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Abstract

Trichuris muris is a mouse intestinal parasitic nematode that inhabits the large intestine of its
host and induces a strong immune response. The effects of this strong anti-parasite response
can be found locally within the intestinal niche and also systemically, having effects on mul-
tiple organs. Additionally, the anti-parasite response can have multiple effects on infectious
organisms and on microbiota that the host is harbouring. It has been shown that Th1
responses induced by T. muris can affect progression of bowel inflammation, cause colitic-
like intestinal inflammation, reduce barrier function and intestinal mucosal responses. In
the brain, T. muris can exacerbate stroke outcome and other neurological conditions. In
the lung, T. muris can suppress airway inflammation and alter immune responses to other
parasites. Additionally, T. muris induced responses can inhibit anti-tumour immunity.
Although this parasite maintains a localized niche in the large intestine, its effects can be
far-reaching and substantially impact other infections through modulation of bystander
immune responses.

Introduction

Trichuris muris is a mouse intestinal parasitic nematode used as an experimental model for the
human counterpart, T. trichiura. This nematode is one of the four major soil-transmitted hel-
minths that infect 1.5 billion people worldwide causing significant morbidity (WHO, 2020).
These diseases bear a huge impact on the quality of life of infected people and on the economic
growth of infected communities (Hotez et al., 2014).

T. muris inhabits the large intestine and caecum of the host, with adult parasites living with
their anterior half tunnelled into the host epithelium and their posterior free in the lumen to
facilitate egg deposition (Cliffe and Grencis, 2004). The immune response to T. muris in mice
is very well characterized and there is a distinct polarization of immune response in resistant
and susceptible strains of mouse (Else and Grencis, 1991; Else et al., 1992). Resistant animals
produce high levels of interleukin 13 (IL-13) and associated T helper type 2 (Th2) cytokines in
response to infection (Fig. 1), which are essential for parasite expulsion via mechanisms such
as epithelial cell turnover and mucin production and muscle contraction (Khan et al., 2003;
Cliffe et al., 2005; Hasnain et al., 2010; Chen et al., 2021). In contrast, a susceptible animal
produces high amounts of interferon-γ (IFN-γ) and Th1 associated cytokines (Fig. 1) that
leads to chronic infection, enabling the parasite to establish to maturity within the large intes-
tine and release eggs into the environment, thereby perpetuating infection. Trickle infections
can also be used to more closely mimic a natural infection of repeated low-dose exposures.
Weekly trickle infections promote an initial Th1 response but this changes to a dominant
Th2 response after 9 weeks (Fig. 1), which prevents any further establishment of worms
(Glover et al., 2019). Chronic infection, either in genetically susceptible mice or due to a low-
dose infection and its associated Th1 response, are associated with dysregulation within the
gut, such as crypt hyperplasia and apoptosis (Cliffe et al., 2007) together with a regulatory
response that is required to limit worm-driven pathology (D’Elia et al., 2009; Grencis et al.,
2014; Duque-Correa et al., 2019). Interestingly, reducing T regulatory (Treg) cells early on dur-
ing a low-dose infection does have a small but significant effect on the capacity to expel para-
sites and subsequently intestinal pathology is reduced, suggesting that this induced Treg
response is of benefit to both the host and to the parasite (Sawant et al., 2014). However,
this effect on parasite expulsion was lost if Tregs were depleted once infection had become
established (Sawant et al., 2014). A key cytokine produced by CD4+ T cells IL-10, is critical
in host survival during T. muris infection (Schopf et al., 2002) although whether Tregs are
the major source of IL-10 during T. muris infection is unclear. TGF-β is another regulatory
cytokine that is produced during T. muris infection that can dampen CD4+ T cell responses
(Li and Flavell, 2008). As with the effects of an early reduction in Tregs, early ablation of
TGF-β during a low-dose infection again caused a significant, although partial, reduction in
worm numbers (Worthington et al., 2013). When the ability of dendritic cells to induce
TGF-β was prevented, mice were able to clear a low-dose infection efficiently although this
did not seem to be dependent upon the generation of Tregs (Worthington et al., 2013).
Thus, it appears that the regulatory response generated by T. muris is complex and involves
CD4+ T cells, Tregs, IL-10 and TGF-β contributing to the net result of a chronic infection
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with controlled intestinal inflammation. This review will discuss
the differing effects that either low-dose or high-dose intestinal
T. muris infection can have on both enteral and systemic
responses in the host (Fig. 1).

