins and free f )
�[e, m ◦ ( f ⊗ M)]� ◦ ι ◦ (� ⊗ ε) ◦ ρ−1

�

= (property of �−�)
m ◦ ( f ⊗ M) ◦ (� ⊗ �[e, . . .]�) ◦ (� ⊗ ε) ◦ ρ−1

�

= (bifunctor ⊗)
m ◦ ( f ⊗ M) ◦ (� ⊗ (�[e, . . .]� ◦ ε)) ◦ ρ−1

�

= (property of �−�)
m ◦ ( f ⊗ M) ◦ (� ⊗ e) ◦ ρ−1

�

= (bifunctor ⊗)
m ◦ (M ⊗ e) ◦ ( f ⊗ I) ◦ ρ−1

�

= (naturality of ρ−1)
m ◦ (M ⊗ e) ◦ ρ−1

M ◦ f
= (monoid right unit property)
ρM ◦ ρ−1

M ◦ f
= (inverses)

f
�

B.5.3 Property 3

We prove that free f ◦μ= m ◦ ( free f ⊗ free f ). We first show that both sides are alge-
bra homomorphisms �∗ → M�∗

, by uniqueness of �−� both must be equal to �[�free f ◦
λ�∗
, �m ◦ ( f ⊗ �M�∗�) ◦ α−1
]�.

Proof First, we show that �free f ◦μ
 = �[�free f ◦ λ�∗
, �m ◦ ( f ⊗ �M�∗�) ◦ α−1
]�

�free f ◦μ
 ◦ ε
= (naturality �−
)

�free f ◦μ ◦ (ε⊗�∗)

= (def. μ & naturality of �−�)

�free f ◦ ��b� ◦ ε�

= (def. free f & property of �−�)

�free f ◦ λ�∗


�free f ◦μ
 ◦ ι
= (naturality �−
)

�free f ◦μ ◦ (ι⊗�∗)

= (def. μ & naturality of �−�)

�free f ◦ ��b� ◦ ι�

= (property of �−�)

�free f ◦ �b2 ◦ (� ⊗ �b�)�

= (naturality of �−�)
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�free f ◦ �b2� ◦ ((� ⊗ �b�) ⊗�∗)

= (def. b2 & inverses)

�free f ◦ ι ◦ (� ⊗ ev�∗ ) ◦ α−1 ◦ ((� ⊗ �b�) ⊗�∗)

= (def. free f & property of �−� & bifunctor ⊗)

�m ◦ ( f ⊗ ( free f ◦ ev�∗)) ◦ α−1 ◦ ((� ⊗ �b�) ⊗�∗)

= (def. ev�∗ & naturality �−�)

�m ◦ ( f ⊗ �free f �
∗�) ◦ α−1 ◦ ((� ⊗ �b�) ⊗�∗)


= (naturality of �−�)
�m ◦ ( f ⊗ (�M�∗� ◦ ( free f �

∗ ⊗�∗)) ◦ α−1

◦ ((� ⊗ �b�) ⊗�∗)

= (bifunctor ⊗)

�m ◦ ( f ⊗ �M�∗�) ◦ (� ⊗ ( free f �
∗ ⊗�∗)) ◦ α−1

◦ ((� ⊗ �b�) ⊗�∗)

= (naturality of α−1 & bifunctor)

�m ◦ ( f ⊗ �M�∗�) ◦ α−1 ◦ ((� ⊗ ( free f �
∗ ◦ �b�) ⊗�∗)


= (naturality of �−
)
�m ◦ ( f ⊗ �M�∗�) ◦ α−1
 ◦ (� ⊗ ( free f �

∗ ◦ �b�))
= (�b� = �μ
)

�m ◦ ( f ⊗ �M�∗�) ◦ α−1
 ◦ (� ⊗ ( free f �
∗ ◦ �μ
))

= (naturality of �−
)
�m ◦ ( f ⊗ �M�∗�) ◦ α−1
 ◦ (� ⊗ (�free f ◦μ
))

