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The impact of two-dimensional (2-D) periodic forcing on transition dynamics in laminar
separation bubbles (LSBs) generated on a flat plate is investigated experimentally. Laminar
separation is caused by the favourable-to-adverse pressure gradient under an inverted
modified NACA 643-618 and periodic disturbances are generated by an alternating current
dielectric barrier discharge plasma actuator located near the onset of the adverse pressure
gradient. Surface pressure and time-resolved particle image velocimetry measurements
along the centreline and several wall-parallel planes show significant reductions in
bubble size with active flow control. Periodic excitation leads to amplification of the
Kelvin–Helmholtz (K–H) instability resulting in strong 2-D coherent roller structures.
Spanwise modulation of these structures is observed and varies with the forcing amplitude.
Intermediate forcing amplitudes result in periodic spanwise deformation of the mean
flow at large wavelength (λz/Lb,5kV pp ≈ 0.76). For high-amplitude forcing, the spanwise
modulation of the mean flow agrees with the much smaller wavelength of the difference in-
teraction of two oblique subharmonic modes (λz/Lb,5kV pp ≈ 0.24). Modal decomposition
shows nonlinear interaction of the forced 2-D mode leading to growth of subharmonic
and harmonic content, and the observation of several half-harmonics ([n + 1/2] fAFC)
at intermediate forcing amplitudes. Strongest amplitudes of the 2-D mode and delay of
transition downstream of the time-averaged reattachment are observed for the intermediate
forcing amplitudes, previously only observed in numerical simulations. Consistent with
numerical results, further increase of the forcing amplitude leads to rapid breakdown
to turbulence in the LSB. This suggests that the most effective exploitation of the K–H
instability for transition delay is connected to an optimal (moderate) forcing amplitude.
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1. Introduction
In low-Reynolds-number flows, a laminar boundary layer will separate when the adverse
pressure gradient is strong enough. When free-stream turbulence (FST) in the incoming
flow is low, the hydrodynamic instability of the inviscid shear layer in the separated region
governs the flow dynamics and causes a rapid formation of spanwise-coherent vortical
structures (see e.g. Rist & Maucher 1994; Diwan & Ramesh 2009; Postl, Balzer & Fasel
2011; Balzer & Fasel 2016; Hosseinverdi & Fasel 2018). Spanwise deformation of these
structures (e.g. Postl et al. 2011; Marxen, Lang & Rist 2013; Michelis, Yarusevych &
Kotsonis 2018) leads to breakdown to turbulence. The resulting turbulent flow enhances
entrainment of high-momentum fluid from the free stream and the flow reattaches to the
wall. In a time-averaged sense, the region of recirculating flow between separation and
reattachment is called a laminar separation bubble (LSB). The stability of the shear layer
and the dynamic behaviour of the LSB are highly sensitive to external disturbances in the
flow, i.e. disturbances in the approaching boundary layer and FST. The LSB displacement
effects and subsequent turbulent boundary-layer formation can drastically impact the
aerodynamic efficiency in practical applications, which include but are not limited to
turbo-machinery, laminar airfoils used in wind turbines, uncrewed aerial vehicles and other
aircraft. In addition, the highly unstable flow field increases noise emission and structural
vibrations. Active control of the topology and dynamics of the LSB holds the prospect of
reducing the impact of the unsteady dynamics and could provide a more organised and
predictable flow field.

Early investigations of laminar separation bubbles date back to the seminal work of
Gaster (1967) and Horton (1968), focused on the bubble topology and bursting behaviour
at different Reynolds numbers and pressure gradients. The interest shifted towards various
stages in the transition process in more recent experimental studies (Häggmark et al.
2001; Diwan & Ramesh 2009; Rodríguez et al. 2013; Simoni et al. 2017; Yarusevych &
Kotsonis 2017; Kurelek, Kotsonis & Yarusevych 2018; Michelis et al. 2018). Experiments
and numerical studies (Rist & Maucher 1994; Postl et al. 2011; Marxen, Lang & Rist 2012;
Balzer & Fasel 2016) show the progression of Kelvin–Helmholtz (K–H) instabilities in the
separated shear layer, their exponential amplitude growth towards nonlinear interaction
and subsequent transition to turbulence (Alam & Sandham 2000; Marxen et al. 2013;
Hosseinverdi & Fasel 2018, 2019). Small disturbances within the incoming flow, i.e. in
the upstream boundary layer and in the FST, were found to amplify the instability waves
in the highly unstable shear layer (Marxen et al. 2009; Hosseinverdi & Fasel 2018, 2019;
Rodríguez et al. 2021; Jaroslawski et al. 2023). The findings from these investigations
indicate that the amplified instability waves rapidly reach large (nonlinear) amplitudes
within the separated region, which is followed by periodic shedding of spanwise-coherent
(two-dimensional, 2-D) vortical structures (Postl et al. 2011; Balzer & Fasel 2016; Istvan &
Yarusevych 2018; Hosseinverdi & Fasel 2019). The large-amplitude waves and subsequent
spanwise vortical structures facilitate momentum exchange and limit the wall-normal
extent of the recirculation region, but are insufficient to cause reattachment. Spanwise
modulation of these structures is a result of secondary instability mechanisms (Balzer &
Fasel 2016; Michelis et al. 2018; Hosseinverdi & Fasel 2019; Kurelek et al. 2020;
Rodríguez et al. 2021). The subsequent breakdown into small-scale turbulence in the LSB
results in sufficient entrainment of high-momentum fluid from the free stream to cause
reattachment.

Several types of instabilities were found to contribute to the breakdown to turbulence in
the later stages of unforced LSBs (Marxen et al. 2013): (i) a primary global instability;
(ii) a secondary instability occurring either as a subharmonic or a harmonic of the
fundamental mode; and (iii) a highly localised instability of the attached boundary layer
1016 A59-2
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(e.g. hairpin vortices). Primary global instabilities require the presence of sufficiently
strong reverse flow in the LSB. Theofilis (2011) and Rodríguez et al. (2013) suggest
that a reverse flow level of 7 %−10 % of the free-stream velocity is required for the
presence of a global instability in the LSB. The associated spanwise length scale of
this instability is generally of the order of the separated region, or rather the size of the
vortex trapped inside the LSB (Rodriguez & Theofilis 2010). Temporal growth of a global
instability is able to cause self-sustained transition in LSBs, even in the absence of external
disturbances (Hosseinverdi & Fasel 2019; Rodríguez et al. 2021). Spanwise length scales
of the secondary instabilities (ii) are of similar size to the wavelength of the 2-D vortices
developing in the shear layer and therefore much smaller than those related to the primary
global instability. Two types of the secondary instability are commonly observed for 2-D
vortices in a shear layer, leading to either a spanwise deformation of the spanwise vortices
or growth in the stagnation region between a vortex pair (Maucher, Rist & Wagner 2000;
Jones, Sandberg & Sandham 2008). The secondary instability in the interaction of two
vortices manifests as a subharmonic of the dominant K–H mode in the shear layer. The
third type (iii) of instabilities occurs in the presence of localised regions of strong shear
in attached boundary layers (Bake, Meyer & Rist 2002), e.g. contributing to the complex
formation of hairpin vortices in late stages of the transition in boundary layers.

Contrary to ideal conditions in linear stability calculations and idealised numerical
simulations (Tu = 0 %), flight tests and wind tunnel experiments are never void of FST.
Even at low levels, this significantly impacts the transition process in both experiments
(Klebanoff 1971; Simoni et al. 2017; Jaroslawski et al. 2023) and simulations (Jacobs
& Durbin 2001; Balzer & Fasel 2016; Istvan & Yarusevych 2018; Hosseinverdi & Fasel
2019; Borgmann et al. 2025). At sufficiently low levels of FST (T u � 0.5 %), the shear-
layer roll-up remains largely 2-D. For an increased level of FST (T u > 0.5 %), streamwise
streaks related to Klebanoff modes (Klebanoff, Tidstrom & Sargent 1962; Klebanoff 1971;
Kendall 1985; Fasel 2002; Marxen et al. 2013; Hosseinverdi & Fasel 2017) appear in
the boundary layer, and eventually (T u > 1 %) lead to bypass transition (Morkovin 1969;
Kendall 1985; Jacobs & Durbin 2001). Even low levels of FST (T u = 0.05 %) show a
significant reduction in the separation length in direct numerical simulation (Balzer &
Fasel 2016). The reduction in bubble size is related to an earlier onset of transition
with increasing levels of FST as a consequence of the existing amplitudes of relevant
disturbances in the free stream (Hosseinverdi & Fasel 2019; Borgmann et al. 2025). The
excitation of hydrodynamic instabilities is strongly dependent on the frequency content
in the flow, placing particular importance on the spectral content of the FST and not
only the integral measure, T u. However, the spectral content is rarely matched between
experiments and simulations.

In conditions of low FST, the entrainment of high-momentum fluid from the free stream
and the resulting reattachment have two major contributors: (i) the development of 2-D
roller structures resulting from disturbance growth due to the shear-layer instability and
(ii) turbulent mixing following the transition process. In the absence of artificial
disturbance input, the spanwise-coherent vortices generally do not provide sufficient
momentum exchange and reattachment is a result of subsequent turbulent breakdown.
Experimental and numerical investigations often introduce small-amplitude disturbances
at the most unstable frequencies relevant to the LSB far upstream of separation without
changing its time-averaged topology (Alam & Sandham 2000; Marxen et al. 2003;
Diwan & Ramesh 2009; Kurelek et al. 2020), to track the growth and development of
naturally occurring disturbances. Marxen & Henningson (2011) found that small (but
not too small) forcing amplitudes trigger the laminar to turbulent transition process and
cause the appearance of well-organised 2-D vortical structures in the flow similar to the
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experimental findings with small periodic disturbance input in Watmuff (1999) and Diwan
& Ramesh (2009) using acoustic forcing through a point source upstream of separation.
Further increased forcing amplitudes decrease the bubble size and accelerate the transition
in the LSB. Contrary to investigating the natural transition by small disturbance input,
more recent efforts by Michelis, Yarusevych & Kotsonis (2017) (flat plate) and Yarusevych
& Kotsonis (2017) (NACA 0012) focus on the impact of active flow control (AFC).
With moderate forcing amplitudes, reduction in bubble size is accompanied by strong
2-D vortical structures. This highlights the receptivity of the instabilities in the LSB to
disturbances in the upstream boundary layer.

