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Abstract
A spline is an assignment of polynomials to the vertices of a graph whose edges are labeled by ideals, where the
difference of two polynomials labeling adjacent vertices must belong to the corresponding ideal. The set of splines
forms a ring. We consider spline rings where the underlying graph is the Cayley graph of a symmetric group generated
by a collection of transpositions. These rings generalize the GKM construction for equivariant cohomology rings
of flag, regular semisimple Hessenberg and permutohedral varieties. These cohomology rings carry two actions
of the symmetric group 𝑆𝑛 whose graded characters are both of general interest in algebraic combinatorics. In
this paper, we generalize the graded 𝑆𝑛-representations from the cohomologies of the above varieties to splines on
Cayley graphs of 𝑆𝑛 and then (1) give explicit module and ring generators for whenever the 𝑆𝑛-generating set is
minimal, (2) give a combinatorial characterization of when graded pieces of one 𝑆𝑛-representation is trivial, and
(3) compute the first degree piece of both graded characters for all generating sets.
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2 N. R. T. Lesnevich

1. Introduction

Let G be a graph with edges labeled by ideals in C[𝑡•] � C[𝑡1, . . . , 𝑡𝑛]. A spline on G is an assignment
of polynomials to vertices such that the difference of two polynomials labeling adjacent vertices must
be in the corresponding ideal. The Cayley graph for a group G and generating set 𝑆 ⊆ 𝐺 has vertex set
G and edge set {(𝑔, 𝑔𝑠) | 𝑔 ∈ 𝐺, 𝑠 ∈ 𝑆}. When the group G is a symmetric group 𝑆𝑛 and the generating
set S consists of inversions, there is a natural edge labeling for the corresponding Cayley graph. This
labeled Cayley graph, and thereby the splines on it, are entirely determined by the data of the inversion
graph Γ = ([𝑛], 𝑆). This paper determines algebraic structures of splines on Cayley graphs of symmetric
groups using the combinatorial data of the inversion graph Γ.

To discuss the results below, we begin with some notation. Let Γ be a connected simple graph with
vertex set [𝑛] � {1, . . . , 𝑛}, and identify the edges in its edge set 𝐸 (Γ) with transpositions in 𝑆𝑛. This
paper studies how properties of Γ determine the algebraic structure of splines on the Cayley graph GΓ

of 𝑆𝑛 with generating set 𝐸 (Γ) and edge label (𝑤, 𝑤(𝑖, 𝑗)) ↦→
〈
𝑡𝑤 (𝑖) − 𝑡𝑤 ( 𝑗)

〉
. Formally, the ring of

splines is defined as

MΓ �

{
�̄� ∈

∏
𝑤 ∈𝑆𝑛

C[𝑡•]

����� �̄�(𝑤) − �̄�(𝑤(𝑖, 𝑗)) ∈
〈
𝑡𝑤 (𝑖) − 𝑡𝑤 ( 𝑗)

〉
when (𝑖, 𝑗) ∈ 𝐸 (Γ)

}
,

with (graded) 𝑆𝑛-module structure 𝑤 · �̄�(𝑣) = 𝑤�̄�(𝑤−1𝑣) and (graded) C[𝑡•]-module structure given by
multiplication.

This definition of the ring of splines generalizes the case where GΓ is the moment graph of a
geometric object called a regular semisimple Hessenberg variety and the ring of splines is isomorphic to
the equivariant cohomology of that variety [13, 16, 28]. We call this the geometric case, and in this case,
the corresponding graph Γ is a Hessenberg graph, commonly characterized in algebraic combinatorics
as being the indifference graph of a 3 + 1- and 2 + 2-free poset. The more general setting considered in
this paper allows one to spot patterns in rich algebraic structure that would otherwise be restricted for
geometric reasons. For example, in the geometric case, MΓ is always a free module over the polynomial
ring, whereas for general Γ, it is not.

The 𝑆𝑛-module structure on MΓ was first defined in the geometric case as the dot action on
equivariant cohomology by Tymoczko in [28]. There are two natural 𝑆𝑛-equivariant quotients, LΓ and
RΓ, of MΓ that are in fact graded C-vector spaces. The graded 𝑆𝑛-module structure of MΓ induces
graded 𝑆𝑛-representations on the quotients, admitting (via the Frobenius character map ch) two different
graded symmetric functions:

ch(LΓ) �
⊕
𝑖

ch(LΓ)𝑖 and ch(RΓ) �
⊕
𝑖

ch(RΓ)𝑖 .

These are manifestly Schur-positive symmetric function invariants of any simple graph.
The graded symmetric functions ch(LΓ) and ch(RΓ) are historically of interest to algebraic combina-

torists because of their connections to chromatic symmetric functions [8, 19, 25] and LLT polynomials
[3, 5, 19] in the geometric case. The two bases of symmetric functions we consider here are Schur func-
tions {𝑠𝜆} and homogeneous symmetric functions {ℎ𝜆}. In the geometric case, two major open problems
seek (1) a homogeneous basis expansion of ch(LΓ) ([1, 8, 12, 14, 18, 20, 25, 26], and many others),
and (2) a Schur basis expansion of ch(RΓ) ([2, 7, 19, 21, 22, 23] and many others). Again, our object
of study is more general, and because of this, we can identify patterns otherwise masked by geomet-
ric structure. For example, the Stanley–Stembridge conjecture [27] claims that the homogeneous basis
expansion of ch(LΓ) has only nonnegative integer coefficients (h-positivity) in the geometric case. We
observe below that this is not the case for general Γ, but h-positivity seems to occur whenever MΓ is a
free module over C[𝑡•].

This paper begins with several fundamental properties of MΓ. First, we establish the algebraic
structure of MΓ as an invariant of the graph Γ.
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Lemma 1.1. An isomorphism of graphs Γ � Γ′ induces a ring isomorphism of splines MΓ �MΓ′ and
equality of graded symmetric functions: ch(LΓ) = ch(LΓ′ ) and ch(RΓ) = ch(RΓ′ ).

In particular, Lemma 1.1 shows that the graded symmetric functions ch(LΓ) and ch(RΓ) are (Schur-
positive) invariants of unlabeled simple graphs. Lemma 1.1 is proved via Propositions 2.18 and 2.20
below.

Then when Γ is a tree, we determine explicit ring and module generators of MΓ called coset splines
(Definition 3.4).

Theorem 1.2. If Γ is a tree, then the set of coset splines is a C[𝑡•]-module generating set of MΓ, and
the set of linear and constant coset splines is a ring generating set of MΓ.

Since they generate, one can compute MΓ explicitly with coset splines using a computer algebra
system. Theorem 1.2 is Theorem 3.7 and Corollary 3.8 below.

We use Theorem 1.2 to show that MΓ is not always a free C[𝑡•]-module, and ch(LΓ) is not always
h-positive (see Appendix A). One example is if Γ = ([4], {(1, 4), (2, 4), (3, 4)}), then MΓ is not a
free module and ch(LΓ)2 is not h-positive. This also confirms that MΓ is not always the equivariant
cohomology of an (equivariantly formal) algebraic variety as in [16], since in that case, MΓ is a free
C[𝑡•]-module.

Our next main results, Theorems 1.3 and 1.4 below, explicitly compute certain graded pieces of the
symmetric functions ch(LΓ) and ch(RΓ). Specifically, we determine when graded pieces of ch(LΓ) and
ch(RΓ) are equal to ch

(
L𝐾𝑛

)
and ch

(
R𝐾𝑛

)
where 𝐾𝑛 is the complete graph (Γ = 𝐾𝑛 is a very special

geometric case), and we compute ch(LΓ)1 and ch(RΓ)1 for all connected graphs Γ.
For a variety of reasons, for example by formulae in [25] or by some geometric observations, in the

geometric case, it is straightforward to tell from a Hessenberg graph H whether the symmetric function
ch(L𝐻 )𝑑 corresponds to a trivial representation. We achieve an analogous result for arbitrary graphs.
The k-connectivity (Definition 2.2) of a graph is a combinatorial invariant that measures how many
vertices can be removed from a graph before it might become disconnected.

Theorem 1.3. Let Γ be a connected simple graph. The following are equivalent:

1) The graph Γ is k-connected.
2) For all 𝑑 < 𝑘 , the symmetric function ch(LΓ)𝑑 corresponds to a trivial representation.
3) For all 𝑑 < 𝑘 , the d-th graded piece of MΓ is isomorphic to the d-th graded piece of M𝐾𝑛 , where

𝐾𝑛 is the complete graph on n vertices.

Geometrically, the d-th graded piece of M𝐾𝑛 is isomorphic to the 2𝑑-th equivariant cohomology of
the full flag variety and is thus spanned by equivariant Schubert classes whose spline formula is given
in [6]. Theorem 1.3 is a consequence of Theorem 4.2 below.

When Γ is a Hessenberg graph, the first graded piece of ch(LΓ) has been computed in a variety of
ways. The Schur expansion is computed by counting P-tableaux [25]. Expansions in the homogeneous
basis have been computed with P-tableaux [11], geometrically [10], as well as with splines [4]. Our
methods here most directly generalize those in [4].

Theorem 1.4. D Let Γ be any connected simple graph. The first-degree pieces of the graded symmetric
functions ch(LΓ) and ch(RΓ) can be computed in both the Schur and homogeneous bases of symmetric
functions from the data of (1) cut edges of Γ and (2) cut vertices of Γ and the number of connected
components those vertices separate.

Formally, there exist a subset 𝐸1 of cut edges, a subset 𝐸2 of 2-connected subgraphs, a nonnegative
integer 𝑘 ∈ N, and a function 𝑒 ↦→ 𝜆𝑒 from 𝐸1 to the set of partitions of n, such that

ch(LΓ)1 =
∑
𝑒∈𝐸1

ℎ𝜆𝑒 + (|𝐸2 | − 1)ℎ𝑛−1,1 + 𝑘ℎ𝑛
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4 N. R. T. Lesnevich

and

ch(RΓ)1 =
∑
𝑒∈𝐸1

(
ℎ𝜆𝑒 − 𝑠𝑛

)
+ |𝐸2 |𝑠𝑛−1,1.

Theorem 1.4 is Theorem 9.2 and Corollary 9.3 below. The subsets 𝐸1 and 𝐸2 are defined using a
combinatorial construction from the block-cut tree (Definition 6.2) of Γ in Section 8.

The paper is structured as follows. Section 2 constructs MΓ and proves some of the fundamental
algebraic properties, including the isomorphism of Lemma 1.1. Section 3 builds tools for computing
spline conditions from paths in Γ and GΓ. It also contains the construction of coset splines for trees and
the proof that coset splines generate MΓ, Theorem 1.2 above. Section 4 leverages the tools in Section 3
to prove our result on k-connectedness, Theorem 1.3 above. Sections 5, 6, 7, 8 and 9 are all to compute
the representations in Theorem 1.4 above. Section 5 defines a set of linear splines on the graph GΓ and
proves some linear relations within that set. Section 6 reduces the computation to a subclass of graphs Γ
that will be used in all of the remaining sections. Section 7 proves that the set of splines from Section 5
is in fact a C-spanning set for linear splines, and Section 8 computes the C-dimension of this space.
Finally, Section 9 computes the first graded piece of ch(LΓ) and ch(RΓ), Theorem 1.4. Appendix A
contains a table of ch(LΓ) and ch(RΓ) for graphs with 3 or 4 vertices and a table of the rank-generating
functions for graphs of size 5 (which gives the graded dimension of the representations).

2. Background

There is a natural action of the symmetric group 𝑆𝑛 on the polynomial ring C[𝑡•] by

𝑤 𝑓 (𝑡1, . . . , 𝑡𝑛) ↦→ 𝑓
(
𝑡𝑤 (1) , . . . , 𝑡𝑤 (𝑛)

)
. (2.1)

We use both one-line and cycle notation for elements of 𝑆𝑛. We denote a permutation’s cycle notation
with parentheses and commas, and its one-line notation without, so that (1, 2, 3) = 231.

2.1. Graphs: simple and Cayley

This subsection establishes the basic definitions, results and notation from graph theory needed below.
A graph is a tuple Γ = (𝑉, 𝐸) where V is the set of vertices and 𝐸 ⊂ 𝑉 × 𝑉 is the set of edges. Graphs
here are understood to be undirected and simple (i.e., finite, loopless and without multiple edges). We
will always take Γ to be connected and may remind the reader of this assumption where particularly
important. Write 𝐸 (Γ) for the edge set of a graph Γ and 𝑉 (Γ) for the vertex set. Inclusion 𝑣 ∈ Γ means
𝑣 ∈ 𝑉 (Γ).

If the vertex set V has some natural linear order (in particular, when 𝑉 = [𝑛]), then an edge between
vertices 𝑖 < 𝑗 will always be written with the lower vertex first (𝑖, 𝑗), unless explicitly stated otherwise.
Note that these edges are undirected, so an edge (𝑖, 𝑗) is the same as an edge ( 𝑗 , 𝑖).

We denote graphs pictorially with circles as vertices and lines as edges between them; for example,
we would display a particular graph Γ on 9 vertices as

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6 𝑣7

𝑣8

𝑣9
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The induced subgraph of Γ with vertex set 𝑉 \𝐴 is Γ\𝐴 � (𝑉 \𝐴, 𝐸 ′), where 𝐸 ′ = 𝐸∩(𝑉 \ 𝐴 ×𝑉 \ 𝐴).
We write Γ − 𝑣 for Γ \ {𝑣}. When collapsing a subgraph in drawing, we reference the subgraph in a
square to distinguish that there are multiple vertices being referenced, and double lines connecting to
acknowledge the possibility of multiple edges. For example, we may display Γ above as

𝑣1

𝑣2

Γ \
{𝑣1
𝑣2

}

if the structure within Γ \ {𝑣1, 𝑣2} is not needed.

Definition 2.1. For a graph Γ, a set 𝐴 ⊂ 𝑉 (Γ) is a cut set if Γ \ 𝐴 is disconnected. Similarly, 𝑣 ∈ 𝑉 (Γ)
is a cut vertex of Γ (denoted 𝑣 	 Γ) if Γ − 𝑣 is disconnected.

An edge 𝑒 ∈ 𝐸 (Γ) is a cut edge if the graph (𝑉 (Γ), 𝐸 (Γ) \ {𝑒}) is disconnected.

A path in Γ from vertex 𝑣0 to vertex 𝑣ℓ of length ℓ is a sequence of vertices (𝑣0, 𝑣1, ..., 𝑣ℓ), where
(𝑣𝑘 , 𝑣𝑘+1) ∈ 𝐸 (Γ) for 𝑘 = 0, ..., ℓ − 1. Define the distance 𝑑 (𝑣, 𝑤) between v and w as the minimum
length over all paths from v to w, and let 𝑑 (𝑣, 𝑤) � ∞ if no such path exists.

Definition 2.2. A graph Γ = (𝑉, 𝐸) is k-connected if Γ \ 𝐴 is connected for all 𝐴 ⊂ 𝑉 such that
|𝐴| ≤ 𝑘 − 1.

In other words, a graph is k-connected if there exists no cut set A where |𝐴| < 𝑘 . The following is an
equivalent characterization used in §4.

Theorem 2.3 (Menger’s Theorem). A graph Γ is k-connected if and only if for every pair of vertices
𝑖, 𝑗 ∈ Γ, there exist at least k vertex-disjoint paths from i to j.

An R-labeled graph is a tuple (𝑉, 𝐸, 𝐿), where (𝑉, 𝐸) is a graph and L is a function 𝐿 : 𝐸 → 𝑅 for
some set R. A Cayley graph of a group G and a set of generators S is the graph

(
𝐺, {(𝑔, ℎ) | 𝑔−1ℎ ∈ 𝑆}

)
.

Cayley graphs are usually directed graphs, but all generators considered here will be involutions, and so
the Cayley graphs will be undirected simple graphs. Note that 𝑔−1ℎ ∈ 𝑆 if and only if ℎ = 𝑔𝑠 for 𝑠 ∈ 𝑆,
so edges in a Cayley graph correspond to right multiplication by generators.

This paper concerns graphs Γ on vertex set [𝑛] and labeled Cayley graphs of the symmetric group
with generators being some set of transpositions. The edge labels are principle ideals in C[𝑡•].

Definition 2.4. Let Γ be a graph on [𝑛]. Identify each edge (𝑖, 𝑗) ∈ 𝐸 (Γ) with the transposition
(𝑖, 𝑗) ∈ 𝑆𝑛. The labeled Cayley graph associated to Γ is GΓ := (V , E ,L), where

◦ V = 𝑆𝑛,
◦ E = {(𝑤, 𝑣) | 𝑤−1𝑣 ∈ 𝐸 (Γ)}, and
◦ L(𝑤, 𝑣) =

〈
𝑡𝑖 − 𝑡 𝑗

〉
, where (𝑖, 𝑗) = 𝑤𝑣−1.

Note 𝑤−1𝑣 is conjugate to 𝑤𝑣−1, so if 𝑤 = 𝑣(𝑖, 𝑗), then L(𝑤, 𝑣) = 〈𝑡𝑤 (𝑖) − 𝑡𝑤 ( 𝑗) 〉 = 〈𝑡𝑣 (𝑖) − 𝑡𝑣 ( 𝑗) 〉.
Note also that L is defined whenever 𝑤𝑣−1 is a transposition.

Example 2.5. Let Γ = ([3], {(1, 2), (2, 3)}). Then GΓ has vertex set 𝑆3, edges {(𝑤, 𝑣) | 𝑤−1𝑣 ∈
{(1, 2), (2, 3)}, and labels of the form 〈𝑡𝑖 − 𝑡 𝑗〉, where 𝑖, 𝑗 ∈ [3]. Below is GΓ, with labeling ideals
denoted by generators.
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6 N. R. T. Lesnevich

Consider the edge (132, 312). These permutations have their first and second positions swapped,
corresponding to right multiplication by (1, 2) ∈ 𝐸 (Γ). The edge is labeled 〈𝑡1 − 𝑡3〉 because these
permutations have the entries 1 and 3 swapped, corresponding to left multiplication by (1, 3).

The Γ-length of a permutation 𝑤 ∈ 𝑆𝑛 is

ℓΓ (𝑤) � min{ℓ | 𝑤 = 𝑠1 · · · 𝑠ℓ , {𝑠1, . . . , 𝑠ℓ } ⊆ 𝐸 (Γ)}. (2.2)

This is also the value of 𝑑 (𝑒, 𝑤) in GΓ. When Γ is the path graph, Γ-length is the traditional length
function on permutations.

2.2. Splines

This section introduces the ring of splines on a labeled Cayley graph. The lemmas in this subsection are
well known and straightforward, but we include proofs for completeness.

Definition 2.6. Let Γ be a graph on [𝑛]. A spline on GΓ is a function �̄� : 𝑆𝑛 → C[𝑡•] such that
�̄�(𝑤) − �̄�(𝑣) ∈ L(𝑤, 𝑣) whenever (𝑤, 𝑣) ∈ 𝐸 (GΓ). The support of the spline �̄� is the set supp( �̄�) �
{𝑤 | �̄�(𝑤) ≠ 0}.

To distinguish from polynomials, we always denote a spline with a bar.

Example 2.7. Again, consider Γ = ([3], {(1, 2), (2, 3)}). Drawn below (omitting edge-labels) are three
examples of splines on GΓ.
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So �̄�1 (𝑤) = 𝑡1 for all 𝑤 ∈ 𝑆3, �̄�2(𝑤) = 𝑡𝑤 (1) for all 𝑤 ∈ 𝑆3, and 𝜌3 (𝑤) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑡1 − 𝑡2 if 𝑤 = 213
𝑡3 − 𝑡2 if 𝑤 = 231
0 otherwise.

The set of splines is closed under addition, as well as multiplication.

Lemma 2.8. Let Γ be a graph on [𝑛]. If �̄� and �̄� are splines on GΓ, then so is �̄� �̄�, the spline constructed
via pointwise multiplication.

Proof. Let (𝑤, 𝑣) ∈ 𝐸 (GΓ). By assumption, �̄�(𝑤) − �̄�(𝑣) ∈ L(𝑤, 𝑣) and �̄�(𝑤) − �̄�(𝑣) ∈ L(𝑤, 𝑣). We
have

�̄�(𝑤)�̄�(𝑤) − �̄�(𝑣)�̄�(𝑣) = �̄�(𝑤)�̄�(𝑤) − �̄�(𝑣) �̄�(𝑤) + �̄�(𝑣) �̄�(𝑤) − �̄�(𝑣)�̄�(𝑣)

= �̄�(𝑤) (�̄�(𝑤) − �̄�(𝑣)) + �̄�(𝑣) ( �̄�(𝑤) − �̄�(𝑣)),

and the sum is clearly in L(𝑤, 𝑣). �

Definition 2.9. The ring of splines on GΓ is the subring

MΓ �

{
�̄� ∈

∏
𝑤 ∈𝑆𝑛

C[𝑡•]

����� �̄�(𝑤) − �̄�(𝑣) ∈ L(𝑤, 𝑣) for all (𝑤, 𝑣) ∈ 𝐸 (GΓ)

}
of

∏
𝑤 ∈𝑆𝑛 C[𝑡•] with pointwise addition and multiplication.

Lemma 2.10. The ring MΓ is graded by degree, so MΓ =
⊕

𝑖≥0 M𝑖
Γ.

Proof. Let �̄� be a spline in MΓ and let �̄�𝑘 (𝑤) be the k-th graded piece of the polynomial �̄�(𝑤). We
aim to show that �̄�𝑘 is a spline as well. For each (𝑤, 𝑣) ∈ 𝐸 (GΓ), the ideal L(𝑤, 𝑣) is a homogeneous
ideal. Thus, �̄�(𝑤) − �̄�(𝑣) ∈ L(𝑤, 𝑣), and it follows that �̄�𝑘 (𝑤) − �̄�𝑘 (𝑣) ∈ L(𝑤, 𝑣), so �̄�𝑘 is a spline. For
two homogeneous splines �̄� and �̄� of degrees p and q, respectively, the product �̄��̄� is homogeneous of
degree 𝑝 + 𝑞 on its support. �

We now construct two sets of splines and the identity spline, each are elements of MΓ for all Γ. Let

1̄ : 𝑆𝑛 → C[𝑡•] be 1̄(𝑤) � 1 for all 𝑤 ∈ 𝑆𝑛,
𝑡𝑖 : 𝑆𝑛 → C[𝑡•] be 𝑡𝑖 (𝑤) � 𝑡𝑖 for all 𝑤 ∈ 𝑆𝑛, 𝑖 ∈ {1, . . . , 𝑛}, 𝑎𝑛𝑑
𝑥𝑖 : 𝑆𝑛 → C[𝑡•] be 𝑥𝑖 (𝑤) � 𝑡𝑤 (𝑖) for all 𝑤 ∈ 𝑆𝑛, 𝑖 ∈ {1, . . . , 𝑛}.

The ring MΓ is an infinite-dimensional C-vector space in the natural way and can also be viewed as a
finitely generated graded C[𝑡•]-module in two ways via the following module actions:

𝑓 (𝑡1, . . . , 𝑡𝑛).�̄� = 𝑓 (𝑡1, . . . , 𝑡𝑛) �̄� (2.3)

and

𝑓 (𝑡1, . . . , 𝑡𝑛).�̄� = 𝑓 (𝑥1, . . . , 𝑥𝑛) �̄�, (2.4)

where the right-hand side of both (2.3) and (2.4) work by substituting splines for variables in to the
polynomial f then multiplying as in the ring structure of MΓ. For both actions, the constant 𝑓 (0, . . . , 0)
is naturally mapped to 𝑓 (0, . . . , 0)1̄. Since MΓ is a C[𝑡•]-submodule of

∏
𝑤 ∈𝑆𝑛 C[𝑡•] for either module

action, it is finitely generated. We call the module action (2.3) the left action and the module action (2.4)
the right action of C[𝑡•] on MΓ. Given any 𝜔 ∈ 𝑆𝑛, both actions may be twisted by sending 𝑓 ↦→ 𝜔 𝑓
first in the polynomial ring. Both the left and right actions are naturally compatible with the grading on
MΓ.
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Example 2.11. Let �̄� ∈MΓ and let 𝑓 (𝑡•) = 𝑡3
1 + 𝑡2

2 + 𝑡3. Let 𝜔 = (1, 2, 3) ∈ 𝑆𝑛. The left action of f on
�̄� evaluated at any 𝑣 ∈ 𝑆𝑛 is

𝑓 (𝑡•).�̄�(𝑣) =
[
((𝑡1)

3 + (𝑡2)
2 + 𝑡3) �̄�

]
(𝑣) = (𝑡3

1 + 𝑡2
2 + 𝑡3) �̄�(𝑣),

the right action of f on �̄� evaluated at any 𝑣 ∈ 𝑆𝑛 is

𝑓 (𝑡•).�̄�(𝑣) =
[
((𝑥1)

3 + (𝑥2)
2 + 𝑥3) �̄�

]
(𝑣) = (𝑡3

𝑣 (1) + 𝑡2
𝑣 (2) + 𝑡𝑣 (3) ) �̄�(𝑣),

the 𝜔-twisted left action of f on �̄� evaluated at any 𝑣 ∈ 𝑆𝑛 is

𝑓 (𝑡•).�̄�(𝑣) =
[
((𝑡𝜔 (1) )

3 + (𝑡𝜔 (2) )
2 + 𝑡𝜔 (3) ) �̄�

]
(𝑣) = (𝑡3

2 + 𝑡2
3 + 𝑡1) �̄�(𝑣),

and the 𝜔-twisted right action of f on �̄� evaluated at any 𝑣 ∈ 𝑆𝑛 is

𝑓 (𝑡•).�̄�(𝑣) =
[
((𝑥𝜔 (1) )

3 + (𝑥𝜔 (2) )
2 + 𝑥𝜔 (3) ) �̄�

]
(𝑣) = (𝑡3

𝑣 (2) + 𝑡2
𝑣 (3) + 𝑡𝑣 (1) ) �̄�(𝑣).

The ring of splines has a 𝑆𝑛-module structure, originally defined for Hessenberg graphs in [28, 29].

Definition 2.12. Let �̄� ∈MΓ. The dot action of 𝑆𝑛 on MΓ is given by

𝑤 · �̄�(𝑣) � 𝑤�̄�(𝑤−1𝑣)

for 𝑤, 𝑣 ∈ 𝑆𝑛. Any 𝜔 ∈ 𝑆𝑛 may twist the dot action by first sending 𝑣 → 𝜔𝑣𝜔−1 (conjugating by 𝜔).
Since conjugation is an inner automorphism of 𝑆𝑛, the standard and 𝜔-twisted 𝑆𝑛-module structures on
MΓ are isomorphic.

Using our standard for visualizing splines, the dot action by w moves polynomials around GΓ by
sending the polynomial at v to 𝑤𝑣 (for all 𝑣 ∈ 𝑆𝑛) and then acts on every polynomial by w as in
Equation (2.1).

Example 2.13. The dot action of the transposition (1, 2) on the spline �̄�3 from Example 2.7 is computed
below.

Computed below is the 𝜔 = (1, 2, 3)-twisted action of the transposition (1, 2) on the spline �̄�3 from
Example 2.7. Note this is the same as the untwisted action of (1, 2, 3) (1, 2) (1, 2, 3)−1 = (2, 3).

https://doi.org/10.1017/fms.2025.10037 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10037


Forum of Mathematics, Sigma 9

Remark 2.14. The dot action is well defined. We have for all (𝑣1, 𝑣2) ∈ 𝐸 (GΓ) that

𝑤 · �̄�(𝑣1) − 𝑤 · �̄�(𝑣2) = 𝑤�̄�(𝑤−1𝑣1) − 𝑤�̄�(𝑤−1𝑣2)

= 𝑤( �̄�(𝑤−1𝑣1) − �̄�(𝑤−1𝑣2))

∈ 𝑤L(𝑤−1𝑣1, 𝑤
−1𝑣2).

If 𝑣1𝑣
−1
2 = (𝑖, 𝑗), then 𝑤−1𝑣1𝑣

−1
2 𝑤 = (𝑤−1 (𝑖), 𝑤−1 ( 𝑗)). So

𝑤L(𝑤−1𝑣1, 𝑤
−1𝑣2) =

〈
𝑤(𝑡𝑤−1 (𝑖) − 𝑡𝑤−1 ( 𝑗) )

〉
=

〈
𝑡𝑖 − 𝑡 𝑗

〉
= L(𝑣1, 𝑣2).

Thus, 𝑤 · �̄�(𝑣1) − 𝑤 · �̄�(𝑣2) ∈ L(𝑣1, 𝑣2), and 𝑤 · �̄� ∈MΓ.