Then we show that �m ◦ ( free f ⊗ free f )
 = �[�free f ◦ λ�∗
, �m ◦ ( f ⊗ �M�∗�) ◦
α−1
]�

�m ◦ ( free f ⊗ free f )
 ◦ ε
= (naturality of �−
)

�m ◦ ( free f ⊗ free f ) ◦ (ε⊗ A∗)

= (bifunctor ⊗)

�m ◦ (( free f ◦ ε) ⊗ free f )

= (def. free f & property of �−�)

�m ◦ (e ⊗ free f )

= (bifunctor ⊗ & monoid left unit property)

�λM ◦ (I ⊗ free f )

= (naturality of λ)

�free f ◦ λ�∗

�m ◦ ( free f ⊗ free f )
 ◦ ι

= (naturality �−
 & bifunctor ⊗)
�m ◦ (( free f ◦ ι) ⊗ free f )


= (def. free f & property of �−� & bifunctor ⊗)
�m ◦ (m ⊗ M) ◦ ((f ⊗ free f ) ⊗ free f )


= (monoid associativity property)
�m ◦ (M ⊗ m) ◦ α−1 ◦ ((f ⊗ free f ) ⊗ free f )


https://doi.org/10.1017/S0956796820000106 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000106


Generalized monoidal effects and handlers 45

= (naturality of α−1)
�m ◦ (M ⊗ m) ◦ ( f ⊗ ( free f ⊗ free f )) ◦ α−1


= (bifunctor ⊗)
�m ◦ ( f ⊗ (m ◦ ( free f ⊗ free f ))) ◦ α−1


= (inverses)
�m ◦ ( f ⊗ ��mM ◦ ( free f ⊗ free f )
�) ◦ α−1


= (naturality of �−�)
�m ◦ ( f ⊗ (�M�∗� ◦ (�m ◦ ( free f ⊗ free f )
 ⊗�∗)))

◦ α−1

= (bifunctor ⊗ & naturality of α−1)

�m ◦ ( f ⊗ �M�∗�) ◦ α−1

◦ ((� ⊗ �m ◦ ( free f ⊗ free f )
) ⊗�∗)

= (naturality �−
)

�m ◦ ( f ⊗ �M�∗�) ◦ α−1
 ◦ (� ⊗ �m ◦ ( free f ⊗ free f )
)

Then, using �free f ◦μ
 = �[�free f ◦ λ�∗
, �m ◦ ( f ⊗ �M�∗�) ◦ α−1
]� =
�m ◦ ( free f ⊗ free f )
, we show that the property holds.

free f ◦μ
= (inverses)

��free f ◦μ
�
= (proven above)

��m ◦ ( free f ⊗ free f )
�
= (inverses)

m ◦ ( free f ⊗ free f )

�

C Free monoid basis

This section proves the roundtrip and coherency properties for the free monoid basis.
First, some relevant definitions are repeated, then each property related to a constructor
or handler is proven in its own subsection.

C.1 Defining properties free

free f ◦ ε = e (C.1)

free f ◦ ins = f (C.2)

free f ◦μ = m ◦ ( free f ⊗ free f ), (C.3)

where (M , e, m) is a monoid.

C.2 Definition ι/�[e, g]�

ι = μ ◦ (ins ⊗�∗) (C.4)

�[e, g]� = evalX e ◦ free �g
 (C.5)
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C.3 Roundtrip property ins

The roundtrip property is ins = ι ◦ (� ⊗ ε) ◦ ρ−1
� , the definition of ins in the initial algebra

basis.

Proof

ι ◦ (� ⊗ ε) ◦ ρ−1
�

= (def ι, C.4)
μ ◦ (ins ⊗�∗) ◦ (� ⊗ ε) ◦ ρ−1

�

= (bifunctor ⊗)
μ ◦ (�∗ ⊗ ε) ◦ (ins ⊗ I) ◦ ρ−1

�

= (monoid property)
ρ�∗ ◦ (ins ⊗ I) ◦ ρ−1

�

= (ρ is a natural transformation)
ins ◦ ρ� ◦ ρ−1

�

= (inverses)
ins

�

C.4 Roundtrip property μ

The roundtrip property is μ= ��[�λ�∗
, �ι ◦ (� ⊗ ev�∗ ) ◦ α−1
]��, the definition of μ in
the initial algebra basis. We prove this using the fact that both sides (after �−
) are equal
to free �ι
.