Intestinal inflammation

Inflammatory bowel disease (IBD) in humans represents broadly
two distinct immunological conditions; Crohn’s disease and
ulcerative colitis. Disease onset is prompted in genetically suscep-
tible individuals by atypical responses to microbiota or environ-
mental cues such as diet and stress (Guan, 2019). The influence
of human trichuriasis upon IBD has received little attention,
with notable exceptions (Broadhurst et al., 2010). This study fol-
lowed pathological and immunological changes in an individual
with ulcerative colitis prior to and following self-treatment with
T. trichiura. The data supported a modulatory role for whipworm
infection upon disease severity with infection associated with dis-
ease remission. Due to the intestinal niche that Trichuris species
inhabit, an effect upon inflammatory disease of the large intestine
in the host might be expected. Mechanistically this can be
explored in the mouse using T. muris together with murine
models of IBD. It is plausible that T. muris infection may cause
IBD symptoms while the host immune response to the parasitic
infection could have implications on progression of intestinal
inflammation. Specifically, it is known that a low-dose infection
of ∼20 T. muris eggs will proceed to chronicity (Fig. 1), even in

normally resistant strains of mouse, leading to an IFN-γ/
Th17-driven disease (Levison et al., 2010) that is controlled by
a concomitant IL-10 response (Grencis et al., 2014). Indeed,
IL-10 knock-out (KO) and IL-10R KO mice develop severe path-
ology in response to T. muris infection (Schopf et al., 2002;
Duque-Correa et al., 2019). This low-dose infection regime can
be used to mimic colitis, leading to both phenotypic and tran-
scriptional similarities to other widely used models of IBD
(Levison et al., 2010; Foth et al., 2014). Of 32 genes that are
known to be transcriptionally different during IBD, 30 are also
found to be upregulated in the CD4+CD45RB T cell transfer
model of colitis (te Velde et al., 2007). Nineteen of these 30
genes, including IFN-γ, were also found to be upregulated in
chronic T. muris infection (Levison et al., 2010). Indeed, chronic
T. muris infection shows a degree of similarity to all mouse mod-
els of Th1-driven colitis, both phenotypically and transcription-
ally, though the degree of similarity does vary from model to
model (Levison et al., 2010). Additionally, it has been shown
that T. muris pathology and Crohn’s disease have overlapping
QTL regions – overlapping regions of DNA suggesting common
genetic parameters (Levison et al., 2013). To exemplify this, the
role of two different cytokines have been shown to be important
in both T. muris and colitis, IL-27 and IL-13. IL-27 is a potent
stimulator of Th1 responses (Pflanz et al., 2002) and is more
highly expressed in patients with IBD (Nemeth et al., 2017).
However, IL-27 is also known to regulate Th17 responses and
to stimulate IL-10 production and Treg generation (Awasthi