Finally, consider the quotients

LΓ �MΓ�〈𝑡1, . . . , 𝑡𝑛〉
(2.5)

and

RΓ �MΓ�〈𝑥1, . . . , 𝑥𝑛〉
. (2.6)

Call LΓ and RΓ the left and right quotients of MΓ, respectively. As C[𝑡•]-modules for the left and
right action, both quotients are MΓ�𝐼MΓ

, where I is the ‘irrelevant ideal’ 〈𝑡1, ..., 𝑡𝑛〉 of C[𝑡1, . . . , 𝑡𝑛].
Thus, LΓ and RΓ each inherit the structure of a finite-dimensional graded C-vector space from the left-
and right-module structure of MΓ, respectively. Any homogeneous module-generating set over C[𝑡•]
projects to a spanning set over C in the quotient.

The ideals 〈𝑡1, . . . , 𝑡𝑛〉 and 〈𝑥1, . . . , 𝑥𝑛〉 are homogeneous and 𝑆𝑛-equivariant, and so the graded 𝑆𝑛-
module structure on MΓ projects to graded 𝑆𝑛-representations on both LΓ and RΓ. Symmetric functions
are formal power series in {𝑥1, 𝑥2, ...} invariant under permuting the variables. The Frobenius character
map gives an isomorphism from the algebra of representations of symmetric groups to the algebra
of symmetric functions. The two bases of symmetric functions we consider are Schur functions {𝑠𝜆},
which correspond to irreducible representations, and homogeneous symmetric functions {ℎ𝜆}, which
correspond to induced representations of trivial representations on Young subgroups to symmetric
groups. Both Schur and homogeneous symmetric functions are indexed by integer partitions. Denote
the Frobenius character of these (q-graded) 𝑆𝑛-representations as ch(LΓ) and ch(RΓ), respectively.
Since both ch(LΓ) and ch(RΓ) correspond to graded representations, and all representations are sums
of irreducible representations, both ch(LΓ) and ch(RΓ) are manifestly Schur-positive graded symmetric
functions.
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Example 2.15. Again, consider Γ = ([3], {(1, 2), (2, 3)}). Then

ch(LΓ) = 𝑠3 + (𝑠2,1 + 2𝑠3)𝑞 + 𝑠3𝑞
2 = ℎ3 + (ℎ2,1 + ℎ3)𝑞 + ℎ3𝑞

2

and

ch(RΓ) = 𝑠3 + 2𝑠2,1𝑞 + 𝑠3𝑞
2.

The following Lemma 2.16 is useful for computer calculations.

Lemma 2.16. Let Γ and Γ′ be two graphs on [𝑛], and Γ ∪ Γ′ � ([𝑛], 𝐸 (Γ) ∪ 𝐸 (Γ′)). Then

MΓ∪Γ′ = MΓ ∩MΓ′

Proof. This easily follows from the set-theoretic definition

MΓ =

{
�̄� ∈

∏
𝑤 ∈𝑆𝑛

C[𝑡•]

����� �̄�(𝑤) − �̄�(𝑣) ∈ L(𝑤, 𝑣) for all (𝑤, 𝑣) ∈ 𝐸 (GΓ)

}
. �

2.3. Isomorphisms

It is natural to expect that if two graphs Γ and Γ′ on [𝑛] are isomorphic, that the resulting algebraic
structures on MΓ and MΓ′ should also have meaningful isomorphisms between them. This section
shows that an isomorphismΓ→ Γ′ induces a labeled-graph isomorphismGΓ → GΓ′ , a ring isomorphism
MΓ → MΓ′ , a collection of different C[𝑡•]-module isomorphisms MΓ → MΓ, and an 𝑆𝑛-module
isomorphism MΓ →MΓ that leads to equalities ch(LΓ) = ch(LΓ′ ) and ch(RΓ) = ch(RΓ′ ).

Throughout this subsection, let Γ and Γ′ be graphs on [𝑛] and say that 𝜔 : Γ → Γ′ is a graph
isomorphism. Then 𝜔 is also naturally an element of 𝑆𝑛, viewed as a bijection from [𝑛] to itself. Let 𝜔
denote both the graph isomorphism and associated permutation.

Our first construction is an isomorphism between the corresponding labeled Cayley graphs. The
following Lemma 2.17 states that GΓ and GΓ′ are related as graphs by conjugation, and the associated
labels are related via the action on ideals induced by the action on polynomials in Equation (2.1).

Lemma 2.17. Let 𝜔 : Γ → Γ′ be a graph isomorphism. Then 𝑣 ↦→ 𝜔𝑣𝜔−1 is a graph isomorphism
GΓ → GΓ′ . Additionally, if L is the label on GΓ, L′ the label on GΓ′ , and (𝑣1, 𝑣2) ∈ 𝐸 (GΓ), then
L′(𝜔𝑣1𝜔

−1, 𝜔𝑣2𝜔
−1) = 𝜔L(𝑣1, 𝑣2).

Proof. Conjugation is a group automorphism of 𝑆𝑛. Say (𝑣1, 𝑣2) ∈ 𝐸 (Γ) and in particular that 𝑣−1
1 𝑣2 =

(𝑖, 𝑗) ∈ 𝐸 (Γ). Then (
𝜔𝑣1𝜔

−1
)−1 (

𝜔𝑣2𝜔
−1
)
= 𝜔𝑣−1

1 𝑣2𝜔
−1

= 𝜔(𝑖, 𝑗)𝜔−1

= (𝜔(𝑖), 𝜔( 𝑗)) ∈ 𝐸 (Γ′).

Thus, conjugation by 𝜔 defines a graph isomorphism GΓ → GΓ′ . For the labels on GΓ and GΓ′ , the
computation above also shows that if 𝑣1𝑣

−1
2 = (𝑝, 𝑞), then

(
𝜔𝑣1𝜔

−1) (𝜔𝑣2𝜔
−1)−1

= (𝜔(𝑝), 𝜔(𝑞)). It
follows that

(
𝜔𝑣1𝜔

−1, 𝜔𝑣2𝜔
−1) ∈ 𝐸 (GΓ′ ) is labeled

〈
𝑡𝜔 (𝑝) − 𝑡𝜔 (𝑞)

〉
= 𝜔

〈
𝑡𝑝 − 𝑡𝑞

〉
. The claim follows.

�

Define Ω : MΓ → MΓ′ by Ω( �̄�) (𝑣) � 𝜔�̄�
(
𝜔−1𝑣𝜔

)
. The following Proposition 2.18 proves Ω is

a ring isomorphism and is actually a consequence of Lemma 2.17 and a more general Proposition of
Gilbert, Tymoczko and Viel [15, Prop 2.7]. We include the proof here for completeness.

Proposition 2.18. The map Ω : MΓ →MΓ′ is a ring isomorphism.
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Proof. Let �̄� ∈MΓ. First, we show that Ω( �̄�) ∈MΓ′ . Let (𝑣1, 𝑣2) ∈ 𝐸 (GΓ′ ). By Lemma 2.17, there
is an edge (𝜔−1𝑣1𝜔, 𝜔−1𝑣2𝜔) ∈ 𝐸 (GΓ), and so �̄�(𝜔−1𝑣1𝜔) − �̄�(𝜔−1𝑣2𝜔) ∈ L(𝜔−1𝑣1𝜔, 𝜔−1𝑣2𝜔). Now
we have

Ω( �̄�) (𝑣1) −Ω( �̄�) (𝑣2) = 𝜔�̄�
(
𝜔−1𝑣1𝜔

)
− 𝜔�̄�

(
𝜔−1𝑣2𝜔

)
= 𝜔

(
�̄�
(
𝜔−1𝑣1𝜔

)
− �̄�

(
𝜔−1𝑣2𝜔

))
∈ 𝜔L

(
𝜔−1𝑣1𝜔, 𝜔−1𝑣2𝜔

)
= L′(𝑣1, 𝑣2).

Thus, Ω( �̄�) ∈ MΓ′ . It is easy to verify that this map is a ring homomorphism, and the inverse from
MΓ′ to MΓ is constructed in the same manner with the map 𝜔−1 : Γ′ → Γ. �

The following lemma gives three instances in which Ω is also a module isomorphism between MΓ

and MΓ′ .

Lemma 2.19. The ring isomorphism Ω is a module isomorphism from MΓ to MΓ′ with respect to the
following actions:

1. the left C[𝑡•]-action on MΓ to the 𝜔-twisted left C[𝑡•]-action on MΓ′ ,
2. the right C[𝑡•]-action on MΓ to the 𝜔-twisted right C[𝑡•]-action on MΓ′ , and
3. the dot action of 𝑆𝑛 on MΓ to the 𝜔-twisted dot action of 𝑆𝑛 on MΓ′ .

Proof. Both C[𝑡•]-module statements follow from two straightforward computations,

Ω(𝑡𝑖) (𝑣) = 𝑡𝜔 (𝑖) (𝑣) and Ω(𝑥𝑖) (𝑣) = 𝑥𝜔 (𝑖) (𝑣).

Say for the left action, if 𝑓 ∈ C[𝑡•] and �̄� ∈MΓ, then Ω( 𝑓 (𝑡1, . . . , 𝑡𝑛).�̄�) = 𝑓 (𝑡𝜔 (1) , . . . , 𝑡𝜔 (𝑛) )Ω( �̄�),
precisely the twisted action. The same holds for the right C[𝑡•]-action to the 𝜔-twisted right C[𝑡•]-
action. It is easy to show that ring isomorphism Ω−1 is the inverse for Ω as a C[𝑡•]-module morphism
for both pairs of actions, and so Ω is a C[𝑡•]-module isomorphism as in (1) and (2).

Given the dot action on MΓ, the induced action of 𝑢 ∈ 𝑆𝑛 on �̄� ∈MΓ′ is

(𝑢, �̄�) � Ω
(
𝑢 · Ω−1( �̄�)

)
.

To check that the action is compatible with multiplication of elements 𝑣, 𝑢 ∈ 𝑆𝑛, compute

(𝑣, (𝑢, �̄�)) =
(
𝑣,Ω

(
𝑢 · Ω−1( �̄�)

))
= Ω

(
𝑣 · Ω−1Ω

(
𝑢 · Ω−1( �̄�)

))
= Ω

(
𝑣 ·

(
𝑢 · Ω−1( �̄�)

))
= Ω

(
𝑣𝑢 · Ω−1( �̄�)

)
= (𝑣𝑢, �̄�).

Now compute for 𝑢, 𝑣 ∈ 𝑆𝑛 that

(𝑢, �̄�) (𝑣) = Ω
(
𝑢 · Ω−1( �̄�)

)
(𝑣)

= 𝜔
(
𝑢 · Ω−1( �̄�)

)
(𝜔−1𝑣𝜔)

= 𝜔𝑢
(
Ω−1( �̄�)

)
(𝑢−1𝜔−1𝑣𝜔)
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= 𝜔𝑢𝜔−1 �̄�(𝜔𝑢−1𝜔−1𝑣)

= 𝜔𝑢𝜔−1 · �̄�(𝑣).

This is precisely the 𝜔-twisted dot action of u on MΓ′ . Again, by computing with Ω−1, it follows that
Ω is an 𝑆𝑛-module isomorphism. �

Note that any generating set for the left or right C[𝑡•]-module structures on MΓ must necessarily be
generators for the 𝜔-twisted versions as well. As such, when searching for generators, we may choose
any graph isomorphic to Γ for explicit calculations.

Proposition 2.20. If Γ and Γ′ are isomorphic, then ch(LΓ) = ch(LΓ′ ) and ch(RΓ) = ch(RΓ′ ).

Proof. Let 𝜔 be an isomorphism from Γ to Γ′. The 𝑆𝑛-isomorphism Ω from Lemma 2.19 (3) preserves
the ideal 〈𝑡1, . . . , 𝑡𝑛〉 from MΓ to MΓ′ . Thus, we have a 𝑆𝑛-module isomorphism from LΓ to the 𝜔-
twisted LΓ′ . Twisting by 𝜔 is an inner automorphism of 𝑆𝑛, so the 𝜔-twisted LΓ′ is in turn isomorphic to
the untwisted LΓ′ as an 𝑆𝑛-representation. The exact same argument holds for RΓ and RΓ′ . Isomorphic
representations have identical traces (i.e., equal characters), and the equalities follow. �

By Proposition 2.20, we may consider any graph isomorphic to Γ when calculating ch(LΓ) and
ch(RΓ).

Corollary 2.21. The graded symmetric functions ch(LΓ) and ch(RΓ) are invariants of simple graphs.

3. Module structure of MΓ

This section establishes some algebraic properties of MΓ as a module over the polynomial ring C[𝑡•]. It
begins with two results: one that establishes the size of a minimal homogeneousC[𝑡•]-module generating
set as an invariant of Γ and a second that proves the module generated by constant and linear splines
is a free module over C[𝑡•]. This section continues with subsection 3.1, which establishes an algebraic
relation that must be satisfied by elements of MΓ. This section ends with subsection 3.2, which gives
an explicit and combinatorially meaningful generating set of MΓ as a C[𝑡•]-module when Γ is a tree
(proving Theorem 1.2).

Before continuing, we will briefly describe what is already known in the geometric case. If Γ is a
Hessenberg graph, then

◦ MΓ is a free C[𝑡•]-module with a combinatorial formula for its rank-generating function [13], and
furthermore,

◦ MΓ has explicit upper-triangular generators are achieved from a Białynicki-Birula decomposition of
the corresponding variety [9, 13].

In the geometric case, the rank-generating function is equivalent (substituting 𝑞 ↦→ 𝑞2) to the Poincaré
polynomial of the corresponding variety. If Γ is not in the geometric case, then MΓ is not always a free
module. We now prove that the number of generators in each degree of a homogeneous generating set
is still an invariant of Γ. We compute the minimal number of linear generators for MΓ in Section 8.

A generating set F of a finitely generated C[𝑡•]-module M is minimal if there exists a collection of
polynomials {𝑐 𝑓 | 𝑓 ∈ 𝐹} ⊂ C[𝑡•] such that

∑
𝑓 ∈𝐹 𝑐 𝑓 . 𝑓 = 0. Then 𝑐 𝑓 ∉ C \ {0} for all 𝑓 ∈ 𝐹 (i.e.,

no 𝑐 𝑓 is a unit). In other words, no proper subset of F generates M. If M is graded, then a set F is
homogeneous if every element 𝑓 ∈ 𝐹 is homogeneous.

The following lemma is known, essentially as a corollary to the graded Nakayama lemma, and holds
in greater generality (i.e., for other graded rings over a field). We include a proof for completeness.

Lemma 3.1. Let M be a finitely generated N-graded module over C[𝑡•]. Then every minimal homoge-
neous generating set has the same number of elements of each degree.
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Proof. Let 𝐼 = 〈𝑡•〉 be the irrelevant ideal. As C[𝑡•]�𝐼 � C, the quotient 𝑀�𝐼𝑀 is a graded C-
module. In particular, 𝑀�𝐼𝑀 is a graded C-vector space of dimension (𝑑0, . . . , 𝑑𝑛), and we will
prove that any homogeneous minimal generating set for M projects to a graded basis in 𝑀�𝐼𝑀 . Let
𝐹 �

{
𝑓 𝑖𝑘 | 0 ≤ 𝑖 ≤ 𝑁, 𝑘 ∈ [𝐾𝑖], deg( 𝑓 𝑖𝑘 ) = 𝑖

}
be a minimal homogeneous generating set of M with 𝐾𝑖

elements of degree i. It is easy to reason that 𝑛 = 𝑁 since an element in M of degree greater than N is in
𝐼𝐹 = 𝐼𝑀 (so 𝑛 ≤ 𝑁), and if 𝑓 𝑁1 ∈ 𝐼𝑀 , then F is not minimal (so 𝑛 ≥ 𝑁). In fact, if 𝑓 ∈ 𝐹 and 𝑓 ∈ 𝐼𝑀 ,
then F is not minimal (f would be in the C[𝑡•]-span of lower degree elements of F), and moreover,
since we are assuming that F is minimal, we know that the image of 𝑓 ∈ 𝐹 in 𝑀�𝐼𝑀 is nonzero. We
will show that 𝐾𝑖 = 𝑑𝑖 for all 𝑖 = 1, ..., 𝑁 . Let 𝜋 : 𝑀 → 𝑀�𝐼𝑀 be the quotient map.

We know 𝜋(𝐹) is a homogeneous spanning set for the graded vector space 𝑀�𝐼𝑀 . Since 𝑀�𝐼𝑀 is
a graded vector space, we may prove linear independence degree-by-degree. Say for 𝑐1, . . . , 𝑐𝐾𝑖 ∈ C

that
𝐾𝑖∑
𝑘=1

𝑐𝑘𝜋( 𝑓
𝑖
𝑘 ) = 0. We will show that 𝑐1 = · · · = 𝑐𝐾𝑖 = 0. It follows that 𝜋

(
𝐾𝑖∑
𝑘=1

𝑐𝑘 𝑓 𝑖𝑘

)
= 0, and

so
𝐾𝑖∑
𝑘=1

𝑐𝑘 𝑓 𝑖𝑘 ∈ 𝐼𝑀 . So there exists some finite set P that indexes two subsets {𝑟𝑝 | 𝑝 ∈ 𝑃} ⊂ 𝐼 and

{ℎ𝑝 | 𝑃 ∈ 𝑃} ⊂ 𝑀 such that
𝐾𝑖∑
𝑘=1

𝑐𝑘 𝑓 𝑖𝑘 =
∑
𝑝∈𝑃 𝑟𝑝 .ℎ𝑝 . Since

𝐾𝑖∑
𝑘=1

𝑐𝑘 𝑓 𝑖𝑘 is homogeneous of degree i, it

suffices to consider only the i-th graded piece of each element 𝑟𝑝ℎ𝑝 .

Say 𝑖 = 0. Since each 𝑟𝑝 ∈ 𝐼 has no degree 0 component, neither does 𝑟𝑝ℎ𝑝 , so
𝐾0∑
𝑘=1

𝑐𝑘 𝑓 0
𝑘 = 0. Since

F is a minimal generating set for M, it follows that 𝑐1 = · · · = 𝑐𝑘0 = 0.
Now say 𝑖 > 0. Each ℎ𝑝 is degree at most 𝑖−1, so

∑
𝑝∈𝑃 𝑟𝑝 .ℎ𝑝 ∈ C[𝑡•]{ 𝑓

𝑗
𝑞 | 0 ≤ 𝑗 < 𝑖, 𝑞 ∈ [𝐾 𝑗 ]}. So

𝐾𝑖∑
𝑘=1

𝑐𝑘 𝑓 𝑖𝑘 =
∑
𝑝∈𝑃

𝑟𝑝ℎ𝑝 =
∑

0≤ 𝑗<𝑖
1≤𝑞≤𝐾 𝑗

𝑐 𝑗 ,𝑞 (𝑡•) 𝑓
𝑗
𝑞 .

This is a relation in M of elements from F and thus cannot have any nonzero constant coefficients, so
𝑐1 = · · · = 𝑐𝑘𝑖 = 0. Thus, {𝜋( 𝑓 𝑖𝑘 ) | 𝑘 ∈ [𝐾𝑖]} is a basis of the i-th graded piece of the vector space
𝑀�𝐼𝑀 , and so 𝐾𝑖 = 𝑑𝑖 is independent of the choice of F. �

The proof of Lemma 3.1 also ensures that a minimal graded generating set of MΓ with respect to
either the left or right module structure projects to a basis of LΓ or RΓ, respectively.

Lemma 3.2 below shows that the first graded piece of the C[𝑡•]-module is free. Note Lemma 3.2 is
independent of the polynomial action chosen (e.g., left, right, and twisted alternatives).
Lemma 3.2. The C[𝑡•]-submodule M≤1

Γ generated by the constant and linear splines on GΓ is a free
module.
Proof. Let (𝑒, 𝑤2, 𝑤3, . . . , 𝑤𝑛!) be a linear order on 𝑆𝑛, where ℓΓ (𝑣) < ℓΓ (𝑤) implies that 𝑣 < 𝑤. Since
Γ is connected, if 𝑤 ≠ 𝑒, there exists (𝑖, 𝑗) ∈ 𝐸 (Γ) such that 𝑤(𝑖, 𝑗) < 𝑤.

Let 𝐹 � {1̄, 𝑓1, . . . , 𝑓𝑘 } be a minimal generating set of M≤1
Γ , where each 𝑓1, . . . , 𝑓𝑘 is a linear

spline. Then {1̄, 𝑓1 − 𝑓1 (𝑒)1̄, . . . , 𝑓𝑛 − 𝑓𝑛 (𝑒)1̄} is a homogeneous generating set of the same size and
is therefore minimal by Lemma 3.1. This new generating set has the property that the 1̄ is the unique
spline whose minimal element is e, so assume that 𝑓 (𝑒) = 0 for all 𝑓 ∈ 𝐹 \ {1̄}.

Let 𝐹𝑣 � { 𝑓 ∈ 𝐹 | min(supp( 𝑓 )) = 𝑣}. So 𝐹𝑒 = {1̄}. We iteratively construct a minimal generating
set such that |𝐹𝑣 | ∈ {0, 1} for all 𝑣 ∈ 𝑆𝑛. Say that |𝐹𝑣 | ∈ {0, 1} for all 𝑣 < 𝑤, and |𝐹𝑤 | ≥ 2. Let
𝐹𝑤 = {�̄�1, . . . , �̄�𝑟 }. Since the linear order on 𝑆𝑛 is an extension of Γ-length, there exists (𝑎, 𝑏) ∈ 𝐸 (Γ)
such that 𝑤(𝑎, 𝑏) < 𝑤, and so �̄�(𝑤(𝑎, 𝑏)) = 0 for all �̄� ∈ 𝐹𝑤 . Thus, there exist 𝑐1, . . . , 𝑐𝑟 ∈ C

∗ such
that �̄�𝑖 (𝑤) = 𝑐𝑖 (𝑡𝑤 (𝑎) − 𝑤𝑤 (𝑏) ). For 𝑗 = 2, ..., 𝑟 , the spline �̄� 𝑗 −

𝑐 𝑗
𝑐1

�̄�1 is supported strictly above w. Let

𝐹 ′ = (𝐹 \ 𝐹𝑤 ) ∪

{
�̄�1, �̄�2 −

𝑐2
𝑐1

�̄�1, . . . , �̄�𝑟 −
𝑐𝑟
𝑐1

�̄�1

}
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be still a minimal generating set, and
��𝐹 ′𝑣 �� ∈ {0, 1} for all 𝑣 ≤ 𝑤. Iterate this process, letting 𝐹 = 𝐹 ′.

Eventually, |𝐹𝑣 | ∈ {0, 1} for all 𝑣 ∈ 𝑆𝑛. In particular, this F is upper triangular with respect to our total
order (the minimal element in the support of each spline is unique to that spline), and so F generates a
free C[𝑡•]-module. �

We note that this submodule is precisely where this paper proves h-positivity in Theorem 9.2 and
Corollary 9.3.

3.1. Implied conditions on splines

This subsection gives algebraic conditions that an element �̄� ∈MΓ must satisfy that are not explicitly
in the definition. Specifically, given 𝑤, 𝑣 ∈ 𝑆𝑛, we want to infer conditions on �̄�(𝑤) − �̄�(𝑣) when (𝑤, 𝑣)
is not necessarily an edge in GΓ. Let 𝑤, 𝑣 ∈ 𝑆𝑛 and (𝑤 = 𝑣0, 𝑣1, . . . , 𝑣𝑚 = 𝑣) be a path from w to v
in GΓ. Say for each edge (𝑣𝑘−1, 𝑣𝑘 ) that 𝑣𝑘𝑣

−1
𝑘−1 = (𝑖𝑘 , 𝑗𝑘 ), so that L(𝑣𝑘−1, 𝑣𝑘 ) =

〈
𝑡𝑖𝑘 − 𝑡 𝑗𝑘

〉
for each

𝑘 = 1, . . . , 𝑚. Then

�̄�(𝑤) − �̄�(𝑣) =
𝑚∑
𝑘=1
( �̄�(𝑣𝑘−1) − �̄�(𝑣𝑘 )) ∈

〈
𝑡𝑖𝑘 − 𝑡 𝑗𝑘 | 𝑘 ∈ [𝑚]

〉
. (3.1)

Define

𝐼𝑤𝐵 :=
〈
𝑡𝑤 (𝑖) − 𝑡𝑤 ( 𝑗) | (𝑖, 𝑗) ∈ 𝐵 ⊆ 𝐸 (𝑇)

〉
. (3.2)

Lemma 3.3 below is particularly useful when �̄� ∈MΓ satisfies �̄�(𝑣) = 0 for some 𝑣 ∈ 𝑆𝑛. Recall that
we identify 𝐵 ⊂ 𝐸 (Γ) with a subset of transpositions, and write 𝑤〈𝐵〉 for the left coset at w of the
reflection subgroup generated by the transpositions in B.
Lemma 3.3. Let T be a spanning tree of Γ. Let 𝑣 ∈ 𝑤〈𝐵〉, where 𝐵 ⊆ 𝐸 (𝑇). If �̄� ∈ MΓ, then
�̄�(𝑤) − �̄�(𝑣) ∈ 𝐼𝑤𝐵 .

Proof. Let 𝑤−1𝑣 = 𝑏1 · · · 𝑏𝑚, where 𝑏1, . . . , 𝑏𝑚 ∈ 𝐵. Let (𝑤 = 𝑣0, 𝑣1, . . . , 𝑣𝑚 = 𝑣) be the path from w
to v, where 𝑣−1

𝑘 𝑣𝑘−1 = 𝑏𝑘 ∈ 𝐵 for all 𝑘 ∈ [𝑚]. Say that 𝑣𝑘𝑣
−1
𝑘−1 = (𝑖𝑘 , 𝑗𝑘 ), so that L(𝑣𝑘−1, 𝑣𝑘 ) = 𝑡𝑖𝑘 − 𝑡 𝑗𝑘 .

By Equation (3.1),

�̄�(𝑤) − �̄�(𝑣) ∈
〈
𝑡𝑖𝑘 − 𝑡 𝑗𝑘 | 𝑘 ∈ [𝑚]

〉
.

For each 𝑘 ∈ [𝑚], since 𝑣𝑘𝑣
−1
𝑘−1 = (𝑖𝑘 , 𝑗𝑘 ), we have that 𝑏𝑘 = 𝑣−1

𝑘 𝑣𝑘−1 =
(
𝑣−1
𝑘 (𝑖𝑘 ), 𝑣

−1
𝑘 ( 𝑗𝑘 )

)
. Each edge

𝑏𝑘 ∈ 𝐵, so the integers 𝑣−1
𝑘 (𝑖𝑘 ) = (𝑤𝑏1 · · · 𝑏𝑘 )

−1(𝑖𝑘 ) and 𝑣−1
𝑘 ( 𝑗𝑘 ) = (𝑤𝑏1 · · · 𝑏𝑘 )

−1( 𝑗𝑘 ) must be in the
same connected component of ([𝑛], 𝐵).

Since (𝑤𝑏1 · · · 𝑏𝑘 )
−1 = (𝑏𝑘 · · · 𝑏1)𝑤

−1, it follows that 𝑤−1 (𝑖𝑘 ) and 𝑤−1 ( 𝑗𝑘 ) are vertices in the same
connected component of ([𝑛], 𝐵) for all 𝑘 ∈ [𝑚]. If (𝑞0, ..., 𝑞ℓ) is a path in ([𝑛], 𝐵) from 𝑞0 = 𝑤−1 (𝑖𝑘 )
to 𝑞ℓ == 𝑤−1 ( 𝑗𝑘 ), then 𝑡𝑞0 − 𝑡𝑞ℓ =

∑ℓ
𝑟=1 𝑡𝑞𝑟−1 − 𝑡𝑞𝑟 , and thus, 𝑡𝑤−1 (𝑖𝑘 ) − 𝑡𝑤−1 ( 𝑗𝑘 ) ∈ 𝐼𝑒𝐵. It follows that

𝑡𝑖𝑘 − 𝑡 𝑗𝑘 ∈ 𝐼𝑤𝐵 for all 𝑘 ∈ [𝑚], and so �̄�(𝑤) − �̄�(𝑣) ∈ 𝐼𝑤𝐵 . �

A monomial ideal in C[𝑡•] is an ideal I generated by monomials. Monomial ideals are particularly
nice when computing intersections; if 𝐼1 = 〈𝑚1, . . . , 𝑚𝑘〉 and 𝐼2 = 〈𝑛1, . . . , 𝑛ℓ〉 are both monomial
ideals, then 𝐼1 ∩ 𝐼2 = 〈lcm(𝑚𝑖 , 𝑛 𝑗 ) | 𝑖 ∈ [𝑘], 𝑗 ∈ [ℓ]〉.