C.4.1 Left-hand side

First, we show that �μ
 = free �ι
. We show that it is a monoid homomorphism �∗ →
�∗�∗

and that �μ
 ◦ ins = �ι
. They are equal due to uniqueness of free.

Proof

�μ
 ◦ ε
= (naturality �−
)

�μ ◦ (ε⊗�∗)

= (monoid property)

�λ�∗

= (def. ė)

ė

�μ
 ◦ ins
= (naturality �−
)

�μ ◦ (ins ⊗�∗)

= (def ι)

�ι
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�μ
 ◦μ
= (naturality �−
)

�μ ◦ (μ⊗�∗)

= (monoid property)

�μ ◦ (�∗ ⊗μ) ◦ α−1

= (inverses)

���μ
� ◦ (�∗ ⊗ ��μ
�) ◦ α−1

= (naturality �−� & bifunctor ⊗)

���∗�∗� ◦ (�μ
 ⊗ (��∗�∗� ◦ (�μ
 ⊗�∗))) ◦ α−1

= (bifunctor ⊗)

���∗�∗� ◦ (�∗�∗ ⊗ ��∗�∗�) ◦ (�μ
 ⊗ (�μ
 ⊗�∗)) ◦ α−1

= (α−1 is a natural transformation)

���∗�∗� ◦ (�∗�∗ ⊗ ��∗�∗�) ◦ α−1 ◦ ((�μ
 ⊗ �μ
) ⊗�∗)

= (naturality �−
)

���∗�∗� ◦ (�∗�∗ ⊗ ��∗�∗�) ◦ α−1
 ◦ (�μ
 ⊗ �μ
)
= (def. ṁ)

ṁ ◦ (�μ
 ⊗ �μ
)

�

C.4.2 Right-hand side

We use the following local definitions for readability

b1 = �λ�∗

b2 = �ι ◦ (� ⊗ ev�∗ ) ◦ α−1


We show that �[b1, b2]� = free �ι
. We show that it is a monoid homomorphism �∗ →
�∗�∗

and that �[b1, b2]� ◦ ins = �ι
. They are equal due to uniqueness of free.

Proof

�[b1, b2]� ◦ ε
= (def. �−�)

eval�∗�∗ b1 ◦ free �b2
 ◦ ε
= (property free)

eval�∗�∗ b1 ◦ �λ�∗�∗ 

= (property eval)

b1

= (expand b1)
�λ�∗


= (def. ė)
ė

�[b1, b2]� ◦ ins
= (def. �−�)

eval�∗�∗ b1 ◦ free �b2
 ◦ ins
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= (property free)
eval�∗�∗ b1 ◦ �b2


= (property eval)
b2 ◦ (� ⊗ b1) ◦ ρ−1

�

= (expand b2)
�ι ◦ (� ⊗ ev�∗ ) ◦ α−1
 ◦ (� ⊗ b1) ◦ ρ−1

�

= (naturality �−
)
�ι ◦ (� ⊗ ev�∗ ) ◦ α−1 ◦ ((� ⊗ b1) ⊗�∗) ◦ (ρ−1

� ⊗�∗)

= (α−1 is a natural transformation)

�ι ◦ (� ⊗ ev�∗ ) ◦ (� ⊗ (b1 ⊗�∗)) ◦ α−1 ◦ (ρ−1
� ⊗�∗)


= (def. ev)
�ι ◦ (� ⊗ ��∗�∗�) ◦ (� ⊗ (b1 ⊗�∗)) ◦ α−1 ◦ (ρ−1

� ⊗�∗)

= (bifunctor ⊗ & naturality �−�)

�ι ◦ (� ⊗ �b1�) ◦ α−1 ◦ (ρ−1
� ⊗�∗)


= (expand b1 & inverses)
�ι ◦ (� ⊗ λ�∗ ) ◦ α−1 ◦ (ρ−1

� ⊗�∗)