Fig. 1. The whipworm T. muris, though caecal dwelling, can affect many other systems in the body. The immune response to T. muris is dose-dependent with
different cytokines being produced in response to the different doses of eggs given which can lead to chronic infection (Th1) or expulsion (Th2). Each of the
immune responses to the differing doses of eggs can impact different systems in the body as depicted by the arrows. As pictured, tumours are increased in
size and number in a cancer model with chronic T. muris, pathology is increased in chronic infection and shows similarity to IBD, and hippocampus RANTES expres-
sion is increased with chronic T. muris infection. Changes in microbiota, lung effects and effects on other infections are also apparent with T. muris infection.
(Created with BioRender.com)
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et al., 2007; Yoshida and Hunter, 2015). Oral delivery of IL-27
recombinant bacteria can ameliorate T cell transfer-induced
colitis in mice (Hanson et al., 2014) whilst a T. muris infection
in an IL-10/IL-27 KO mouse leads to less severe pathology
than seen in the IL-10 KO control due to a decreased
pro-inflammatory profile (Villarino et al., 2008). Additionally,
WSX-1-deficient animals, that lack the functional receptor for
IL-27, mount a heightened Th2 response to infection and show
an accelerated expulsion of the parasite (Artis et al., 2004;
Bancroft et al., 2004). Despite these contrasting results, known
IL-27 gene polymorphisms in IBD patients (Li et al., 2009;
Wang et al., 2014) make this cytokine an intriguing IBD therapy
candidate (Andrews et al., 2016). In contrast, IL-13 is a Th2/Type
2 cytokine (Minty et al., 1993) that is upregulated during an acute
resolving T. muris infection (Bancroft et al., 1998). IL-13 is a
potent suppressor of Th1 responses in humans (de Waal
Malefyt et al., 1993; Wynn, 2015), although its role in IBD is com-
plex. Crohn’s disease is principally a Th1 and IFN-γ driven con-
dition whilst ulcerative colitis is associated with increased Th2
cytokines such as IL-5 and IL-13 (Fuss et al., 1996, 2004).
T. muris infection in IL-10/IL-13Rα2 KO mice has been used to
highlight the importance of IL-13 in controlling T. muris-induced
pathology. IL-13Rα2 is the decoy receptor for IL-13 and reduces
the bio-availability of IL-13 (Mentink-Kane and Wynn, 2004).
When infected with T. muris, IL-10/IL-13Rα2 KO mice have a
decreased morbidity and mortality as compared to IL10 KO
mice (Wilson et al., 2011) demonstrating the protective role of
IL-13. In support of this, recent studies have shown that IL-13
acts to mediate recovery and repair in the gut following dextran
sulphate sodium (DSS)-induced colitis, which is Th1 driven, as
disease was improved in both IL-13Rα2 KO mice and in mice
treated with a neutralizing IL-13Rα2 antibody (Karmele et al.,
2019). Additionally, transcripts for IL-13Rα2 have been found
to be elevated in human IBD biopsies suggesting a protective
role for IL-13 in these patients (Arijs et al., 2009, 2010).
Similarly, patients expressing a more active variant of IL-13,
with a reduced affinity to the IL-13α2 decoy receptor, had a
lower risk of developing Crohn’s disease (Karmele et al., 2019).

Although T. muris infection can cause varied components of
intestinal inflammation, the Treg response (D’Elia et al., 2009;
Worthington et al., 2013; Sawant et al., 2014; Duque-Correa
et al., 2019) that it also initiates has been taken as a basis for a
potential approach to treat IBD. The pig whipworm T. suis has
been used in human trials for treatment of both Crohn’s disease
and ulcerative colitis with resulting remission of disease in some
patients in small cohort studies (Summers et al., 2005a, 2005b)
although no clinical improvement was seen in a larger cohort
study (Schölmerich et al., 2017). Although the exact mechanisms
of action are unknown, excretory/secretory (E/S) products of
T. suis on epithelial cells in vitro have been shown to elicit IL-6
and IL-10 secretion (Parthasarathy and Mansfield, 2005).
Additionally, when T. suis E/S products were added to
bone-marrow-derived macrophages and dendritic cells, there
was a reduction in secretion of pro-inflammatory cytokines and
a strong enhancement of IL-10 secretion (Leroux et al., 2018).
Remission of ulcerative colitis, following self-infection with
T. trichiura, was associated with a marked elevation in IL-22
(an IL-10 family member) producing T cells which were hypothe-
sized to promote intestinal repair by increasing goblet cell num-
bers and mucus production (Broadhurst et al., 2010).

Barrier function in the intestine

During infection, T. muris is known to cause epithelial dysregula-
tion in the large intestine (Artis et al., 1999; Cliffe et al., 2007), a
process which is also observed in human IBD (Strober et al.,