Extensive numerical simulations applying AFC to the transition process in the LSB
have shown the ability to exploit natural disturbance amplification through the K–H
instability in the shear layer when forcing near the most unstable frequency of the base
flow (Hosseinverdi & Fasel 2019; Yeh et al. 2020). Periodic excitation was successful in
reducing the separated region (Jones et al. 2008; Benton & Visbal 2016; Gross, Little &
Fasel 2017), and was able to delay laminar to turbulent transition, or even eliminate it
completely (Postl et al. 2011; Embacher & Fasel 2014; Hosseinverdi & Fasel 2018). Forcing
the primary convective instability strongly amplifies disturbance waves within the K–H
frequency range of the separated shear layer. The introduced disturbances grow until they
saturate to finite nonlinear amplitudes. The result is observed as strong periodic shedding
of spanwise-coherent vortical structures, originating just upstream of the maximum bubble
height in the LSB. These large-amplitude waves (or vortices) lead to an exchange of
momentum between the LSB and the free stream, sufficient to cause reattachment without
breakdown to turbulence, limiting the extent of the separated region. With optimal
choice of amplitude and frequency, Embacher & Fasel (2014) showed that input of 2-D
disturbance waves can suppress the secondary absolute instability and thus delay transition
and even relaminarise the flow downstream of reattachment. This is fundamentally
different from AFC strategies that employ periodic excitation for control of turbulent
shear layers (e.g. Greenblatt & Wygnanski 2000) since laminar flow is maintained. In
the high-order accurate numerical simulations of Embacher & Fasel (2014), the effects of
realistic conditions, such as FST, noise and vibrations, were neglected. Hosseinverdi &
Fasel (2018) introduced low-amplitude isotropic FST (0.0005 % � T u � 0.05 %) to the
inflow boundary and found that the control was still effective, with transition downstream
of the LSB, but closer to reattachment with increasing FST levels. Therefore, the question
arises as to whether the observed transition delay and relaminarisation of the flow are still
possible in wind tunnel experiments and even free flight conditions.

In this paper, experimental investigations of AFC in LSBs on a flat plate are presented.
Two-dimensional periodic forcing near the onset of the adverse pressure gradient was
facilitated through an alternating current dielectric barrier discharge (ac-DBD) plasma
actuator. The objective of the presented work is to exploit the inherent growth of the
K–H instability in the LSB shear layer to (i) increase the maximum amplitude and
organisation of the spanwise-coherent vortical structures and the associated entrainment
and (ii) influence the transition dynamics and possibly delay the transition to a streamwise
location downstream of the mean reattachment location similar to the computations in
Hosseinverdi & Fasel (2019). The paper is organised as follows. After a description of
the experimental set-up and of the ac-DBD plasma actuator in § 2, a short review of
the analysis tools, e.g. spectral proper orthogonal decomposition (SPOD) and bispectral
mode decomposition (BMD), is provided in § 3. The results in § 4 show the mean flow
topology (§ 4.1) and the influence of forcing on the primary instability (§ 4.2), followed
by a discussion of the unsteady behaviour and the nonlinear interactions downstream of
linear disturbance growth (§§ 4.3 and 4.4).
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Figure 1. (a) Isometric view and (c) 2-D schematic of the flat-plate model and inverted wing used for the LSB
experiments in ALSWT. Shown are pressure taps and particle image velocimetry (PIV) planes for centreline
(green) and wall-parallel (orange) measurements, as well as the actuator location. (b) Schematic of the plasma
actuator and sample of the voltage trace for pulse generation. Duty cycle superposed on the carrier frequency
generates disturbance input with fAFC = π/period.

2. Experimental set-up and instrumentation

2.1. Wind tunnel model
All experiments are performed in the Arizona Low Speed Wind Tunnel (ALSWT) situated
in the Department of Aerospace and Mechanical Engineering at the University of Arizona.
The closed-loop wind tunnel has a test section of 0.9 m × 1.2 m × 3.65 m (height ×
width × length, 3 ft × 4 ft × 12 ft). Static and total pressure in the test section are
recorded using a Pitot tube mounted 0.4 m downstream of the test section entry at the
tunnel sidewall extending into the free stream. Mean flow uniformity is at or better than
±0.5 % and turbulence intensity is measured at T u ≤ 0.035 % in the range of 1 Hz to
10 kHz at tested free-stream conditions of U∞ = 7 m s−1 (Borgmann et al. 2021). Free-
stream temperature is regulated by a heat exchanger with a chilled water supply and
held within the range of ±1 ◦F (0.44 ◦C) of 72 ◦F (22.2 ◦C) throughout the experiments.
Borgmann et al. (2020) present a more extensive investigation of the free-stream properties
at similar operating conditions. The LSBs are generated on a flat plate by an inverted
NACA 643-618 airfoil with a chord length of c = 8 in. (203.2 mm; see figure 1). Projection
of the favourable to adverse pressure gradient along the suction side of the airfoil onto a flat
plate neglects the influence of surface curvature on the transition process (Gaster 1967).
In this work, the inverted wing is placed at a distance of 3.2 in. (81.3 mm) from the plate
surface; 17.5 in. (0.44 m) downstream of the leading edge; at an incidence angle of 2◦
(relative to the inverted airfoil; see drawing in figure 1). Boundary-layer suction along
50 %−60 %-chord and 85 %−90 %-chord on the suction side and a zigzag turbulator tape
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to trip the flow close to the leading edge at the pressure side avoid separation on either
surface of the inverted wing (Borgmann et al. 2021, 2025). A three-stage vacuum motor
(LAMB AMETEK 117500-12) is connected to both ends of the wing, connecting to a
PVC pipe with carefully distributed suction holes located inside the plenum of the hollow
downstream half of the inverted wing to ensure even suction across the span.

The flat-plate model shown in figure 1 spans nearly the entire width of the test section
at 47.75 in. (1.21 m). Gaps between the plate and the test section walls were sealed with a
soft expanding foam. The model core is made from an aluminium honeycomb structure,
covered on both sides by a 1 mm aluminium skin. The plate is 78 in. (1.98 m) long with
a total thickness of 0.5 in. (13 mm) and a flatness of ±0.008 in. ft−1 (±0.665 mm m−1).
Streamlined support structures elevate the flat-plate model to 8.25 in. (210 mm) above
the wind tunnel floor to avoid wall effects. The leading edge is a 1:20 super-ellipse (Lin,
Reed & Saric 1992) with a length of 9.5 in. (241 mm) and smooth transition to the plate
top surface. An adjustable flap at the trailing edge of the plate ensures consistent and
repeatable inflow conditions, as it compensates for blockage and allows for positioning of
the stagnation point along the leading edge. Flow along the bottom side of the plate was
tripped just downstream of the leading edge to reduce unsteadiness in the flow underneath
the plate. The origin of the coordinate system used throughout the investigation is located
at the centre of the leading edge, with the x axis in streamwise, y axis in vertical and z axis
in spanwise direction. The plate surface is considered zero in the vertical (y) direction.
All results in this paper are presented in dimensionless form where x and y are scaled with
a reference length of L∗∞ = 0.0254 m, which is consistent with scaling used in previous
experimental and numerical work for the same model (see Borgmann et al. 2025), and
follows the early experiments by Gaster (1967).

2.2. Active flow control
Forcing of the dominant 2-D disturbance in the LSB shear layer was realised by an
ac-DBD plasma actuator (Corke, Enloe & Wilkinson 2010; Benard & Moreau 2014;
Kotsonis 2015). The spanwise uniformity of the ac-DBD actuator (Michelis et al. 2017;
Yarusevych & Kotsonis 2017; Weingaertner, Tewes & Little 2020) provides the desired
disturbance input to amplify the 2-D instability in the LSB. The forcing location in this
work was chosen at 19.75 in. (0.502 m) from the flat-plate leading edge, just upstream
of the onset of the adverse pressure gradient. Other forcing locations were considered in
Borgmann et al. (2022); however, significant damping of disturbances in the favourable
pressure gradient reduces the disturbance amplitude entering the shear layer at laminar
separation. To maximise the available range of forcing amplitudes within the physical
limitations of the ac-DBD actuator, the forcing was moved as far as possible downstream
without any part of the actuator extending into the adverse pressure gradient.

The ac-DBD actuator was built from a 0.05 mm (0.002 in.) Kapton tape base layer
(1 in. wide) insulating the actuator from the aluminium plate. A copper tape with a
thickness of 0.07 mm (0.0028 in., 0.5 in. wide) was used as the ground electrode
and covered by a dielectric layer (Kapton tape, 0.05 mm (0.002 in.), 2 in. wide). The
high-voltage electrode (copper tape, 0.07 mm (0.0028 in.), 0.25 in. wide) was placed
downstream of the ground electrode on the dielectric layer (figure 1b) and is exposed to
the flow. The actuation signal consists of a carrier frequency of 3 kHz and a square wave,
adjusted in period and width to define the forcing frequency and duty cycle, respectively
(figure 1b). The forcing frequency is chosen based on stability calculations for the baseline
LSB without the actuator in Borgmann et al. (2025). From experiments and direct
numerical simulations (with near-identical time-averaged flow fields) the centre of a broad
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Figure 2. (a) Momentum coefficients (Cμ) for the DBD plasma actuator. (b) Velocity contours for the u (lines)
and v (colours) velocity components of the time-averaged flow field induced by the actuator at 5 kVpp (top)
and 8 kVpp (bottom), duty cycle = 13.3 % in quiescent conditions. The dashed line marks the integration
domain for the Cμ values shown on the left. The asymmetric domain (blue dash-dotted rectangle, top) encloses
the primary AFC pulse facing upstream while the symmetric domain (green dash-dotted rectangle, bottom)
captures the entire momentum input.

peak of dominant frequencies in the separated shear layer was found at approximately
250 Hz. Linear stability theory (LST) results in Borgmann et al. (2025) have shown that
the most unstable frequency is expected at approximately 200 Hz; however, the growth
rates remain similar across a wide rage of frequency between 150 and 300 Hz. Preliminary
tests varying the forcing frequency (between 185 and 250 Hz) at fixed amplitudes resulted
in only very small changes in the mean flow, and caused the periodic structures in the shear
layer to ‘lock on’ to the forced frequency in each case. In addition, stability calculations
by Yarusevych & Kotsonis (2017) in a forced LSB show that the forcing frequency does
not change the most unstable frequencies in the shear layer, while at increased forcing
amplitudes, the most unstable frequency band is slightly lower alongside a decrease in
bubble size.

The momentum generated by the actuator depends strongly on the applied peak-to-peak
voltage. The voltage at the actuator is measured using a Tektronix P6015 high-voltage
probe at the actuator leads. Changes in duty cycle – number of carrier frequency pulses
per cycle – did not show a major impact on the flow response in the range surveyed
(7 %−50 %). In this study, the actuation is set to two cycles of the carrier frequency at
an interval of 5 ms resulting in a duty cycle of 13.3 % at a forcing frequency of 200
Hz at select amplitudes. The amplitudes in this work are referenced by their respective
peak-to-peak (pp) voltages between the electrodes of the actuator, e.g. 5 kVpp.