Let T be a spanning tree of Γ, where 𝐸 (𝑇) = {(𝑎1, 𝑏1), . . . , (𝑎𝑛−1, 𝑏𝑛−1)}. Ideals of the form
〈𝑡𝑎𝑖 − 𝑡𝑏𝑖 | (𝑎𝑖 , 𝑏𝑖) ∈ 𝐵 ⊂ 𝐸 (𝑇)〉 can be considered monomial ideals, via the graded automorphism

C[𝑡1, . . . , 𝑡𝑛] � C[𝑡𝑎1 − 𝑡𝑏1 , . . . , 𝑡𝑎𝑛−1 − 𝑡𝑏𝑛−1 , 𝑡𝑛]

defined by 𝑡𝑖 ↦→

{
𝑡𝑎𝑖 − 𝑡𝑏𝑖 if 𝑖 ∈ [𝑛 − 1]
𝑡𝑛 if 𝑖 = 𝑛

. Since 𝑡𝑖 ↦→ 𝑡𝑤 (𝑖) is also a graded automorphism of C[𝑡•],

the ideals 𝐼𝑤𝐵 from Equation 3.2 can also be considered as monomial ideals (taking care to fix T and
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𝑤 ∈ 𝑆𝑛). We will fix T and w and then treat ideals of the form 𝐼𝑤𝐵 as monomial ideals to compute
intersections in the proofs of Theorem 3.7 and Lemma 4.1 in the following two sections.

3.2. Coset splines and trees

This subsection establishes a set of splines called coset splines (Definition 3.4) that generate MΓ as a
module over the polynomial ring when Γ is a tree. This subsection also identifies a subset of those coset
splines that generate MΓ as a ring when Γ is a tree.

Definition 3.4. Let Γ be a tree, 𝐸 � 𝐸 (Γ) and 𝐵 ⊆ 𝐸 . The coset spline at the identity 𝑓 𝐵𝑒 : 𝑆𝑛 →
C[𝑡•] is

𝑓 𝐵𝑒 (𝑤) :=
⎧⎪⎪⎨⎪⎪⎩

∏
(𝑖, 𝑗) ∈𝐸\𝐵

(
𝑡𝑤 (𝑖) − 𝑡𝑤 ( 𝑗)

)
𝑤 ∈ 〈𝐵〉

0 otherwise

The coset spline at w is ¯𝑓 𝐵𝑤 := 𝑤 · 𝑓 𝐵𝑒 . We adopt the conventions that a product over the empty set ∅ is
1 (so 𝑓 ∅𝑤 = 1̄) and that the subgroup generated by the empty set is the identity (so 〈∅〉 = {𝑒}).

Example 3.5. Again, consider Γ = ([3], {(1, 2), (2, 3)}). Drawn below are three examples of coset
splines on GΓ.

Lemma 3.6. When Γ is a tree, coset splines are elements of MΓ. Additionally, if 𝑤, 𝑣 ∈ 𝑆𝑛 are in the
same coset of 〈𝐵〉, then 𝑓 𝐵𝑤 = 𝑓 𝐵𝑣 .

Proof. It suffices to show 𝑓 𝐵𝑒 is a spline. Let 𝑤 ∈ 〈𝐵〉 and 𝑣 ∈ 𝑆𝑛, where 𝑣𝑤−1 = (𝑖, 𝑗) ∈ 𝐸 .
If (𝑖, 𝑗) ∈ 𝐸 \ 𝐵, then 𝑣 ∉ 〈𝐵〉, and so 𝑓 𝐵𝑒 (𝑣) = 0. Thus, 𝑓 𝐵𝑒 (𝑤) − 𝑓 𝐵𝑤 (𝑣) = 𝑡𝑤 (𝑖) − 𝑡𝑤 ( 𝑗) ∈ L(𝑤, 𝑣),

as desired.
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If (𝑖, 𝑗) ∈ 𝐵, then

𝑓 𝐵𝑒 (𝑤) − 𝑓 𝐵𝑒 (𝑣) =
∏

(𝑟1 ,𝑠1) ∈𝐸\𝐵

(
𝑡𝑤 (𝑟1) − 𝑡𝑤 (𝑠1)

)
−

∏
(𝑟2 ,𝑠2) ∈𝐸\𝐵

(
𝑡𝑤 (𝑖, 𝑗) (𝑟2) − 𝑡𝑤 (𝑖, 𝑗) (𝑠2)

)
= 𝑤

���
∏

(𝑟1 ,𝑠1) ∈𝐸\𝐵

(
𝑡𝑟1 − 𝑡𝑠1

)
− (𝑖, 𝑗)

���
∏

(𝑟2 ,𝑠2) ∈𝐸\𝐵

(
𝑡𝑟2 − 𝑡𝑠2

) !" !"
= 𝑤

���
∑

0≤𝑝,𝑞
𝑔𝑝𝑞 (𝑡•)𝑡

𝑝
𝑖 𝑡𝑞𝑗 − (𝑖, 𝑗)

( ∑
0≤𝑟 ,𝑠

𝑔𝑟𝑠 (𝑡•)𝑡
𝑟
𝑖 𝑡
𝑠
𝑗

) !"
= 𝑤

���
∑

0≤𝑝,𝑞
𝑔𝑝𝑞 (𝑡•)(𝑡

𝑝
𝑖 𝑡𝑞𝑗 − 𝑡𝑞𝑖 𝑡

𝑝
𝑗 )
 !".

As 𝑡 𝑝𝑖 𝑡𝑞𝑗 − 𝑡𝑞𝑖 𝑡
𝑝
𝑗 ∈

〈
𝑡𝑖 − 𝑡 𝑗

〉
, it follows that 𝑓 𝐵𝑒 (𝑤) − 𝑓 𝐵𝑒 (𝑣) ∈

〈
𝑡𝑤 (𝑖) − 𝑡𝑤 ( 𝑗)

〉
= L(𝑤, 𝑣). Thus, 𝑓 𝐵𝑒 is a

spline.
Now we prove that coset splines are uniquely determined by the coset. For all 𝑢 ∈ 〈𝐵〉, we have

𝑢 · 𝑓 𝐵𝑒 (𝑤) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑢

( ∏
(𝑖, 𝑗) ∈𝐸−𝐵

(
𝑡𝑢−1𝑤 (𝑖) − 𝑡𝑢−1𝑤 ( 𝑗)

))
𝑢−1𝑤 ∈ 〈𝐵〉

0 otherwise

=

⎧⎪⎪⎨⎪⎪⎩
∏

(𝑖, 𝑗) ∈𝐸−𝐵

(
𝑡𝑤 (𝑖) − 𝑡𝑤 ( 𝑗)

)
𝑤 ∈ 〈𝐵〉

0 otherwise

= 𝑓 𝐵𝑒 (𝑤).

If 𝑤〈𝐵〉 = 𝑣〈𝐵〉, then 𝑤 = 𝑣𝑢, for some 𝑢 ∈ 〈𝐵〉, and so

𝑓 𝐵𝑤 = 𝑤 · 𝑓 𝐵𝑒 = (𝑣𝑢) · 𝑓 𝐵𝑒 = 𝑣 · (𝑢 · 𝑓 𝐵𝑒 ) = 𝑣 · 𝑓 𝐵𝑒 = 𝑓 𝐵𝑣 . �

Note that the following Theorem 3.7 is independent of the left or right module structure.
Theorem 3.7. Let Γ be a tree. The set of coset splines { 𝑓 𝐵𝑤 | 𝑤 ∈ 𝑆𝑛, 𝐵 ⊆ 𝐸 (Γ)} is a C[𝑡•]-generating
set of MΓ.
Proof. Let �̄� ∈MΓ, we will show that �̄� ∈ C[𝑡•]{ 𝑓

𝑤
𝐵 | 𝑤 ∈ 𝑆𝑛, 𝐵 ⊆ 𝐸 (Γ)} by induction on containment

of the support supp( �̄�). If �̄� ≡ 0, this is clearly in the span of the coset splines, and the base case
supp( �̄�) = ∅ is done. Otherwise, supp( �̄�) ≠ ∅, and we assume all splines 𝜅 where supp(𝜅) � supp( �̄�)
are in C[𝑡•]{ 𝑓 𝑤𝐵 | 𝑤 ∈ 𝑆𝑛, 𝐵 ⊆ 𝐸 (Γ)}. Replacing �̄� by �̄� − �̄�(𝑒)1̄ if necessary, we assume �̄�(𝑒) = 0.
This also handles the case where supp( �̄�) = 𝑆𝑛.

Fix 𝑤 ∈ 𝑆𝑛 such that �̄�(𝑤) ≠ 0 and w is adjacent in GΓ to some 𝑤′ ∈ 𝑆𝑛 where �̄�(𝑤′) = 0. Define

B𝑤 � {𝐵 | 𝐵 ⊂ 𝐸 (Γ), ∃𝑣 ∈ 𝑤〈𝐵〉 such that �̄�(𝑣) = 0}.

Since �̄�(𝑤′) = 0, this set is nonempty. Each element in B𝑤 is a generating set for a reflection subgroup
whose left coset at w contains an element not in supp( �̄�). Note if 𝐵 ⊂ 𝐵′ and 𝐵 ∈ B𝑤 , then 𝐵′ ∈ B𝑤 .

By Lemma 3.3,

�̄�(𝑤) ∈
⋂
𝐵∈B𝑤

𝐼𝑤𝐵 =
⋂
𝐵∈B𝑤

〈
𝑡𝑤 (𝑖) − 𝑡𝑤 ( 𝑗) | (𝑖, 𝑗) ∈ 𝐵 ⊂ 𝐸 (Γ)

〉
� I𝑤𝜌 . (3.3)

Following the logic of Subsection 3.1 (i.e., treating {𝑡𝑤 (𝑖) − 𝑡𝑤 ( 𝑗) | (𝑖, 𝑗) ∈ 𝐸 (Γ)} as variables), I𝑤𝜌 is a
monomial ideal generated by the monomials that are contained within every element of the intersection.
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A monomial 𝔪 =
∏

(𝑖, 𝑗) ∈𝐸

(
𝑡𝑤 (𝑖) − 𝑡𝑤 ( 𝑗)

)𝛼𝑖 𝑗 is contained within the ideal I𝑤𝜌 if and only if for every

𝐵 ∈ B𝑤 , there is at least one (𝑖, 𝑗) ∈ 𝐵 such that 𝛼𝑖 𝑗 > 0. For generators of I𝑤𝜌 , it suffices to
consider only those monomials such that 𝛼𝑖 𝑗 ∈ {0, 1} for all (𝑖, 𝑗) ∈ 𝐸 (Γ). Since 𝛼𝑖 𝑗 ∈ {0, 1}, the
monomials that generate I𝑤𝜌 are a subset of { 𝑓 𝐵𝑤 (𝑤) | 𝐵 ⊆ 𝐸 (Γ)}. In particular, we have the equality〈
𝑓 𝐷𝑤 (𝑤) | 𝐷 ⊆ 𝐸 (Γ), 𝑓 𝐷𝑤 (𝑤) ∈ I𝑤𝜌

〉
= I𝑤𝜌 .

Consider the coset splines { 𝑓 𝐷𝑤 | 𝑓 𝐷𝑤 (𝑤) ∈ I𝑤𝜌 }. By definition, for any 𝐷 ⊂ 𝐸 (Γ),

𝑓 𝐷𝑤 (𝑤) =
∏

(𝑖, 𝑗) ∈𝐸 (Γ)\𝐷

𝑡𝑤 (𝑖) − 𝑡𝑤 ( 𝑗) .

Now 𝑓 𝐷𝑤 (𝑤) ∈ I𝑤𝜌 if and only if (𝐸 (Γ) \ 𝐷) ∩ 𝐵 ≠ ∅ for all 𝐵 ∈ B𝑤 . Thus, 𝑓 𝐷𝑤 (𝑤) ∈ I𝑤𝜌 if and only if
𝐵 ⊄ 𝐷 for all 𝐵 ∈ B𝑤 . Since B𝑤 is closed under supersets, 𝑓 𝐷𝑤 (𝑤) ∈ I𝑤𝜌 if and only if 𝐷 ∉ B𝑤 . Thus,

�̄�(𝑤) ∈ I𝑤𝜌 =
〈
𝑓 𝐷𝑤 (𝑤) | for all 𝑣 ∈ 𝑤〈𝐷〉, �̄�(𝑣) ≠ 0

〉
.

Let 𝑓 ∈ C[𝑡•]{ 𝑓
𝐷
𝑤 | for all 𝑣 ∈ 𝑤〈𝐷〉, �̄�(𝑣) ≠ 0} such that �̄�(𝑤) = 𝑓 (𝑤) (a different 𝑓 may

be chosen for the left and right module structure, but either way, such a 𝑓 exists since it is only
required to agree with �̄� at w). Since supp( 𝑓 ) ⊆ supp( �̄�) and 𝑓 (𝑤) = �̄�(𝑤) ≠ 0, it follows that
supp( �̄�) � supp( �̄� − 𝑓 ). Thus, �̄� − 𝑓 ∈ C[𝑡•]{ 𝑓

𝑤
𝐵 | 𝑤 ∈ 𝑆𝑛, 𝐵 ⊆ 𝐸 (Γ)}. Since 𝑓 is also a sum of coset

splines, �̄� ∈ C[𝑡•]{ 𝑓
𝑤
𝐵 | 𝑤 ∈ 𝑆𝑛, 𝐵 ⊆ 𝐸 (Γ)}. �

The collection of all coset splines is not a minimal generating set. One might significantly decrease
the size of this set by fixing the linear order on 𝑆𝑛 in the proof of Lemma 3.2, and only considering
the largest (by support) coset splines supported ‘above’ a permutation. There is no guarantee that these
generators are minimal for all degrees, but it is easy to reason that this collection is minimal for the
module M≤2

Γ generated by the constant, linear and quadratic splines.
We also achieve a generating set for MΓ as a ring in Corollary 3.8 below.

Corollary 3.8. Let Γ be a tree. The constant and linear coset splines along with either {𝑡𝑖 | 𝑖 ∈ [𝑛]} or
{𝑥𝑖 | 𝑖 ∈ [𝑛]} generate MΓ as a ring.

Proof. It follows immediately from the definition that

𝑓 𝐵𝑤 =
∏

𝑠∈𝐸 (Γ)\𝐵

𝑓 𝐸 (Γ)\{𝑠}𝑤 .

So every coset spline except 1̄ is a product of linear coset splines, which generate MΓ together with
either {𝑡𝑖 | 𝑖 ∈ [𝑛]} or {𝑥𝑖 | 𝑖 ∈ [𝑛]} by Theorem 3.7. �

We can leverage Theorem 3.7 to compute MΓ for all graphs Γ. Any graph Γ can be expressed as the
union of spanning trees Γ = 𝑇1 ∪ · · · ∪ 𝑇𝑘 . Lemma 2.16 says that MΓ =

⋂𝑘
𝑖=1 M𝑇𝑖 , and Theorem 3.7

gives explicit generators for each M𝑇𝑖 . This is most useful in computer calculations, where the task of
constructing modules from generators and intersecting them can be completed by a computer algebra
system.

4. Connectedness and M𝑘
Γ

This section proves an equivalence between the k-connectivity of Γ and which graded pieces of the
representation ch(LΓ) are trivial.

Lemma 4.1 below infers new conditions on MΓ from collections of vertex-disjoint paths in Γ.

Lemma 4.1. Say that there exist k vertex-disjoint paths from i to j in Γ. Let Γ′ = ([𝑛], 𝐸 (Γ) ∪ {(𝑖, 𝑗)}).
Then M𝑘−1

Γ = M𝑘−1
Γ′ .
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Proof. We will show both directions of containment. Clearly, M𝑘−1
Γ ⊇M𝑘−1

Γ′ .
Say that �̄� ∈ M𝑘−1

Γ , and let 𝑤, 𝑣 ∈ 𝑆𝑛 such that 𝑤−1𝑣 = (𝑖, 𝑗). Let 𝑝𝑟 = (𝑖, 𝑠𝑟 ,1, . . . , 𝑠𝑟 ,ℓ𝑟 , 𝑗) for
𝑟 = 1, . . . , 𝑘 be the k vertex-disjoint paths from i to j in Γ. By Lemma 3.3,

�̄�(𝑤) − �̄�(𝑣) ∈
〈
𝑡𝑤 (𝑖) − 𝑡𝑤 (𝑠𝑟,1) , 𝑡𝑤 (𝑠𝑟,1) − 𝑡𝑤 (𝑠𝑟,2) , . . . , 𝑡𝑤 (𝑠𝑟,ℓ𝑟 ) − 𝑡𝑤 ( 𝑗)

〉
=

〈
𝑡𝑤 (𝑖) − 𝑡𝑤 ( 𝑗) , 𝑡𝑤 (𝑖) − 𝑡𝑤 (𝑠𝑟,1) , . . . , 𝑡𝑤 (𝑠𝑟,ℓ𝑟−1) − 𝑡𝑤 (𝑠𝑟,ℓ𝑟 )

〉
for all 𝑟 = 1, . . . , 𝑘 . Since the paths 𝑝1, . . . , 𝑝𝑘 are vertex independent, the set of edges

𝐴 = {(𝑖, 𝑗)} ∪
𝑘⋃
𝑟=1
{(𝑖, 𝑠𝑟 ,1), (𝑠𝑟 ,1, 𝑠𝑟 ,2), . . . , (𝑠𝑟 ,ℓ𝑟−1, 𝑠𝑟 ,ℓ𝑟 )}

contains no cycles and thus forms a tree. In particular, we may consider {𝑡𝑎 − 𝑡𝑏 | (𝑎, 𝑏) ∈ 𝐴} as
monomials in C[𝑡•]. Let 𝑠𝑟 ,0 := 𝑖 when it is convenient for indexing. It remains to compute

�̄�(𝑤) ∈
𝑘⋂
𝑟=1

〈
𝑡𝑤 (𝑖) − 𝑡𝑤 ( 𝑗) , 𝑡𝑤 (𝑠𝑟,0) − 𝑡𝑤 (𝑠𝑟,1) , . . . , 𝑡𝑤 (𝑠𝑟,ℓ𝑟−1) − 𝑡𝑤 (𝑠𝑟,ℓ𝑟 )

〉
=

〈
𝑡𝑤 (𝑖) − 𝑡𝑤 ( 𝑗) ,

𝑘∏
𝑟=1

𝑡𝑤 (𝑠𝑟,𝑚𝑟−1) − 𝑡𝑤 (𝑠𝑟,𝑚𝑟 )

�����0 < 𝑚𝑟 ≤ ℓ𝑟

〉
.

Each generator of this ideal is a homogeneous polynomial, one of degree 1 and all others of degree k.
Since �̄�(𝑤) − �̄�(𝑣) is degree 𝑘 − 1, it follows that �̄�(𝑤) − �̄�(𝑣) ∈ 〈𝑡𝑤 (𝑖) − 𝑡𝑤 ( 𝑗) 〉.

Since 𝑣, 𝑤 were arbitrary such that 𝑤−1𝑣 = (𝑖, 𝑗), we know that �̄� ∈M𝑘−1
Γ′ . Since �̄� was arbitrary,

M𝑘−1
Γ ⊆M𝑘−1

Γ′ . �

Theorem 4.2. Let Γ = ([𝑛], 𝐸) be a connected graph on n vertices. The following are equivalent:

1. Γ is k-connected.
2. M𝑑

Γ = M𝑑
𝐾𝑛

for all 𝑑 < 𝑘 , where 𝐾𝑛 is the complete graph.
3. ch(LΓ)𝑑 is trivial for all 𝑑 < 𝑘 .

Proof. (1)⇒ (2). If Γ is k-connected, by Menger’s theorem, every (𝑖, 𝑗) ∈ [𝑛] × [𝑛] has k vertex-disjoint
paths connecting them in Γ. By Lemma 4.1, M𝑘−1

Γ = M𝑘−1
𝐾𝑛

.
(2)⇒ (3). The ring M𝐾𝑛 corresponds to the equivariant cohomology of the full flag variety, where

the dot action is known to be trivial [28].
(3)⇒ (1). Assume that Γ is not k-connected. Let d be the integer such that Γ is d-connected but not

(𝑑 + 1)-connected (so 0 < 𝑑 < 𝑘). We will show that ch(LΓ)𝑑 is not trivial. Then Γ has a cut set of size
d, and so Γ is (isomorphic to) a sub-graph of the graph 𝐻 = ([𝑛], {(𝑖, 𝑗) | 1 ≤ 𝑖 < 𝑗 < ℓ + 𝑑 or ℓ < 𝑖 <
𝑗 ≤ 𝑛}) drawn below:

𝐾ℓ 𝐾𝑑 𝐾𝑛−ℓ−𝑑

(the center 𝐾𝑑 is the cut set). The graph H is also d-connected. By (1) ⇒ (2), the graded pieces
M𝑝

Γ = M𝑝
𝐻 = M𝑝

𝐾𝑛
for all 0 ≤ 𝑝 < 𝑑. Since Γ is an edge-subgraph of H, it follows directly from the

definitions that MΓ ⊇M𝐻 .
If 𝐼 = 〈𝑡1, ..., 𝑡𝑛〉, then for any graded C[𝑡•]-module 𝑀 � ⊕𝑝≥0𝑀 𝑝 , the following equality is by

definition (
𝑀�𝐼𝑀

) 𝑝
= 𝑀 𝑝

�𝐼𝑀 ∩ 𝑀 𝑝 .
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Since multiplication by elements in I must increase degree, the d-th degree component of 𝐼MΓ and the
d-th degree component of 𝐼M𝐻 are equal. In particular,

𝐼MΓ ∩M𝑑
Γ = 𝐼

(
M≤𝑑−1

Γ

)
∩M𝑑

Γ = 𝐼
(
M≤𝑑−1

𝐻

)
∩M𝑑

Γ = 𝐼M𝐻 ∩M𝑑
Γ .

It follows that for the quotients(
MΓ�𝐼MΓ

)𝑑
= M𝑑

Γ�𝐼MΓ ∩M𝑑
Γ
= M𝑑

Γ�𝐼M𝐻 ∩M𝑑
Γ
=

(
MΓ�𝐼M𝐻

)𝑑
,

we get containment in the vector spaces

(LΓ)𝑑 =
(
MΓ�𝐼MΓ

)𝑑
=

(
MΓ�𝐼M𝐻

)𝑑
⊇

(
M𝐻�𝐼M𝐻

)𝑑
= (L𝐻 )𝑑 .

In particular, the representation with character ch(L𝐻 )𝑑 is a sub-representation of the representation
with character ch(LΓ)𝑑 . The graph H is in fact a Hessenberg graph, and it is easy to compute with
P-tableaux from [25] that the d-th graded piece of ch(L𝐻 ) is non-trivial, so the d-th graded piece of
ch(LΓ) contains a nontrivial sub-representation and is thus nontrivial. �

Remark 4.3. The graph H in the proof of Theorem 4.2 is the Hessenberg graph associated to the vector

ℎ = (

ℓ times︷�������������︸︸�������������︷
ℓ + 𝑑, . . . , ℓ + 𝑑, 𝑛, . . . , 𝑛).

The 3 + 1– and 2 + 2–free poset P on [𝑛] for which H is the indifference graph has relations {𝑖 <𝑃 𝑗 |
𝑖 ∈ [ℓ], 𝑗 ∈ {𝑑 + ℓ + 1, . . . , 𝑛}}.

The following corollary is a consequence of Theorem 4.2.

Corollary 4.4. If Γ is k-connected, then ch(RΓ)𝑑 is equal to ch
(
R𝐾𝑛

)
𝑑 , which is the d-th degree piece

of the graded regular representation.

5. Generators for linear splines

The remaining sections are devoted to computing the first degree piece of the graded symmetric functions
ch(LΓ) and ch(RΓ) for all connected graphs Γ. We show that the first degree piece of MΓ is computable
from the data of cut vertices and cut edges, in particular the block-cut tree of Γ (Definition 6.2).

This section defines a set FΓ that we will eventually show is a C-spanning set for M1
Γ. Subsection 5.1

proves severalC-linear relations within the setFΓ that will turn out to be sufficient for reducing to a basis.
First, we will introduce (in fact, reintroduce) a collection of linear splines that depend on cut edges

in Γ. Let 𝑠 = (𝑖, 𝑗) be a cut edge of Γ, and let 𝐺𝑠 be one of the two connected components of
([𝑛], 𝐸 (Γ) \ {𝑠}). We are free to choose either component; see Remark 5.1 below. For each subset
𝐴 ⊂ [𝑛] such that |𝐴| = |𝐺𝑠 |, we define 𝑓 𝑠𝐴 : 𝑆𝑛 → C[𝑡•] by

𝑓 𝑠𝐴(𝑤) �

{
𝑡𝑤 (𝑖) − 𝑡𝑤 ( 𝑗) if 𝑤−1 (𝐴) = 𝑉 (𝐺𝑠)

0 otherwise,

for all 𝑤 ∈ 𝑆𝑛. We associate to Γ the collection

CΓ �
{
𝑓 𝑠𝐴 | 𝑠 is a cut edge of Γ, 𝐴 ⊂ [𝑛], |𝐴| = |𝐺𝑠 |

}
.

Note that these splines 𝑓 𝑠𝐴 are actually the linear coset splines from Definition 3.4. We make the change in
notation for several reasons, one being that the subset A uniquely determines the coset whose support is

https://doi.org/10.1017/fms.2025.10037 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10037


20 N. R. T. Lesnevich

𝑓 𝑠𝐴 (as opposed to many elements w defining the same 𝑓 𝐵𝑤 ). Since 𝐺𝑠 is one of two connected components
in the graph ([𝑛], 𝐸 (Γ) \ {𝑠}), it follows that 𝑣 ∈ 𝑤〈𝐸 (Γ) \ {𝑠}〉 if and only if 𝑤(𝑉 (𝐺𝑠)) = 𝑣(𝑉 (𝐺𝑠)).
In particular, we have equality 𝑓 𝑠𝐴 = 𝑓 𝐵𝑤 precisely when 𝐵 = 𝐸 (Γ) \ {𝑠} and 𝑤−1 (𝐴) = 𝑉 (𝐺𝑠).

Remark 5.1. When defining 𝑓 𝑠𝐴, we chose 𝐺𝑠 to be one of the two connected components in the graph
([𝑛], 𝐸 (Γ) \ {𝑠}). This choice does not affect the set of splines in CΓ. More precisely, if H is the other
connected component in ([𝑛], 𝐸 (Γ) \ {𝑠}), then |𝐻 | = 𝑛 − |𝐺𝑠 |, and we have that

𝑓 𝑠𝐴(𝑤) =

{
𝑡𝑤 (𝑖) − 𝑡𝑤 ( 𝑗) if 𝑤−1 (𝐴) = 𝑉 (𝐺𝑠)

0 otherwise
=

{
𝑡𝑤 (𝑖) − 𝑡𝑤 ( 𝑗) if 𝑤−1 (𝐴𝑐) = 𝑉 (𝐻)

0 otherwise.

In particular, for a fixed cut edge s, the set of linear coset splines { 𝑓 𝑠𝐴} associated to that cut edge is
unaffected by the choice of 𝐺𝑠 .

Now we will introduce a (truly new) collection of linear splines that depend on cut vertices j and the
connected components of Γ − 𝑗 , as well as an integer k. Let 𝑗 	 Γ be a cut vertex, G be a connected
component of Γ − 𝑗 , and 𝑘 ∈ [𝑛]. We define �̄�

𝑗
𝐺,𝑘 : 𝑆𝑛 → C[𝑡•] by

�̄�
𝑗
𝐺,𝑘 (𝑤) �

{
𝑡𝑘 − 𝑡𝑤 ( 𝑗) if 𝑤−1 (𝑘) ∈ 𝐺

0 otherwise

for all 𝑤 ∈ 𝑆𝑛. We associate to Γ the collection

YΓ �
{
�̄�
𝑗
𝐺,𝑘

��� 𝑗 	 Γ, 𝐺 a connected component of Γ − 𝑗 , 𝑘 ∈ [𝑛]
}
.

Finally, recall the splines T𝑛 � {𝑡𝑖 | 𝑖 ∈ [𝑛]} and X𝑛 � {𝑥𝑖 | 𝑖 ∈ [𝑛]} from Subsection 2.2. Now we
define

FΓ � T𝑛 ∪ X𝑛 ∪ CΓ ∪ YΓ . (5.1)

We will eventually show that FΓ is a C-spanning set of M1
Γ.

Example 5.2. Let Γ be the graph drawn below.