2007). T. muris induced TNF-α and IFN-γ production drive
apoptosis within the caecal crypts of the large intestine (Artis
et al., 1999), which is thought to be in response to
IFN-γ-induced epithelial cell hyperproliferation that also occurs
(Cliffe et al., 2007) thus leading to a perturbation in intestinal
homeostasis. Infection with T. trichiura, the human whipworm,
may cause trichuris dysentery syndrome (Cooper et al., 1990) in
children, which is also associated with an increase in TNF-α pro-
duction by mucosal macrophages (MacDonald et al., 1994).
Increased intestinal apoptosis is also known to lead to a dysregu-
lation of barrier integrity with an associated increase in epithelial
permeability in IBD patients (Schulzke et al., 2006; Mankertz and
Schulzke, 2007). During acute T. muris infection (whereby the
worms are expelled before chronicity, Fig. 1), there is an accumu-
lation of epithelial mast cells in the large intestine (Sorobetea
et al., 2017). Mast cells produce mast cell protease-1 (MCPt-1)
(Metcalfe et al., 1997) and indeed, acute T. muris infection is asso-
ciated with an increase in MCPt-1 both systemically and locally in
the large intestine, which is associated with a loss of barrier integ-
rity leading to increased epithelial permeability (Sorobetea et al.,
2017). T. muris infection in IL-10 KO mice is known to result
in marked mortality and morbidity including a loss of Paneth
cells and an absence of mucus (Schopf et al., 2002). Pathology
in IL-10 KO and IL-10/IL-4 KO mice is also associated with bac-
terial outgrowth as broad-spectrum antibiotic treatment enhances
survival (Schopf et al., 2002). Duque-Correa et al. (2019) also
showed that IL-10 signalling had a protective effect on loss of bar-
rier integrity leading to bacterial translocation. It is also known
that T. suis E/S can affect barrier integrity by reducing the expres-
sion of tight junction proteins (Hiemstra et al., 2014) although
whether this is also a function of T. muris E/S is unknown.
However, Hasnain et al. (2012) showed that adult T. muris E/S
was able to degrade intestinal mucins and T. muris-induced
changes in the intestinal mucus barrier have also been demon-
strated that may act to increase intestinal permeability (Hasnain
et al., 2010, 2011). Infection itself can lead to thickening of the
glycocalyx, the glycoprotein and glycolipid covering of the intes-
tinal epithelial cells (Linden et al., 2008) likely due to the
increased production of mucin proteins. However, there is also
a decreased glycoprotein content within the mucosal barrier dur-
ing chronic infection that may allow increased contact of the
intestinal microbiota with intestinal epithelial cells (Hasnain
et al., 2011). Congruous to this, chronic T. muris infection can
also alter the host intestinal microbiota (Holm et al., 2015;
Houlden et al., 2015) and it is known that a modification in the
composition and function of the gut microbiota can also change
intestinal permeability (Gomaa, 2020).

Microbiota changes in the intestine

Changes in microbiota during a T. muris infection are evident
from as early as only day 14 post-infection (p.i.). By the time
that infection has reached patency (more than day 33 p.i.),
there are significant changes in the composition and diversity of
the microbiota (Fig. 1) (Holm et al., 2015; Houlden et al.,
2015). There was a general shift in the microbiota to a decreased
number of bacteria in the Bacteroidetes phyla and an increased
number of Gram-positive Lactobacillaceae. Such changes in the
microbiota appear to be of benefit to the parasite and changes
were transitory and required the presence of the parasite to be
maintained (White et al., 2018). In contrast, changes in micro-
biota composition in an outbred strain of mouse with a chronic
T. muris infection led to an increase in bacterial invasion of the
host intestinal epithelium (Schachter et al., 2020). Interestingly,
infection-induced microbiota changes can also promote resistance
to damage. In a colitis-susceptible strain of mouse (NOD2 KO), it
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has been established that overgrowth of Bacteroides vulgatus leads
to intestinal abnormalities (Ramanan et al., 2014). However, acute
infection with T. muris, that drives a Th2 response and a mucus
response, led to an increase in Clostridia strains of bacteria that
inhibited B. vulgatus colonization and the resulting B. vulgatus-
driven abnormalities (Ramanan et al., 2016). The microbiota of
the host can also directly influence pathogenesis of T. muris as
antibiotic treatment of chronically infected IL-10 KO animals,
although experiencing similar pathology to control animals, had
a significantly reduced mortality (Kopper et al., 2015). Chronic
infection induced changes to microflora have also been shown
in T. suis infected pigs (Li et al., 2012) although there is contrast-
ing evidence as to whether the human whipworm also drives
microflora changes (Cooper et al., 2013; Ramanan et al., 2016).

Trichuris effects distal to the site of infection

Despite its intestinal epithelial location, the effects of T. muris infec-
tion are not only restricted to the site of infection. Chronic T. muris
infection can modulate responses to chemical skin sensitizers applied
to the ear of the mouse. Suppression of local cellular/cytokine
Th1/pro-inflammatory responses and ear pathology were observed
when using a Th1-promoting compound [2,4-dinitrochlorobenzene
(DNCB)] although no depression in IL-13, or ear swelling was noted
after sensitizing with the Th2-promoting compound trimellitic
anhydride (TMA). Interestingly, the suppression of pathology after
DNCB treatment was associated with a reduction in egress of den-
dritic cells (DCs) from the skin coincident with elevated IL-10 pro-
duction and a slight increase in CD4+FoxP3+ cells in the draining
lymph node (Grencis et al., 2014). Movement of DCs from the
skin to the draining lymph node has been shown to be dependent
on local proinflammatory cytokines which can be inhibited by
IL-10 production (Cumberbatch et al., 2000).