= (def. monoidal category)

�ι


�[b1, b2]� ◦μ
= (def. �−�)

eval�∗�∗ b1 ◦ free �b2
 ◦μ
= (free �b2
 = �ṁ
 ◦ free �ι
)

eval�∗�∗ b1 ◦ �ṁ
 ◦ free �ι
 ◦μ
= (eval�∗�∗ b1 ◦ �ṁ
 =�∗�∗

)
free �ι
 ◦μ

= (property free)
ṁ ◦ ( free �ι
 ⊗ free �ι
)

= (eval�∗�∗ b1 ◦ �ṁ
 =�∗�∗
)

ṁ ◦ ((eval�∗�∗ b1 ◦ �ṁ
 ◦ free �ι
)⊗
(eval�∗�∗ b1 ◦ �ṁ
 ◦ free �ι
))

= (free �b2
 = �ṁ
 ◦ free �ι
)
ṁ ◦ ((eval�∗�∗ b1 ◦ free �b2
) ⊗ (eval�∗�∗ b1 ◦ free �b2
))

= (def. �−�)
ṁ ◦ (�[b1, b2]� ⊗ �[b1, b2]�)

Equality free �b2
 = �ṁ
 ◦ free �ι
 holds since

�ṁ
 ◦ free �ι
 ◦ ins
= (property free)

�ṁ
 ◦ �ι

= (def. ṁ)

��ev�∗ ◦ (�∗�∗ ⊗ ev�∗ ) ◦ α−1

 ◦ �ι

= (naturality �−
)

��ev�∗ ◦ (�∗�∗ ⊗ ev�∗ ) ◦ α−1
 ◦ (�ι
 ⊗�∗�∗
)
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= (naturality �−
)
��ev�∗ ◦ (�∗�∗ ⊗ ev�∗ ) ◦ α−1 ◦ ((�ι
 ⊗�∗�∗

) ⊗�∗)


= (α−1 is a natural transformation)

��ev�∗ ◦ (�∗�∗ ⊗ ev�∗ ) ◦ (�ι
 ⊗ (�∗�∗ ⊗�∗)) ◦ α−1


= (bifunctor ⊗)

��ev�∗ ◦ (�ι
 ⊗�∗) ◦ (� ⊗ ev�∗ ) ◦ α−1


= (def. ev�∗ )

����∗�∗� ◦ (�ι
 ⊗�∗) ◦ (� ⊗ ev�∗ ) ◦ α−1


= (naturality �−�)

����ι
� ◦ (� ⊗ ev�∗ ) ◦ α−1


= (inverses)

��ι ◦ (� ⊗ ev�∗ ) ◦ α−1


= (def. b2)

�b2
,

and �ṁ
 and free �ι
 are both monoid homorphisms and thus their composition is
a monoid homomorphism, meaning �ṁ
 ◦ free �ι
 ◦ ε= ë and �ṁ
 ◦ free �ι
 ◦μ= m̈ ◦
(�ṁ
 ◦ free �ι
 ⊗ �ṁ
 ◦ free �ι
). Since free �b2
 is the unique monoid homomorphism,
free �b2
 = �ṁ
 ◦ free �ι
.

Where ṁ and m̈ are specialized to m̈ : (�∗�∗
)(�∗�∗

) ⊗ (�∗�∗
)(�∗�∗

) → (�∗�∗
)(�∗�∗

) and
ṁ :�∗�∗ ⊗�∗�∗ →�∗�∗

for this case. �

C.4.3 Property proof

Then, using �[b1, b2]� = free �ι
 = �μ
, we show that the roundtrip property holds.

Proof

��[�λ�∗
, �ι ◦ (� ⊗ ev�∗ ) ◦ α−1
]��
= (proven above)

��μ
�
= (inverses)
μ

�

C.5 Roundtrip property free

The roundtrip property is free f = �[e, m ◦ ( f ⊗ M)]�, the definition of free f in the initial
algebra basis. We show that the right-hand side is a monoid homomorphism �∗ → M and
�[e, m ◦ ( f ⊗ M)]� ◦ ins = f . They are equal due to uniqueness of free.