The layout of the actuator results in a plasma discharge in the upstream direction
between the high-voltage electrode and the ground electrode. Additionally, measurements
of the flow field at the actuator in quiescent conditions show a secondary, weaker discharge
between the high-voltage electrode and the aluminium flat-plate surface (figure 2b).
Similar actuators have been used successfully in previous research on plasma-based flow
separation control on airfoils and flat plates (e.g. Corke et al. 2010; Michelis et al. 2017;
Little et al. 2019), albeit in a single-discharge configuration when mounted on a non-
conductive material. The resulting flow field resembles two opposing wall-parallel jets
originating at the actuator accompanied by wall-normal suction in the direction of the
high-voltage electrode. These features are significantly different from the forcing input of
traditional vibrating ribbon and blowing/suction experiments (figure 2b). The developing
laminar boundary-layer encounters the plasma-based forcing of the primary discharge
before reaching discontinuities from the actuator layout, minimising the geometrical
influence of the actuator.
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Voltage (kVpp) |U |max/U∞ (%) |V |max/U∞ (%) |Cμ,x | (%) |Cμ,y | (%)

3 0.07∗ 0.23∗ 1.48 × 10−4∗
1.02 × 10−4∗

4 0.10∗ 0.16∗ 1.03 × 10−5∗
2.25 × 10−4∗

5 0.31 0.29 1.07 × 10−3 2.44 × 10−3

6 0.93 0.57 6.60 × 10−3 1.5 × 10−2

7 1.85 0.94 2.15 × 10−2 3.9 × 10−2

8 2.86 1.26 0.11 6.7 × 10−2

Table 1. Actuator characteristics for quiescent conditions, scaled by the reference free stream in the LSB
experiments U∞ = 7 m s−1; Cμ values are shown for the integral around the dual pulse (figure 2b, bottom).
∗Values are of the same order as the PIV uncertainty.

The local flow field in the vicinity of the plasma actuator is examined using planar
particle image velocimetry (PIV) measurements in the x–y plane. The small momentum
input, especially at low-amplitude forcing, is a significant challenge for the measurement.
In previous experimental studies, continuous forcing was used at the actuator carrier
frequency to increase momentum input (Maden et al. 2013; Michelis et al. 2017;
Yarusevych & Kotsonis 2017). The momentum input in burst mode is then approximated
by scaling the results from continuous forcing with the respective duty cycle. In the
current investigation, voltage measurements at the actuator leads show that the peak-to-
peak voltages vary between the first and last pulse, with the first pulse (peak-to-peak)
in a burst being up to 10 % below that of the following pulses. The present results were
therefore recorded in burst mode using identical forcing parameters to those of the AFC
applied to the LSBs in § 4. Even though qualitatively the flow field for the lowest forcing
amplitudes (≤ 4 kVpp) is very similar to that shown for 5 kVpp (figure 2b), the maximum
measured velocity magnitudes were small and near the estimated statistical uncertainty of
the PIV measurements (using a 95 % confidence interval, 0.01 m s−1) (table 1). An asterisk
was added to denote the uncertainty on these cases. However, values are provided here for
completeness.

Momentum coefficients (Cμ) of the actuator were calculated based on the velocity
fields, assuming uniform pressure and 2-D behaviour of the actuator along its entire
length (lac). Calculations use the integration paths shown in figure 2(b), following the
formulations in Woszidlo & Little (2021) with the time-averaged momentum (I ) over an
appropriate control volume boundary (S) following the definition in Kotsonis et al. (2011)
and Michelis et al. (2017):

Cμ = I

q∞lac
with I =

∮
S
ρ∞u(u · n)dS, (2.1)

where q∞ is the dynamic pressure and ρ∞ the density of the free stream in the LSB
experiments.

The magnitude of the momentum coefficients in the x and y directions (Cμ,x and
Cμ,y) are shown in figure 2(a) following the two control volumes shown in figure 2(b).
Momentum coefficients in x and y increase exponentially as expected for this type of
actuator. The Cmu values are of the same order of magnitude as those reported in Kotsonis
et al. (2011) when assuming continuous operation, e.g. correcting for the lower duty cycle
in the present work. Figure 2(b) shows the time-averaged velocity field of the actuator
operated at 5 and 8 kVpp in quiescent conditions. The dash-dotted lines in the two
figures highlight the two different integration regions for the Cμ values in figure 2(a). The
integration domain in figure 2(b) (top) captures only the primary plasma pulse between the
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high-voltage and ground electrodes, commonly used in previous studies (Michelis et al.
2017; Yarusevych & Kotsonis 2017; Weingaertner et al. 2020). The symmetric integration
domain (figure 2b, bottom) captures the entire momentum input by the actuator, and is
chosen to capture the entire momentum input by the actuator used in this work (values in
table 1 are based on this symmetric domain). It should be noted here that in the low to
intermediate forcing amplitudes, the wall-normal momentum input (towards the wall) is
higher than the wall-parallel momentum input (≤ 6 kVpp). At high voltages, the primary
pulse dominates the flow field and causes a higher streamwise (upstream) momentum
input compared with the wall-normal momentum. In the presence of free stream, the
total disturbance amplitude input is assumed to stay the same for documentation purposes.
However, the direction of the disturbance input likely experiences a significant change with
the addition of free stream.

2.3. Instrumentation
Surface pressure is measured via pressure taps located along two lines in the streamwise
direction, 1.5 in. (38 mm) to either side of the centreline (figure 1). The streamwise spacing
is 0.5 in. (12.5 mm) in the vicinity of the LSB and 1 in. (25 mm) elsewhere. The pressure
tap spacing is gradually refined towards the leading edge with the first tap at 0.6 in.
(15 mm) from the leading edge and an initial spacing of 0.2 in. (5 mm). Time-averaged
pressure was measured using Scanivalve Corp. ZOC33 pressure scanners (with a full scale
(FS) range and accuracy of FS = 2.49 kPa (10 in. H2O) ± 0.15FS) in combination with an
ERAD Remote A/D module. Data were sampled until a relative statistical uncertainty
of < 1 %q∞ (or 0.16 % FS (2.49 kPa)) was reached within a 95 % confidence interval,
leading to a combined systematic and statistical uncertainty of 0.22 % FS (2.49 kPa).

Time-resolved PIV was recorded using a LaVision GmbH stereoscopic PIV system
to obtain spatially resolved velocity data along the centreline of the wind tunnel (x−y
plane) and several wall-parallel x−z planes in the range 2 mm ≤ y ≤ 10 mm. Diethylhexyl
sebacate seed particles were illuminated by a Photonics DM1-527-50 Nd:YLF laser and
images were recorded using two Phantom Ultra High-Speed Cameras v2012, in parallel for
2-D PIV in the x−y plane and in a stereo configuration for all other planes, placing both
cameras on either side of the wind tunnel ceiling facing the flat-plate surface. Sampling
rates for the image pairs are set to 1197 Hz. The full frame of the 1 megapixel sensor
(1260 px × 800 px) was used in the wall-parallel planes, while the field of view was
reduced in the x−y plane, increasing the number of samples per recording. Each camera
was equipped with a teleconverter and a 50 mm lens incorporating a scheimpflug mount
in the stereo configuration. Image pairs were pre-processed using background subtraction
via a high-pass filter and intensity normalisation to adjust illumination levels across the
laser sheet. Additionally, the initial calibration of the stereo PIV data is corrected using
the built in Stereo-PIV self-calibration in Davis 10. Images were then processed with
decreasing window sizes (642–162 px) and multipass-processed with 50 % overlap. Data
were recorded with two cameras in parallel to increase spatial resolution of the field of
view in the x–y plane, and resulting vector fields were stitched along the overlap using a
weighted average. Data in the x−y plane contain 10 000 image pairs, while in the stereo
configuration in the x−z plane, 3000 images were recorded. Each dataset was recorded as
a single continuous recording. The chosen field of view results in a spatial resolution of
0.76 mm (0.03 in.) between vectors. The maximum seeding particle displacement in the
accelerated free stream below the inverted wing (U∞ ≈ 10 m s−1) was approximately 5
px. Illuminated particles were sufficiently large �1.5 px to avoid peak locking. Following
the analysis of Adrian & Westerweel (2011), the uncertainty in the measured displacement
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is approximately 0.1 pixel unit, which translates into a relative uncertainty of 2 % based
on the free-stream velocity in the streamwise x−y plane measurements. This is consistent
with measurements in the x–z plane parallel to the wall. Statistical uncertainty is estimated
following Wieneke (2017). The uncertainty of the mean is estimated as Uunc = σu/

√
N ,

where σu is the standard deviation of the streamwise velocity component and N the
number of samples in the recording. The high recording frequency of time-resolved PIV
can reduce the number of statistically independent samples. An estimate for the time
between two independent samples is given by George, Beuther & Lumley (1978) as the
integral time scale based on the auto-correlation coefficient (ρ(t)) of the respective time
series (Tint = ∫ ∞

0 ρ(t)dt). The effective number of independent samples is then derived
from the overall time of the recording (T ), relative to Tint following Nef f = T/2Tint . The
result is a statistical uncertainty based on the effective number of independent samples,
ε = σx/

√
Nef f . For the planar PIV along the centreline, the maximum in Tint was found

at ≈1.2 ms, resulting in an Nef f above 2000 samples in all cases. Use of the maximum
integral time scale is considered in a conservative approach here. In a 95 % confidence
interval the statistical error of the mean streamwise velocity u is εu,95 % ≤ 1.5 % (analogue
for v component is εv,95 % ≤ 1.2 %). The same method was applied to the wall-parallel
planes with the same Nef f , resulting in εu,95 % ≤ 1.2 % (εv,95 % and εw,95 % ≤ 1 %).

3. Post-processing methodology

3.1. Spectral proper orthogonal decomposition
The SPOD technique was used to find coherent spatiotemporal structures in the flow field.
The SPOD in this work is based on the description in Towne, Schmidt & Colonius (2018).
Similar to the algorithm of the traditional snapshot POD (solving a single eigenvalue
problem for the covariance matrix, C), the SPOD solves a series of POD problems in the
frequency domain, one frequency at a time. The covariance matrix is therefore replaced
by a cross-spectral density tensor.

The cross-spectral density tensor is constructed using Welch’s method (Welch 1967)
to determine cross-spectral densities for each time series. In the case of the PIV data,
each velocity component at each PIV vector location is considered a single measurement.
Consistent with Welch’s method, the time series of Nt samples are segmented into
a number Nk of blocks. The blocks are chosen to overlap increasing the number of
realisations, and a window is applied along the temporal dimension of the data. A 50 %
overlap was chosen with a Hamming window in this work.