T. muris effects in the lungs

Chronic T. muris infection which drives a strong Th1 response in
the intestine, has also been shown to drive the production of
IFN-γ (by Th1 cells) and IL-10 (myeloid cells) in the lung of
the host (Fig. 1), and so has the potential to suppress the develop-
ment of Type-2-driven airway inflammation (Chenery et al.,
2016). The increased Th1 type response in the lung was able to
reduce the lung response to both papain and house-dust mite,
together with a reduced eosinophil infiltration and reduced lung
mucus production. IL-17 is another cytokine known to be
increased in complex asthma and may contribute to disease pro-
gression (Doe et al., 2010): additionally, IL-17 is critical for neu-
trophil expansion and remodelling of lung tissue and may
contribute to disease progression in other chronic respiratory con-
ditions (Gurczynski and Moore, 2018). A high-dose infection of
T. muris, that induces a Th2 response (Fig. 1), can promote a
mixed IL-17 and Th2-type immunity to the parasite (Wilson
et al., 2011). Induction of Th2 cytokines can also be seen in the
host lung following infection with a high dose of T. muris, how-
ever, this is dependent on IL-17 production and is ablated in an
IL-17 KO animal (Ajendra et al., 2020). Interestingly, this
IL-17-dependent suppression of IFN-γ, which allowed the promo-
tion of type-2 immune responses, was only apparent in the host
lung and was not seen in the intestine. Additionally, a secreted
product from T. muris, p43, is able to bind to IL-13 in vitro
and in vivo (Bancroft et al., 2019). When given to mice intrana-
sally with IL-13, p43 reduced the percentage of RELM-β positive
interstitial lung macrophages as compared to mice treated with
IL-13 only. The effects of p43 are further reviewed in this special
issue by Bancroft & Grencis. By-stander effects of Trichuris infec-
tion in the lung are also seen with other species of Trichuris.

T. suis ova treatment in a grass-pollen allergy clinical trial
increased Th2 and IL-10 production in patients although this
did not affect allergen-specific cytokine responses (Bourke et al.,
2012). Interestingly, treatment of ovalbumin-sensitized mice
with T. suis larval E/S proteins suppressed airway hyperreactivity
and bronchiolar inflammation, partially mediated by E/S-induced
IL-10 secretion (Ebner et al., 2014). Whether T. trichiura has
similar abilities to modulate inflammation is uncertain and
there are conflicting results in the literature (Rodrigues et al.,
2008; Alcântara-Neves et al., 2010; Gonçales et al., 2020).

T. muris cerebrovascular and neurodegenerative disease

It is well established that infection and systemic inflammation are
risk factors for ischaemic brain damage (stroke) and can also
affect the progression of some neurodegenerative disorders (He
et al., 2020).

Using transient middle cerebral artery occlusion as a model of
stroke it was shown that a chronic low-dose T. muris infection,
which drives a Th1 response (Fig. 1), dramatically exacerbated
brain damage caused by experimental stroke (Dénes et al.,
2010). Infection led to an increase in pro-inflammatory mediators
in the brain and surrounding tissue together with an altered Treg
response. Infected mice had elevated Th1-associated cytokines
and chemokines after cerebral artery occlusion however, only
CCL5 (RANTES) stayed significantly increased after 48 hours
post-stroke. Anti-RANTES treatment prevented the infection-
driven exacerbation of stroke-induced damage. Analysis of matrix
metallopeptidase 9 expression in the brain showed elevated levels
after stroke and infection compared to stroke alone indicating
augmented vascular injury and blood−brain barrier damage in
chronically infected animals. Interestingly, an acute, resolving
T. muris infection driving a Th2 response had no effect on infarct
size demonstrating that it was the Th1 milieu driven by the para-
site that was detrimental rather than the parasite itself (Dénes
et al., 2010). The detrimental effects of infection are also very
much dependent on age as infarct size was found to be signifi-
cantly increased in chronically infected aged mice as compared
to chronically infected young mice (Dhungana et al., 2013).
Older mice experienced an increased neutrophil recruitment
and upregulation of Th1 cytokines as compared to the younger
mice leading to the increased pathology seen.