1

2 3

4

5

6 7

8 10

9

11

12

Since Γ has three cut edges (1, 4), (8, 10), and (9, 10), we have that

CΓ =
{
𝑓 (1,4)𝐴 | 𝐴 ⊂ [12], |𝐴| = 1

}
∪

{
𝑓 (8,10)
𝐴 | 𝐴 ⊂ [12], |𝐴| = 8

}
∪

{
𝑓 (9,10)
𝐴 | 𝐴 ⊂ [12], |𝐴| = 1

}
.
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One such element 𝑓 (9,10)
{6} ∈ CΓ takes the form

𝑓 (9,10)
{6} (𝑤) �

{
𝑡𝑤 (9) − 𝑡𝑤 (10) 𝑤−1 ({6}) = {9}
0 otherwise,

and is supported on the coset {𝑤 ∈ 𝑆𝑛 | 𝑤(9) = 6}.
Since Γ has three cut vertices 4, 8, and 10, we have that

YΓ =

⎧⎪⎪⎨⎪⎪⎩ �̄�4
𝐺,𝑘

������𝑉 (𝐺) ∈
⎧⎪⎪⎨⎪⎪⎩
{1},
{2, 3},
{5, ..., 12}

⎫⎪⎪⎬⎪⎪⎭, 𝑘 ∈ [12]
⎫⎪⎪⎬⎪⎪⎭ ∪

⎧⎪⎪⎨⎪⎪⎩ �̄�8
𝐺,𝑘

������𝑉 (𝐺) ∈
⎧⎪⎪⎨⎪⎪⎩
{1, .., , 5},
{6, 7},
{9, ..., 12}

⎫⎪⎪⎬⎪⎪⎭, 𝑘 ∈ [12]
⎫⎪⎪⎬⎪⎪⎭

∪

⎧⎪⎪⎨⎪⎪⎩ �̄�10
𝐺,𝑘

������𝑉 (𝐺) ∈
⎧⎪⎪⎨⎪⎪⎩
{1, ..., 8},
{9},
{11, 12}

⎫⎪⎪⎬⎪⎪⎭, 𝑘 ∈ [12]
⎫⎪⎪⎬⎪⎪⎭.

One such element �̄�8
𝐺,3 ∈ YΓ takes the form

�̄�8
{6,7},3 (𝑤) �

{
𝑡3 − 𝑡𝑤 (8) 𝑤−1 (3) ∈ {6, 7}
0 otherwise

and is supported on the set {𝑤 ∈ 𝑆𝑛 | 𝑤(6) = 3 or 𝑤(7) = 3}.

Now Lemma 5.3 below shows that FΓ is in fact a subset of M1
Γ.

Lemma 5.3. Let Γ be a graph on [𝑛]. The four sets T𝑛, X𝑛, CΓ and YΓ are subsets of MΓ.

Proof. We already know that 𝑡𝑖 and 𝑥𝑖 are elements of MΓ for all 𝑖 ∈ [𝑛], so T𝑛 and X𝑛 are subsets.
Now we show that each element of CΓ is a well-defined spline. Recall that these are coset splines,

and so are well defined for trees. If s is a cut edge of Γ, then every spanning tree T of Γ must have s
as an edge. Fix 𝐴 ⊂ [𝑛], where |𝐴| = |𝐺𝑠 |, and for all spanning trees T, choose 𝑇𝑠 to be the connected
component where 𝑉 (𝑇𝑠) = 𝑉 (𝐺𝑠). It follows that 𝑓 𝑠𝐴 ∈M𝑇 for every spanning tree T, and so 𝑓 𝑠𝐴 ∈MΓ

by Lemma 2.16.
Finally, we show that every element �̄�

𝑗
𝐺,𝑘 ∈ YΓ is a linear spline on GΓ. We will verify this from the

definition, edge by edge. Let (𝑤, 𝑣) ∈ 𝐸 (GΓ), where 𝑤 = 𝑣(𝑝, 𝑞). We prove that �̄�
𝑗
𝐺,𝑘 (𝑤) − �̄�

𝑗
𝐺,𝑘 (𝑣) ∈

L(𝑤, 𝑣) =
〈
𝑡𝑣 (𝑝) − 𝑡𝑣 (𝑞)

〉
in three cases, depending on the values of 𝑤−1 (𝑘) and 𝑣−1 (𝑘).

Case 1: 𝑤−1 (𝑘), 𝑣−1 (𝑘) ∉ 𝐺. Then by definition both �̄�
𝑗
𝐺,𝑘 (𝑤) = 0 and �̄�

𝑗
𝐺,𝑘 (𝑣) = 0, so the difference

is clearly in L(𝑤, 𝑣).
Case 2: 𝑤−1 (𝑘), 𝑣−1(𝑘) ∈ 𝐺. So �̄�

𝑗
𝐺,𝑘 contains both w and v in its support. We compute from the

definition that

�̄�
𝑗
𝐺,𝑘 (𝑤) − �̄�

𝑗
𝐺,𝑘 (𝑣) = 𝑡𝑘 − 𝑡𝑤 ( 𝑗) − 𝑡𝑘 + 𝑡𝑣 ( 𝑗)

= 𝑡𝑣 ( 𝑗) − 𝑡𝑤 ( 𝑗) =

{
±(𝑡𝑣 (𝑝) − 𝑡𝑣 (𝑞) ) 𝑗 ∈ {𝑝, 𝑞}

0 𝑗 ∉ {𝑝, 𝑞}.

In either case, this difference is in the ideal L(𝑤, 𝑣).
Case 3: 𝑤−1 (𝑘) ∈ 𝐺, 𝑣−1 (𝑘) ∉ 𝐺. In particular, w is in the support of �̄�

𝑗
𝐺,𝑘 whereas v is not. Since

𝑤−1 (𝑘) = (𝑝, 𝑞)𝑣−1(𝑘), we know that one of either p or q is in G and the other is not. Without loss
of generality, say 𝑝 ∈ 𝐺 and 𝑞 ∉ 𝐺. In particular, 𝑤−1 (𝑘) = 𝑝 and 𝑣−1(𝑘) = 𝑞. Since (𝑝, 𝑞) ∈ 𝐸 (Γ)
and the only element in [𝑛] \ 𝑉 (𝐺) that elements of G are connected to is the vertex j, it follows that
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𝑣−1 (𝑘) = 𝑞 = 𝑗 . So 𝑣(𝑞) = 𝑘 and 𝑤( 𝑗) = 𝑣(𝑝, 𝑞) ( 𝑗) = 𝑣(𝑝). Compute that

�̄�
𝑗
𝐺,𝑘 (𝑤) − �̄�

𝑗
𝐺,𝑘 (𝑣) = 𝑡𝑘 − 𝑡𝑤 ( 𝑗) = 𝑡𝑣 (𝑞) − 𝑡𝑣 (𝑝,𝑞) ( 𝑗) = 𝑡𝑣 (𝑞) − 𝑡𝑣 (𝑝) ∈ L(𝑤, 𝑣).

Thus, �̄�
𝑗
𝐺,𝑘 is an element of MΓ. �

The splines in FΓ are defined from graph properties that are intrinsic to the isomorphism class of Γ.
Lemma 5.4 below makes this precise.
Lemma 5.4. Let 𝜔 : Γ→ Γ′ be a graph isomorphism andΩ be as in Subsection 2.3. ThenFΓ′ = Ω(FΓ).
Proof. It follows directly from the definitions that Ω(X𝑛) = X𝑛 and Ω(T𝑛) = T𝑛.

The image of the coset spline 𝑓
(𝑖, 𝑗)
𝐴 ∈MΓ can be computed to be the coset spline 𝑓

(𝑤 (𝑖) ,𝑤 ( 𝑗))

𝑤−1 (𝐴)
∈MΓ′ ,

where we consistently choose the connected component 𝜔(𝐺𝑠). From this, it is straightforward from
the definitions to verify that CΓ′ = Ω(CΓ)

Similarly, it is easy to verify that �̄�
𝑗
𝐺,𝑘 ↦→ �̄�

𝑤 ( 𝑗)
𝑤 (𝐺) ,𝑤 (𝑘)

, and so YΓ′ = Ω(YΓ). �

By Lemma 5.4, it suffices to prove that FΓ spans M1
Γ for any particular graph in isomorphism class

of Γ.

5.1. Some relations

This set FΓ is not a C-basis of M1
Γ. Indeed, the following Lemmas 5.5, 5.6 and 5.7 give relations

between elements of FΓ.
The first set of relations in the Lemma 5.5 are relatively straightforward.

Lemma 5.5. For 𝑡𝑖 ∈ T𝑛, 𝑥𝑖 ∈ X𝑛, 𝑓 𝑠𝐴 ∈ FΓ and �̄�
𝑗
𝐺,𝑘 ∈ YΓ, the following relations hold:

(1)
𝑛∑
𝑟=1

𝑥𝑟 =
𝑛∑
𝑟=1

𝑡𝑟 ,

(2) if (𝑖, 𝑗) is a cut edge and 𝐺 (𝑖, 𝑗) is the component containing the vertex i, then
∑
𝐴

𝑓
(𝑖, 𝑗)
𝐴 = 𝑥𝑖 − 𝑥 𝑗 ,

where the sum is over all 𝐴 ⊂ [𝑛] such that |𝐴| =
��𝐺 (𝑖, 𝑗) ��,

(3) if 𝑗 	 Γ, then
𝑛∑
𝑘=1

�̄�
𝑗
𝐺,𝑘 =

( ∑
𝑟 ∈𝐺

𝑥𝑟

)
− |𝐺 |𝑥 𝑗 for any connected component G of Γ − 𝑗 , and

(4) if 𝑗 	 Γ and 𝑘 ∈ [𝑛] is fixed,
∑
𝐺

�̄�𝑖𝐺,𝑘 = 𝑡𝑘 − 𝑥 𝑗 , where the sum is over all connected components G

of Γ − 𝑗 .

Proof. Relation (1) is easy, as is relation (2) once it is noted that the support of each 𝑓
(𝑖, 𝑗)
𝐴 for a fixed

(𝑖, 𝑗) is disjoint. Fix 𝑤 ∈ 𝑆𝑛.
For relation (3), compute that

𝑛∑
𝑘=1

�̄�
𝑗
𝐺,𝑘 (𝑤) =

∑
𝑘∈[𝑛]

𝑤−1 (𝑘) ∈𝐺

𝑡𝑘 − 𝑡𝑤 ( 𝑗) =

������
∑
𝑘∈[𝑛]

𝑤−1 (𝑘) ∈𝐺

𝑡𝑘

 !!!!"
− |𝐺 |𝑡𝑤 ( 𝑗)

=

(∑
𝑟 ∈𝐺

𝑡𝑤 (𝑟 )

)
− |𝐺 |𝑡𝑤 ( 𝑗) =

((∑
𝑟 ∈𝐺

𝑥𝑟

)
− |𝐺 |𝑥 𝑗

)
(𝑤).

For relation (4), note that either 𝑤−1 (𝑘) = 𝑗 or 𝑤−1 (𝑘) ∈ 𝐺 for one and only one connected component
G of Γ − 𝑗 . As such, if 𝑤−1 (𝑘) = 𝑗 , in which case w is not in the support of any of the �̄�

𝑗
𝐺,𝑘 and

likewise 𝑡𝑘 (𝑤) − 𝑥 𝑗 (𝑤) = 0. Otherwise, 𝑤−1 (𝑘) ∈ 𝐺 for some particular connected component G and
�̄�
𝑗
𝐺,𝑘 (𝑤) = 𝑡𝑘 − 𝑡𝑤 ( 𝑗) . This is precisely 𝑡𝑘 (𝑤) − 𝑥 𝑗 (𝑤), and we have (4). �
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Lemma 5.6 below shows that if j is a cut vertex and a connected component G of Γ− 𝑗 is connected to
j by a cut edge (𝑖, 𝑗), then the spline �̄�

𝑗
𝐺,𝑘 can be written as a sum of other splines from FΓ. In particular,

it will allow us to remove from FΓ the splines in YΓ that correspond to components connected by cut
edges.

Lemma 5.6. Let Γ be a graph, j a cut vertex and (𝑖, 𝑗) a cut edge, choosing 𝐺 (𝑖, 𝑗) to be the component
containing the vertex i. Let C be the connected component of the forest with vertex set 𝑉 (𝐺 (𝑖, 𝑗) ) ∪ { 𝑗}
and edge set {𝑠 | 𝑠 is a cut edge of 𝐺 (𝑖, 𝑗) } ∪ {(𝑖, 𝑗)} that contains the vertex j. Then for all 𝑘 ∈ [𝑛],∑

𝑣 ∈𝐶− 𝑗
𝑣	Γ

∑
𝐺

𝐺∩𝐶=∅

�̄�𝑣𝐺,𝑘 +
∑

𝑎∈𝐸 (𝐶)

∑
𝐴�𝑘

|𝐴 |= |𝐺𝑎 |

𝑓 𝑎𝐴 = �̄�
𝑗
𝐺(𝑖, 𝑗) ,𝑘

,

where G in the first double-sum is a connected component of Γ−𝑣, where 𝐺𝑎 is the connected component
that is a subset of 𝐺 (𝑖, 𝑗) , and where A in the second double-sum is a subset of [𝑛].

Since Lemma 5.6 is rather technical, we will walk through an example before seeing the full proof.
Let Γ be the graph on 13 vertices below:

1

2 3

4

5

6 7

8 11

9

10

12 13

where (11, 12) is cut edge and 𝐺 (11,12) is the component that contains 11. The forest of cut edges with
vertex set 𝑉 (𝐺 (11,12) ) ∪ {12} has edge set {(1, 4), (8, 11), (9, 11), (10, 11), (12, 11)}. If we mark in Γ
the component of this forest that contains the vertex 11 with double lines, we get the following graph:

1

2 3

4

5

6 7

8 11

9

10

12 13

In essence, Lemma 5.6 says that for all 𝑘 ∈ [13], the spline �̄�12
𝐺(11,12) ,𝑘

can be written as a sum of some
splines in CΓ associated to the cut edges (8, 11), (9, 11) and (10, 11) (since they are a part of that marked
tree) and some splines in YΓ associated to cut vertex 8, since Γ − 8 has components that ‘hang off of’
that marked tree.

For each of the cut edges 𝑎 ∈ {(8, 11), (9, 11), (10, 11)}, we must choose 𝐺𝑎 to be the component
contained within 𝐺 (11,12) , so 𝑉 (𝐺 (9,11) ) = {1, ..., 11}, 𝑉 (𝐺 (9,11) ) = {9}, and 𝑉 (𝐺 (10,11) ) = {10}.

More formally, Lemma 5.6 states that for all 𝑘 ∈ [13], the following equality holds (we will denote
the specific subgraph by their vertex set):

�̄�8
[5],𝑘 + �̄�8

{6,7},𝑘 +
∑
|𝐴 |=8
𝑘∈𝐴

𝑓 (8,11)
𝐴 +

∑
|𝐴 |=1
𝑘∈𝐴

𝑓 (9,11)
𝐴 +

∑
|𝐴 |=1
𝑘∈𝐴

𝑓 (10,11)
𝐴 +

∑
|𝐴 |=11
𝑘∈𝐴

𝑓 (11,12)
𝐴 = �̄�12

[11],𝑘 .
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The proof proceeds in cases by the value of 𝑤−1 (𝑘). For example, say we wished to evaluate both sides
of the above expression at a 𝑤 ∈ 𝑆13 such that 𝑤−1 (𝑘) = 3. This makes it easier to determine which
splines in the sum above on the left are supported at w. In particular,

1. �̄�8
[5],𝑘 (𝑤) = 𝑡𝑘 − 𝑡𝑤 (8) since 3 ∈ [5],

2. �̄�8
{6,7},𝑘 (𝑤) = 0 since 3 ∉ {6, 7},

3.
∑
|𝐴 |=8
𝑘∈𝐴

𝑓 (8,11)
𝐴 (𝑤) = 𝑡𝑤 (8) − 𝑡𝑤 (11) since the set 𝐴 = 𝑤(𝑉 (𝐺 (8,11) ) contains 𝑤(3) = 𝑘 ,

4.
∑
|𝐴 |=1
𝑘∈𝐴

𝑓 (9,11)
𝐴 (𝑤) = 0 and

∑
|𝐴 |=1
𝑘∈𝐴

𝑓 (10,11)
𝐴 (𝑤) = 0 since 𝑘 ∉ 𝑤({9}) and 𝑘 ∉ 𝑤({10}), and finally,

5.
∑
|𝐴 |=11
𝑘∈𝐴

𝑓 (11,12)
𝐴 (𝑤) = 𝑡𝑤 (11) − 𝑡𝑤 (12) since the set 𝐴 = 𝑤(𝑉 (𝐺 (11,12) ) contains 𝑤(3) = 𝑘 .

If we add these all up, the sum telescopes and the evaluation is

(𝑡𝑘 − 𝑡𝑤 (8) ) + (𝑡𝑤 (8) − 𝑡𝑤 (11)) + (𝑡𝑤 (11) − 𝑡𝑤 (12) ) = 𝑡𝑘 − 𝑡𝑤 (12) ,

which is precisely �̄�12
[11] (𝑤). The essence of the proof, which we will now provide, is that the splines in

the sum with support at a particular 𝑤 ∈ 𝑆𝑛 can be determined from any simple path from 𝑤−1 (𝑘) to j
and that the sum always telescopes as it did in the example above.

Proof of Lemma 5.6. Let 𝑤 ∈ 𝑆𝑛. We will show that both sides of the claimed equality are equal when
evaluated at w. Let 𝑘 ∈ [𝑛], and we will proceed in cases based off of the value 𝑤−1 (𝑘).

First, say 𝑤−1 (𝑘) ∉ 𝑉 (𝐺 (𝑖, 𝑗) ). All paths that begin in 𝐺 (𝑖, 𝑗) and leave must contain the edge (𝑖, 𝑗)
and thus visit the vertex j. In particular, for any 𝑣 ∈ 𝐶 where 𝑐 	 Γ, the connected component of Γ − 𝑣
that contains 𝑤−1 (𝑘) also contains 𝑗 ∈ 𝐶. So 𝑤−1 (𝑘) ∉ 𝐺 for any G in the first double-sum, and so∑

𝑣 ∈𝐶− 𝑗
𝑣	Γ

∑
𝐺

𝐺∩𝐶=∅

�̄�𝑣𝐺,𝑘 (𝑤) = 0.

If 𝑎 ∈ 𝐸 (𝐶), then 𝐺𝑎 was chosen to be contained within 𝐺 (𝑖, 𝑗) , so 𝑤−1 (𝑘) ∉ 𝐺𝑎 as well. In particular,
if 𝑘 ∈ 𝐴, then 𝑤−1 (𝐴) ≠ 𝐺𝑎, and so ∑

𝑎∈𝐸 (𝐶)

∑
𝐴�𝑘

|𝐴 |= |𝐺𝑎 |

𝑓 𝑎𝐴 (𝑤) = 0.

It is direct from the definition that �̄�𝑣𝐺(𝑖, 𝑗) ,𝑘 (𝑤) = 0, and so the claim holds when 𝑤−1 (𝑘) ∉ 𝐺 (𝑖, 𝑗) .
Now assume that 𝑤−1 (𝑘) ∈ 𝐺 (𝑖, 𝑗) . Let 𝑃 = (𝑝0, . . . , 𝑝ℓ , 𝑝ℓ+1) be a simple path from 𝑝0 � 𝑤−1 (𝑘)

to 𝑝ℓ+1 � 𝑗 . Note that 𝑝ℓ must be the vertex i. This path P may start outside of C, but must eventually
enter the tree C. Say that 𝑚 ∈ {0, ..., ℓ} is the lowest index such that 𝑝𝑚 ∈ 𝐶. Since 𝑖 ∈ 𝐶 and 𝑝ℓ = 𝑖,
this integer m does exist. Simple paths from vertex to vertex within trees are unique, so there is a unique
simple path from 𝑝𝑚 to j in C. This path is 𝑃𝐶 � (𝑝𝑚, ..., 𝑝ℓ+1).

First, we will determine the value of 𝑓 𝑎𝐴 (𝑤) for 𝑎 ∈ 𝐸 (𝐶). Say the edge 𝑎 ∈ 𝐶 is not an edge
in the path 𝑃𝐶 . Then the vertices 𝑤−1 (𝑘) and j are in the same connected component of the graph
([𝑛], 𝐸 (Γ) − 𝑎). In particular, 𝑤−1 (𝑘) ∉ 𝐺𝑎, so if 𝑘 ∈ 𝐴, then 𝑤−1 (𝐴) ≠ 𝑉 (𝐺𝑎). It follows that for all
A such that 𝑘 ∈ 𝐴, if 𝑎 ∉ 𝑃𝐶 , then 𝑓 𝑎𝐴 (𝑤) = 0.

However, if 𝑎 ∈ 𝑃𝐶 , then we may let 𝐴 � 𝑤(𝑉 (𝐺𝑎)), and then 𝑘 ∈ 𝐴. So for each 𝑎 ∈ 𝑃𝐶 ,
there exists a single spline 𝑓 𝑎𝐴 in the sum that is supported at w. In particular, if 𝑎 = (𝑝, 𝑞), then
𝑓 𝑞𝐴 (𝑤) = 𝑡𝑤 (𝑝) − 𝑡𝑤 (𝑞) .
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At this point, we have that∑
𝑣 ∈𝐶− 𝑗
𝑣	Γ

∑
𝐺

𝐺∩𝐶=∅

�̄�𝑣𝐺,𝑘 (𝑤) +
∑

𝑎∈𝐸 (𝐶)

∑
𝐴�𝑘

|𝐴 |= |𝐺𝑎 |

𝑓 𝑎𝐴 =
∑

𝑣 ∈𝐶− 𝑗
𝑣	Γ

∑
𝐺

𝐺∩𝐶=∅

�̄�𝑣𝐺,𝑘 (𝑤) +
∑

(𝑝,𝑞) ∈𝑃𝐶

𝑡𝑤 (𝑝) − 𝑡𝑤 (𝑞) .

Now we will have two cases: if 𝑤−1 (𝑘) ∈ 𝐶 and if 𝑤−1 (𝑘) ∉ 𝐶.
Case 1: 𝑤−1 (𝑘) ∈ 𝐶. So 𝑚 = 0. Then for all 𝑣 ∈ 𝐺 (𝑖, 𝑗) , if a connected component G of Γ− 𝑣 contains

𝑤−1 (𝑘), then so does 𝐺 ∩ 𝐶. In particular,∑
𝑣 ∈𝐶− 𝑗
𝑣	Γ

∑
𝐺

𝐺∩𝐶=∅

�̄�𝑣𝐺,𝑘 (𝑤) = 0.

Now we compute

∑
(𝑟 ,𝑣) ∈𝑃𝐶

𝑡𝑤 (𝑣) − 𝑡𝑤 (𝑟 ) =
ℓ∑
𝑖=0

𝑡𝑤 (𝑝𝑖) − 𝑡𝑤 (𝑝𝑖+1)

= 𝑡𝑤 (𝑝0) − 𝑡𝑤 (𝑝ℓ+1)

= 𝑡𝑘 − 𝑡𝑤 ( 𝑗) .

This is precisely �̄�
𝑗
𝑖 (𝑤), and so the equality holds if 𝑤−1 (𝑘) ∈ 𝐶.

Case 2: 𝑤−1 (𝑘) ∉ 𝐶. Then 𝑚 ≠ 0, and consider the vertex 𝑝𝑚−1. Since 𝑝𝑚 ∈ 𝐶 and Γ− 𝑝𝑚 separates
𝑤−1 (𝑘) from j, the vertex 𝑝𝑚 is a cut vertex of Γ. If 𝑣′ ∈ 𝐶 is any vertex other than 𝑝𝑚, then 𝑝𝑚
and 𝑤−1 (𝑘) are in the same connected component of Γ − 𝑣′ (connected via the path (𝑝0, ..., 𝑝𝑚)). In
particular, any connected component of Γ − 𝑣′ that contains 𝑤−1 (𝑘) intersects nontrivially with C. So
for 𝑣 = 𝑝𝑚 ∈ 𝐶− 𝑗 , there is precisely one component G of Γ− 𝑣 that contains 𝑤−1 (𝑘). If this component
G intersected nontrivially with C, then (𝑝𝑚−1, 𝑝𝑚) would have to be an edge in C, but (𝑝𝑚−1, 𝑝𝑚) was
explicitly assumed not to be a cut edge. In particular, w is supported on one and only one spline in the
first double-sum (the one where 𝑣 = 𝑝𝑚 and 𝐺 � 𝑝𝑚−1)), and so∑

𝑣 ∈𝐶− 𝑗
𝑣	Γ

∑
𝐺

𝐺∩𝐶=∅

�̄�𝑣𝐺,𝑘 (𝑤) = 𝑡𝑘 − 𝑡𝑤 (𝑝𝑚) .

It follows that∑
𝑣 ∈𝐶− 𝑗
𝑣	Γ

∑
𝐺

𝐺∩𝐶=∅

�̄�𝑣𝐺,𝑘 (𝑤) +
∑

(𝑝,𝑞) ∈𝑃𝐶

𝑡𝑤 (𝑝) − 𝑡𝑤 (𝑞) = 𝑡𝑘 − 𝑡𝑤 (𝑝𝑚) +
ℓ∑

𝑟=𝑚

𝑡𝑤 (𝑝𝑟 ) − 𝑡𝑤 (𝑝𝑟+1)

= 𝑡𝑘 − 𝑡𝑤 (𝑝𝑚) + 𝑡𝑤 (𝑝𝑚) − 𝑡𝑤 (𝑝ℓ+1)

= 𝑡𝑘 − 𝑡𝑤 ( 𝑗) .

So in either case, the sum evaluates to �̄�
𝑗
𝐺(𝑖, 𝑗) ,𝑘

(𝑤). �

Now Lemma 5.6 two very important consequences. First, as mentioned, it will allow us to disregard
those splines �̄�

𝑗
𝐺,𝑘 where G is connected to j via a cut edge. Second, observe we only required j to be

a cut vertex so that �̄�
𝑗
𝐺,𝑘 is defined. We may, however, remove this restriction and ‘force through’ the

argument as follows. If (𝑝, 𝑞) is a cut edge and q is not a cut vertex, then q is a leaf in Γ. Let 𝐺 (𝑝,𝑞) be
the connected component containing p (and thereby all of [𝑛] \ {𝑞}). We might abuse notation and let
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for all 𝑤 ∈ 𝑆𝑛,

�̄�𝑞𝐺(𝑝,𝑞) ,𝑘 (𝑤) =

{
𝑡𝑘 − 𝑡𝑤 (𝑞) if 𝑤−1 (𝑘) ∈ [𝑛] \ {𝑞}

0 otherwise

= 𝑡𝑘 (𝑤) − 𝑥𝑞 (𝑤),

and get another relation from Lemma 5.6. A consequence of this is Lemma 5.7 below.

Lemma 5.7. Let (𝑖, 𝑗) be a leaf edge in Γ with j the leaf vertex, and 𝐺 (𝑖, 𝑗) the connected component of
([𝑛], 𝐸 (Γ) \ {𝑠}) that contains i. Then for all 𝐴 ⊂ [𝑛] such that |𝐴| =

��𝐺 (𝑖, 𝑗) �� = 𝑛 − 1, we have that

𝑓
(𝑖, 𝑗)
𝐴 ∈ C

{
�̄� ∈ FΓ

����̄� ≠ 𝑓
(𝑖, 𝑗)
𝐵 for any 𝐵 ⊂ [𝑛]

}
.

Proof. Let C be the connected component of the forest with vertex set 𝑉 (𝐺 (𝑖, 𝑗) ) ∪ { 𝑗} = [𝑛] and edge
set {𝑠 | 𝑠 is a cut edge of Γ)} that contains the vertex j. By Lemma 5.6 and the discussion above, for all
𝑘 ∈ [𝑛], ∑

𝑣 ∈𝐶− 𝑗
𝑣	Γ

∑
𝐺

𝐺∩𝐶=∅

�̄�𝑣𝐺,𝑘 +
∑

𝑎∈𝐸 (𝐶)

∑
𝐴�𝑘

|𝐴 |= |𝐺𝑎 |

𝑓 𝑎𝐴 = 𝑡𝑘 − 𝑥 𝑗 ,

where G in the first double-sum is a connected component of Γ − 𝑣, 𝐺𝑎 is the connected component
of ([𝑛], 𝐸 (Γ) \ {(𝑖, 𝑗)}) that is a subgraph of 𝐺 (𝑖, 𝑗) (i.e., does not contain j), and A in the second
double-sum is a subset of [𝑛]. In particular,∑

|𝐴 |=𝑛−1
𝑘∈𝐴

𝑓
(𝑖, 𝑗)
𝐴 = 𝑡𝑘 − 𝑥𝑛 −

∑
𝑣 ∈𝐶− 𝑗
𝑣	Γ

∑
𝐺

𝐺∩𝐶=∅

�̄�𝑣𝐺,𝑘 −
∑

𝑎∈𝐸 (𝐶)
𝑎≠(𝑖, 𝑗)

∑
𝐴�𝑘

|𝐴 |= |𝐺𝑎 |

𝑓 𝑎𝐴 .