Proof

�[e, m ◦ ( f ⊗ M)]� ◦ ε
= (def. �−�)

evalM e ◦ free �m ◦ ( f ⊗ M)
 ◦ ε
= (property free)
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evalM e ◦ ė
= (def. ė & property eval)

e

�[e, m ◦ ( f ⊗ M)]� ◦ ins
= (def. �−�)

evalM e ◦ free �m ◦ ( f ⊗ M)
 ◦ ins
= (property free)

evalM e ◦ �m ◦ ( f ⊗ M)

= (property eval)

m ◦ ( f ⊗ M) ◦ (� ⊗ e) ◦ ρ−1
�

= (bifunctor ⊗)
m ◦ (M ⊗ e) ◦ ( f ⊗ I) ◦ ρ−1

�

= (monoid property)
ρM ◦ ( f ⊗ I) ◦ ρ−1

�

= (ρ is a natural transformation)
f ◦ ρ� ◦ ρ−1

�

= (inverses)
f

�[e, m ◦ ( f ⊗ M)]� ◦μ
= (def. �−�)

evalM e ◦ free �m ◦ ( f ⊗ M)
 ◦μ
= (free �m ◦ ( f ⊗ M)
 = �m
 ◦ free f )

evalM e ◦ �m
 ◦ free f ◦μ
= (evalM e ◦ �m
 = M)

free f ◦μ
= (property free)

m ◦ ( free f ⊗ free f )
= (evalM e ◦ �m
 = M)

m ◦ ((evalM e ◦ �m
 ◦ free f ) ⊗ (evalM e ◦ �m
 ◦ free f ))
= (free �m ◦ ( f ⊗ M)
 = �m
 ◦ free f )

m ◦ ((evalM e ◦ free �m ◦ ( f ⊗ M)
) ⊗ (evalM e ◦ free �m ◦ ( f ⊗ M)
))
= (def. �−�)

m ◦ (�[e, m ◦ ( f ⊗ M)]� ⊗ �[e, m ◦ ( f ⊗ M)]�)

Equality free �m ◦ ( f ⊗ M)
 = �m
 ◦ free f holds since

�m
 ◦ free f ◦ ins
= (property free)

�m
 ◦ f
= (naturality �−
)

�m ◦ ( f ⊗ M)
,
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and �m
 and free f are both monoid homorphisms and thus their composition is a
monoid homomorphism, meaning �m
 ◦ free f ◦ ε= ė and �m
 ◦ free f ◦μ= ṁ ◦ (�m
 ◦
free f ⊗ �m
 ◦ free f ). Since free �m ◦ ( f ⊗ M)
 is the unique monoid homomorphism,
free �m ◦ ( f ⊗ M)
 = �m
 ◦ free f . �

C.6 Coherency properties �−�

The �[a, b]� morphism should have the same properties as in the initial algebra basis,
resulting in two coherency properties.

C.6.1 Property 1

We prove that �[a, b]� ◦ ε= a.

Proof

�[a, b]� ◦ ε
= (def. �[a, b]�)

evalX a ◦ free �b
 ◦ ε
= (property free)

evalX a ◦ �λX 

= (property eval)

a
�

C.6.2 Property 2

We prove that �[a, b]� ◦ ι= b ◦ (� ⊗ �[a, b]�).

Proof

�[a, b]� ◦ ι
= (def. of ι and �[a, b]�)

evalX a ◦ free �b
 ◦μ ◦ (ins ⊗�∗)
= (property free)

evalX a ◦ ṁ ◦ ( free �b
 ⊗ free �b
) ◦ (ins ⊗�∗)
= (bifunctor ⊗ & free f ◦ ins = f )

evalX a ◦ ṁ ◦ (�b
 ⊗ free �b
)
= (def. evalX a)

evX ◦ (X X ⊗ a) ◦ ρ−1
X X ◦ ṁ ◦ (�b
 ⊗ free �b
)