As well as stroke, it has also been demonstrated that chronic
T. muris infection can accelerate the onset of experimental clinical
prion disease – a chronic, neurodegenerative disease caused by
infectious proteins (Donaldson et al., 2020). Mice were infected
with a chronic T. muris infection after receiving prions, timed
so that the peak of parasite-driven inflammation would coincide
with known pre-clinical phases of the prion infection. T. muris
infected mice had a reduced survival time which correlated with
increased pro-inflammatory cytokines in the sera and increased
numbers of CD8+ cells in the brain (Donaldson et al., 2020).
T. muris infection can also exacerbate neuroinflammation in
models of Alzheimer’s disease, a chronic neurodegenerative con-
dition (Querfurth and LaFerla, 2010; Montacute et al., 2017).
Infection in the Alzheimer’s mouse model (3xTg-AD) led to
increased levels of inflammation in the brain with increased
microglia activation. Interestingly, these transgenic animals were
also unable to fully expel a high-dose infection, which is normally
acute and resolving (Fig. 1), together with increased Th1 cytokine
levels in response to infection in the lymph node draining the
large intestine (Montacute et al., 2017). Although not addressed
in any T. muris infection model, T. suis E/S effects in experimental
autoimmune encephalomyelitis, an animal model of multiple
sclerosis (MS), have been assessed (Kuijk et al., 2012; Hansen
et al., 2017). Intraperitoneal administration of T. suis E/S before
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disease onset significantly decreased disease severity and mark-
edly reduced systemic Th1 and Th17 responses (Hansen et al.,
2017). However, T. suis ova therapy in MS clinical trials have
had mixed effects (Voldsgaard et al., 2015; Fleming et al., 2019;
Yordanova et al., 2021).

Trichuris and coinfections

Surprisingly little work has been carried on coinfections of
T. muris and viral or bacterial infections though some work has
been done with Mycobacteria and Streptococcus. Immunity to
Mycobacterium bovis (M. bovis) infection has been shown to be
negatively influenced by a T. muris coinfection. A high-dose
T. muris infection, which promotes a Th2 response, down-
regulated pulmonary Th1 and Treg cell responses to the bacteria
(Fig. 1) (Nel et al., 2014) although this had no effect on bacterial
proliferation and dissemination. However, T. muris E/S-treated
human monocyte-derived macrophages prior to exposure to
M. tuberculosis led to an M2-type polarization with reduced
macrophage phagosome maturation and a resulting increased
bacterial burden (Aira et al., 2017). In a T. muris-Streptococcus
pneumoniae coinfection model, nematode infection was asso-
ciated with an increased carriage of S. pneumoniae, though this
did not reach significance, with a significant increase in dissemin-
ation of the bacteria to the lungs (Law et al., 2021). Anthelmintic
treatment led to a smaller, though not significant, load of bacteria.
This trend for a higher carriage of bacteria when coinfected with
Trichuris was similarly seen in children harbouring T. trichiura
(Law et al., 2021).

Protozoan infections such as Plasmodium berghei, Trypanosoma
brucei and Babesia microti and B. hylomysci will all delay the expul-
sion of a high dose of T. muris infection, particularly at times
of high parasitaemia suggesting that at least acute T. muris infec-
tions do not exert strong immunomodulatory effects on these
co-infections (Phillips and Wakelin, 1974; Phillips et al., 1974).