On each block, the flow-field data are transferred into Fourier space using the discrete
Fourier transform:

q̂(k)( fm) =
NFFT−1∑

j=0

q(k)(t j+1)e
−i2π jm/NFFT, k = −NFFT/2 + 1, . . . , NFFT/2. (3.1)

For each frequency, a data matrix is constructed combining data from the Nk blocks:

Q̂ =
[
q̂(1)q̂(2) . . . q̂(Nk)

]
, (3.2)

where each q̂ is a column vector with data from all spatial measurement locations (and
velocity components) at the frequency of interest. The cross-spectral density for the
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eigenvalue problem is found analogously to the POD:

Ĉ = 1
Nk − 1

{
Q̂ Q̂

H}
. (3.3)

This leads to the following eigenvalue problem for each frequency:

ĈΦ̂ = Φ̂Λ̂, (3.4)

where Φ̂ are the eigenvectors and Λ̂ contains the eigenvalues. Each eigenvalue problem is
solved using the snapshot method typically used in the standard POD method (Sirovich
1987; Schmidt & Colonius 2020). The resulting eigenvalues are sorted in descending
order. While eigenvalue spectra usually plot each mode as a separate solid line along
all frequencies, neighbouring frequency bins are not necessarily describing similar flow
features and are simply a representation of the most energetic feature at that respective
frequency.

The data from PIV measurements provide velocity components on a regular grid as the
input for q and as a result the sum of the eigenvalues represents twice the turbulent kinetic
energy in the flow. In the following results, eigenvalues are scaled with the sum of all
eigenvalues, representing the associated energy fraction.

3.2. Bispectral mode decomposition
Bispectral mode decomposition was developed to identify triadic nonlinear interactions
from multidimensional data. A detailed representation of the method can be found in
Schmidt (2020), and is briefly discussed here.

The fundamental idea is to detect quadratic phase coupling of triadic interactions by a
measure of the bispectrum. For a stationary random signal, the bispectrum is defined as
the double Fourier transform of the third moment (Rqqq ), and provides a measure of the
correlation of two frequencies with their sum:

Sqqq( f1, f2) =
∫ ∞

−∞

∫ ∞

−∞
Rqqq(τ1, τ2)e−i2π( f1τ1+ f2τ2)dτ1dτ2, (3.5)

or in terms of the expectation operator (E):

Sqqq( f1, f2) = lim
T →∞

1
T

E
[
q̂( f1)

∗q̂( f2)
∗q̂( f1 + f2)

]
, (3.6)

where q̂( f ) is the Fourier transform of the time-resolved signal (q(t)) and ( )∗ the scalar
complex conjugate. The algorithm used in this work (see Schmidt 2020) adapts Welch’s
method (Welch 1967) as an asymptotically consistent spectral estimator, to decrease the
variance, by taking the ensemble average of the discrete Fourier transform over a number
of overlapping blocks (NN ), assuming the input signal is statistically stationary.

Analogously to (3.6), an integral measure for the discrete point-wise bispectral density
is defined as

b( fk, fl) = E

[∫
Ω

q̂∗
k ◦ q̂∗

l ◦ q̂k+ldx

]
= E

[
q̂ H

k◦l W q̂k+l

]
= E

[〈q̂k◦l q̂k+l〉
]
, (3.7)

where q̂k◦l = q̂(x, fk) ◦ q̂(x, fl) = q̂k ◦ q̂l is the entry-wise (Hadamard) product, where
q̂k = q̂(x, fk) denotes the kth frequency component, ( )H the complex transpose, Ω the
spatial domain of the flow and W a diagonal matrix of weights.

Next, the sum frequency component q̂k+l and the product q̂k◦l that form the resonant
triad are defined by two linear expansions over the ensemble averages across the blockwise
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realisations, using identical expansion coefficients ai :

Φ
[i]
k◦l = Q̂k◦lai , (3.8)

Φ
[i]
k+l = Q̂k+lai (3.9)

for each (i) vector of expansion coefficients for the frequency doublet (k, l) and Q̂ being
the data matrix:

Q̂ p = [q̂(1)
p q̂(2)

p . . . q̂(Nk)
p ], (3.10)

where p is either k ◦ l or k + l, respectively. The goal of the BMD is to optimally represent
the flow field in terms of the bispectral density in (3.7). To ensure boundedness of the
expansions in (3.8) and (3.9) the coefficient vector is chosen to follow the norm ||a1|| = 1,
which leads to the maximisation problem:

a1 = argmax
||a||=1

∣∣∣E [
Φ

[1]
k◦l WΦ

[1]
k+l

]∣∣∣ = · · · =
∣∣∣∣∣∣
aH E

[
Q̂[1]

k◦l W Q̂[1]
k+l

]
a

aH a

∣∣∣∣∣∣. (3.11)

The right-hand side of the above equation is the Rayleigh quotient of the complex,
non-Hermitian, square matrix (B = E[Q̂[1]

k◦l W Q̂[1]
k+l ] ∝ Q̂ H

k◦l W Q̂k+l ). The maximum of
the Rayleigh coefficient is found by recasting the expression as an eigenvalue problem
(H(Θ)a1 = λ1a1, where H = (1/2)(eiΘ B + e−iΘ B H ) and 0 ≤ Θ < 2π), where the
largest eigenvalue in the solution to this eigenvalue problem maximises (3.11) (Horn &
Johnson 1994; Watson 1996). Here λ1( fk, fl) are referred to as the complex mode
bispectrum. Furthermore the resulting expansion coefficients a1 together with the data
matrices in (3.8) and (3.9) lead to the bispectral modes Φk+l and the cross-frequency
fields Φk◦l .

Additionally, interaction maps (Ψ ) are defined based on (3.7) and (3.11), quantifying the
local bicorrelation between the frequency triplet ( fk, fl , fk+l ), showing regions of active
triadic interaction:

Ψ = |Φk◦l ◦ Φk+l |. (3.12)

4. Results
Results in this section are presented for the baseline case with the actuator installed and for
several forcing amplitudes. Axis coordinates are given relative to the leading edge of the
flat plate and are normalised with L∗∞ = 0.0254 m (1 in.) according to the model design
and corresponding to the same scaling chosen in the seminal work by Gaster (1967) and
the experiments and numerical calculations in previous work using this model (Borgmann
et al. 2025) discussing the baseline LSB without the actuator for the same free-stream
conditions. The experimental conditions are identical to those reported in (Borgmann
et al. 2020, 2021, 2022, 2025), at ReC = 90 000 based on the length of the inverted wing
(c = 8 in. (20.3 cm)).

4.1. Mean flow topology
Time-averaged pressure coefficients (C p = p − p∞/0.5ρU∞) and select streamwise
velocity contours are shown in figure 3. As expected, AFC reduces the size of the
recirculation region. At the highest tested forcing amplitudes (7 kVpp) the pressure
distribution is void of the characteristic C p plateau and PIV does not detect reverse
flow in the time-averaged velocity fields. However, the streamlines for the corresponding
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Figure 3. (a) Development of C p for the baseline and several forced LSBs. (b) Velocity contours for the u
component of the time-averaged flow field for the LSB for the baseline, AV = 5 and 7 kVpp. Red dash-dotted
line shows the boundary of the reverse flow; blue dash-dotted line is the displacement thickness (δ∗).

velocity field and the differences in the C p distribution compared with the attached
flow (quasi-‘inviscid’) suggest the existence of a shallow bubble in the time-averaged
sense in this case. Following the experiments by Gaster (1967), the approximate or
quasi-‘inviscid’ C p distribution was measured for a tripped, turbulent boundary layer
along the flat plate, which represents the case of a fully attached boundary layer. The
development of the displacement thickness downstream of the LSB in figure 3 follows
a downward trajectory in the baseline case, as a result of the changes in the local
boundary layer from the significant displacement in the LSB to a turbulent boundary-
layer profile downstream of reattachment. At moderate forcing amplitude (5 kVpp) the
displacement thickness remains at a nearly constant height throughout the entire domain.
At high forcing amplitudes (7 kVpp) changes in bubble topology are small; however, the
displacement thickness follows an upward trajectory downstream of x = 26, expected for
the downstream development of an attached boundary layer in the weak adverse pressure
gradient downstream of the bubble.

The three-dimensional flow field in figure 4 was reconstructed from measurements
in eight wall-parallel planes between y = 0.08 and y = 0.39. Results show a surface of
constant streamwise velocity (u/U∞ = 0.8, baseline; and u/U∞ = 0.87, AFC) coloured
with the standard deviation of the streamwise velocity fluctuations (|u′|). Data for the
different wall-parallel planes are not synchronised in time and the reconstruction is
limited to the time-average and statistical quantities. The baseline case appears largely
2-D with slight undulations across the span, related to only minor differences (< 5 %U∞)
in the streamwise velocity in the time-averaged flow. The AFC at the two amplitudes in
figure 4 causes significant spanwise variation of the streamwise velocity, indicated by the
ridges in the contours of constant velocity in figure 4. For both AFC amplitudes these
stationary spanwise undulations appear to be of some periodicity, but different wavelength.
To estimate the spanwise wavelength in the wall-parallel plane, wavelength spectra are
calculated for the x−z plane closest to the maximum displacement thickness in each
case. The dominant spanwise wavelengths of the time-averaged streamwise velocity (|u|)
are evaluated at each streamwise location (bottom row of figure 4). For the baseline, the
dominant spanwise wavelengths in the shear layer of the LSB upstream of the maximum
bubble height have a spanwise wavelength of λz,avg ≈ 1.6. Downstream of reattachment,
the dominant wavelength (λz,avg ≈ 0.75) is only about half of those observed upstream.
It should be noted that exact values for the spanwise wavelengths – in particular for large
wavelengths – are difficult to obtain due to the small number of wavelengths within
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Figure 4. Time average of the reconstructed three-dimensional flow field. Shown is a plane of constant
streamwise velocity (u/U∞ = 0.8, baseline; and u/U∞ = 0.87, AFC), coloured with the standard deviation
of the local disturbances (u′) for the (a) baseline and (b,c) forced LSBs. Grey and red vertical dash-dotted lines
in the bottom panels are the location of maximum displacement thickness and reattachment, respectively. In the
bottom panels, contours of the spanwise wavenumber extracted at each streamwise location in the flow field, in
the measurement plane closest to δ∗

max .

the measurement domain and limited spatial resolution in λz,avg (number of vectors
along the spanwise domain). The large ridges observed in figure 4(b) downstream of
the LSB at intermediate forcing amplitudes have an average wavelength of λz,avg ≈
1.4. Weak undulations near the maximum displacement thickness are in the range of
0.65 ≤ λz,avg ≤ 0.85 at about half the wavelength of the dominant structures downstream.
At high forcing amplitudes, the smaller spanwise structures in figure 4(c) have a spanwise
wavelength of λz,avg ≈ 0.5. Near the maximum bubble height, several wavelengths appear
along a limited streamwise extent similar to the intermediate forcing amplitudes (0.65 ≤
λz,avg ≤ 0.85 and λz,avg ≈ 1.4) and at λz,avg ≈ 0.5 and ≈ 1. Downstream of reattachment
at x ≈ 24 the dominant spanwise wavelength is λz,avg ≈ 0.5, consistent with the visual
ridges in the range 24 < x < 26 in the perspective view in figure 4(c). Other tested
forcing amplitudes showed either very little spanwise periodicity in the time-averaged
flow (< 5 kVpp, similar to the baseline) or a mix of the two presented cases (6 kVpp),
suggesting that the differences in spanwise wavelength observed in the time-averaged
flow depend on the forcing amplitude of the 2-D disturbances input upstream of laminar
separation.