Now the right-hand side is in C
{
�̄� ∈ FΓ

����̄� ≠ 𝑓
(𝑖, 𝑗)
𝐵 for any 𝐵 ⊂ [𝑛]

}
. Let �̄�𝑘 :=

∑
|𝐴 |=𝑛−1
𝑘∈𝐴

𝑓
(𝑖, 𝑗)
𝐴 , so the

above relation says �̄�𝑘 ∈ 𝐶
{
�̄� ∈ FΓ

����̄� ≠ 𝑓
(𝑖, 𝑗)
𝐵 for any 𝐵 ⊂ [𝑛]

}
. For each 𝑝 ∈ [𝑛], we have that

𝑓
(𝑖, 𝑗)
[𝑛]\{𝑝}

=
��� 1
𝑛 − 1

∑
𝑘∈[𝑛]

�̄�𝑘
 !" − �̄�𝑝 .

Thus, 𝑓
(𝑖, 𝑗)
[𝑛]\{𝑝}

∈ C
{
�̄� ∈ FΓ

����̄� ≠ 𝑓
(𝑖, 𝑗)
𝐵 for any 𝐵 ⊂ [𝑛]

}
, and as all subsets of size |𝐴| = 𝑛 − 1 take the

form 𝐴 = [𝑛] \ {𝑝}, the claim follows. �

Example 5.8. If Γ is the graph below where (12, 13) is a leaf,

1

2 3

4

5

6 7

8 11

9

10

12 13

then Lemma 5.7 states that CFΓ is identical to C
{
�̄� ∈ FΓ

����̄� ≠ 𝑓 (12,13)
𝐵 for any 𝐵 ⊂ [𝑛]

}
.
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Since (1, 4) is also a leaf, we have that CFΓ is equal to C
{
�̄� ∈ FΓ

����̄� ≠ 𝑓 (1,4)𝐵 for any 𝐵 ⊂ [𝑛]
}

as
well. Note we cannot remove the coset splines for (1, 4) and (12, 13) from FΓ at the same time and
maintain the C-span; we have to pick a particular leaf to remove and stick with it.

6. Natural labels and cliqued graphs

In this section, we reduce the computation for arbitrary Γ in two ways. First, we show that Γ may be
replaced by a cliqued graph (defined below) without alteringM1

Γ. Second, we replace Γ with a particular
representative of the isomorphism class we call naturally labeled. Subsection 6.2 gives three technical
lemmas on splines that hold for these constructions.

First, if Γ does not have a cut vertex, then it is 2-connected. Thus, ch(LΓ)1 is trivial and ch(RΓ)1
is the first degree piece of the graded regular representation by Theorem 4.2 and Corollary 4.4. So we
may assume that Γ has a cut vertex; in particular, we may assume that Γ has at least three vertices.

A clique is a subgraph isomorphic to a complete graph. Let Γ by any (connected) graph on [𝑛]. Call
Γ cliqued if two vertices are connected by an edge in Γ whenever there exists two vertex-disjoint paths
between them. Define

Γ′ = ( [𝑛], 𝐸 (Γ) ∪ {(𝑖, 𝑗) | exists two vertex-disjoint paths from 𝑖 to 𝑗 in Γ}).

Now Γ′ is cliqued, and we call Γ′ the cliqued version of Γ. By Lemma 4.1, the first degree pieces of
MΓ and MΓ′ are equal. Therefore, it suffices to consider cliqued graphs Γ when proving results on the
structure of M1

Γ.

Example 6.1. Below is an example of a graph Γ and the cliqued graph Γ′ such that M1
Γ = M1

Γ′ :

Γ Γ′

A 2-connected component of a graph Γ is a subgraph of Γ that is 2-connected. A block is a maximal
2-connected component. In a cliqued graph, every block is a clique, and the process of cliquing a graph
simply converts every block to a clique.

Definition 6.2. Let Γ be a graph. The block-cut tree of Γ is the tree with vertex set

{𝑣 | 𝑣 	 Γ} ∪ {𝐵 | 𝐵 is a block in Γ}

consisting of cut vertices and blocks in Γ and edge set {(𝑣, 𝐵) | 𝑣 ∈ 𝐵}.

Example 6.3. The graph on the left below is Γ from Example 6.3 with the blocks and cut vertices
labeled. The graph on the right below is the associated the block-cut tree. Note that the block-cut tree
for the cliqued version Γ′ of Γ in Example 6.3 would be the same.
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1

2

3

4

5

6 7

8

9 10

1112

𝐵3 4

𝐵2 9 𝐵1

𝐵4 5 𝐵5

where

◦ 𝐵1 is the induced subgraph on vertices
{9, 10, 11, 12}

◦ 𝐵2 is the induced subgraph on vertices {4, 9}
◦ 𝐵3 is the induced subgraph on vertices
{1, 2, 3, 4}

◦ 𝐵4 is the induced subgraph on vertices {4, 5}
◦ 𝐵5 is the induced subgraph on vertices
{5, 6, 7, 8}

It is easy to reason that the block-cut tree is indeed a tree by arguing that it cannot contain cycles. In
a block-cut tree of a graph Γ, every leaf is a block in Γ and not a cut vertex, and paths in the block-cut
tree alternate between cut-vertices and blocks. Since the block-cut tree ignores the internal structure of
a 2-connected component, the block-cut tree of a graph Γ and the block-cut tree of its cliqued version
Γ′ are isomorphic as graphs.

We now use the block-cut tree to construct a particular representative of the isomorphism class of Γ.
We will construct a bijection 𝜙 : [𝑛] → [𝑛] to relabel the vertices of Γ.

Choose a cut vertex 𝑣 	 Γ such that v is adjacent to at most 1 block that is not a leaf in the block-cut
tree of Γ. One may obtain such a vertex v by (1) removing all leaves from the block-cut tree of Γ (which
must be blocks) and then (2) choosing a leaf from the tree that remains (which must be cut vertices).
The vertices 5 and 9 satisfy this condition in Example 6.3.

Let B be the largest block that is also a leaf adjacent to v in the block-cut tree of Γ. Since B is a leaf
in the block-cut tree, there exists only a single cut vertex in B – namely, 𝑣 ∈ 𝐵. The following is the
algorithm that produces 𝜙 : [𝑛] → [𝑛].

1. Choose 𝑖 ∈ 𝐵 so that 𝑖 ≠ 𝑣. Define 𝜙(𝑖) � 𝑛. Note n is adjacent to at most one cut vertex of Γ and is
not itself a cut vertex of Γ.

2. Define 𝜙 on the remaining vertices in B as follows. Define 𝜙 on 𝐵 \ {𝑖, 𝑣} so that 𝑑 ( 𝑗 , 𝑖) < 𝑑 (𝑘, 𝑖)
implies 𝜙( 𝑗) > 𝜙(𝑘) for all 𝑗 , 𝑘 ∈ 𝐵 \ {𝑖, 𝑣}. Let 𝜙(𝑣) � 𝑛 − |𝐵 | + 1

3. Define 𝜙 on the remaining vertices of Γ as follows. Let 𝜙 be any bijection satisfying if 𝑗 , 𝑘 ∈ Γ\𝑉 (𝐵),
then 𝑑 ( 𝑗 , 𝑖) < 𝑑 (𝑘, 𝑖) implies 𝜙( 𝑗) > 𝜙(𝑘).

Now that we have a bijection 𝜙 : [𝑛] → [𝑛], define a new graph Γ′′ � ([𝑛], {(𝜙( 𝑗), 𝜙(𝑘)) | ( 𝑗 , 𝑘) ∈
𝐸 (Γ)}). This graph is clearly isomorphic to Γ. We call the graph Γ′′ constructed in this manner naturally
labeled.
Example 6.4. This example will construct a naturally labeled graph from the not-naturally labeled graph
with 12 vertices drawn below:

7

6 11

4

12

9 10

1 2

3

5

8
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This has block-cut tree

𝐵1 4 𝐵2

𝐵3 1

𝐵4

𝐵5 2

𝐵6

𝐵7

with blocks

◦ 𝐵1 on {4, 7}
◦ 𝐵2 on {4, 6, 11}
◦ 𝐵3 on {1, 4, 12}

◦ 𝐵4 on {1, 9, 10}
◦ 𝐵5 on {1, 2}

◦ 𝐵6 on {2, 3}
◦ 𝐵7 on {2, 5, 8}

To choose a vertex i such that 𝜙(𝑖) = 12, first we identify an appropriate cut vertex v. There are two
cut vertices adjacent to only one non-leaf vertex in the block-cut tree, 2 and 4. Let 𝑣 = 2. The vertex 2
is adjacent to blocks 𝐵6 and 𝐵7 in the block-cut tree. Since 𝐵7 is bigger than 𝐵6, we know that either of
𝑖 = 5 or 𝑖 = 8 will work. We choose 𝑖 = 8 so 𝜙(8) = 12, which concludes step (1).

Now the block 𝐵7 has three vertices, which leaves no choice for defining 𝜙 on the remainder of 𝐵7. So
𝜙(5) = 11 and 𝜙(4) = 10. This concludes step (2).

Finally, we define the rest of 𝜙 based on distance from the vertex 𝑖 = 8 and replace the old graph with
the naturally labeled one. One possible natural label is the following:

1

2 3

4

5

6 7

8 10

9

11

12
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We note how many choices were made along the way. In particular, the isomorphism class of a graph
Γ may have many different naturally labeled members.

We can use a natural label to more efficiently identify cut edges and connected components of a
graph. The following definitions formalize this.

Definition 6.5. Let Γ be a naturally labeled graph. If 𝑗 ∈ Γ is a cut vertex, then 𝑖 < 𝑗 is j-dominant if i
is the maximal value vertex in a connected component of Γ − 𝑗 that does not contain the vertex n. We
call such an (𝑖, 𝑗) a dominant pair. A dominant pair (𝑖, 𝑗) is strongly dominant if (𝑖, 𝑗) is a cut edge of
Γ, denoted (𝑖, 𝑗) � Γ. Otherwise, (𝑖, 𝑗) is weakly dominant, denoted (𝑖, 𝑗) > Γ.

There are four things to note about dominant pairs.

1. Even if (𝑛 − 1, 𝑛) is a cut edge, (𝑛 − 1, 𝑛) is never a strongly dominant pair since n is not a cut vertex
by the definition of a natural label. However, every other cut edge in a naturally labeled graph Γ is a
strongly dominant pair, since the higher-labeled vertex in the cut edge must be a cut vertex.

2. If 𝑗 	 Γ, then all vertices larger than j must be concentrated in one connected component of Γ − 𝑗 .
If k is in a connected component of Γ − 𝑗 that does not contain the vertex n, then any path from k to
n must pass through j, and so 𝑑 (𝑘, 𝑛) > 𝑑 ( 𝑗 , 𝑛), and thus, 𝑘 < 𝑗 by the definition of a natural label.
In particular, the only connected component of Γ − 𝑗 whose maximal vertex is greater than j is the
one that contains n, so each connected component of Γ− 𝑗 that does not contain n contains precisely
one j-dominant vertex.

3. Since a natural label is constructed by distance from n, for each cut vertex j, the maximal-labeled
vertices in a connected component of Γ− 𝑗 that does not contain n must be adjacent to j. In particular,
dominant pairs are also edges.

4. The lower vertex in the dominant pair uniquely determines the pair. In particular, if for contradiction
we assume (𝑖, 𝑗) and (𝑖, 𝑘) are both dominant pairs, then i and k are in the same connected component
of Γ − 𝑗 , and 𝑖 < 𝑘 , and so (𝑖, 𝑗) is not a dominant pair.

Definition 6.6. Let Γ be naturally labeled and fix 𝑗 ∈ Γ. Let ℭΓ ( 𝑗) � {𝑖 | (𝑖, 𝑗) > Γ or (𝑖, 𝑗) � Γ},
and 𝔠Γ ( 𝑗) � |ℭΓ ( 𝑗) |. If j is not a cut vertex, then ℭΓ ( 𝑗) = ∅ and 𝔠Γ ( 𝑗) = 0. If j is a cut vertex of Γ,
then the cut decomposition of Γ − 𝑗 is

Γ − 𝑗 � Γ 𝑗0 ∪
⋃

𝑖∈ℭΓ ( 𝑗)

Γ 𝑗𝑖 ,

where Γ 𝑗𝑖 the connected component of Γ − 𝑗 such that 𝑖 ∈ Γ 𝑗𝑖 and Γ 𝑗0 denotes the single connected
component of Γ − 𝑗 where 𝑛 ∈ Γ 𝑗0 .

So if 𝑗 	 Γ is a cut vertex of Γ and 𝑘 ∈ [𝑛] such that 𝑘 > 𝑗 , then 𝑘 ∈ Γ 𝑗0 . When Γ is obvious from
context, we write ℭ( 𝑗) and 𝔠( 𝑗) without the subscripts.

Remark 6.7. If (𝑖, 𝑗) is a cut edge and j is a cut vertex, then Γ 𝑗𝑖 as in the cut decomposition of Γ − 𝑗 is
one of the two connected components of ([𝑛], 𝐸 (Γ) \ {(𝑖, 𝑗)}). In particular, Γ 𝑗𝑖 is one of the two valid
choices for 𝐺𝑠 when defining 𝑓

(𝑖, 𝑗)
𝐴 at the beginning of Section 5. From now on, even if Γ is not naturally

labeled and even if the cut edge is (𝑖, 𝑗) = (𝑛 − 1, 𝑛), we will choose 𝐺𝑠 to be the connected component
of (𝑉 (Γ), 𝐸 (Γ) − (𝑖, 𝑗)) that contains 𝑖 < 𝑗 , so that the notation always agrees with Definition 6.6.

Example 6.8. The following is the cliqued and naturally labeled graph Γ from Example 6.4. We have
labeled the strongly dominant pairs in double lines and the weakly dominant pairs in dashed lines:
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The cut vertices are {4, 8, 10}, and 𝔠Γ (10) = 𝔠Γ (8) = 𝔠Γ (4) = 2. The graph Γ − 8 is displayed below,
with the cut decomposition labeled:

1

2 3

4

5

6 7

10

9

11

12

Γ8
5

Γ8
7

Γ8
0

Lemma 6.9 below summarizes some properties of a cliqued and naturally labeled graph.

Lemma 6.9. If Γ is cliqued and naturally labeled, then

(A) if 𝑖, 𝑗 ∈ N(𝑛) are both adjacent to the vertex n in Γ, then (𝑖, 𝑗) ∈ 𝐸 (Γ),
(B) if 𝑛−1 	 Γ is a cut vertex of Γ, then at most one of the connected components Γ𝑛−1

𝑖 for 𝑖 ∈ ℭΓ (𝑛−1)
in the cut decomposition of Γ − (𝑛 − 1) is not a single vertex,

(C) If 𝑟, 𝑘 ∈ Γ 𝑗𝑖 ∩ N( 𝑗) are vertices both adjacent to 𝑗 	 Γ and in the same connected component of
Γ − 𝑗 , then (𝑟, 𝑘) ∈ 𝐸 (Γ).

Proof. Let 𝐵0 be the block in Γ that contains n.
(1) If 𝑖, 𝑗 ∈ N(𝑛), then 𝑖, 𝑗 ∈ 𝐵0. Since Γ is cliqued, 𝐵0 must be a clique and so (𝑖, 𝑗) ∈ 𝐸 (Γ).
(2) The vertex 𝑛 − 1 is a cut vertex of Γ if and only if n is a leaf, and 𝐵0 is size 2. Since Γ is naturally

labeled, 𝑛 − 1 is adjacent to at most one block that is not a leaf in the block-cut tree of Γ, and 𝐵0 is of
maximal size among those leaves in the block-cut tree. Thus, the blocks adjacent to 𝑛 − 1 in the block-
cut tree of Γ are either not a leaf in the block-cut tree (of which there can only be one) or a leaf in the
block-cut tree and size no greater than 2.

(3) There exists a path (𝑟, 𝑗 , 𝑘) in Γ, and another path from r to k in Γ 𝑗𝑖 , which does not contain the
vertex j. Since Γ is cliqued and we know there are two vertex-disjoint paths from r to k in Γ, it follows
that (𝑟, 𝑘) ∈ 𝐸 (Γ). �

We use Lemma 6.9 to categorize cliqued and naturally labeled graphs in to three types, based on the
structure of Γ near the vertex n.

Lemma 6.10. If Γ is cliqued and naturally labeled, then it falls in to one of the following three types:

(A) The edge (𝑛 − 1, 𝑛) is a cut edge of Γ, and at most one component of Γ − (𝑛 − 1) is not an isolated
vertex.

(B) The vertex 𝑛 − 2 is a cut vertex, and the vertices {𝑛 − 2, 𝑛 − 1, 𝑛} form a block in Γ.
(C) None of the vertices {𝑛, 𝑛 − 1, 𝑛 − 2} are cut vertices, and {𝑛 − 2, 𝑛 − 1, 𝑛} form a clique in Γ.
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Proof. Categorize Γ by the size of the neighborhood N(𝑛). For every Γ, exactly one of the following is
true: |N(𝑛) | = 1, |N(𝑛) | = 2 or |N(𝑛) | > 2. Note that, since every block is a clique and n is not a cut
vertex, the block B containing n has vertices 𝑁 (𝑛) ∪ {𝑛}.

If |N(𝑛) | = 1, then 𝑛 − 1 is a cut vertex, and Γ is type A. The rest of the claim for type A is Lemma
6.9(2).

Suppose |N(𝑛) | = 2. Since Γ is naturally labeled, 𝑛−2 must be a cut vertex. We also have (𝑛−2, 𝑛−1) ∈
𝐸 (Γ) by Lemma 6.9(1).

Finally, suppose |N(𝑛) | > 2. Since Γ is naturally labeled, none of {𝑛 − 2, 𝑛 − 1, 𝑛} is a cut vertex.
Once again, (𝑛 − 2, 𝑛 − 1) ∈ 𝐸 (Γ) by Lemma 6.9(1). �

Visually, Lemma 6.10 says that if Γ is cliqued and naturally labeled, then Γ can be represented
diagrammatically in one of the following three ways:

𝑛 𝑛 − 1 Γ𝑛−1
𝑛−𝑘−1A:

𝑛 − 2 · · · 𝑛 − 𝑘

𝑛

𝑛 − 1

𝑛 − 2 Γ \
{ 𝑛,
𝑛−1,
𝑛−2

}
B:

𝑛

𝑛 − 1

𝑛 − 2

Γ \
{ 𝑛,
𝑛−1,
𝑛−2

}
C:

In the diagram for type A above, 𝔠Γ (𝑛 − 1) = 𝑘 . We remark that in type B, the induced subgraph
Γ \ {𝑛 − 2, 𝑛 − 2, 𝑛} may be disconnected (such as it would be for the graph in Example 6.8). However,
in type C, the vertex 𝑛 − 3 must be in the same block as n, 𝑛 − 1 and 𝑛 − 2, so the induced subgraph
Γ \ {𝑛 − 2, 𝑛 − 1, 𝑛} is actually connected.

Example 6.11. The graph Γ from Example 6.8 is type B. The following is a naturally labeled type A
graph:

1

2 3

4

5

6 7

8 11

9

10

12

A different natural label on the same graph, such as the one below, can have a different classification.
The following naturally labeled graph is in the same isomorphism class as the previous, but is type B:
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9

12 11

10

8

6 5

7 4

3

2

1

6.1. The spanning set revisited

A natural labeling provides a more convenient indexing for the splines in YΓ and CΓ, using the cut
decomposition from Definition 6.6. In particular, we write

�̄�
𝑗
𝑖,𝑘 � �̄�

𝑗

Γ 𝑗
𝑖 ,𝑘

so that

YΓ =
{
�̄�
𝑗
𝑖,𝑘

��� 𝑗 	 Γ, 𝑖 ∈ ℭΓ ( 𝑗) ∪ {0}, 𝑘 ∈ [𝑛]
}
.

Additionally, while the notation for individual splines 𝑓 𝑠𝐴 ∈ CΓ does not change, we note that, as stated
in Remark 6.7, we choose 𝐺𝑠 for 𝑠 = (𝑖 < 𝑗) to be equal to Γ 𝑗𝑖 .

We collect the important naturally-labeled versions of Lemmas 5.6, 5.5 and 5.7 below in Proposi-
tion 6.12.

Proposition 6.12. Let Γ be naturally labeled, and let

BΓ � {𝑡𝑖 | 𝑖 ∈ [𝑛]} ∪ {𝑥𝑖 | 𝑖 ∈ [𝑛]} ∪

{
𝑓 𝑠𝐴

�����𝑠 = (𝑖, 𝑗) � Γ,

|𝐴| =
���Γ 𝑗𝑖 ���

}
∪

{
�̄�
𝑗
𝑖,𝑘

����(𝑖, 𝑗) > Γ,
𝑘 ∈ [𝑛]

}
.

Then the following hold:

1. If (𝑖, 𝑗) � Γ, then �̄�
𝑗
𝑖,𝑘 ∈ CBΓ for all 𝑘 ∈ [𝑛].

2. If 𝑗 	 Γ, then �̄�
𝑗
0,𝑘 ∈ CBΓ for all 𝑘 ∈ [𝑛].

3. If (𝑛 − 1, 𝑛) is a cut edge of Γ, then 𝑓 (𝑛−1,𝑛)
𝐴 ∈ CBΓ for all 𝐴 ⊂ [𝑛] where |𝐴| = 𝑛 − 1.

In particular, CBΓ = CFΓ.

Proof. The first relation (1) is exactly Lemma 5.6.
The second relation (2) follows from (1) together with Lemma 5.5(4).
The third relation (3) is Lemma 5.7, applied to the cut edge (𝑛 − 1, 𝑛). �

6.2. Technical lemmas

This subsection contains three lemmas that are used within the proof of Theorem 7.2.
Let 𝑆𝑖𝑛 ≔ {𝑤 ∈ 𝑆𝑛 | 𝑤(𝑖) = 𝑛} be a left coset of 𝑆𝑛−1 in 𝑆𝑛. The first Lemma 6.13 establishes what

values a linear spline �̄� may take on 𝑆𝑛−1
𝑛 if �̄� is not supported on 𝑆𝑛𝑛 = 𝑆𝑛−1.

Lemma 6.13. Let Γ be naturally labeled, and �̄� ∈ M1
Γ, where �̄� ≡ 0 on 𝑆𝑛𝑛. If 𝑤, 𝑣 ∈ 𝑆𝑛−1

𝑛 , then
�̄�(𝑤) = 𝑐𝑤

(
𝑡𝑛 − 𝑡𝑤 (𝑛)

)
and �̄�(𝑣) = 𝑐𝑣

(
𝑡𝑛 − 𝑡𝑣 (𝑛)

)
for some 𝑐𝑤 , 𝑐𝑣 ∈ C. Furthermore, if 𝑤(𝑛) = 𝑣(𝑛),

or Γ is type 𝐵/𝐶, then 𝑐𝑤 = 𝑐𝑣 .
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Proof. First, since Γ is naturally labeled, it follows that (𝑛 − 1, 𝑛) ∈ 𝐸 (Γ). We will show the first part
of the claim for 𝑤 ∈ 𝑆𝑛−1

𝑛 , and the same will hold for 𝑣 ∈ 𝑆𝑛−1
𝑛 . If 𝑤 ∈ 𝑆𝑛−1

𝑛 , then 𝑤(𝑛 − 1, 𝑛) ∈ 𝑆𝑛𝑛, and
L(𝑤, 𝑤(𝑛− 1, 𝑛)) =

〈
𝑡𝑤 (𝑛−1) − 𝑡𝑤 (𝑛)

〉
=

〈
𝑡𝑛 − 𝑡𝑤 (𝑛)

〉
. Since �̄� is linear and �̄�(𝑤(𝑛− 1, 𝑛)) = 0, the first

part of the claim follows.
Now we prove the second part of the claim. First, we assume 𝑤(𝑛) = 𝑣(𝑛). Two permutations

𝑤, 𝑣 ∈ 𝑆𝑛−1
𝑛 have the property 𝑤(𝑛) = 𝑣(𝑛) if and only if 𝑣 ∈ 𝑤𝑆𝑛−2. The claim will follow if 𝑐𝑤 = 𝑐𝑣

for 𝑣 = 𝑤(𝑟, 𝑠) whenever (𝑟, 𝑠) ∈ 𝑆𝑛−2. Let {𝑟, 𝑠} ⊂ [𝑛 − 2]. As Γ is naturally labeled and so n is not a
cut vertex of Γ, there exists a simple path (𝑟0, 𝑟1, ..., 𝑟𝑚) in Γ from 𝑟 = 𝑟0 to 𝑠 = 𝑟𝑚 that does not contain
n, and by Lemma 3.3,

�̄�(𝑤) − �̄�(𝑤(𝑟, 𝑠)) ∈
〈
𝑡𝑤 (𝑟𝑖) − 𝑡𝑤 (𝑟𝑖−1) | 𝑖 ∈ [𝑚]

〉
.

In particular,

(𝑐𝑤 − 𝑐𝑤 (𝑟 ,𝑠) )𝑡𝑛 − (𝑐𝑤 − 𝑐𝑤 (𝑟 ,𝑠) )𝑡𝑤 (𝑛) ∈
〈
𝑡𝑤 (𝑟𝑖) − 𝑡𝑤 (𝑟𝑖−1) | 𝑖 ∈ [𝑚]

〉
.

The monomial 𝑡𝑤 (𝑛) does not appear in {𝑡𝑤 (𝑟𝑖) − 𝑡𝑤 (𝑟𝑖−1) | 𝑖 ∈ [𝑚]}, and thus, 𝑐𝑤 = 𝑐𝑤 (𝑟 ,𝑠) . Since the
transpositions (𝑟, 𝑠) generate 𝑆𝑛−2, the claim follows.

Now we prove the claim if Γ is type 𝐵/𝐶. If Γ is type B or type C, then Γ − (𝑛 − 1) is connected.
It suffices to prove 𝑐𝑤 = 𝑐𝑤 (𝑟 ,𝑠) for 𝑛 − 1 ∉ {𝑟, 𝑠}. Since Γ − (𝑛 − 1) is connected, there exists a path
(𝑟0, ..., 𝑟𝑚) from 𝑟 = 𝑟0 to 𝑠 = 𝑟𝑚 in Γ that does not visit the vertex 𝑛 − 1. So

(𝑐𝑤 − 𝑐𝑤 (𝑟 ,𝑠) )𝑡𝑛 − 𝑐𝑤 𝑡𝑤 (𝑛) − 𝑐𝑤 (𝑟 ,𝑠) 𝑡𝑤 (𝑟 ,𝑠) (𝑛) ∈
〈
𝑡𝑤 (𝑟𝑖) − 𝑡𝑤 (𝑟𝑖−1) | 𝑖 ∈ [𝑚]

〉
.

Now 𝑡𝑛 = 𝑡𝑤 (𝑛−1) never appears in
{
𝑡𝑤 (𝑟𝑖) − 𝑡𝑤 (𝑟𝑖−1) | 𝑖 ∈ [𝑚]

}
, and thus, 𝑐𝑤 = 𝑐𝑣 . �

The second two lemmas assume that (𝑖, 𝑗) is a dominant pair in Γ and establish what values a linear
spline �̄� may take on 𝑆𝑖𝑛 if supp( �̄�) ∩ 𝑆

𝑗
𝑛 = ∅. Lemma 6.14 below assumes (𝑖, 𝑗) is strongly dominant

and relates �̄�(𝑤) to �̄�(𝑣) if w and v are in the same coset 𝑆𝑖𝑛 and they are also in the same coset of the
reflection subgroup generated by the transpositions 𝐸 (Γ) \ {(𝑖, 𝑗)}.

Lemma 6.14. Let Γ be cliqued and naturally labeled, and say (𝑖, 𝑗) � Γ. Let �̄� ∈M1
Γ, where �̄� ≡ 0

on 𝑆
𝑗
𝑛. If 𝑤, 𝑣 ∈ 𝑆𝑖𝑛, then �̄�(𝑤) = 𝑐𝑤

(
𝑡𝑛 − 𝑡𝑤 ( 𝑗)

)
and �̄�(𝑣) = 𝑐𝑣

(
𝑡𝑛 − 𝑡𝑣 ( 𝑗)

)
for some 𝑐𝑤 , 𝑐𝑣 ∈ C.

Furthermore, if 𝑣 ∈ 𝑤〈𝐸 (Γ) \ (𝑖, 𝑗)〉, then 𝑐𝑤 = 𝑐𝑣 .