More data are available on the effect ofT.muris infection on other
helminth infections. Experimental infection of Nematospiroides
dubius [Heligmosomoides polygyrus (bakerii)], which resides in the
small intestine, delayed expulsion of a high dose T. muris infection
and enhanced survival of a trickled T. muris infection (Behnke
et al., 1984). The lung, like the gut, is amucosal surface andmanyhel-
minth parasites have evolved a migratory phase through the lungs in
their life cycle (Craig and Scott, 2014). Cross-talk between the lung
and intestinal mucosal surfaces in terms of host immunity is particu-
larly evident during helminth co-infections. Nippostrongylus brasi-
liensis is a rodent small intestinal dwelling parasite that migrates
through the host lung before reaching maturity (Bouchery et al.,
2017). Intestinal infectionwith a high dose ofT.muris, that promotes
a Th2 response and is expelled by the host (Fig. 1), reduced the num-
ber of N. brasiliensis larvae found in the lung at d2 post-infection
(Filbey et al., 2019). Interestingly, mice that had been given a trickle
infection ofT.muris (initially driving a Th1 response and then a pro-
tective Th2 response) and then a N. brasiliensis infection, after the
switch to a Th2 dominated response, had an equivalent number of
larvae in the lung at d3 post-infection as WT mice (Glover et al.,
2019). This suggests either a resolving delay in N. brasiliensismigra-
tion in the lung as equivalent numbers of adults were found in the
intestine (Glover et al., 2019) or a qualitative difference in the Th2
response initiated by a high dose as compared to a trickle infection.

T. muris-induced alteration in the lung cytokine expression
has also been demonstrated in co-infection with Schistosoma
mansoni (Bickle et al., 2008). S. mansoni is a trematode that
causes chronic infection in mice, causing pathology in the lungs
as it migrates (Boros, 1989). Chronic infection with T. muris led
to a reduced trapping of larvae during their skin-to-lung migra-
tion associated with an altered lung cytokine expression.

Interestingly, co-infected lungs had a lower expression of IFN-γ
despite the Trichuris-driven Th1 response, and it was actually
an IL-10-dominated response that appeared to limit antilarval
schistosomula immunity (Bickle et al., 2008) and allowed progres-
sion of the parasite to the portal system with resulting increased
egg burden and pathology in co-infected mice. Conversely, a
chronic T. muris infection can be resolved by a Schistosome coin-
fection due to the S. mansoni egg-induced Th2 response (Curry
et al., 1995). Additionally, S. mansoni and T. muris coinfected
mice had significantly higher burden of adult Schistosome
worms and eggs in the liver (Bickle et al., 2008) thus demonstrat-
ing that contrasting effects that the infections can have on one
another.

Trichuris and neoplasia

Cancer is a leading cause of death in high-income countries and
incidences are increasing in low-income countries. There exists a
strong link between inflammation and cancer with chronic infec-
tion and the long-term exposure to inflammatory stimuli heigh-
tening the risk of neoplastic change (Wang and Wang, 2007).

Chronic T. muris infection at day 80 p.i. in a wild-type mouse
led to the development of neoplastic change that was similar to
that seen in mice that had been treated with the carcinogen azox-
ymethane (Hayes et al., 2017). Intestinal crypt structure was
altered alongside increased incidence of pre-adenomas which
were more pronounced (in the case of aberrant crypt foci) in
the infected mice as compared to the chemically treated mice.
Even though T. muris infection can lead to increased epithelial
proliferation and apoptosis in the intestine (Artis et al., 1999;
Cliffe et al., 2007), both of which can lead to tumour formation
(Evan and Vousden, 2001) these intestinal changes were only
apparent in the caecum, the parasite niche, rather than through-
out the small intestinal tract where neoplastic change was mostly
observed (Hayes et al., 2017). Neoplastic change was seen in
chronically infected animals even before the peak of parasite-
specific cytokine responses was evident in the draining lymph
node, although greater significant differences were seen as infec-
tion progressed. Infection generated a Th1-predominant response
in these animals, however, this was not associated with a reduced
neoplasia as might have been expected (Wang et al., 2015).

The APCmin/+ tumour model in the mouse develops spontan-
eous adenomas throughout the GI tract (Moser et al., 1990).
Chronic infection of APCmin/+ mice with T. muris led to a signifi-
cant increase in new tumour formation throughout the intestine
and not just an increase in tumour size. Blockade of the CD25+
Treg response abrogated this heightened tumour formation dem-
onstrating the role of the T. muris-induced Tregs in regulating the
anti-tumour response in these animals (Hayes et al., 2017). Tregs
have also been characterized within tumour microenvironments
that can induce tumour-specific immune tolerance (Wang and
Wang, 2007). Clonal expansion of tumour Tregs is thought to
occur both locally and systemically and a high proportion of
Tregs with the tumour micro-environment is correlative with
poor prognosis in many cancer types suggestive of the suppressive
role of Tregs on anti-tumour immunity (Mougiakakos, 2011;
Fridman et al., 2012; Ahmadzadeh et al., 2019). Interestingly
T. suis E/S proteins are capable of stimulating the secretion of
IL-10 from macrophages though failed to induce CD25+Foxp3+