4.2. Influence of forcing amplitude on the K–H instability
Forcing of the dominant K–H instability in the shear layer via 2-D periodic excitation has
been employed towards two different objectives in previous experimental work: (i) at low
amplitudes as a diagnostic tool to allow tracking of the disturbance development in the
shear layer without changing the LSB topology (Alam & Sandham 2000; Marxen et al.
2003; Diwan & Ramesh 2009; Kurelek et al. 2020) and (ii) at moderate amplitudes to
investigate the flow response (Michelis et al. 2017; Yarusevych & Kotsonis 2017; Kurelek
et al. 2018). The objective of the current work is to exploit the inherent disturbance growth
due to the K–H instability, using relatively small disturbance input. The desired effect
is the formation of strong 2-D vortical structures in the shear layer causing sufficient
entrainment leading to reattachment of the boundary layer without the breakdown to
turbulence, resulting in a delay of the transition that was previously only observed in
numerical studies (Jones et al. 2008; Postl et al. 2011; Embacher & Fasel 2014; Benton &
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Figure 5. (a) Downstream development of the PSD amplitude of the v velocity component of the forced
frequency ( fAFC = 200 Hz) and (b) PSD amplitudes of the v velocity component of the most amplified
frequency (baseline, f/ fAFC = 1.25; AFC, f/ fAFC = 1), along the centreplane. Note the difference in the
contour levels between the baseline (top) and forced cases (middle: 5 kVpp; and bottom: 7 kVpp). Red
dash-dotted line: reverse flow boundary; blue dash-dotted line: δ∗; red marker: local amplitude maximum.

Visbal 2016; Gross et al. 2017). The results of Hosseinverdi & Fasel (2017) show that
this type of flow control can be effective even in the presence of low levels of FST with
transition observed in the boundary layer downstream of reattachment.

Active flow control raises the initial amplitudes of the forced frequency in the boundary
layer upstream of separation. The location of the forcing was chosen near the onset of
the adverse pressure gradient to mitigate the expected loss of disturbance amplitude in
the preceding favourable pressure gradient and provide a wide range of amplitudes at
laminar separation, to investigate the effect of the disturbance input to the transition
process in the LSB or downstream of it. If the forcing frequency is within the band of most
unstable frequencies for the LSB shear layer, the K–H instability is expected to ‘lock on’
to the forced frequency and cause exponential amplification of this periodic disturbance,
and subsequent shedding of coherent vortical structures at the forced frequency. Forcing
amplitudes in this work significantly modify the LSB downstream of the actuation
(figures 3 and 4), possibly changing the stability characteristics of the resulting bubble.
However, previous results in Borgmann et al. (2025) show that the LSB is most unstable
to a broad band of frequencies (150 Hz < f < 300 Hz), and numerical results suggest that
the unstable characteristics of the shear layer do not significantly change for the forced
bubble (Hosseinverdi & Fasel 2018), in particular upstream of amplitude saturation of the
dominant 2-D mode.

Downstream development of the maximum disturbance amplitude of the |v′| component
in the boundary layer for the forced frequency is shown in figure 5(a). Results are based on
x−y plane measurements for the baseline fAFC = 250 Hz ( f/ fAFC = 1.25, with fAFC =
200 Hz) and several forcing amplitudes at fAFC = 200 Hz ( f/ fAFC = 1) as described in
§ 2.2. In all cases the development of the most dominant frequency is shown, which is
different between the baseline (centre of the broad band) and the forced cases (locking on
to the forcing frequency). Scaling the dimensional frequencies with the forcing frequency
( fAFC) highlights any direct relation of the data shown here to the fundamental mode
or other harmonic content, in particular in the following sections. Growth of the initial
disturbance amplitudes for forcing below 6 kVpp follows the linear trend (black dash-
dotted line, figure 5a) predicted by LST for the most unstable frequency in the unforced
LSB (Borgmann et al. 2025). At higher amplitude forcing, in particular at 7 kVpp, the
disturbance growth is slowed down and notably saturates at significantly lower levels
than for lower forcing amplitudes. The weaker amplitudes coincide with a smaller bubble
and either a ‘weaker’ shear-layer mode or the earlier onset of nonlinear interactions at
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Figure 6. Real part of the SPOD modes (a) u and (b) v component for the K–H instability in the x−y plane.
Top to bottom: baseline, 5 and 7 kVpp; red and blue dash-dotted lines show the region of reverse flow and the
displacement thickness, respectively.

such high forcing amplitudes. The global amplitude maximum for the forced frequency
is observed at intermediate forcing amplitudes (4 and 5 kVpp). The maximum amplitude
in these cases appears along a subtle ‘secondary’ peak downstream of the bubble and
notably downstream of the initial amplitude saturation inside the LSB. Contours of the
same |v′| relative to the LSB in figure 5(b) locate the global disturbance amplitude
maximum slightly downstream of the maximum bubble height for the unforced case (and
for the highest forcing amplitude). For the intermediate forcing amplitude, two regions of
significant amplitude are observed in the contours, corresponding to the initial saturation
and the ‘secondary’ peak in the amplitude development (figure 5a), with the global
disturbance amplitude maximum at a distance (
x ≈ 0.8) downstream of reattachment.
The SPOD modes in figure 6 show the development of periodic structures in the shear layer
for the same three cases. Highest amplitudes match the spectral analysis in figure 5(b),
while indicating the existence of coherent structures far downstream of the LSB. Following
the linear growth predicted by stability analysis, the onset of nonlinear interactions of the
dominant 2-D mode ( fAFC) coincides with saturation of the dominant 2-D mode. Once
nonlinear interactions occur, the 2-D mode is not expected to grow again.

The SPOD modes in the wall-parallel planes near the maximum displacement thickness
(δ∗

max ) in figure 7 show the three-dimensional development of coherent structures
inside and downstream of the LSB related to the K–H instability. Coherent structures
were observed following the initial exponential amplitude growth in the shear layer,
in agreement with the amplitude development in figure 5(a). Unsurprisingly, the 2-D
forcing significantly increases spanwise uniformity of the coherent structures in the
LSB, and streamwise periodic structures remain at significant amplitudes throughout the
entire measurement domain, even several bubble lengths (Lb,5 kVpp = 2.1) downstream
of reattachment. The trajectory of the coherent structures follows the initial development
of the displacement thickness (near the inflection point) downstream of separation and
upstream of δ∗

max . Downstream of the LSB, the structures rapidly increase in size for all
cases. In the wall-parallel planes, spanwise undulations of the initially 2-D structures
are visible in the u component of the SPOD modes in figure 7(a). The spanwise
wavelengths are consistent with those observed in the corresponding time-averaged flow
fields (figure 4) and are likely related to the spanwise modulation of the mean streamwise
velocity. Differences in the streamwise wavelength of the 2-D structures between the
baseline and the forced cases are a direct result of the lower frequency of the forcing
compared with the dominant frequency in the baseline case ( f/ fAFC = 1.25). Both SPOD
and amplitude development due to the K–H instability suggest that the largest amplitude
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thickness δ∗ for the (a) baseline and (b,c) several forcing amplitudes. Red and blue dash-dotted lines show the
reattachment location and the location of maximum displacement thickness, respectively.

and ‘best’ spanwise uniformity of the dominant 2-D mode were achieved for intermediate
forcing levels. A further increase in forcing amplitude limits the growth of the K–H mode
in the shear layer and causes noticeably shorter spanwise ‘ripples’ (figure 7a, 7 kVpp)
within the early stages of the 2-D structures.

4.3. Unsteady characteristics downstream of linear disturbance growth
The finite saturation in the K–H mode amplitude signals the onset of nonlinear interactions
in the flow and eventual breakdown to turbulence. The differences in the spanwise
wavelength in the mean flow (figure 4) and SPOD for the 2-D mode (figure 7) suggest
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Figure 9. Maximum PSD amplitude in the boundary layer for the u′ velocity component along the LSB. The
LST for the unforced LSB is shown for reference (streamwise shifted to align with the observed growth in the
respective case and shifted by an order of magnitude when compared with the AFC cases).

a change of the transition mechanism at different forcing amplitudes. Figure 8 shows
contours of spanwise-averaged power spectral density (PSD) of the streamwise (u′)
fluctuations along the wall-parallel plane closest to the global maximum of displacement
thickness in each case. The spanwise average was chosen to mitigate the effect of the
three-dimensional base flow. In the baseline case, a lobe of most amplified frequencies
(0.75 < f/ fAFC < 1.5) is observed upstream of the maximum bubble height (24 ≤ x ≤ 25)
centred at a most unstable frequency of f/ fAFC = 1.25 in agreement with experiments
and LST results from previous work on the unforced LSB (Borgmann et al. 2025). Just
downstream of δ∗

max , significant spectral content in a broad range of frequencies around
the subharmonic of the dominant 2-D mode ( f/ fAFC ≈ 0.625) and subsequently across
the entire spectrum indicates the onset of transition in the LSB. Additional content at very
low frequencies (St < 0.1) coincides with the typical frequency range of the large-scale,
low-frequency motion of the reattachment location, often termed shear-layer ‘flapping’,
similar to the reported values in the literature (e.g. Simoni, Ubaldi & Zunino 2014; Weiss
et al. 2021; Malmir et al. 2024). With AFC, the PSD contours are dominated by the forced
frequency. In both cases in figure 8, harmonic content is present starting just upstream of
δ∗

max . In contrast to the baseline and high-forcing-amplitude cases, a significant narrow-
band subharmonic is present for A = 5 kVpp. Further downstream, distinct narrow peaks
appear at the half-harmonics f/ fAFC = 1.5 and, more subtly, at f/ fAFC = 2.5, where half-
harmonics are half-integer harmonics of the fundamental frequency, [n + 1/2] fAFC, for
any integer n. While some broader content around the subharmonic is still observed at high
forcing amplitudes, the broad band and lower amplitudes compared with the intermediate
forcing case indicate a change in the transition mechanism. No half-harmonics are
observed at high forcing amplitudes.