Proof. First, since Γ is naturally labeled, it follows that (𝑖, 𝑗) ∈ 𝐸 (Γ). We will show the first part
of the claim for 𝑤 ∈ 𝑆𝑖𝑛, and the same will hold for 𝑣 ∈ 𝑆𝑖𝑛. If 𝑤 ∈ 𝑆𝑖𝑛, then 𝑤(𝑖, 𝑗) ∈ 𝑆

𝑗
𝑛, and

L(𝑤, 𝑤(𝑖, 𝑗)) =
〈
𝑡𝑤 (𝑖) − 𝑡𝑤 ( 𝑗)

〉
=

〈
𝑡𝑛 − 𝑡𝑤 ( 𝑗)

〉
. Since �̄� is linear and �̄�(𝑤(𝑖, 𝑗)) = 0, the first part of the

claim follows from the definition of a spline on GΓ.
The reflection subgroup 〈𝐸 (Γ) \ {(𝑖, 𝑗)}〉 is also generated by the transpositions {(𝑟, 𝑠) | {𝑟, 𝑠} ⊂

𝑉 (Γ 𝑗𝑖 )} ∪ {(𝑝, 𝑞) | {𝑝, 𝑞} ⊂ [𝑛] \ 𝑉 (Γ 𝑗𝑖 )}, as this set contains 𝐸 (Γ) \ {𝑖, 𝑗}. We will show that, for
those generating transpositions, 𝑐𝑤 = 𝑐𝑤 (𝑟 ,𝑠) and 𝑐𝑤 = 𝑐𝑤 (𝑝,𝑞) .

First, we show 𝑐𝑤 = 𝑐𝑤 (𝑟 ,𝑠) for {𝑟, 𝑠} ⊂ 𝑉 (Γ 𝑗𝑖 ). Let (𝑟0, ..., 𝑟𝑚) be a path in Γ 𝑗𝑖 from 𝑟 = 𝑟0 to
𝑟𝑚 = 𝑠. Then by Lemma 3.3,

�̄�(𝑤) − �̄�(𝑤(𝑟, 𝑠)) ∈
〈
𝑡𝑤 (𝑟𝑘 ) − 𝑡𝑤 (𝑟𝑘−1) | 𝑘 ∈ [𝑚]

〉
.

In particular,

(𝑐𝑤 − 𝑐𝑤 (𝑟 ,𝑠) )𝑡𝑛 − (𝑐𝑤 − 𝑐𝑤 (𝑟 ,𝑠) )𝑡𝑤 ( 𝑗) ∈
〈
𝑡𝑤 (𝑟𝑘 ) − 𝑡𝑤 (𝑟𝑘−1) | 𝑘 ∈ [𝑚]

〉
.

Since j is not in the path (𝑟0, ..., 𝑟𝑚), the monomial 𝑡𝑤 ( 𝑗) does not appear in {𝑡𝑤 (𝑟𝑘 ) −𝑡𝑤 (𝑟𝑘−1) | 𝑘 ∈ [𝑚]},
and thus, 𝑐𝑤 = 𝑐𝑤 (𝑟 ,𝑠) .
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Now let {𝑝, 𝑞} ⊂ [𝑛] \ 𝑉 (Γ 𝑗𝑖 ). Since (𝑖, 𝑗) is a cut edge, the induced subgraph of Γ with vertex set
[𝑛] \ 𝑉 (Γ 𝑗𝑖 ) is connected. Let (𝑝0, ..., 𝑝𝑚) be a path from 𝑝 = 𝑝0 to 𝑞 = 𝑝𝑚 in Γ that does not contain
i. By Lemma 3.3,

�̄�(𝑤) − �̄�(𝑤(𝑝, 𝑞)) ∈
〈
𝑡𝑤 (𝑝𝑘 ) − 𝑡𝑤 (𝑝𝑘−1) | 𝑘 ∈ [𝑚]

〉
.

In particular,

(𝑐𝑤 − 𝑐𝑤 (𝑝,𝑞) )𝑡𝑛 − 𝑐𝑤 𝑡𝑤 ( 𝑗) + 𝑐𝑤 (𝑝,𝑞) 𝑡𝑤 (𝑝,𝑞) ( 𝑗) ∈
〈
𝑡𝑤 (𝑝𝑘 ) − 𝑡𝑤 (𝑝𝑘−1) | 𝑘 ∈ [𝑚]

〉
.

Since i is not in the path (𝑝0, ..., 𝑝𝑚), the monomial 𝑡𝑛 = 𝑡𝑤 (𝑖) does not appear in {𝑡𝑤 (𝑝𝑘 ) − 𝑡𝑤 (𝑝𝑘−1) |

𝑘 ∈ [𝑚]}, and thus, 𝑐𝑤 = 𝑐𝑤 (𝑝,𝑞) .
Since the reflection subgroup 〈𝐸 (Γ)\ (𝑖, 𝑗)〉 is generated by {(𝑟, 𝑠) | {𝑟, 𝑠} ⊂ Γ 𝑗𝑖 }∪{(𝑝, 𝑞) | {𝑝, 𝑞} ∈

[𝑛] \ Γ 𝑗𝑖 }, the claim follows. �

Lemma 6.15 below assumes that (𝑖, 𝑗) is weakly dominant and then relates �̄�(𝑤) and �̄�(𝑣) if w and
v are in the same coset 𝑆𝑖𝑛.

Lemma 6.15. Let Γ be cliqued and naturally labeled, and say (𝑖, 𝑗) > Γ. Let �̄� ∈ M1
Γ, where �̄� ≡ 0

on 𝑆
𝑗
𝑛. If 𝑤, 𝑣 ∈ 𝑆𝑖𝑛, then �̄�(𝑤) = 𝑐𝑤

(
𝑡𝑛 − 𝑡𝑤 ( 𝑗)

)
and �̄�(𝑣) = 𝑐𝑣

(
𝑡𝑛 − 𝑡𝑣 ( 𝑗)

)
for some 𝑐𝑤 , 𝑐𝑣 ∈ C.

Furthermore, 𝑐𝑤 = 𝑐𝑣 .

Proof. The proof of the first part of this claim is identical to the first part of the proof of Lemma 6.14.
Since (𝑖, 𝑗) is not a cut edge and Γ is naturally labeled, there exists (𝑘, 𝑗) ∈ 𝐸 (Γ) with 𝑘 < 𝑖 < 𝑗

and 𝑘 ∈ Γ 𝑗𝑖 . By Lemma 6.9(3), (𝑖, 𝑘) ∈ 𝐸 (Γ). If 𝑢 ∈ 𝑆𝑘𝑛 , then �̄�(𝑢) = 𝑐𝑢
(
𝑡𝑛 − 𝑡𝑢 ( 𝑗)

)
for the same

reason that �̄�(𝑤) and �̄�(𝑣) take this form. We will prove the slightly stronger claim that 𝑐𝑤 = 𝑐𝑣 for all
𝑤, 𝑣 ∈ 𝑆𝑖𝑛 � 𝑆𝑘𝑛 . We proceed for now assuming that the induced subgraph of GΓ with vertex set 𝑆𝑖𝑛 � 𝑆𝑘𝑛
is connected, and we will verify that this assumption holds afterwards.

If 𝑆𝑖𝑛 � 𝑆𝑘𝑛 is connected, it will suffice to check if 𝑐𝑤 = 𝑐𝑣 for adjacent elements 𝑤, 𝑣 ∈ 𝑆𝑖𝑛 � 𝑆𝑘𝑛 . We
check edges in two cases: those within 𝑆𝑖𝑛 (resp. 𝑆𝑘𝑛), and the edges (𝑤, 𝑤(𝑖, 𝑘)) between 𝑆𝑖𝑛 and 𝑆𝑘𝑛 .

If (𝑤, 𝑤(𝑝, 𝑞)) is an edge in GΓ between elements of 𝑆𝑖𝑛, then 𝑖 ∉ {𝑝, 𝑞} and

�̄�(𝑤) − �̄�(𝑤(𝑝, 𝑞)) = (𝑐𝑤 − 𝑐𝑤 (𝑝,𝑞) )𝑡𝑛 − 𝑐𝑤 𝑡𝑤 ( 𝑗) + 𝑡𝑤 (𝑝,𝑞) ( 𝑗) ∈
〈
𝑡𝑤 (𝑞) − 𝑡𝑤 (𝑝)

〉
.

Since 𝑛 ∉ {𝑤(𝑝), 𝑤(𝑞)}, it follows 𝑐𝑤 = 𝑐𝑤 (𝑝,𝑞) . The same logic holds for edges in GΓ between two
elements of 𝑆𝑘𝑛 .

For edges (𝑤, 𝑤(𝑖, 𝑘)) in GΓ between 𝑤 ∈ 𝑆𝑖𝑛 and 𝑤(𝑖, 𝑘) ∈ 𝑆𝑘𝑛 , compute

�̄�(𝑤) − �̄�(𝑤(𝑖, 𝑘)) = 𝑐𝑤 𝑡𝑛 − 𝑐𝑤 (𝑖,𝑘) 𝑡𝑤 (𝑘) − (𝑐𝑤 − 𝑐𝑤 (𝑖,𝑘) )𝑡𝑤 ( 𝑗) ∈
〈
𝑡𝑤 (𝑖) − 𝑡𝑤 (𝑘)

〉
.

Since 𝑤( 𝑗) ∉ {𝑤(𝑖), 𝑤(𝑘)}, it follows that 𝑐𝑤 = 𝑐𝑤 (𝑖,𝑘) .
If 𝑆𝑖𝑛 � 𝑆𝑘𝑛 is connected, and equality holds on every edge, it follows that 𝑐𝑤 = 𝑐𝑣 for all 𝑤, 𝑣 ∈ 𝑆𝑖𝑛.
Now we will prove that the induced subgraph of GΓ with vertex set 𝑆𝑖𝑛 � 𝑆𝑘𝑛 is connected. Since Γ is

cliqued, (𝑖, 𝑘) ∈ 𝐸 (Γ). In particular, if 𝑤 ∈ 𝑆𝑖𝑛, then w is connected in GΓ directly to 𝑤(𝑖, 𝑘) in 𝑆𝑘𝑛 .
Let {𝑟, 𝑠} ⊂ [𝑛] \{𝑖}. We prove in three cases that for all 𝑟, 𝑠 ≠ 𝑖, the permutation 𝑤 ∈ 𝑆𝑖𝑛 is connected

to 𝑤(𝑟, 𝑠) ∈ 𝑆𝑖𝑛 within the induced subgraph of GΓ with vertex set 𝑆𝑖𝑛 � 𝑆𝑘𝑛 . It will follow by symmetry
(replace i with k) and that the induced subgraph of GΓ with vertex set 𝑆𝑖𝑛 � 𝑆𝑘𝑛 is connected. The three
cases are (i) there exists a simple path from r to s in Γ that does not visit the vertex i, (ii) simple paths
from r to s in Γ must visit i, but need not visit k, and (iii) simple paths from r to s must visit the vertex i
and the vertex k.
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(i) If there exists a path (𝑝0, ..., 𝑝ℓ) in Γ − 𝑖 from 𝑟 = 𝑝0 to 𝑠 = 𝑝ℓ , then w is connected to 𝑤(𝑟, 𝑠) via
only elements in 𝑆𝑖𝑛 since

𝑤(𝑟, 𝑠) = (𝑝0, 𝑝1) · · · (𝑝ℓ−1, 𝑝ℓ) · · · (𝑝0, 𝑝1).

We will use this path computation implicitly in (ii) and (iii).
(ii) If there exists a path (𝑟, ..., 𝑖, ..., 𝑠) from r to s in Γ containing i but not k, then r, i and s are in the

same connected component in Γ − 𝑘 . Consider

𝑤(𝑟, 𝑠) = 𝑤(𝑖, 𝑘) (𝑖, 𝑟) (𝑖, 𝑠) (𝑖, 𝑟) (𝑖, 𝑘).

This sequence of transpositions gives a path in 𝑆𝑖𝑛�𝑆𝑘𝑛 from w to 𝑤(𝑟, 𝑠). Below is a diagram that shows
how each right multiplication moves between 𝑆𝑖𝑛 and 𝑆𝑘𝑛:

𝑆𝑖𝑛 𝑆𝑘𝑛 𝑆𝑖𝑛
(𝑖, 𝑘)

(𝑖, 𝑟) (𝑖, 𝑠) (𝑖, 𝑟)

(𝑖, 𝑘)

(iii) If both i and k must be in a simple path from r to s, it suffices to assume this path takes the form
(𝑟, ..., 𝑖, 𝑘, ..., 𝑠). In particular, the first piece (𝑟, ..., 𝑖) is a path in Γ − 𝑘 and the second piece (𝑘, ..., 𝑠)
is a path in Γ − 𝑖. Consider

𝑤(𝑟, 𝑠) = 𝑤(𝑖, 𝑘) (𝑟, 𝑗) (𝑖, 𝑘) ( 𝑗 , 𝑘) (𝑘, 𝑠) ( 𝑗 , 𝑘) (𝑖, 𝑘) (𝑟, 𝑗) (𝑖, 𝑘).

This sequence of transpositions gives a path from w to 𝑤(𝑟, 𝑠) in 𝑆𝑖𝑛 � 𝑆𝑘𝑛 . Below is a diagram detailing
how each right multiplication moves between 𝑆𝑖𝑛 and 𝑆𝑘𝑛:

𝑆𝑖𝑛 𝑆𝑘𝑛 𝑆𝑖𝑛 𝑆𝑘𝑛 𝑆𝑖𝑛
(𝑖, 𝑘)

(𝑟, 𝑗)

(𝑖, 𝑘)

( 𝑗 , 𝑘) (𝑘, 𝑠) ( 𝑗 , 𝑘)

(𝑖, 𝑘)

(𝑟, 𝑗)

(𝑖, 𝑘)

So subgraph with vertices 𝑆𝑖𝑛 � 𝑆𝑘𝑛 is connected; our earlier assumption is verified and we have the
claim. �

7. Proof of the linear spanning theorem

This section shows that the collection FΓ from Equation 5.1 (below Lemma 5.3) is a C-spanning set
of M1

Γ. In other words, we prove CFΓ = M1
Γ. First, we require a lemma on the compatibility of these

splines on 𝑆𝑛 with splines on 𝑆𝑛−1.

Lemma 7.1. Let Γ on [𝑛] be cliqued and naturally labeled. Let F (𝑛)Γ � { �̄� |𝑆𝑛−1 | �̄� ∈ FΓ, �̄�(𝑤) ∈
C[𝑡1, . . . , 𝑡𝑛−1] for all 𝑤 ∈ 𝑆𝑛−1}. Then

CF (𝑛)Γ = CFΓ−𝑛.

Proof. First, note that the Cayley graph GΓ−𝑛 is equal to the induced subgraph of GΓ with vertex set
𝑆𝑛−1. In particular, each element of F (𝑛)Γ is in fact a spline in MΓ−𝑛

By Lemma 5.5(4), for each cut vertex j in Γ and G the connected component of Γ − 𝑗 that contains
n, we may remove the splines {�̄� 𝑗𝐺,𝑘 |𝑆𝑛−1 | 𝑘 ∈ [𝑛]} from F (𝑛)Γ without changing the C-span. Similarly,
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by Lemma 5.5(4), for each cut vertex 𝑗 ≠ 𝑛− 1 of Γ− 𝑛 and connected component G of (Γ− 𝑛) − 𝑗 that
contains 𝑛 − 1, we may remove the splines {�̄� 𝑗𝐺,𝑘 | 𝑘 ∈ [𝑛]} from FΓ−𝑛.

Let �̄� ∈ FΓ such that �̄� |𝑆𝑛−1 is a nonzero element of F (𝑛)Γ . This means that �̄� ≠ 𝑡𝑛 and �̄� ≠ 𝑥𝑛.
Additionally, by the definitions, if �̄� = 𝑓 𝑠𝐴, we must have 𝑛 ∉ 𝐴 (otherwise, �̄� ≡ 0) and 𝑠 ≠ (𝑛−1, 𝑛), and
if �̄� = �̄�

𝑗
𝑖,𝑘 , then 𝑘 ≠ 𝑛. So we have a combinatorial description for the elements of F (𝑛)Γ . In particular,

as collections of functions from 𝑆𝑛−1 to C[𝑡•], we wish to show that the following two sets have the
same C-span:

F (𝑛)Γ = T𝑛−1 ∪ X𝑛−1 ∪

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ 𝑓 𝑠𝐴

��������
𝑠 cut edge of Γ,
|𝐴| = |𝐺𝑠 |

𝑠 ≠ (𝑛 − 1, 𝑛),
𝑛 ∉ 𝐴

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ∪
⎧⎪⎪⎨⎪⎪⎩ �̄�

𝑗
𝐺,𝑘

������ 𝑗 	 Γ,
𝑛 ∉ 𝐺,

𝑘 ∈ [𝑛 − 1]

⎫⎪⎪⎬⎪⎪⎭
and

FΓ−𝑛 = T𝑛−1 ∪ X𝑛−1 ∪

{
𝑓 𝑠𝐴

����𝑠 cut edge of Γ − 𝑛,
|𝐴| = |𝐺𝑠 |

}
∪

⎧⎪⎪⎨⎪⎪⎩ �̄�
𝑗
𝐺,𝑘

������ 𝑗 	 Γ − 𝑛,
𝑛 − 1 ∉ 𝐺,
𝑘 ∈ [𝑛 − 1]

⎫⎪⎪⎬⎪⎪⎭,

where for the cut edges 𝑠 = (𝑖 < 𝑗) of either Γ or Γ − 𝑛, the component 𝐺𝑠 is the connected component
of the graph with edge s removed that contains i.

The equalities for 𝑡𝑖 ∈ T𝑛−1 and 𝑥𝑖 ∈ X𝑛−1 are obvious, so we focus on the latter two subsets. The
remainder of the proof is in three cases: whether the cliqued and naturally labeled graph Γ is type A,
B or C. Each argument amounts to matching the cut vertices and cut edges of Γ to those in Γ − 𝑛 (and
vice versa). Each match gives pairs of splines in the third and fourth subsets above that are in fact equal
to each other. Then we ensure that wherever these graph objects do not align, the ‘unmatched’ splines
in each set are contained within the other’s C-span.

Type A: First, we compare the cut edges of Γ and Γ − 𝑛 and ensure that each spline in the third
subsets of both F (𝑛)Γ and FΓ−𝑛 are contained within the span of the other set. If Γ is type A, then every
cut edge of Γ − 𝑛 is also a cut edge of Γ. Every cut edge of Γ that is not (𝑛 − 1, 𝑛) is also a cut edge of
Γ−𝑛. Finally, if 𝑠 = (𝑖 < 𝑗) ≠ (𝑛−1, 𝑛) is a cut edge, then the connected component of ([𝑛]𝐸 (Γ) \ {𝑠})
that contains i and the connected component of ([𝑛− 1], 𝐸 (Γ − 𝑛) \ {𝑠}) that contains i are equal, since
these are the components with lower-valued vertices and thus are unaffected by removing n. So the third
subsets in F (𝑛)Γ and FΓ−𝑛 above are actually equal.

Second, we compare the cut vertices and associated connected components of Γ and Γ−𝑛 and ensure
that each spline in the fourth subsets of both F (𝑛)Γ and FΓ−𝑛 are contained within the span of the other
set. There are two cases: 𝔠Γ (𝑛 − 1) = 1 and 𝔠Γ (𝑛 − 1) > 1. If 𝔠Γ (𝑛 − 1) > 1, every cut vertex in Γ is
a cut vertex in Γ − 𝑛, and vice versa. If 𝑗 	 Γ − 𝑛 where 𝑗 ≠ 𝑛 − 1, if G is the component of Γ − 𝑗
that contains n then 𝐺 − 𝑛 is the component of (Γ − 𝑛) − 𝑗 that contains 𝑛 − 1. If 𝑗 = 𝑛 − 1, then FΓ−𝑛

contains every �̄�𝑛−1
𝐺,𝑘 and F (𝑛)Γ contains every �̄�𝑛−1

𝐺,𝑘 such that 𝑛 ∉ 𝐺. Either way, these two collections of
splines are identical, so the fourth subsets in F (𝑛)Γ and FΓ−𝑛 are in fact equal.

If 𝔠Γ (𝑛−1) = 1, then 𝑛−1 is not a cut vertex of Γ−𝑛, soFΓ−𝑛 does not contain the spline �̄�𝑛−1
𝐺,𝑘 ∈ F

(𝑛)
Γ

where 𝑉 (𝐺) = [𝑛 − 2]. However, in this case, for all 𝑤 ∈ 𝑆𝑛−1, we compute

�̄�𝑛−1
𝐺,𝑘 (𝑤) =

{
𝑡𝑘 − 𝑡𝑤 (𝑛−1) 𝑤−1 (𝑘) ∈ [𝑛 − 2]
0 𝑤−1 (𝑘) = 𝑛 − 1.

= 𝑡𝑘 (𝑤) − 𝑥𝑛−1 (𝑤) ∈ CFΓ−𝑛.

Every other cut vertex 𝑗 	 Γ− 𝑛 and connected component G of (Γ− 𝑛) − 𝑗 (that does not contain 𝑛−1)
is also a cut vertex of Γ and connected component of Γ− 𝑗 (that does not contain n), so each spline of the
form �̄�

𝑗
𝐺,𝑘 inFΓ−𝑛 has a direct counterpart inF (𝑛)Γ . ThusCF (𝑛)Γ = CFΓ−𝑛, and the claim holds in type A.
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Type B: First, we compare the cut vertices and associated connected components to match elements
in the fourth subsets. If Γ is type B, then every cut vertex in Γ − 𝑛 is also a cut vertex of Γ, and for all
𝑗 	 Γ, the connected component of Γ − 𝑗 that contains n also contains 𝑛 − 1, so the fourth subsets in
F (𝑛)Γ and FΓ−𝑛 are equal.

Now compare the cut edges to match elements in the third subsets. Every cut edge in Γ is a cut edge
in Γ − 𝑛; however, the edge (𝑛 − 2, 𝑛 − 1) is a cut edge in Γ − 𝑛 but not in Γ. For this cut edge, we let
𝐺 (𝑛−2,𝑛−1) be the subgraph with vertex set [𝑛 − 2]. So FΓ−𝑛 has a subset

{
𝑓 (𝑛−2,𝑛−1)
[𝑛−1]\𝑘 | 𝑘 ∈ [𝑛 − 1]

}
of

splines that is not a subset of F (𝑛)Γ . We will show that these splines are contained within the span CF (𝑛)Γ .
By Lemma 5.7 applied to the leaf (𝑛−2, 𝑛−1) in Γ−𝑛, each spline in

{
𝑓 (𝑛−2,𝑛−1)
[𝑛−1]\𝑘 ∈| 𝑘 ∈ [𝑛 − 1]

}
⊂ FΓ−𝑛

is a linear combination of the remaining splines in FΓ−𝑛. Since the fourth subsets are equal and every
other cut edge of Γ − 𝑛 is a cut edge of Γ, each of these remaining splines is also in F (𝑛)Γ . So the one
subset

{
𝑓 (𝑛−2,𝑛−1)
[𝑛−1]\𝑘 | 𝑘 ∈ [𝑛 − 1]

}
of unmatched splines in FΓ−𝑛 is contained within the span CF (𝑛)Γ ,

and so CF (𝑛)Γ = CFΓ−𝑛.
Type C: If Γ is type C, then every cut vertex or edge in Γ − 𝑛 is also a cut vertex or edge in Γ, and

vice versa. Additionally, for any 𝑗 	 Γ, the connected component of Γ − 𝑗 containing n also contains
𝑛 − 1. So all indexing data is the same, and so F (𝑛)Γ = FΓ−𝑛. Thus, the claim holds in Type C. �

The proof of Theorem 7.2 below assumes a natural label, so we will use the indexing conventions
for FΓ described in Subsection 6.1. In particular, we will heavily use the weakly dominant (𝑖, 𝑗) > Γ
and strongly dominant (𝑖, 𝑗) � Γ pairs in Definition 6.5. Now we are able to prove that CFΓ = M1

Γ
and compute a recursive dimension formula.
Theorem 7.2. Let Γ be a connected graph. The splines FΓ from Equation (5.1) form a C-spanning set
of M1

Γ. Furthermore, if Γ is cliqued and naturally labeled, then

dimC(M1
Γ) = 1 + dimC (M1

Γ−𝑛) +

⎧⎪⎪⎨⎪⎪⎩
(
𝑛 − 1

1

)
if Γ is type A

1 if Γ is type B/C

+
∑
(𝑖, 𝑗)�Γ

(
𝑛 − 1���Γ 𝑗𝑖 ��� − 1

)
+ |{(𝑖, 𝑗) > Γ}|.

Proof. It suffices to assume for both parts of the claim that Γ is cliqued and naturally labeled. Recall the
decomposition 𝑆𝑛 = 𝑆1

𝑛 � · · · � 𝑆𝑛𝑛, where 𝑆𝑖𝑛 � {𝑤 ∈ 𝑆𝑛 | 𝑤(𝑖) = 𝑛}. Note 𝑆𝑛𝑛 = 𝑆𝑛−1. Let �̄� ∈M1
Γ.

We will prove that �̄� ∈ CFΓ and proceed by induction on n. The base case is 𝑛 = 3, where MΓ = CFΓ

is easily verified by hand (there are only two connected graphs on three vertices) and either way follows
from [4].

In each of the three steps to the proof given below, we use elements of FΓ to replace �̄� with a spline
supported on a strictly smaller subset of 𝑆𝑛. To track dimC(M1

Γ), we will create a set B of linearly
independent elements of M1

Γ.(
Step 1: 𝑆𝑛𝑛

)
This step applies the induction assumption to replace �̄� with a spline supported on

𝑆1
𝑛�· · ·�𝑆𝑛−1

𝑛 . If 𝑤, 𝑣 ∈ 𝑆𝑛𝑛 = 𝑆𝑛−1 with 𝑤−1𝑣 = (𝑖, 𝑗) ∈ 𝐸 (Γ−𝑛), then �̄�(𝑤) − �̄�(𝑣) = 𝑐
(
𝑡𝑤 (𝑖) − 𝑡𝑤 ( 𝑗)

)
,

where 𝑐 ∈ C. Since 𝑤(𝑖) ≠ 𝑛 and 𝑤( 𝑗) ≠ 𝑛, the coefficient [𝑡𝑛] �̄�(𝑤) of 𝑡𝑛 in �̄�(𝑤) must be equal
to [𝑡𝑛] �̄�(𝑣). Since Γ − 𝑛 is connected, the induced subgraph of GΓ with vertex set 𝑆𝑛𝑛 is connected.
Moreover, the coefficient of 𝑡𝑛 is the same for all �̄�(𝑢), where 𝑢 ∈ 𝑆𝑛𝑛. Let 𝑐𝑛 � [𝑡𝑛] �̄�(𝑢) for 𝑢 ∈ 𝑆𝑛𝑛.
Then [𝑡𝑛] ( �̄� − 𝑐𝑛𝑡𝑛)(𝑢) = 0 for all 𝑢 ∈ 𝑆𝑛−1.

So we replace �̄� with �̄� − 𝑐𝑛𝑡𝑛, and now �̄�(𝑢) ∈ C[𝑡1, . . . , 𝑡𝑛−1] when 𝑢 ∈ 𝑆𝑛𝑛. Let B � {𝑡𝑛}. We will
add linearly independent elements to B throughout the proof and keep track of |B |.

By Lemma 7.1 and the induction hypothesis, M1
Γ−𝑛 = CFΓ−𝑛 = CF (𝑛)Γ . So we may assume that

�̄� |𝑆𝑛−1 ≡ 0. Add to B the dimC(M1
Γ−𝑛)-many splines required. Note these splines are independent once
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restricted to 𝑆𝑛𝑛 = 𝑆𝑛−1, so any nontrivial linear combination will have elements of 𝑆𝑛𝑛 in its support. At
this point, |B | = dimC (M1

Γ−𝑛) + 1, and �̄� ≡ 0 on 𝑆𝑛𝑛.(
Step 2: 𝑆𝑛−1

𝑛

)
Next, we use elements ofFΓ to replace �̄� with a spline that evaluates to 0 on 𝑆𝑛−1

𝑛 �𝑆𝑛𝑛.
The process is slightly different for graphs of type A and types 𝐵/𝐶.