T cells unlike T. muris E/S which was able to do this (D’Elia
et al., 2009; Leroux et al., 2018). Additionally, increased mucosal
T cell activation production of IL-10, TGF-β and FoxP3 were
found in the colon of an individual with ulcerative colitis who
self-infected with T. trichiura (Dige et al., 2017). Tregs are
known to play a role in both pathology and immunity early on
following chronic T. muris infection as are TGF-β and IL-10
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(D’Elia et al., 2009; Worthington et al., 2013; Sawant et al., 2014;
Duque-Correa et al., 2019). It is noteworthy however, that low-
dose chronic infection with T. muris is associated with a depres-
sion in Foxp3+CD4+T cells in the caecum and colon (Holm et al.,
2015; Houlden et al., 2015). Taken together these data suggest that
distinct populations of CD4+ T cells are involved in regulating
tumours at sites away from the parasite niche.

IL-10 and TGF-β are not the only regulatory cytokines asso-
ciated with a T. muris infection and cancer. IL-35 is an immune-
suppressive cytokine which belongs to the IL-12 cytokine family
and can also act to regulate Th1 immunity (Collison et al.,
2007). Chronic T. muris infection can drive an inducible cell
type (iT(R)35 cells) that exert regulatory effects via IL-35 and
are Foxp3 independent (Collison et al., 2010). In a melanoma
model of cancer, these T. muris-induced cells can be found within
the tumour micro-environment (in the skin) and contributed to
tumour progression by again regulating the ongoing anti-tumour
responses (Collison et al., 2010). In addition, IL-31 is a Th2 T cell
cytokine that can suppress type 2 immune responses (Dillon et al.,
2004). IL-31 and IL31R play a regulatory role in T. muris infection
with an induced production of this cytokine in the intestine fol-
lowing infection (Perrigoue et al., 2009). Additionally, infection
of IL31R KO mice led to a heightened Th2 cytokine response
and enhanced goblet cell hyperplasia with a resulting accelerated
expulsion of worms. As this cytokine has also been implicated in
cancer progression, it is likely that T. muris induced IL-31 produc-
tion may also enhance tumour progression in a manner similar to
IL-35 (He et al., 2020).

Conclusion

T. muris is an intestinal dwelling nematode parasite that can have
far-reaching consequences in the host (Fig. 1). Within the intes-
tine itself, chronic T. muris in susceptible strains can have patho-
logical consequences that show a degree of similarity to symptoms
of IBD. Indeed, several genes upregulated during a chronic T.
muris infection are also found to be upregulated in IBD patients.
Paradoxically, T. muris infections can also help modulate IBD
symptoms and pathologies due to the parasite-specific Treg
response driven by infection. T. muris also drives microbiota
changes in the host, beneficial to its survival, that have conse-
quences for the host due to the impact that these changes can
have on mucus constituents and intestinal permeability. Distal
from the site of infection, T. muris infections can have an impact
on immune responses to chemical sensitizers in the ear. In this
case, a chronic T. muris driven IL-10 production preventing the
egress of DCs from the ear. Chronic T. muris infection can also
modulate immune responses in the lung to airway allergens
which was also associated with an increased IL-10 response.
T. muris infection can also influence immune responses in the
brain and it has been demonstrated that an on-going T. muris-
driven Th1 response will worsen the damage caused by experi-
mental stroke, a process driven by an elevated and sustained
RANTES production. Additionally, T. muris can have an effect
on other brain inflammations with papers reporting changes in
prion diseases and Alzheimer’s progression. Although relatively
little work has addressed the effects of T. muris on other parasite,
viral and microbial infections, altered immunity to mycobacteria,
pneumococcus, N. brasiliensis, H. bakerii and S. mansoni have
been reported. Finally, effects of T. muris infection on cancer pro-
gression establish that the T. muris-driven Treg response plays an
important role in inhibiting host immunity to adenoma progres-
sion in the intestine leading to development of more tumours.
Additionally, two other regulatory cytokines, IL-35 and IL-31,
induced by T. muris infection are able to modulate tumour
immunity. In light of this, the importance of T. muris infections

on other diseases and other body systems is profound and war-
rants further research and investigation, especially considering
the widespread nature of this parasite in the human population.
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