Comparison of the maximum amplitude development within the boundary layer in
figure 9 agrees with the spanwise-averaged spectra in figure 8. Data are shown for the
amplitudes of frequencies in the range 0 < f/ fAFC < 3 for the u′ velocity component
(grey lines shown for each 
 f/ fAFC = 0.05). Besides the initial linear growth of the
K–H mode ( f/ fAFC = 1 (1.25, baseline)), the amplitude development for the baseline
case shows rapid growth of a subharmonic, at larger growth rates than the initial linear
growth of the fundamental (K–H) mode, surpassing total amplitudes of the fundamental
mode inside the LSB, between δ∗

max and the reattachment location. This location is
associated with transition in the unforced LSB and coincides with the growth and
saturation of a broad band of frequencies and the decay of the coherent structures in
figure 6. Development of the maximum disturbance amplitude in the boundary layer for
the forced cases in figure 9(b,c) confirms the initial linear growth of the fundamental,
forced |u′| disturbances, albeit over shorter streamwise distance for the higher forcing
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Figure 10. Sample from the time traces in the centreplane (x–y) for the (a) baseline and (b,c) several
forcing amplitudes slightly above δ∗ (δ∗ + 0.06). Red: time trace at the location of maximum displacement
thickness.

amplitude. Saturation of the fundamental mode is observed near δ∗
max , with significantly

higher amplitudes for the intermediate forcing amplitudes compared with the baseline
and high-amplitude forcing. Growth of a harmonic is consistently observed alongside
the fundamental mode for both forcing cases analogous to the numerical simulations
by Embacher & Fasel (2014). At intermediate forcing amplitudes, the subharmonic
( f/ fAFC = 0.5) experiences strong initial growth just upstream of δ∗

max . The subharmonic
reaches its maximum at x = 24.6 downstream of the LSB, but never exceeding the
amplitudes of the fundamental mode. The amplitudes of the subharmonic (and harmonic)
as well as the half-harmonics at f/ fAFC = 1.5 and to a lesser degree at f/ fAFC = 2.5
precede the broad-band amplitude growth and saturation in the spectra in the intermediate
forcing case (figure 9b). The only frequencies with amplitudes above those of the half-
harmonics are near the subharmonic. The results suggest that for a limited streamwise
distance (between the upstream shear layer and just downstream of reattachment) only a
few modes, related to the harmonics, sub- and half-harmonics, are of relevant amplitude.
The later onset of broad-band amplitude growth towards and downstream of the estimated
reattachment location of the time-averaged LSB suggests a delay of the transition to a
location downstream of the LSB. This is in contrast to the behaviour at high forcing
amplitudes, which shows no spectral content related to the half-harmonics and onset of
a broad-band amplitude growth near δ∗

max (at 7 kVpp) alongside and earlier saturation
(24.3).

Time traces of the streamwise velocity inside the shear layer just above the local
displacement thickness (δ∗ + 0.06) at several streamwise locations are shown in figure 10
alongside corresponding power spectra. Data are evaluated slightly further away from
the wall to avoid discontinuities in the PIV time traces near the wall without relying on
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Figure 11. (a) Instantaneous snapshots of the baseline and forced flow field and (b) boundary-layer profiles.

interpolation. For the baseline, only weak periodicity is present upstream of δ∗
max . Rapid

growth of broad-band disturbances quickly leads to a loss of periodicity and a chaotic
or rather transitional signature in the subsequent time traces and PSDs, approaching
the −5/3 slope prior to the time-averaged reattachment location. In the forced cases,
periodic disturbance input leads to a near-sinusoidal signal upstream of δ∗

max . While
the velocity fluctuations retain strong periodicity at intermediate forcing amplitude, until
x ≈ 26, further increase of the forcing amplitude causes time traces to appear rather chaotic
and comparable with those of the early transition observed in the baseline case, albeit
at lower amplitudes. Corresponding power spectra retain a significant amplitude for the
fundamental mode throughout the domain when flow control is applied. Spectra for the
intermediate forcing cases again show the subharmonic and half-harmonics upstream of
the breakdown of periodicity in the time traces (x = 26). Spectra for both AFC cases
approach the −5/3 slope for x > 26, while still containing a peak around the forced
frequency, which at intermediate forcing amplitudes remains an order of magnitude above
other spectral content up to x = 27.5.

Besides the moderate- and high-frequency content in the LSB shear layer, significant
spectral content was observed at very low Strouhal numbers typically associated with
shear-layer ‘flapping’ St = f Lb/U∞ < 0.1 ( f/ fAFC < 0.075, for Lb,5 kVpp) in the baseline
case and at marginal (3 kVpp) forcing amplitudes (not shown). Based on the spectral
analysis in figures 8 and 10, AFC amplitudes � 4 kVpp stabilise the shear layer and do not
show any significant low-frequency content (no ‘flapping’).

Instantaneous velocity fields (v) in figure 11(a) are overlaid with Γ2 vortex contours to
show the location of clockwise-rotating vortex structures. The Γ2 contours are based on a
non-local, Galilean-invariant scheme using integration to identify the strength and rotation
of vortical structures in the flow (Graftieaux, Michard & Grosjean 2001). It is therefore
especially suited for 2-D experimental data, avoiding the numerical differentiation
involved with other more common criteria. Originating in the shear layer of the LSB, the
pairs of red and blue contour levels indicate the periodic wall-normal disturbance waves
growing along the shear layer and propagating downstream as clockwise-rotating vortices.
Two vortical structures can be observed in the baseline case near the downstream portion of
the bubble, and following the previously discussed transition inside the bubble. Breakdown
of the coherent structures appears around reattachment for the representative cases shown
here. With AFC, several coherent structures are observed downstream of the LSB. Most
notably a ‘clean’ vortex is identified at x = 25 downstream of reattachment at intermediate
forcing amplitudes, before the structures appear distorted further downstream (x > 26).
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This is in agreement with the loss of periodicity observed in the time traces (figure 10) and
the decrease in amplitude of the K–H mode (figures 5a and 9). Unsurprisingly, the higher
forcing amplitudes do not further increase the coherence in the flow field. Superposition
of the strong clockwise-rotating vortices resulting from the K–H instability in the LSB
shear layer with the mean flow causes a modification of the local time-averaged velocity
profiles. The result is an increase in the streamwise velocity at the edge of the boundary
layer (δ99; see figure 3) and a velocity deficit inside the boundary layer. Comparisons of
time-averaged boundary-layer profiles are shown in figure 11(b) for several streamwise
locations at and downstream of the respective location of δ∗

max (maximum bubble height).
Inside the LSBs, the boundary-layer profiles show the successive decrease in bubble size
with an increase in forcing amplitude. Downstream of reattachment (> δ∗

max + 1), several
of the forced cases show a notable velocity deficit in the local boundary layer. Forcing
at intermediate amplitudes (5 kVpp) creates the largest such deficit in the boundary-
layer profiles, suggesting the presence of strongest vortical structures in this case, even
downstream of the LSB. The larger deficit in the baseline is a result of the significantly
larger separated region and relative proximity of δ∗

max + 1 to the mean reattachment
location. However, at the most downstream locations shown in figure 11(b) the remaining
velocity deficit in the boundary layer for the intermediate case is near that of the baseline
case and significantly differs from the approximately turbulent boundary-layer profile
observed at high forcing amplitudes. The delayed breakdown of vortical structures and
associated velocity deficit further supports the observed delay in the turbulent breakdown,
in particular at intermediate forcing amplitudes.

The observation of delayed growth of broad-band disturbances in figure 9(b), the strong
periodicity in the time traces in figure 10(b) and the presence of strong vortical structures
downstream of reattachment (figure 11) suggest that at least at the intermediate forcing
amplitude, the transition process is delayed, causing the dominance of a single mode in
the shear layer and downstream of reattachment, followed by only its subharmonic and
harmonic leading to observable interactions in the form of half-harmonics in the power
spectra in figure 8. However, further increase in forcing amplitude does not increase this
effect and appears to cause early onset of transition in the LSB in comparison. This
suggests that, in contrast to separation control, the optimal forcing amplitude for transition
delay is found at moderate amplitudes and coincides with the case for the global maximum
in the K–H mode amplitude (figure 5a), similar to the numerical results in Embacher &
Fasel (2014) and Hosseinverdi & Fasel (2018, 2019). To the authors’ best knowledge, this
is the first experimental evidence for simultaneous transition delay and separation control
in LSBs (previously observed only in numerical simulations in Embacher & Fasel (2014)
and Hosseinverdi & Fasel (2018)). Other such examples, also by the authors, were shown
only for airfoils, similar to, for example, Benton & Visbal (2018), but were inconclusive
due to the very thin boundary layers in those experiments (Agate et al. 2018).

4.4. Relevant triadic interactions in the forced LSB
Linear growth of the 2-D mode downstream of laminar separation follows the predicted
growth rates from linear stability calculations for all but the highest tested amplitudes.
Additionally, in all cases, the dominant K–H mode reaches finite amplitudes inside the
LSBs and is followed by the interaction of this dominant 2-D mode with other disturbances
at various frequencies, eventually leading to transition. Growth of both subharmonic
and fundamental (harmonic) modes was observed following the saturation of the K–H
instability in previous work (Maucher et al. 2000; Jones et al. 2008; Marxen et al. 2013).
Results for the baseline case in this work, i.e. figure 9, suggest that the transition in the
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Figure 12. The BMD spectra in the centreplane (x–y) for several forcing amplitudes.

unforced LSB is a result of the growth of a subharmonic mode, exceeding maximum
amplitudes of the 2-D mode prior to reattachment (figure 9). While this subharmonic is
observed at significant amplitudes up to the intermediate forcing case, with maximum
amplitudes downstream of reattachment, its maximum amplitudes are found to decrease
towards the highest tested forcing cases.

The BMD technique was introduced by Schmidt (2020) to identify nonlinear
interactions in time-resolved flow-field data. Bispectra of the velocity signal at each spatial
location in the measurement domain identify coherent structures and provide information
about the strength and location of triadic interactions in the flow. These triadic interactions
connect two frequency components ( f1 and f2) to their sum-frequency ( f3). The method
combines the spatiotemporal analysis of the SPOD with cross-bispectral analysis to
represent the second-order statistics in the data, providing a measure of quadratic nonlinear
interaction of any pairwise combination of frequencies in the flow (see § 3).