= (ρ−1 natural transformation)
evX ◦ (X X ⊗ a) ◦ (ṁ ⊗ I) ◦ ρ−1

X X ⊗X X ◦ (�b
 ⊗ free �b
)

= (bifunctor ⊗)
evX ◦ (ṁ ⊗ X ) ◦ ((X X ⊗ X X ) ⊗ a) ◦ ρ−1

X X ⊗X X

◦(�b
 ⊗ free �b
)
= (def. evX and ṁ)

�X X � ◦ (��X X � ◦ (X X ⊗ �X X �) ◦ α−1
 ⊗ X )
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◦((X X ⊗ X X ) ⊗ a) ◦ ρ−1
X X ⊗X X ◦ (�b
 ⊗ free �b
)

= (naturality �−� & inverses)
�X X � ◦ (X X ⊗ evX ) ◦ α−1 ◦ ((X X ⊗ X X ) ⊗ a) ◦ ρ−1

X X ⊗X X

◦ (�b
 ⊗ free �b
)
= (α−1 natural transformation)

�X X � ◦ (X X ⊗ �X X �) ◦ (X X ⊗ (X X ⊗ a)) ◦ α−1 ◦ ρ−1
X X ⊗X X

◦ (�b
 ⊗ free �b
)
= (property α−1 ◦ ρ−1 = id ⊗ ρ−1)

�X X � ◦ (X X ⊗ �X X �) ◦ (X X ⊗ (X X ⊗ a)) ◦ (X X ⊗ ρ−1
X X )

◦ (�b
 ⊗ free �b
)
= (bifunctor ⊗)

�X X � ◦ (X X ⊗ (�X X � ◦ (X X ⊗ a) ◦ ρ−1
X X ◦ free �b
))

= (def. of evalX a)
�X X � ◦ (X X ⊗ (evalX a ◦ free �b
)) ◦ (�b
 ⊗�∗)

= (def. of �[a, b]�)
�X X � ◦ (X X ⊗ �[a, b]�) ◦ (�b
 ⊗�∗)

= (bifunctor ⊗)
�X X � ◦ (�b
 ⊗ X X ) ◦ (� ⊗ �[a, b]�)

= (naturality �−� & inverses)
b ◦ (� ⊗ �[a, b]�)

�

D Coherency properties handle

The handle _ with h operation in the initial algebra basis should have the same proper-
ties as in the free algebra basis. This results in two coherency properties for the operation
and value rule, respectively.

In the following proofs, we assume the following is defined:

h =
handler
| val (a: A) -> . . .: X (v)
| opi (pi: Pi,k: Ni -> X) -> . . .: X (ci)

ih =
ihandler
| ε (a: A)

-> λ(f: A -> X). f a (e)
| opi (pi: Pi,k: Ni -> ((A -> X) -> X))

-> λ(f:A -> X). ci (pi, λ(n: Ni). k n f) (gi)

D.1 Coherency property: Value rule

handle (x: A) with h
= (def. handle)

(ihandle (x: A) with ih) v
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= (ε rule)
(e x) v

= (def. e)
((λ a. λf. f a) x) v

= (application)
(λf. f x) v

= (application)
v x

D.2 Coherency property: Operation rule

handle (opi (p: Pi, �: Ni -> �∗A)) with h
= (def. handle)

(ihandle (opi (p: Pi, �: Ni -> �∗A)) with ih) v

= (ι rule)
(gi (p, λn. ihandle (� n) with ih)) v

= (def. gi)
((λ(pi,k). λf. ci (pi, λn. k n f))

(p, λn. ihandle (� n) with ih)) v

= (α-renaming & application)
(λf. ci (p, λn. (λx. ihandle (� x) with ih) n f)) v

= (application)
ci (p, (λn. λx. ihandle (� x) with ih) n v))

= (application)
ci (p, (λn. ihandle (� n) with ih) v)

= (def. handle)
ci (p, λn. handle (� n) with h)

E Conversion diagram

We show that both paths of the diagram are equal to �[i′, a′ ◦ (g ⊕ FX )]�. First, we repeat
some relevant definitions, then prove the algebra conversion path and lastly prove the
program conversion path.