Since Γ is cliqued and naturally labeled, (𝑛 − 1, 𝑛) ∈ 𝐸 (Γ). Thus, for all 𝑤 ∈ 𝑆𝑛−1
𝑛 , there is an edge

(𝑤, 𝑤(𝑛 − 1, 𝑛)) ∈ 𝐸 (GΓ) where 𝑤(𝑛 − 1, 𝑛) ∈ 𝑆𝑛𝑛. Each of these edges are labeled
〈
𝑡𝑤 (𝑛−1) − 𝑡𝑤 (𝑛)

〉
=〈

𝑡𝑛 − 𝑡𝑤 (𝑛)
〉
. Since �̄� ≡ 0 on 𝑆𝑛𝑛, we have that �̄�(𝑤) = 𝑐𝑤

(
𝑡𝑛 − 𝑡𝑤 (𝑛)

)
for some 𝑐𝑤 ∈ C for all 𝑤 ∈ 𝑆𝑛−1

𝑛 .
Type A: By Lemma 6.13, if 𝑤, 𝑣 ∈ 𝑆𝑛−1

𝑛 and 𝑤(𝑛) = 𝑣(𝑛), then 𝑐𝑤 = 𝑐𝑣 . Let 𝑐𝑘 � 𝑐𝑤 when
𝑤(𝑛) = 𝑘 . If 𝑤(𝑛 − 1) = 𝑛 and 𝑤(𝑛) = 𝑘 < 𝑛, then by definition, 𝑓 (𝑛−1,𝑛)

[𝑛]\{𝑘 }
(𝑤) = 𝑡𝑛 − 𝑡𝑤 (𝑛) . However, if

𝑤(𝑛) = 𝑛, then 𝑓 (𝑛−1,𝑛)
[𝑛]\{𝑘 }

(𝑤) = 0 whenever 𝑘 ≠ 𝑛. It follows that

�̄� −
𝑛−1∑
𝑖=1

𝑐𝑘 𝑓 (𝑛−1,𝑛)
[𝑛]\{𝑘 }

≡ 0

on 𝑆𝑛−1
𝑛 � 𝑆𝑛𝑛. Add the 𝑛− 1 coset splines 𝑓 (𝑛−1,𝑛)

[𝑛]\{𝑘 }
used above to B, which are linearly independent from

the splines already in B since they are not supported on 𝑆𝑛𝑛 and have disjoint support on 𝑆𝑛−1
𝑛 . In type

A, at this point, |B | = 1 + dimC(M1
Γ−𝑛) +

(
𝑛 − 1

1

)
, and B is linearly independent, even if we restrict the

splines in B to 𝑆𝑛−1
𝑛 � 𝑆𝑛𝑛.

Type B/C: We proceed in the same format as type A. By Lemma 6.13, if 𝑤, 𝑣 ∈ 𝑆𝑛−1
𝑛 , then 𝑐𝑤 = 𝑐𝑣 .

Write 𝑐 � 𝑐𝑤 for 𝑤 ∈ 𝑆𝑛−1
𝑛 . Then

�̄� − 𝑐(𝑡𝑛 − 𝑥𝑛) ≡ 0

on 𝑆𝑛−1
𝑛 � 𝑆𝑛𝑛. Add the single linearly independent spline 𝑡𝑛 − 𝑥𝑛 to B. In type B/C at this point,

|B | = dimC(M1
Γ−𝑛) + 2, and B is linearly independent, even if we restrict each spline to 𝑆𝑛−1

𝑛 � 𝑆𝑛𝑛.(
Step 3: 𝑆𝑖𝑛

)
Now given a spline �̄� such that �̄� ≡ 0 on 𝑆𝑖+1𝑛 � · · · 𝑆

𝑛
𝑛, we show how to replace it with a

spline that vanishes on 𝑆𝑖𝑛� · · · 𝑆
𝑛
𝑛. This step is repeated until �̄� vanishes on all of 𝑆𝑛. Assume that �̄� ≡ 0

on 𝑆𝑖+1𝑛 � · · · � 𝑆𝑛𝑛. Additionally, we assume that the splines in B are linearly independent; moreover,
the set remains linearly independent once each spline is restricted to 𝑆𝑖+1𝑛 � · · · � 𝑆𝑛𝑛. In particular, any
nontrivial linear combination of splines in B is nonzero on 𝑆𝑖+1𝑛 � · · · � 𝑆𝑛𝑛 (and therefore 𝑆𝑛). The
remainder of the proof is type A/B/C-independent but still requires three cases.

First, a formulation of �̄�(𝑤) for 𝑤 ∈ 𝑆𝑖𝑛 will be used in each case. Since Γ is naturally labeled and
𝑖 ≠ 𝑛, there exists 𝑗 ∈ [𝑛] such that 𝑖 < 𝑗 and (𝑖, 𝑗) ∈ 𝐸 (Γ), so (𝑤, 𝑤(𝑖, 𝑗)) ∈ 𝐸 (GΓ). If 𝑤 ∈ 𝑆𝑖𝑛, then
𝑤(𝑖, 𝑗) ∈ 𝑆

𝑗
𝑛, so

�̄�(𝑤) = 𝑐𝑤 (𝑡𝑤 (𝑖) − 𝑡𝑤 ( 𝑗) ) = 𝑐𝑤 (𝑡𝑛 − 𝑡𝑤 ( 𝑗) )

for some 𝑐𝑤 ∈ C.
Case 1: If i is not j-dominant for any 𝑗 ∈ [𝑛], since Γ is naturally labeled, there exist (at least) two

vertices 𝑗 , 𝑘 where 𝑖 < 𝑗 < 𝑘 and {(𝑖, 𝑗), (𝑖, 𝑘)} ⊂ 𝐸 (Γ). It follows that

�̄�(𝑤) = 𝑐𝑤
(
𝑡𝑛 − 𝑡𝑤 ( 𝑗)

)
= 𝑐′𝑤

(
𝑡𝑛 − 𝑡𝑤 (𝑘)

)
.

This is not possible for 𝑐𝑤 , 𝑐′𝑤 ∈ C unless 𝑐𝑤 = 𝑐′𝑤 = 0, and so �̄�(𝑤) = 0. In short, �̄� ≡ 0 on 𝑆𝑖𝑛, and
we do not need any splines from FΓ to achieve this.

Case 2: If there exists 𝑗 ∈ [𝑛] where (𝑖, 𝑗) � Γ, then i is the maximal vertex in its connected
component of Γ − 𝑗 . Thus, the vertex j is the only element in the neighborhood 𝑁 (𝑖) of the vertex i that
is greater than i (so i is not k-dominant for any 𝑘 ≠ 𝑗), and (𝑖, 𝑗) is a cut edge of Γ. By Lemma 6.14, if
𝑣 ∈ 𝑤〈𝐸 (Γ) \ (𝑖, 𝑗)〉, then 𝑐𝑣 = 𝑐𝑤 .
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Recall that 𝑣 ∈ 𝑤〈𝐸 (Γ) \ (𝑖, 𝑗)〉 if and only if 𝑤(𝑉 (Γ 𝑗𝑖 )) = 𝑣(𝑉 (Γ 𝑗𝑖 )). Let

A �
{
𝐴 ⊂ [𝑛]

���|𝐴| = ���Γ 𝑗𝑖 ���, 𝑛 ∈ 𝐴
}
,

and write 𝑐𝐴 � 𝑐𝑤 if 𝑤(𝑉 (Γ 𝑗𝑖 )) = 𝐴. If 𝑤(𝑖) = 𝑛, then 𝑤−1 (𝑉 (Γ 𝑗𝑖 )) = 𝐴 ∈ A, and we compute
𝑓
(𝑖, 𝑗)
𝐴 (𝑤) = 𝑡𝑛 − 𝑡𝑤 ( 𝑗) . Also, since Γ is naturally labeled, if 𝑘 > 𝑖, then 𝑘 ∉ Γ 𝑗𝑖 . In particular, if 𝑘 > 𝑖

and 𝑤(𝑘) = 𝑛, then 𝑤−1 (𝑉 (Γ 𝑗𝑖 )) ∉ A, and so 𝑓
(𝑖, 𝑗)
𝐴 (𝑤) = 0 for all 𝑤 ∈ 𝑆𝑖+1𝑛 � · · · � 𝑠𝑛𝑛. It follows that

�̄� −
∑
𝐴∈A

𝑐𝐴 𝑓
(𝑖, 𝑗)
𝐴 ≡ 0

on 𝑆𝑖𝑛 � · · · � 𝑆𝑛𝑛. We replace �̄� with this spline. The coset splines 𝑓
(𝑖, 𝑗)
𝐴 for 𝐴 ∈ A have disjoint

support among themselves and are only supported on 𝑆𝑟𝑛 for 𝑟 ≤ 𝑖, so { 𝑓 (𝑖, 𝑗)𝐴 | 𝐴 ∈ A} ∪ B is linearly
independent, even when each spline is restricted to 𝑆𝑖𝑛 � · · · � 𝑆𝑛𝑛. Each time we use Case 2 (i.e., for

each (𝑖, 𝑗) � Γ), we add |A| =
(

𝑛 − 1���Γ 𝑗𝑖 ��� − 1

)
-many splines to B.

Case 3: If there exists 𝑗 ∈ [𝑛] where (𝑖, 𝑗) > Γ, the vertex j is the only element in the neighborhood
𝑁 (𝑖) of the vertex i that is greater than i (so i is not k-dominant for any 𝑘 ≠ 𝑗), but (𝑖, 𝑗) is not a cut
edge. By Lemma 6.15, if 𝑤, 𝑣 ∈ 𝑆𝑖𝑛, then 𝑐𝑤 = 𝑐𝑣 � 𝑐. Finally, we confirm that

�̄� − 𝑐 �̄�
𝑗
𝑖,𝑛 ≡ 0

on 𝑆𝑖𝑛 � · · · � 𝑆𝑛𝑛. We replace �̄� with this spline. The single spline �̄�
𝑗
𝑖,𝑛 is supported on 𝑆𝑟𝑛 for 𝑟 ≤ 𝑖, and

so {�̄� 𝑗𝑖,𝑛} ∪ B is linearly independent, even when restricted to 𝑆𝑖𝑛 � · · · � 𝑆𝑛𝑛. Each time Case 3 is used
(i.e., for each (𝑖, 𝑗) > Γ), we add 1 spline to B.

When 𝑖 = 1 is reached, we have used FΓ to replace �̄� with a spline �̄� ≡ 0 on all of 𝑆𝑛. Thus,
�̄� ∈ CB, and the set B ⊆ FΓ is linearly independent (the restriction is now to the whole symmetric
group 𝑆1

𝑛 � · · · � 𝑆𝑛𝑛 = 𝑆𝑛), and |B | = dimC(M1
Γ) is as claimed. �

8. The linear dimension formula

This section constructs a combinatorial invariant of simple graphs that is also the C-dimension of the
associated linear splines.

Let Γ be a connected graph on at least three vertices. First, if 𝑗 	 Γ is a cut vertex, let 𝔠Γ ( 𝑗) + 1 be
the number of connected components in Γ − 𝑗 . This is a straightforward expansion of the definition we
gave for 𝔠Γ ( 𝑗) from naturally labeled graphs to all graphs. When Γ is fixed, we may drop the subscript
and write 𝔠( 𝑗).

Definition 8.1. Recall the construction of a block-cut tree in Definition 6.2. In this tree, every leaf is
a block of Γ. Let LBΓ be the set of blocks in Γ that are leaves in the block-cut tree. We call elements
of LBΓ leaf blocks of Γ. Let IBΓ be the set of blocks in Γ that are not leaves in the block-cut tree. We
call elements of IBΓ internal blocks of Γ. Note when Γ is 2-connected, LBΓ = ∅ and IBΓ = {Γ}; in
particular, when the block-cut tree of Γ is a single vertex (i.e., when Γ is 2-connected), we consider Γ
to be an internal block.

If a block B in Γ is size |𝐵 | = 2, that block must consist of two vertices in Γ connected by an
edge. Since blocks are maximal 2-connected subgraphs, this edge must be a cut edge. In particular,
blocks B in IBΓ of size |𝐵 | = 2 are in bijection with cut edges of Γ that are not leaf edges. Let
ICΓ � {(𝑖, 𝑗) ∈ 𝐸 (Γ) | 𝑉 (𝐵) = {𝑖, 𝑗} for some 𝐵 ∈ IBΓ}. The elements of ICΓ are internal cut edges
of Γ.
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Example 8.2. Consider the graph

7

6 11

4

12

9 10

1 2

3

5

8

with block-cut tree

𝐵1 4 𝐵2

𝐵3 1

𝐵4

𝐵5 2

𝐵6

𝐵7

This is the construction from the beginning of Example 6.4. The leaf blocks are

LBΓ = {𝐵1, 𝐵2, 𝐵4, 𝐵6, 𝐵7}.

The internal blocks are

IBΓ = {𝐵3, 𝐵5}.

Within those internal blocks, |𝐵5 | = 2 and 𝐵5 corresponds to the cut edge (1, 2). So

ICΓ = {(1, 2)},

and (1, 2) is the only cut edge in Γ that is not a leaf edge.

For a connected graph Γ on n vertices, we define

𝐷Γ � 2𝑛 − 1 −
∑
𝑗	Γ

𝔠Γ ( 𝑗) + 𝑛(|LBΓ | + |{𝐵 ∈ IBΓ | |𝐵 | > 2}| − 1) +
∑
𝑠∈ICΓ

(
𝑛

|𝐺𝑠 |

)
, (8.1)

where 𝐺𝑠 is defined as in Section 5 (i.e., 𝐺𝑠 is one of the two connected components of the graph
([𝑛], 𝐸 (Γ)\{𝑠})). This formula is unaffected by a choice of component, as the sizes of the two connected

components in ([𝑛], 𝐸 (Γ) \ {𝑠}) sum to n and
(

𝑛

|𝐺𝑠 |

)
=

(
𝑛

𝑛 − |𝐺𝑠 |

)
.

Remark 8.3. The invariant 𝐷Γ might be more concisely written as

𝐷Γ = 𝑛 − 1 −
∑
𝑗	Γ

𝔠Γ ( 𝑗) + 𝑛( |LBΓ | + |{𝐵 ∈ IBΓ | |𝐵 | > 2}|) +
∑
𝑠∈ICΓ

(
𝑛

|𝐺𝑠 |

)
,

but the format in Equation 8.1 is more conducive to the proofs that follow.
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Example 8.4. Consider the graph Γ from Example 8.2 above. The three cut vertices are 4, 1 and 2.
Each of those cut vertices separate Γ in to three connected components, so 𝔠Γ (4) = 𝔠Γ (1) = 𝔠Γ (2) = 2.
The block 𝐵3 is the only block in IBΓ with more than two vertices, so |{𝐵 ∈ IBΓ | |𝐵 | > 2}| = 1.
The only internal cut edge is (1, 2), and this cut edge separates Γ in to a component of size 8 and a
component of size 4. We choose the component with vertex set {1, 4, 6, 7, 9, 10, 11, 12}, but note that(
12
8

)
=

(
12

12 − 8

)
=

(
12
4

)
. We compute that

𝐷Γ = 2 · 12 − 1 − (2 + 2 + 2) + 12(5 + 1 − 1) +
(
12
8

)
= 572.

Since 𝐷Γ is defined using only the block-cut tree, cut edges and cut vertices of Γ, it is an invariant
of the isomorphism class of Γ. We note that if Γ is 2-connected, it follows that 𝐷Γ = 2𝑛 − 1.

Lemma 8.5 below gives a formulation of 𝐷Γ specific to naturally labeled graphs. Its proof constructs
important bijections that will be used later in the proofs of Proposition 8.9 and Corollary 9.3.

Lemma 8.5. Let Γ be a naturally labeled graph. Then

𝐷Γ = 2𝑛 − 1 +
∑
(𝑖, 𝑗)>Γ

𝑛 +
∑
(𝑖, 𝑗)�Γ

(
𝑛���Γ 𝑗𝑖 ���

)
−
∑
𝑗	Γ

𝔠Γ ( 𝑗).

Proof. We compare the right-hand side of the formula above with (8.1). The clear cancellation between
the two sides of the claimed equality is 2𝑛 − 1 −

∑
𝑗	Γ

𝔠Γ ( 𝑗). Thus, the claim will follow if

𝑛( |LBΓ | + |{𝐵 ∈ IBΓ | |𝐵 | > 2}| − 1) +
∑
𝑠∈ICΓ

(
𝑛

|𝐺𝑠 |

)
=

∑
(𝑖, 𝑗)>Γ

𝑛 +
∑
(𝑖, 𝑗)�Γ

(
𝑛���Γ 𝑗𝑖 ���

)
. (*)

Since Γ is naturally labeled, the block containing n is a leaf in the block-cut tree. So |LBΓ | − 1 can be
interpreted as the number of leaf blocks that do not contain n.

In the remainder of the proof, we pair blocks in LBΓ and IBΓ that contribute on the left side of
the claimed equality (*) with dominant pairs (𝑖, 𝑗) that contribute to the right side, in order to identify
cancellations. The pairings that we will prove and use are as follows:

1. Leaf blocks 𝐵 ∈ LBΓ with |𝐵 | = 2 and 𝑛 ∉ 𝐵 contribute n to the left side of (*) and are in bijection

with strongly dominant pairs (𝑖, 𝑗) where
���Γ 𝑗𝑖 ��� = 1, which contribute

(
𝑛

1

)
= 𝑛 to the right side.

2. The set of internal cut edges ICΓ is equal to the set of strongly dominant pairs (𝑖, 𝑗) such that
���Γ 𝑗𝑖 ��� > 1,

and they both contribute
(

𝑛

|𝐺𝑠 |

)
=

(
𝑛���Γ 𝑗𝑖 ���

)
.

3. Leaf blocks and internal blocks of size at least three (i.e., all blocks of size at least 3) that do not
contain the vertex n contribute n to the left side of the claimed equality and are in bijection with
weakly dominant pairs (𝑖, 𝑗), each of which contributes n to the right side.

This list also serves as an outline of the proof that follows.
(1) Let B be a leaf block of size 2 with vertex set 𝑉 (𝐵) = {𝑖, 𝑗} where 𝑖 < 𝑗 . Then the single edge

(𝑖, 𝑗) within B is a cut edge of Γ, and since B is a leaf block, that cut edge (𝑖, 𝑗) must separate a single
vertex. If this block does not contain n (so 𝑗 ≠ 𝑛), then since Γ is naturally labeled, the cut edge must
be a dominant pair and that separated vertex must be i. So (𝑖, 𝑗) � Γ and 𝑉 (Γ 𝑗𝑖 ) = {𝑖}, and

���Γ 𝑗𝑖 ��� = 1.

However, if (𝑖, 𝑗) � Γ and
���Γ 𝑗𝑖 ��� = 1, then i must be a leaf, and the subgraph ({𝑖, 𝑗}, {(𝑖, 𝑗)}) is a block
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in Γ that does not contain n. In particular, we have shown

{𝐵 ∈ LBΓ | |𝐵 | = 2, 𝑛 ∉ 𝐵} = {𝐵 ∈ LBΓ | 𝑉 (𝐵) = {𝑖, 𝑗}, (𝑖, 𝑗) � Γ}.

So the leaf blocks B in Γ of size 2 are in natural bijection with the dominant pairs (𝑖, 𝑗) � Γ where���Γ 𝑗𝑖 ��� = 1. Formally, |{𝐵 ∈ LBΓ | |𝐵 | = 2, 𝑛 ∉ 𝐵}| =
���{(𝑖, 𝑗) � Γ |

���Γ 𝑗𝑖 ��� = 1
}���. Thus,

|LBΓ | + |{𝐵 ∈ IBΓ | |𝐵 | > 2}| − 1 = |{𝐵 ∈ LBΓ | |𝐵 | = 2}| + |{𝐵 ∈ LBΓ | |𝐵 | > 2}|
+ |{𝐵 ∈ IBΓ | |𝐵 | > 2}| − 1

=
���{(𝑖, 𝑗) � Γ |

���Γ 𝑗𝑖 ��� = 1
}��� + |{𝐵 ∈ LBΓ | |𝐵 | > 2, 𝑛 ∉ 𝐵}|

+ |{𝐵 ∈ IBΓ | |𝐵 | > 2}|

=
���{(𝑖, 𝑗) � Γ |

���Γ 𝑗𝑖 ��� = 1
}���

+ |{𝐵 | 𝐵 a block in Γ, |𝐵 | > 2, 𝑛 ∉ 𝐵}|.

We cancel 𝑛
���{(𝑖, 𝑗) � Γ |

���Γ 𝑗𝑖 ��� = 1
}��� from the left side and

∑
(𝑖, 𝑗)�Γ���Γ 𝑗

𝑖

���=1

(
𝑛

1

)
from the right side of (*), and it

remains to prove that

𝑛|{𝐵 | 𝐵 a block in Γ, |𝐵 | > 2, 𝑛 ∉ 𝐵}| +
∑
𝑠∈ICΓ

(
𝑛

|𝐺𝑠 |

)
=

∑
(𝑖, 𝑗)>Γ

𝑛 +
∑
(𝑖, 𝑗)�Γ���Γ 𝑗

𝑖

���>1

(
𝑛���Γ 𝑗𝑖 ���

)
. (**)

(2) Now if 𝑠 = (𝑖, 𝑗) ∈ ICΓ, then s is a cut edge, and since Γ is naturally labeled, 𝑛 ∉ {𝑖, 𝑗}. So if
(𝑖, 𝑗) ∈ ICΓ, then (𝑖, 𝑗) � Γ and

���Γ 𝑗𝑖 ��� > 1; otherwise, i is a leaf and the block B where 𝑉 (𝐵) = {𝑖, 𝑗} is

not an internal block. However, if (𝑖, 𝑗) � Γ and
���Γ 𝑗𝑖 ��� > 1, then i cannot be a leaf, (𝑖, 𝑗)must be a cut edge

and the block B where 𝑉 (𝐵) = {𝑖, 𝑗} is not a leaf in the block-cut tree. So ICΓ =
{
(𝑖, 𝑗) � Γ |

���Γ 𝑗𝑖 ��� > 1
}
.

In particular, ∑
𝑠∈ICΓ

(
𝑛

|𝐺𝑠 |

)
=

∑
(𝑖, 𝑗)�Γ���Γ 𝑗

𝑖

���>1

(
𝑛���Γ 𝑗𝑖 ���

)
.

After cancelling this value from both sides of (**), it remains to show that

𝑛|{𝐵 | 𝐵 a block in Γ, |𝐵 | > 2, 𝑛 ∉ 𝐵}| =
∑
(𝑖, 𝑗)>Γ

𝑛. (***)

(3) We argue that

|{𝐵 | 𝐵 a block in Γ, |𝐵 | > 2, 𝑛 ∉ 𝐵}| = |{(𝑖, 𝑗) > Γ}|.

The bijection is as follows. If B is a block in Γ that does not contain n, then there is a unique path from
B to the block 𝐵0 that contains n in the block-cut tree of Γ. The first edge in that path is from B to a cut
vertex of Γ that is contained within B. Let j be this cut vertex, and let i be the maximal vertex in B that
is not equal to j. Note that B is not connected to n in Γ − 𝑗 .

Since Γ is naturally labeled, (𝑖, 𝑗) is an edge and i must also be the maximal vertex in its connected
component of Γ − 𝑗 (every path from n to that component first passes through j, and i is the largest
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vertex in that component that is adjacent to j). Since |𝐵 | > 2, there is at least one other element of B in
the neighborhood of j, so (𝑖, 𝑗) is not a cut edge. In particular, (𝑖, 𝑗) > Γ.

However, if (𝑖, 𝑗) > Γ, let B be the block containing i. This block cannot contain n by the definition
of a natural label and must be of size at least 2 since (𝑖, 𝑗) is not a cut edge.

So we have a bijection, proving as a consequence (***), and the claim follows. �

The bijection between certain dominant pairs and blocks that we constructed in the proof of Lemma
8.5 above will be used again to compute a recursive formula for 𝐷Γ and provide a label-independent
formula for ch(LΓ)1 and ch(RΓ)1 in Corollary 9.3 below. Visually, when Γ is naturally labeled, we have
the following correspondences between blocks in Γ and dominant pairs.

Blocks 𝐵

{
|𝐵 | > 2
𝑛 ∉ 𝐵

} {
𝐵 ∈ LBΓ

|𝐵 | = 2, 𝑛 ∉ 𝐵

} {
𝐵 ∈ IBΓ

|𝐵 | = 2

}
3⏐5 3⏐5 3⏐5

Dominant
pairs(i, j) {(𝑖, 𝑗) > Γ}

{
(𝑖, 𝑗) � Γ���Γ 𝑗𝑖 ��� = 1

} {
(𝑖, 𝑗) � Γ���Γ 𝑗𝑖 ��� > 1

}

Example 8.6. Consider the naturally labeled graph Γ drawn below:

1

2 3

4

5

6 7

8 9

10

11

12

with block-cut tree

𝐵1 4 𝐵2

𝐵3 8

𝐵4

𝐵5 9

𝐵6

𝐵7

The blocks of size at least 2 that do not contain n correspond to weakly dominant pairs in the following
manner:

Blocks Pairs
𝐵2 on {2, 3, 4} (3, 4) > Γ
𝐵3 on {4, 5, 8} (5, 8) > Γ
𝐵4 on {6, 7, 8} (7, 8) > Γ
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The leaf blocks of size 2 that do not contain n correspond to strongly dominant pairs (𝑖, 𝑗) where
���Γ 𝑗𝑖 ��� = 1

in the following manner:
Blocks Pairs

𝐵1 on {1, 4} (1, 4) > Γ
𝐵6 on {9, 10} (9, 10) > Γ

Finally, the internal block 𝐵5 on {8, 9} (so of size 2) corresponds to the dominant pair (8, 9) � Γ.

Example 8.7. When Γ is naturally labeled, each sum appearing in the formula in Lemma 8.5 has the
following combinatorial interpretation:

◦ 𝑛 : Every vertex of Γ contributes 1 to the sum,
◦ 𝑛 − 1 −

∑
𝑗	Γ

𝔠Γ ( 𝑗) : Every vertex that is not the lower vertex in a dominant pair or the vertex n

contributes an additional 1 to the sum (recall that the lower vertices in a dominant pair determine the
pair uniquely).

◦ ∑
𝑗	Γ

∑
(𝑖, 𝑗)>Γ

𝑛 : Every weakly dominant pair contributes n to the sum.

◦ ∑
𝑗	Γ

∑
(𝑖, 𝑗)�Γ

(
𝑛���Γ 𝑗𝑖 ���

)
: Every strongly dominant pair (𝑖, 𝑗) contributes

(
𝑛���Γ 𝑗𝑖 ���

)
to the sum.

Below, we have drawn Γ from Example 6.11, with the associated values for 𝐷Γ in blue. In this picture,
dashed lines indicate weak dominance and double lines indicate strong dominance.

Remark 8.8. It is not obvious that the formula in Lemma 8.5 is the same for different naturally labeled
graphs in the isomorphism class. However, it is clear from the definition in (8.1) that 𝐷Γ is an invariant,
so they must be equal.

The following Proposition 8.9 gives an inductive formula for 𝐷Γ when Γ is cliqued and naturally
labeled that matches the inductive formula for dimC (M1

Γ) from Theorem 7.2.

Proposition 8.9. If Γ is a cliqued and naturally labeled graph on at least 4 vertices, then 𝐷Γ can be
computed recursively as follows:

𝐷Γ = 1 + 𝐷Γ−𝑛 +

⎧⎪⎪⎨⎪⎪⎩
(
𝑛 − 1

1

)
if Γ is type A

1 if Γ is type B/C

+
∑
(𝑖, 𝑗)�Γ

(
𝑛 − 1���Γ 𝑗𝑖 ��� − 1

)
+ |{(𝑖, 𝑗) > Γ}|.
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Before proving Proposition 8.9, we prove several computational lemmas and construct a finer cate-
gorization of type A graphs. The key idea is to concretely describe the block-cut tree of Γ − 𝑛 in terms
of the block-cut tree of Γ.

If B is a block in Γ that does not contain n, then B is still 2-connected in Γ − 𝑛. Additionally, if i and
k where 𝑛 ∉ {𝑖, 𝑘} are vertices in Γ such that i and k are in different connected components of Γ − 𝑗 ,
then i and k are also in different connected components of (Γ − 𝑛) − 𝑗 . In particular, If B is a block in Γ
that does not contain n, then B is a block in Γ − 𝑛.

Lemma 8.10 below describes the simplest case, when Γ is either type B or type C

Lemma 8.10. Let Γ be a cliqued and naturally labeled graph on at least 4 vertices. If Γ is of type B or
C, then the following equalities hold:

◦ |LBΓ | = |LBΓ−𝑛 |,
◦ IBΓ = IBΓ−𝑛, and
◦ ICΓ = ICΓ−𝑛.

Proof. Let 𝐵0 be the block in Γ that contains n. Since Γ is type B or C, |𝐵0 | > 2. Since Γ is cliqued, the
subgraph 𝐵0 − 𝑛 has at least 2 vertices and is also a clique, and in particular, 𝐵0 − 𝑛 is a block in Γ − 𝑛.
Every other block or cut vertex in Γ is a block or cut vertex in Γ − 𝑛. Thus, the block-cut tree of Γ is
isomorphic to the block-cut tree of Γ − 𝑛.

Since the block-cut trees are isomorphic they have the same number of leaves, and so |LBΓ | = |LBΓ−𝑛 |.
Since the only block that changes is 𝐵0 and all non-leaf blocks in Γ are non-leaf blocks in Γ − 𝑛, it
follows that IBΓ = IBΓ−𝑛. This equality implies ICΓ = ICΓ−𝑛 by definition. �

We now assume that Γ is type A. We will give a similar computation for type-A graphs, but there are
several cases to consider. Since (𝑛 − 1, 𝑛) is a cut edge, it corresponds to a block 𝐵0 containing 𝑛 in Γ
that has no natural counterpart in the block-cut tree of Γ − 𝑛. Not only that, but 𝑛 − 1 may not be a cut
vertex in Γ − 𝑛.