The BMD spectra are shown in figure 12 for the baseline and the cases of intermediate
and high forcing amplitude. In figure 12, the horizontal and vertical axes are for the non-
dimensionalised frequencies f1/ fAFC and f2/ fAFC, respectively. The third component
in each triadic interaction is the sum of frequencies f1 + f2 = f3. The colour contours
identify the strength of the respective interactions. Similar to the power spectra in figure 8
the baseline case is dominated by low-frequency content, showing only weak interactions
of a broad band of low frequencies. It should be noted here that the lines in the BMD
spectra are a by-product of spectral leakage and appear in all cases of significantly lower
amplitudes than the connecting peaks, and are not considered in the following analysis
(Schmidt 2020). Elevated contour levels are observed near the dominant frequency in the
unforced flow ( f1/ fAFC = 1.25 and f2/ fAFC = 0) and below its subharmonic ( f1/ fAFC =
f2/ fAFC = 0.625). Slightly elevated content in the BMD spectra is present around the
fundamental mode, for f1/ fAFC = f2/ fAFC = 1.25 (where f3/ fAFC = ( f1 + f2)/ fAFC =
2.5). This interaction is termed the sum self-interaction since f1 = f2, in this triad. The
interaction of f1/ fAFC = 1.25 with f2/ fAFC = 0 ( f3/ fAFC = 1.25) is characteristic of a
difference self-interaction with f1/ fAFC = − f3/ fAFC (Schmidt 2020). An example for
difference self-interaction is the interaction of two oblique waves propagating in opposite
directions at the same frequency, potentially leading to stationary ( f = 0) structures. Such
interactions are of particular interest in this work, with respect to the large spanwise
modulation of the mean flow in figure 4. In the following, the frequency triplets for the
triadic interaction will use the short notation [ f1; f2; f3]/ fAFC, i.e. [1.25; 1.25; 2.5] for
the previous example. The difference self-interaction for f1/ fAFC = − f3/ fAFC (Schmidt
2020) will follow the notation consistent with its location in the BMD spectra, which is
located at [1.25; 0; 1.25].

At intermediate forcing amplitudes, several triadic interactions are of significant
amplitude in the BMD spectrum. Most notable peaks in the spectra are at the difference
self-interaction of the subharmonic and fundamental mode, and their sum self-interactions
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Figure 13. Dominant BMD mode interactions for the baseline case, select mode u′ and v′ components. Contour
levels are normalised by the respective maximum (|u′| or |v′|) in each case; for relative mode amplitudes,
see figure 12.

([0.5; 0; 0.5], [1; 0; 1], [0.5; 0.5; 1] and [1; 1; 2]). Furthermore, interaction of the
fundamental mode with the subharmonic ([1; 0.5; 1.5]) and, albeit weaker, interaction of
the fundamental with an additional higher half-harmonics at f/ fAFC = 2.5 ([1.5; 1; 2.5])
seem relevant. The interaction of the subharmonic and fundamental mode readily explains
the half-harmonic, as previously discussed in the spectral analysis in figure 10. Subsequent
interaction of either this half-harmonic with the fundamental or the first harmonic and
subharmonic can lead to the half-harmonic at f/ fAFC = 2.5 through either [1.5; 1; 2.5]
or [2; 0.5; 2.5]. At high forcing amplitudes, the number of notable triadic interactions is
reduced to the self-interactions of the fundamental (sum and difference), the difference
self-interaction of the first harmonic ([2; 0; 2]) and a weak self-interaction of the
subharmonic ([0.5; 0.5; 1]). The dominant peaks in the BMD spectra confirm the highest
amplitudes observed in the PSDs in figure 8 and the key frequencies in the amplitude
development plots in figure 9.

In addition to the identification of dominant nonlinear (triadic) interactions in the flow,
the BMD eigenfunctions provide spatial information about the mode shape of the relevant
interactions and an interaction map, visualising regions of active triadic interaction in the
flow. The eigenfunctions of the sum-frequency component q̂k+l appear nearly identical to
the mode 1 eigenfunctions from the SPOD for the frequency of f3 (Schmidt 2020) and
show the spatial coherent structures related to the sum-frequency component.

Notable triadic interactions for the baseline case in the x−y plane are shown in figure 13.
The difference self-interaction of the ‘zero’ frequency reflects quasi-stationary structures
as well as low-frequency behaviour (St < 0.01, [0; 0; 0]) due to the frequency binning
in the Fourier transform (via fast Fourier transform) used in the BMD. The baseline
LSB experiences so-called shear-layer ‘flapping’ causing a subtle movement of the initial
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shear layer and separation location, alongside a large-scale motion of the reattachment
location, most obvious in the streamwise component of the BMD mode in figure 13(a)
(Spalart & Strelets 2000; Hain, Kähler & Radespiel 2009; Michelis et al. 2017; Istvan &
Yarusevych 2018; Singh 2019). The BMD modes in figure 13 (left column) and subsequent
plots are shown for the sum-frequency component, showing coherent structures related to
the frequency content f3. The BMD modes are qualitatively similar to the SPOD modes
(mode 1) for the same frequency.

Interaction maps show the onset of nonlinear behaviour in the difference self-interaction
of the fundamental mode ([1.25; 0; 1.25]) below the location of the local displacement
thickness, closer to the region of reverse flow inside the LSB. The streamwise location
of this interaction coincides with the saturation of disturbance amplitudes (following its
linear growth) in figure 9 and the growth of the harmonic ([1.25; 1.25; 2.5], along the
shear layer). The triadic interaction [0.625; 0.625; 1.25] relates the subharmonic to the
fundamental mode, with the onset of the interaction downstream of the sum-frequency
component (interaction map in figure 13b, relative to BMD mode in figure 13a). Existence
of a relevant triadic interaction between the fundamental mode and subharmonic suggests
some form of subharmonic resonance in the separated shear layer (Ho & Huerre 1984;
Husain & Hussain 1995). Onset of all interactions shown in figure 13 lies within the LSB
between the location of maximum bubble height and reattachment. This is also true for
all other triadic interactions, not shown here, indicative of the rapid transition inside the
unforced LSB (Hosseinverdi & Fasel 2019).

In the presence of AFC, the fundamental mode is significantly amplified. The BMD
eigenfunctions and interaction maps in figure 14 are plotted for only one velocity
component for each case, chosen to best represent the interaction. Strong nonlinear self-
interaction of the fundamental mode near reattachment leads to a strong harmonic mode,
at intermediate forcing amplitudes (figure 14). The interaction map for the [0.5; 0.5; 1]
mode shows high amplitudes downstream of reattachment. However, the fundamental
mode ( f3/ fAFC = 1 in figure 14a) upstream of the interaction suggests that strong
amplification of the subharmonic is a result of the fundamental mode. The onset of
the [0.5; 0.5; 1] mode interaction appears alongside the interaction of the subharmonic
with the fundamental ([1; 0.5; 1.5]) and the sum self-interaction of the fundamental
mode ([1; 1; 2]). Slightly downstream, the onset of the difference self-interactions of
the subharmonic and fundamental, respectively, are observed ([0.5; 0; 0.5], [1; 0; 1]).
Contrary to the baseline, no significant nonlinear interactions are found at the low
frequencies related to the ‘flapping’ motion of the shear layer. Furthermore, the self-
interaction of the low-frequency mode and the example shown in the bottom row in
figure 14 for a ‘random’ pair of frequencies is negligible upstream of x = 25.5 and only
gains significant strength further downstream (this is true for all interactions except for the
relevant ones shown in the top five rows of figure 14). This provides further evidence to
the later onset of broad-band nonlinear interactions and amplitude growth, corroborating
the delay of transition downstream of the LSB in this case.

At higher forcing amplitudes, the sum self-interaction of the fundamental is most
dominant (figure 15). Bispectral modes, cross-frequency fields and interaction maps for
this interaction show the presence of the resulting harmonic throughout the domain,
with significant triadic interaction along the LSB in this case. The early onset of this
mode suggests the early onset of these nonlinear interactions, possibly in the boundary
layer upstream of the LSB and could explain the weaker finite amplitudes and slightly
reduced linear growth rates of the fundamental mode (figure 5a). Other significant triadic
interactions related to the fundamental mode in figure 15 appear simultaneously, with the
onset of the interactions just downstream of the maximum displacement thickness (δ∗

max )
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Figure 14. Dominant BMD mode interactions for the intermediate forcing case (5 kVpp), order based on
location of streamwise maximum. Contour levels are normalised by the respective maximum (|u′| or |v′|) in
each case; for relative mode amplitudes, see figure 12.

and maxima in the range 24.5 < x < 25. Of particular interest are again the last two rows
in figures 14 and 15, showing the low-frequency mode and an example of a ‘random’
interaction in the flow. The streamwise location of the onset of broad-band nonlinear
interactions at high forcing amplitudes coincides with the onset of the triadic interaction
of the dominant modes found in the BMD spectra (except the sum self interaction of the
fundamental mode, [1; 1; 2]). This is in contrast to the intermediate forcing case with
interactions – other than the dominant modes in the BMD spectrum – notably delayed
downstream, consistent with the observations of the later breakdown in the time traces
(figure 10).

The dominant mode in the LSB shear layer (baseline and AFC) is expected to be
largely 2-D (figure 7). However, large three-dimensional structures in the mean flow in
figure 4 suggest strong periodic spanwise modulation of the LSB. To compare the spanwise
wavelength of the nonlinear modes with the spanwise periodic structures in the unsteady
mean flow, BMD is applied to the wall-parallel measurements. The BMD spectra in the
x−z planes are very similar to those observed for the x−y plane measurements (figure 12)
and therefore not repeated here for brevity.

In the baseline case, weak three-dimensionality is present only in the BMD
eigenfunctions and interaction maps for the low-frequency (‘zero’) mode and in the
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Figure 15. Dominant BMD mode interactions for the intermediate forcing case (7 kVpp), order based on
location of streamwise maximum. Contour levels are normalised by the respective maximum (|u′| or |v′|) in
each case; for relative mode amplitudes, see figure 12.

difference self-interaction of the fundamental mode and subharmonic (figure 16).
Streamwise streaks in the BMD eigenmodes appear around the maximum displacement
thickness in the bubble and agree in spanwise wavelength with the weak stationary
structures in figure 4(a). The spanwise uniform structure in the [0; 0; 0] mode in the range
23.5 < x < 24 coincides with the inflection point in the upstream shear layer and is void
of spanwise modulation and nearly 2-D (differences in the streamwise location are a result
of a slight tilt in the measurement plane across the span). The interaction maps of the
difference self-interaction of the fundamental mode and subharmonic show similar streaks
beginning at the same streamwise location. The similarity in the dominant spanwise
wavelength (λz ≈ 0.75) to previous global stability analysis (Borgmann et al. 2025) and the
quasi-stationary character of the streamwise streaks in the ‘zero’-mode interaction (and the
time average, figure 4a) suggest that these could be the result of a global instability in the
unforced LSB. The BMD (and SPOD) eigenmode for the subharmonic (figure 16b) shows
a deformation of spanwise-coherent structures at a wavelength of λz ≈ 1.5, twice that of
the mean flow deformation. This modulation of the 2-D structures in the shear layer leads
to λz/λx ≈ 2, and is well within the range of wavelength ratios reported for the spanwise
modulations in Rodríguez et al. (2021), who report spanwise deformation of the entire
separated region as a result of the saturation of the primary 2-D instability. Both of these
wavelengths are observed in the time-averaged flow (figure 4a) and are related to stationary
structures or at least very low frequency.