E.1 Definitions

E.1.1 Signature conversion

f : L�→�

g : �→ R� = � f �

E.1.2 Algebra conversion

The original algebra components are

i : J → X

a : � ⊕ X → X
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The transformed algebra components are

i′ : I → RX = Ri ◦ φ0

a′ : R� ⊗ RX → RX = Ra ◦ φ

E.2 Algebra conversion

We have to show that h′ ◦ hoist g = �[i′, a′ ◦ (g ⊗ RX )]�.

Proof Both h′ = �[i′, a′]� and hoist g = �[ε, ι ◦ (g ⊗ (R�)⊗)]� are algebra homomor-
phisms. Their composition is equal to �[i′, a′ ◦ (g ⊗ RX )]�, since it is the unique algebra
homomorphism. �

E.3 Program conversion

Both h = �[i, a]� and hoist f = �[ε, ι ◦ ( f ⊕�⊕)]� are algebra homomorphisms. Their com-
position is an algebra homomorphism and thus it is equal to ah = �[i, a ◦ ( f ⊕ X )]� since it
is unique.

ah = �[i, a ◦ ( f ⊕ X )]�

convert = free �insL��

= �[Rε ◦ φ0, Rμ ◦ φ ◦ (�insL�� ⊕ R((L�)⊕))]�

We have to show that Rh ◦ R(hoist f ) ◦ convert = R(ah) ◦ convert = �[i′, a′ ◦ (g ⊗
RX )]�. We show that R(ah) ◦ convert is an algebra homomorphism �⊗ → RX , then it is
equal to �[i′, a′ ◦ (g ⊗ RX )]� due to its uniqueness.

Proof

R(ah) ◦ convert ◦ ε
= (def. convert & property �−�)

R(ah) ◦ Rε ◦ φ0

= (functor R)
R(ah ◦ ε) ◦ φ0

= (def. ah & property �−�)
Ri ◦ φ0

= (def. i′)
i′

R(ah) ◦ convert ◦ ι
= (def. convert & property �−�)

R(ah) ◦ Rμ ◦ φ ◦ (�insL�� ⊗ R((L�)⊕)) ◦ (�⊗ convert)
= (bifunctor ⊗)

R(ah) ◦ Rμ ◦ φ ◦ (�insL�� ⊗ convert)
= (naturality �−�)

R(ah) ◦ Rμ ◦ φ ◦ ((R(insL�) ◦ �L��) ⊗ convert)
= (bifunctor ⊗)
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R(ah) ◦ Rμ ◦ φ ◦ (R(insL�) ⊗ R((L�)⊕)) ◦ (�L�� ⊗ convert)
= (φ is a natural transformation)

R(ah) ◦ Rμ ◦ R(insL� ⊕ (L�)⊕) ◦ φ ◦ (�L�� ⊗ convert)
= (def. ι)

R(ah) ◦ Rι ◦ φ ◦ (�L�� ⊗ convert)
= (functor R)

R(ah ◦ ι) ◦ φ ◦ (�L�� ⊗ convert)
= (def. ah & property �−�)

R(a ◦ ( f ⊕ X ) ◦ (L�⊕ ah)) ◦ φ ◦ (�L�� ⊗ convert)
= (functor R)

Ra ◦ R( f ⊕ X ) ◦ R(L�⊕ ah) ◦ φ ◦ (�L�� ⊗ convert)
= (φ is a natural transformation)

Ra ◦ φ ◦ (Rf ⊗ RX ) ◦ (R(L�) ⊗ R(ah)) ◦ (�L�� ⊗ convert)
= (bifunctor ⊗)

Ra ◦ φ ◦ ((Rf ◦ �L��) ⊗ RX ) ◦ (�⊗ (R(ah) ◦ convert))
= (naturality �−�)

Ra ◦ φ ◦ (�f � ⊗ RX ) ◦ (�⊗ (R(ah) ◦ convert))
= (def. g & def. a′)

a′ ◦ (g ⊗ RX ) ◦ (�⊗ (R(ah) ◦ convert))

�
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