With AFC, the fundamental mode was significantly strengthened. Figure 17 shows
the difference and sum self-interactions of the fundamental mode for the forced flow
(5 and 7 kVpp). The BMD eigenmodes for [1; 0; 1] show the spanwise-coherent structures
expected from figure 6. Differences can be seen in the spanwise modulation of the K–H
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Figure 16. The BMD modes; Φ
[u]
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levels are normalised by the respective maximum (|u′| or |v′|) in each case; for relative mode amplitudes,
see figure 12.
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Figure 17. The BMD modes related to the subharmonic and corresponding interaction maps for the forced
LSB: (a,b) 5 kVpp; (c,d) 7 kVpp. Contour levels are normalised by the respective maximum (|u′| or |v′|) in
each case; for relative mode amplitudes, see figure 12.

mode for different forcing amplitudes. Both interaction maps ([1; 0; 1] and [1; 1; 2])
at moderate forcing amplitudes are dominated by large-scale spanwise undulations.
The mode shape of the sum self-interaction of the fundamental mode agrees with
the streamwise wavelength of the harmonic mode in SPOD. Largest amplitudes in the
interaction maps for the harmonic are located downstream of reattachment (x = 25) with
a spanwise organisation identical to that of the large-scale stationary undulations in the
mean flow in figure 4(b) (λz ≈ 1.4). At the high forcing amplitude, the interaction maps
in figure 17 seem dominated by smaller-scale spanwise modulations, present in the sum-
frequency components (mode shapes) of both the fundamental and harmonic and their
interaction maps. The small-scale structures experience a phase shift near x = 24 for
[1; 0; 1] resulting in a staggered pattern near the bottom of figure 17(c) (the differences
along the spanwise direction are likely a result of strong local gradients and the slight tilt of
the measurement plane). Similar behaviour, albeit weaker, is observed further downstream
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Figure 18. The BMD modes related to the subharmonic and corresponding interaction maps for the forced
LSB. Contour levels are normalised by the respective maximum (|u′| or |v′|) in each case; for relative mode
amplitudes, see figure 12.

for the sum self-interaction (harmonic). The spanwise wavelength of these small-scale
structures (λz ≈ 0.45) is in good agreement with the distortions of the mean flow in
figure 4(c) suggesting them to be stationary in nature.

The spanwise representation of the subharmonic and its nonlinear triadic interactions
with itself, the fundamental (forced) mode and its harmonic and half-harmonics are shown
for relevant interactions for the intermediate- and high-amplitude forcing (figure 18). Even
in a ‘quasi’-2-D flow, the subharmonic is usually the result of a pair of oblique modes of
equal amplitude but opposite angle (Monkewitz 1988). The difference interaction of the
two oblique modes readily explains the chequerboard pattern observed in figures 18(a)
and 18(b). The spanwise wavelengths are λz ≈ 0.83 (5 kVpp) and λz ≈ 0.81 (7 kVpp),
respectively. Further downstream, interactions of the subharmonic with the fundamental
mode lead to patterns with smaller (half) streamwise wavelengths and similar spanwise
wavelengths (figures 18c and 18d). In the case of intermediate forcing, the two interactions
resulting in the half-harmonic at f/ fAFC = 2.5 appear at the same spanwise wavelength,
albeit an even smaller streamwise wavelength (figures 18e and 18f ). The prominent
representations of the modes and their interactions, in particular in the intermediate forcing
case, further corroborate the delayed breakdown to small scales, with only a few mode
interactions for 24 < x = 26. Early turbulent breakdown in the high forcing case leads to
only weak and rather unorganised structures downstream of the LSB.

Comparisons of the mean flow distortion and the characteristic spanwise wavelength in
the unsteady dynamics of the shear layer for the intermediate and high forcing amplitude
are presented in figure 19. Mean flow contour lines are shown as an overlay on the
interaction maps for the difference self-interaction of the subharmonic, representative
of the spanwise periodicity in the wall-parallel measurements for all triadic interactions
related to the subharmonic. The large spanwise wavelength of the mean flow deformation
at intermediate forcing amplitudes does not show any notable relation to the spanwise
wavelength of the dynamic interactions. The SPOD modes for different wall-normal
locations for the fundamental mode of the K–H instability for the baseline ( f/ fAFC = 1.25
in figure 7a) for different wall-normal locations (not shown here) show stronger spanwise
modulation of the initially 2-D structures near the wall. Further away from the wall near
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Figure 19. Mean flow overlay for the wall-parallel plane near the maximum displacement thickness and
interaction maps of the difference self-interaction of the subharmonic ( f/ fAFC = 0.5) with AFC.

the shear layer and towards the free stream the coherent structures show an increasingly
higher degree of coherence along the span for the same streamwise locations. This is
consistent with the BMD interaction maps in the centreline ([1.25; 0; 1.25] in figure 13b)
and hints at the origin of the large-wavelength spanwise undulations inside the LSB. The
AFC significantly increases the disturbance amplitude of the fundamental mode relative
to the baseline case. The maximum reverse flow amplitude for the baseline case and the
intermediate forcing amplitude of 5 kVpp – based on the centreline measurements –
was found to be 7 % ≤ u∗

rev ≤ 11 % (relative to the free-stream velocity at separation
U∞,s , u∗

rev = urev/U∞,s), which may be sufficient for the presence of an absolute
instability (Rodriguez & Theofilis 2010; Hosseinverdi & Fasel 2013; Rodríguez et al. 2013;
Embacher & Fasel 2014). Prior work (Borgmann et al. 2025) showed the presence of such
an absolute instability for the baseline case (without the actuator present). At high forcing
amplitudes, the reverse flow in the LSB is below 7 %. At high forcing amplitudes (7 kVpp)
the wavelength of spanwise deformation of the mean flow agrees with the wavelength
of the dynamics of the shear layer related to the subharmonic and half-harmonic at
f = 1.5 fAFC (SPOD and BMD [0.5; 0; 0.5] and [1; 0.5; 1.5]; figure 19a). This suggests
that at high forcing amplitudes the shear-layer dynamics influences the mean flow. Stability
calculations for the baseline and forced flow fields are necessary to determine the global
and local stability of the forced flow, but this is beyond the scope of this work. Secondary
instability analysis for the time-periodic base flow within the coherent vortices (Borgmann
et al. 2022) found the dominant secondary instability at the subharmonic of the forced
mode, consistent with this work. The corresponding spanwise wavelength was found at
λz ≈ 1 within the tested discrete wavelengths of λz = [0.5, 1, 2] (with the actual value
expected to be slightly lower if the resolution were to be increased). The most unstable
mode showed a tendency towards larger wavelength for forcing amplitudes approaching
the critical amplitudes (Acr , necessary for a secondarily stable LSB). The dominant
spanwise wavelength in the mean flow for the baseline in this work is in reasonable
agreement with the stability calculations, while the larger wavelength in the intermediate
forcing amplitude follows the expected trend. No stability calculations were available for
comparison with the highest forcing amplitudes.

At higher forcing amplitudes the origin of the small-scale spanwise-periodic structures
appears near the wall as well. The spanwise-coherent structures nearest to the wall are
modulated, while on the high-speed side of the shear layer, away from the wall, the first few
periods of the K–H mode remain largely unaffected and visual modulation only appears
farther downstream (figure 7). Results in figure 19(b) relate the small-scale spanwise
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undulations to the spanwise wavelength of the nonlinear interactions connected to the
subharmonic. The spanwise wavelength of the interaction is identical to that observed in
the mean flow at the highest forcing amplitudes. This implies that for sufficient forcing
amplitudes, the spanwise deformation of the mean flow is a result of the disturbances in
the shear layer. In this case, the interaction of two oblique subharmonic modes leads to a
steady interference pattern in the flow.

5. Summary and conclusion
The response of LSBs to periodic 2-D disturbance input at moderate to high forcing
amplitudes is investigated experimentally. The LSB in this work is generated by the
favourable to adverse pressure gradient under a high-aspect-ratio (Lz,W T /c = 6, where
Lz,W T is the width of the model in the wind tunnel) inverted modified NACA 643-618
airfoil at ReC = 90 000. Two-dimensional periodic disturbances are generated by an
ac-DBD plasma actuator located near the onset of the adverse pressure gradient. The
effect of excitation amplitude to the amplitude development of the K–H instability in the
shear layer and the impact on the transition process are examined using time-resolved
PIV measurements along the centreline and several wall-parallel planes. Time-averaged
measurements along the centreline show the expected effect on the bubble size, with
a progressively smaller LSB as the forcing amplitude is increased. Three-dimensional
reconstruction of the time-averaged flow fields, however, shows significant spanwise
periodic deformation of the mean flow at different spanwise wavelength seemingly
dependent on the forcing amplitudes. Spectral analysis of the velocity signal and
modal decomposition of the flow field confirm that periodic excitation leads to higher
amplitudes of the 2-D coherent roller structures than in the unforced case, resulting
from the disturbance growth due to the K–H instability in the separated shear layer.
Largest amplitudes and highest levels of coherence are observed for intermediate forcing
amplitudes, suggesting the existence of an optimal forcing level to generate strong
2-D rollers. High-amplitude forcing led to smaller growth rates of the K–H mode in
the LSB and earlier saturation at lower finite amplitudes, suggesting earlier onset of
nonlinear interactions. Time traces and spectral analysis confirm the early breakdown of
periodic structures in the flow at high-amplitude forcing, while at intermediate forcing
the amplitudes of the forced mode and the periodicity of the velocity signal remain high
at significant lengths downstream (x = 26, ≈
Lb,5 kVpp downstream of reattachment).
These results suggest that the transition at intermediate forcing amplitudes, in particular
at 5 kVpp, is delayed to a location downstream of reattachment. The strong spanwise-
coherent vortical structures appear sufficient to reattach the flow, prior to breakdown to
turbulence, similar to the direct numerical simulation results by Hosseinverdi & Fasel
(2018). Modal analysis finds that periodicity in the spanwise modulation of the mean flow
at high-amplitude forcing agrees with the wavelength of a subharmonic mode growing
downstream of the initial saturation of the forced mode. The results suggest that the
mean flow modulation at high amplitudes is a direct result of the forcing and possibly
an interaction of two oblique subharmonic modes. The subharmonic modes appear as
a result of the forced 2-D mode. The dominant spanwise wavelength at intermediate
forcing amplitudes does not show a direct relation to the unsteady dynamics in the
shear layer. The spanwise wavelength of the subharmonic interaction in the LSB is
significantly smaller than the observed mean flow deformation. The results in this work
agree with the numerical calculations in Hosseinverdi & Fasel (2018), showing a critical
forcing amplitude to the amplification of the 2-D mode and potential delay of transition.
Below such critical amplitudes, the developing vortical structures are not strong enough
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to overcome the global instability in the LSB. At supercritical forcing amplitudes, the
early onset of nonlinear interactions leads to rapid breakdown and turbulent reattachment.
Overall, results corroborate direct numerical simulation findings by Hosseinverdi & Fasel
(2018) and point to the existence of an optimal forcing amplitude for control of transition
in LSBs in the presence of FST.
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