Addressing this requires further decomposition of type A graphs, which we denote A1, A2, A3, A4
and A5. We will define them carefully below, but the consequences in each case in terms of moving from
the block-cut tree of Γ to that of Γ−𝑛 are essentially as follows (recall 𝐵0 is the block in Γ containing n):

(A1) The block-cut tree of Γ − 𝑛 is simply that of Γ with the block 𝐵0 removed.
(A2) The block-cut tree of Γ − 𝑛 is the block-cut tree of Γ with the block 𝐵0 and the cut vertex 𝑛 − 1

removed, and an internal block 𝐵′ of size 2 for Γ becomes a leaf block for Γ − 𝑛.
(A3) The block-cut tree of Γ − 𝑛 is the block-cut tree of Γ with the block 𝐵0 and the cut vertex 𝑛 − 1

removed, but every other internal (resp. leaf) block of Γ remains an internal (resp. leaf) block of
Γ − 𝑛.

(A4) The block-cut tree of Γ − 𝑛 is the block-cut tree of Γ with the block 𝐵0 and the cut vertex 𝑛 − 1
removed, and an internal block 𝐵′ of size greater than 2 for Γ becomes a leaf block for Γ − 𝑛.

(A5) The graph Γ − 𝑛 is 2-connected.

First, a type A graph Γ is type A1 if 𝔠Γ (𝑛 − 1) > 1. Graphically, Γ looks like

𝑛 𝑛 − 1 Γ𝑛−1
𝔠 (𝑛−1)A1:

𝑛 − 2 · · · 𝑛 − 𝑘

Note that in type A1, Γ − 𝑛 has the same cut vertices as Γ, so the block-cut tree of Γ − 𝑛 is the block-cut
tree of Γ with 𝐵0 removed.
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If Γ is type A but not type A1, then 𝑛 − 1 is a cut vertex of Γ, but it is not a cut vertex of Γ − 𝑛. So
the block-cut tree of Γ − 𝑛 is the block-cut tree of Γ with both the block 𝐵0 and the cut vertex 𝑛 − 1
removed. In particular, 𝑛 − 1 is contained within precisely two blocks in Γ: one that contains n (so 𝐵0)
and one that contains 𝑛 − 2. Let 𝐵′ be the block in Γ that contains 𝑛 − 1 and 𝑛 − 2.

We say Γ is type A2 if |𝐵′| = 2 (i.e., 𝑉 (𝐵′) = {𝑛 − 2, 𝑛 − 1}). Graphically, Γ and its block-cut tree
look like

𝑛 𝑛 − 1 𝑛 − 2

Γ𝑛−2
1

Γ𝑛−2
𝔠 (𝑛)

...A2: ← Γ

𝐵0 𝑛 − 1 𝐵′ 𝑛 − 2 · · · ←
Block-cut
tree of Γ

Note that the 𝐵′ where 𝑉 (𝐵′) = {𝑛 − 2, 𝑛 − 1} is associated to an internal cut edge in Γ and is a leaf
block in Γ − 𝑛.

The graph Γ is type A3 if |𝐵′ | > 2 and 𝐵′ contains more than 2 cut vertices of Γ. So 𝐵′ is adjacent
to more than two vertices in the block-cut tree of Γ. Graphically, the block-cut tree of Γ looks like

𝐵0 𝑛 − 1 𝐵′

𝑣𝑘

𝑣1

... · · ·A3:

where 𝑘 > 1. Note that 𝐵′ is an internal block in both Γ and Γ − 𝑛.
The graph Γ is type A4 if |𝐵′| > 2, and 𝐵′ contains precisely 2 cut vertices of Γ, 𝑛 − 1 and some

other cut vertex v of Γ. In particular, 𝐵′ is adjacent to precisely two vertices in the block-cut tree of Γ.
Graphically, the block-cut tree of Γ looks like

𝐵0 𝑛 − 1 𝐵′ 𝑣 · · ·A4:

Note that 𝐵′ is an internal block of size at least 3 in Γ and a leaf block in Γ − 𝑛.
Finally, the graph Γ is type A5 if 𝑛 − 1 is the only cut vertex in 𝐵′. In particular, 𝐵0 and 𝐵′ are the

only two blocks in Γ, so the block-cut tree of Γ is

𝐵0 𝑛 − 1 𝐵′A5:

The computations for type A5 are generally easy, as Γ − 𝑛 is 2-connected.
Lemmas 8.11, 8.12 and 8.13 below use this finer categorization of type A graphs to explicitly compute

the relationship between sums in the formulas of 𝐷Γ and 𝐷Γ−𝑛. For the proofs of Lemmas 8.12, 8.13
and 8.11 below, 𝐵0 is the block in Γ that contains n and (if Γ type A2-A5) 𝐵′ is the block in Γ that
contains 𝑛 − 1 but not n (so 𝐵′ is still a block in Γ − 𝑛).

Lemma 8.11. Let Γ be a cliqued and naturally labeled graph on at least 4 vertices. Then the number of
leaf blocks in Γ − 𝑛 is
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|LBΓ−𝑛 | =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|LBΓ | if Γ is type A2 or A4
|LBΓ | − 1 if Γ is type A1 or A3
|LBΓ | − 2 if Γ is type A5.

Proof. If Γ is type A2 or A4, then 𝐵′ ∈ LBΓ−𝑛 is a leaf block of Γ − 𝑛, but 𝐵′ ∈ IBΓ is an internal
block of Γ. So LBΓ−𝑛 = (LBΓ \ {𝐵0}) ∪ {𝐵

′}. Less formally, we lose a block 𝐵0 and gain a block 𝐵′,
maintaining the same size.

If Γ is type 𝐴1 or 𝐴3, every leaf block in Γ − 𝑛 is a leaf block in Γ, but we still lose 𝐵0. So the size
decrements by 1.

If Γ is type A5, then Γ has two leaf blocks (𝐵0 and 𝐵′), whereas Γ − 𝑛 is a clique, with zero leaf
blocks. We directly compute |LBΓ | = 2 and |LBΓ−𝑛 | = 0. �

Lemma 8.12. Let Γ be a cliqued and naturally labeled graph on at least 4 vertices. Then

|{𝐵 ∈ IBΓ−𝑛 | |𝐵 | > 2}| =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|{𝐵 ∈ IBΓ | |𝐵 | > 2}| if Γ is type A1, A2, or A3
|{𝐵 ∈ IBΓ | |𝐵 | > 2}| − 1 if Γ is type A4
|{𝐵 ∈ IBΓ | |𝐵 | > 2}| + 1 if Γ is type A5.

Proof. If Γ is type A1, then every internal block of Γ is an internal block of Γ′ and vice versa. If Γ is
type A2, then 𝐵′ where 𝑉 (𝐵′) = {𝑛 − 2, 𝑛 − 1} is an internal block for Γ but a leaf block for Γ − 𝑛.
However, 𝐵′ is not counted above since |𝐵′| = 2. Every other internal block of Γ is an internal block of
Γ − 𝑛 and vice versa. If Γ is type A3, then 𝐵′ is still an internal block in Γ − 𝑛 because it is adjacent to
more than 2 cut vertices in the block-cut tree of Γ − 𝑛. Every other internal block is also the same, and
so the equality follows.

If Γ is type A4, then 𝐵′ is an internal block of Γ but a leaf block in Γ − 𝑛. Every other internal block
in Γ − 𝑛 is an internal block in Γ, so |{𝐵 ∈ IBΓ−𝑛 | |𝐵 | > 2}| = |{𝐵 ∈ IBΓ | |𝐵 | > 2}| − 1.

If Γ is type A5, then IBΓ = ∅. However, IBΓ−𝑛 = {𝐵′}. Since Γ has at least 4 vertices, we know that
|𝐵′ | > 2, and the claim follows. �

Lemma 8.13. Let Γ be a cliqued and naturally labeled graph on at least 4 vertices. Then the internal
cut edges in Γ − 𝑛 are

ICΓ−𝑛 =

{
ICΓ if Γ is type A1, A3, A4, or A5
ICΓ \ {(𝑛 − 2, 𝑛 − 3)} if Γ is type A2.

Proof. The set ICΓ is the set of internal cut edges in Γ. The two types where 𝐵′ is an internal block in
Γ but a leaf block in Γ − 𝑛 are types A2, A3 and A4. In types A3 and A4, the block 𝐵′ is assumed to
have size |𝐵 | > 2 and so does not correspond to an element of ICΓ. If Γ is type A2, 𝐵′ contributes to
ICΓ but not ICΓ−𝑛, and that contribution is precisely the cut edge (𝑛 − 2, 𝑛 − 1). �

Now we are ready to prove the recursive formula for 𝐷Γ.

Proof of Proposition 8.9. Consider the sum
∑

𝑗	Γ−𝑛
𝔠Γ−𝑛 ( 𝑗). If Γ is type B or C, then every cut vertex of

Γ is a cut vertex of Γ − 𝑛 and vice versa. For each such cut vertex 𝑗 	 Γ (and 𝑗 	 Γ − 𝑛), since Γ is type
B/C, no connected component of Γ − 𝑗 consists of only the vertex n, so 𝔠Γ ( 𝑗) = 𝔠Γ−𝑛 ( 𝑗).

If Γ is type A1, then every cut vertex of Γ is a cut vertex of Γ − 𝑛 but 𝔠Γ (𝑛 − 1) = 𝔠Γ−𝑛 (𝑛 − 1) + 1.
If Γ is type A2, A3, A4 or A5, then 𝑛 − 1 is not a cut vertex of Γ − 𝑛 but 𝔠Γ (𝑛 − 1) = 1. So we set
𝔠Γ−𝑛 (𝑛 − 1) � 0, and the same relationship as in type A1 applies. Now for every other 𝑗 ≠ 𝑛 − 1, the
vertex 𝑗 	 Γ if and only if 𝑗 	 Γ − 𝑛, and then 𝔠Γ ( 𝑗) = 𝔠Γ−𝑛 ( 𝑗). So we compute∑

𝑗	Γ−𝑛

𝔠Γ−𝑛 ( 𝑗) =
∑
𝑗	Γ

𝔠Γ ( 𝑗) −

{
1 if Γ type A
0 if Γ type B/C.
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Next, we compare the contributions to 𝐷Γ and 𝐷Γ−𝑛 by leaf blocks and internal blocks of size greater
than 2. By Lemmas 8.10, 8.12 and 8.13, it follows that

|𝐿𝐵Γ−𝑛 | + |{𝐵 ∈ IBΓ−𝑛 | |𝐵 | > 2}| = |𝐿𝐵Γ | + |{𝐵 ∈ IBΓ | |𝐵 | > 2}| −

{
1 if Γ type A but not A2,
0 if Γ type B, C, or A2.

Since Γ is naturally labeled, if 𝑠 ∈ ICΓ−𝑛 (so 𝑠 ≠ (𝑛, 𝑛 − 1)), then the connected component of
([𝑛 − 1], 𝐸 (Γ − 𝑛) \ 𝑠) that does not contain the vertex 𝑛 − 1 is equal to the connected component of
([𝑛], 𝐸 (Γ) \ {𝑠}) that does not contain the vertex n. It is important for proving the recursion that for
each internal cut edge 𝑠 ∈ ICΓ−𝑛 ⊂ ICΓ, we always pick the component 𝐺𝑠 to be equal in Γ and Γ − 𝑛
(i.e., always choose 𝑛 ∉ 𝐺𝑠 ⊂ Γ), so we adopt this convention. If Γ is type A2 (i.e., ICΓ ≠ ICΓ−𝑛), we
remove the ‘over-counting’ from the internal cut edge (𝑛 − 2, 𝑛 − 1) ∈ ICΓ below and get that

∑
𝑠∈ICΓ−𝑛

(
𝑛 − 1
|𝐺𝑠 |

)
=

∑
𝑠∈ICΓ

(
𝑛 − 1
|𝐺𝑠 |

)
−

⎧⎪⎪⎨⎪⎪⎩
(
𝑛 − 1
𝑛 − 2

)
Γ is type A2

0 otherwise.

Now we compute

𝐷Γ−𝑛 = 2𝑛 − 3 −
∑
𝑗	Γ−𝑛

𝔠Γ−𝑛 ( 𝑗) + (𝑛 − 1) (|LBΓ−𝑛 | + |{𝐵 ∈ IBΓ−𝑛 | |𝐵 | > 2}| − 1)

+
∑

𝑠∈ICΓ−𝑛

(
𝑛 − 1
|𝐺𝑠 |

)
= 2𝑛 − 3 −

∑
𝑗	Γ

𝔠Γ ( 𝑗) +

{
1 if Γ type A
0 if Γ type B/C.

+ (𝑛 − 1) (|𝐿𝐵Γ | + |{𝐵 ∈ IBΓ | |𝐵 | > 2}| − 1) −

{
𝑛 − 1 if Γ type A but not A2
0 if Γ type B, C, or A2.

+
∑
𝑠∈ICΓ

(
𝑛 − 1
|𝐺𝑠 |

)
−

⎧⎪⎪⎨⎪⎪⎩
(
𝑛 − 1
𝑛 − 2

)
Γ is type A2

0 otherwise.

= 2𝑛 − 2 −
∑
𝑗	Γ

𝔠Γ ( 𝑗) −

{
𝑛 − 1 if Γ type A
1 if Γ type B/C.

+ (𝑛 − 1) (|𝐿𝐵Γ | + |{𝐵 ∈ IBΓ | |𝐵 | > 2}| − 1) +
∑
𝑠∈ICΓ

(
𝑛 − 1
|𝐺𝑠 |

)

Now we have 𝐷Γ−𝑛 in a form that closely resembles that of 𝐷Γ. Recall Pascal’s identity
(
𝑛

𝑘

)
=(

𝑛 − 1
𝑘

)
+

(
𝑛 − 1
𝑘 − 1

)
. For each 𝑠 ∈ ICΓ, we have that

(
𝑛

|𝐺𝑠 |

)
−

(
𝑛 − 1
|𝐺𝑠 |

)
=

(
𝑛 − 1
|𝐺𝑠 | − 1

)
.

https://doi.org/10.1017/fms.2025.10037 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10037


50 N. R. T. Lesnevich

In particular, ∑
𝑠∈ICΓ

(
𝑛

|𝐺𝑠 |

)
−

∑
𝑠∈ICΓ

(
𝑛 − 1
|𝐺𝑠 |

)
=

∑
𝑠∈ICΓ

(
𝑛 − 1
|𝐺𝑠 | − 1

)
.

So we compute that the difference 𝐷Γ − 𝐷Γ−𝑛 is equal to

1 + (|LBΓ | + |{𝐵 ∈ IBΓ | |𝐵 | > 2}| − 1) +
∑
𝑠∈ICΓ

(
𝑛 − 1
|𝐺𝑠 | − 1

)
+

{
𝑛 − 1 if Γ type A
1 if Γ type B/C.

The remainder of the proof is essentially the same as the proof for Lemma 8.5. In particular,

1. Leaf blocks of size 2 that do not contain the vertex n are in bijection with strongly dominant pairs
(𝑖, 𝑗) where

���Γ 𝑗𝑖 ��� = 1,

2. The set of internal cut edges ICΓ is equal to the set of strongly dominant pairs (𝑖, 𝑗), where
���Γ 𝑗𝑖 ��� > 1,

and
3. Leaf blocks and internal blocks of size at least three (i.e., all blocks of size at least 3) that do not

contain the vertex n are in bijection with weakly dominant pairs (𝑖, 𝑗).

We note that
(
𝑛 − 1
1 − 1

)
= 1 and get that

(|LBΓ | + |{𝐵 ∈ IBΓ | |𝐵 | > 2}| − 1) +
∑
𝑠∈ICΓ

(
𝑛 − 1
|𝐺𝑠 | − 1

)
=

∑
(𝑖, 𝑗)�Γ

(
𝑛 − 1���Γ 𝑗𝑖 ��� − 1

)
+ |{(𝑖, 𝑗) > Γ}|.

Thus, 𝐷Γ − 𝐷Γ−𝑛 has the claimed form. �

Corollary 8.14. Let Γ be a connected graph on [𝑛] where 𝑛 ≥ 3, and 𝐷Γ as defined in Equation (8.1).
Then dimC(M1

Γ) = 𝐷Γ. Moreover, dimC (LΓ)1 = dimC(RΓ)1 = 𝐷Γ − 𝑛.

Proof. It suffices to assume that Γ is cliqued and naturally labeled. In this case, by Theorem 7.2 and
Proposition 8.9, both dimC (M1

Γ) and 𝐷Γ follow the same recursion. Thus, it suffices to show equality
on all connected graphs on 3 vertices. Quick computation confirms that

dimC (M1
𝐾3
) = 5 = 𝐷𝐾3 and dimC(M1

𝑃3
) = 7 = 𝐷𝑃3 ,

and so the two statistics must be equal. The ‘moreover’ part follows from the fact that C{𝑡1, ..., 𝑡𝑛}
and C{𝑥1, ..., 𝑥𝑛} are the (n-dimensional) linear subspace of M1

Γ quotiented to obtain LΓ and RΓ,
respectively. �

We now have a closed combinatorial formula for the C-dimension of the first graded piece of M1
Γ. In

particular, we have the dimension of the representations corresponding to ch(LΓ)1 and ch(RΓ)1. We are
also quite close to constructing C-bases of M1

Γ, as the formulae for 𝐷Γ in Lemma 8.5 and the natural
one for |BΓ | are very similar.

9. The left and right linear representations

This subsection computes ch(LΓ)1 and ch(RΓ)1 for all connected Γ, proving Theorem 1.4 from the
introduction. We prove this assuming that Γ is naturally labeled and get the label-independent formula
as a corollary. The computation is direct and achieved by computing the dot action on two subsets LSΓ

and RSΓ of BΓ that project to bases of (LΓ)1 and (RΓ)1, respectively.
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Say Γ is a naturally labeled connected graph. By Proposition 6.12 and Theorem 7.2, if

BΓ � {𝑡𝑖 | 𝑖 ∈ [𝑛]} ∪ {𝑥𝑖 | 𝑖 ∈ [𝑛]} ∪

{
𝑓 𝑠𝐴

�����𝑠 = (𝑖, 𝑗) � Γ,

|𝐴| =
���Γ 𝑗𝑖 ���

}
∪

{
�̄�
𝑗
𝑖,𝑘

����(𝑖, 𝑗) > Γ,
𝑘 ∈ [𝑛]

}
,

then M1
Γ = CBΓ. For the first graded piece of LΓ and RΓ, we will remove elements from BΓ using the

relations in Lemma 5.5, prove that the image of what remains is a basis by dimension, and then compute
the representations on (LΓ)1 and (RΓ)1 using Lemma 9.1 below.

Lemma 9.1. Let 𝑤 ∈ 𝑆𝑛. Then

𝑤 · 𝑓
(𝑖, 𝑗)
𝐴 = 𝑓

(𝑖, 𝑗)
𝑤 (𝐴)

and 𝑤 · �̄�
𝑗
𝑟 ,𝑘 = �̄�

𝑗
𝑟 ,𝑤 (𝑘)

.

The proof of Lemma 9.1 is direct from the definitions.
Now we will define two subsets of BΓ – one for (LΓ)1 and one for (RΓ)1 – that project to C-bases in

these quotients.
For the linear piece of the left quotient (LΓ)1, we first remove from BΓ the splines {𝑡1, ..., 𝑡𝑛}. We

may also discard

(1) The single spline 𝑥𝑛 by Lemma 5.5(1),
(2) The splines {𝑥𝑖 | (𝑖, 𝑗) � Γ} by Lemma 5.5(2), and
(3) The splines {𝑥𝑖 | (𝑖, 𝑗) > Γ} by Lemma 5.5(3).

Note the set of splines in (2) and (3) is size |{𝑥𝑖 | (𝑖, 𝑗) � Γ} ∪ {𝑥𝑖 | (𝑖, 𝑗) > Γ}| =
∑
𝑗	Γ

𝔠( 𝑗). So the

image of

LSΓ � {𝑥𝑟 ∈ X𝑛−1 | 𝑟 is not 𝑠-dominant ∀𝑠 ∈ [𝑛]} ∪
{
𝑓 𝑠𝐴 | 𝑠 � Γ

}
∪

{
�̄�
𝑗
𝑟 ,𝑘 | (𝑟, 𝑗) > Γ, 𝑘 ∈ [𝑛]

}
in (LΓ)1 is a spanning set. Note that the size of {𝑥𝑟 ∈ X𝑛−1 | 𝑟 is not s-dominant ∀𝑠 ∈ [𝑛]} is 𝑛 − 1 −∑
𝑗	Γ

𝔠( 𝑗), the size of
{
𝑓 𝑠𝐴 | 𝑠 � Γ

}
is

∑
(𝑖, 𝑗)�Γ

(
𝑛���Γ 𝑗𝑖 ���

)
, and the size of

{
�̄�
𝑗
𝑟 ,𝑘
| (𝑟, 𝑗) > Γ, 𝑘 ∈ [𝑛]

}
is

∑
(𝑖, 𝑗)>Γ

𝑛.

Thus, the size of LSΓ is precisely the dimension 𝐷Γ − 𝑛 of (LΓ)1, as computed in Lemma 8.5. So LSΓ

projects to a basis of (LΓ)1. In fact, LSΓ is a permutation basis for the dot action representation, from
which it is easy to compute the dot action representation (we will state and prove this in Theorem 9.2).

For the linear piece of the right quotient (RΓ)1, we first remove from BΓ the splines {𝑥1, ..., 𝑥𝑛}. Let

𝑚𝑖 𝑗 �
���Γ 𝑗𝑖 ���, and let

{
𝐴𝑝 | 𝑝 ∈

[(
𝑛

𝑚𝑖 𝑗

)]}
be an enumeration of the

(
𝑛

𝑚𝑖 𝑗

)
-many subsets A associated to

a strongly dominant pair (𝑖, 𝑗) � Γ. By Lemma 5.5, the following three relations hold in RΓ:

𝑛∑
𝑟=1

𝑡𝑟 ∼ 0,
∑
𝐴⊂[𝑛]

𝑓
(𝑖, 𝑗)
𝐴 ∼ 0 and

𝑛∑
𝑘=1

�̄�
𝑗
𝑖,𝑘 ∼ 0.

The natural subset of BΓ whose image spans (RΓ)1 is therefore

RSΓ � {𝑡𝑟 − 𝑡𝑟+1 | 𝑟 ∈ [𝑛 − 1]} ∪
⎧⎪⎪⎨⎪⎪⎩ 𝑓
(𝑖, 𝑗)
𝐴𝑝
− 𝑓

(𝑖, 𝑗)
𝐴𝑝+1

������𝑝 ∈
[(

𝑛

𝑚𝑖 𝑗

)
− 1

]
,

(𝑖, 𝑗) � Γ

⎫⎪⎪⎬⎪⎪⎭ ∪
{
�̄�
𝑗
𝑟 ,𝑘 − �̄�

𝑗
𝑟 ,𝑘+1

���� (𝑟, 𝑗) > Γ,
𝑘 ∈ [𝑛 − 1]

}
.
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The first subset is size 𝑛 − 1. The second subset is size
∑

(𝑖, 𝑗)�Γ

���
(

𝑛���Γ 𝑗𝑖 ���
)
− 1 !", and the third subset is size∑

(𝑖, 𝑗)>Γ
(𝑛 − 1). The number of (strong or weak) dominant pairs is

| (𝑖, 𝑗) ∈ 𝐸 (Γ) | (𝑖, 𝑗) � Γ or (𝑖, 𝑗) > Γ}| =
∑
𝑗	Γ

𝔠( 𝑗),

so ∑
(𝑖, 𝑗)�Γ

���
(

𝑛���Γ 𝑗𝑖 ���
)
− 1 !" +

∑
(𝑖, 𝑗)>Γ

(𝑛 − 1) =
∑
(𝑖, 𝑗)�Γ

(
𝑛���Γ 𝑗𝑖 ���

)
+

∑
(𝑖, 𝑗)>Γ

𝑛 −
∑
𝑗	Γ

𝔠( 𝑗).

So the image of RSΓ is a basis for (RΓ)1.
Theorem 9.2. Let Γ be a naturally labeled graph. If (𝑖, 𝑗) � Γ, define the partition 𝜆𝑖 𝑗 �(
𝑛 −

���Γ 𝑗𝑖 ���, ���Γ 𝑗𝑖 ���) (reordered if necessary). Then

ch(LΓ)1 =
∑
(𝑖, 𝑗)�Γ

ℎ𝜆𝑖 𝑗 +
∑
(𝑖, 𝑗)>Γ

ℎ𝑛−1,1 +

(
𝑛 − 1 −

∑
𝑗	Γ

𝔠( 𝑗)

)
ℎ𝑛,

and
ch(RΓ)1 = 𝑠𝑛−1,1 +

∑
(𝑖, 𝑗)�Γ

(
ℎ𝜆𝑖 𝑗 − 𝑠𝑛

)
+

∑
(𝑖, 𝑗)>Γ

𝑠𝑛−1,1.

Proof. SinceCLSΓ andCRSΓ are 𝑆𝑛-invariant vector spaces, the dot action on each is a representation.
Since the projection of these spaces to (LΓ)1 and (RΓ)1 are in fact isomorphisms, the symmetric
functions ch(LΓ)1 and ch(RΓ)1 are the characters of the dot action representation on CLSΓ and CRSΓ,
respectively. Each of the identified subsets in bases LSΓ and RSΓ span 𝑆𝑛-invariant subspaces ofCLSΓ

and CRSΓ, respectively.
First, we will compute each part of ch(LΓ)1. The dot action fixes each 𝑥𝑖 , and so the character of the

dot action representation on C{𝑥𝑟 ∈ X𝑛−1 | 𝑟 is not s-dominant ∀𝑠 ∈ [𝑛]} is
(
𝑛 − 1 −

∑
𝑗	Γ

𝔠( 𝑗)

)
ℎ𝑛. By

Lemma 9.1, the character of the dot action representation restricted to C
{
𝑓 𝑠𝐴 | 𝑠 � Γ

}
is

∑
(𝑖, 𝑗)�Γ

ℎ𝜆𝑖 𝑗 .

By Lemma 9.1 as well, the character of the dot action representation on C
{
�̄�
𝑗
𝑟 ,𝑘 | (𝑟, 𝑗) > Γ, 𝑘 ∈ [𝑛]

}
is

∑
(𝑖, 𝑗)>Γ

ℎ𝑛−1,1.

Now we will compute each part of ch(RΓ)1. Each of the following computations use the same principle
argument. If K is an integer, and the set {𝑒𝑖 | 𝑖 ∈ [𝐾]} is a permutation basis of some permutation

representation of 𝑆𝑛 with character ℎ𝜆, then the vector
𝐾∑
𝑖=1

𝑒𝑖 is invariant under that representation.

Furthermore, the character of the representation on the orthogonal subspace spanned by {𝑒𝑖+1 − 𝑒𝑖 | 𝑖 ∈
[𝐾 − 1]} is ℎ𝜆 − 𝑠𝑛.

The character of the dot action representation onC{𝑡𝑖 | 𝑖 ∈ [𝑛]} is ℎ𝑛−1,𝑛, and so the dot action repre-
sentation onC{𝑡𝑟−𝑡𝑟+1 | 𝑟 ∈ [𝑛−1]} is ℎ𝑛−1,𝑛−𝑠𝑛 = 𝑠𝑛−1,1. The character of the dot action representation

onC
{
𝑓
(𝑖, 𝑗)
𝐴𝑝

����𝑝 ∈ [(
𝑛

𝑚𝑖

)]
, (𝑖, 𝑗) � Γ

}
is

∑
(𝑖, 𝑗)�Γ

ℎ𝜆𝑖 𝑗 , and so the character of the dot action representation

on C
{
𝑓
(𝑖, 𝑗)
𝐴𝑝
− 𝑓

(𝑖, 𝑗)
𝐴𝑝+1

����𝑝 ∈ [(
𝑛

𝑚𝑖

)
− 1

]
, (𝑖, 𝑗) � Γ

}
is

∑
(𝑖, 𝑗)�Γ

ℎ𝜆𝑖 𝑗 − 𝑠𝑛. The character of the dot action

representation on C
{
�̄�
𝑗
𝑟 ,𝑘

���(𝑟, 𝑗) > Γ, 𝑘 ∈ [𝑛]
}

is
∑

(𝑖, 𝑗)>Γ
ℎ𝑛−1,1, and so the character of the dot action

representation on C
{
�̄�
𝑗
𝑟 ,𝑘 − �̄�

𝑗
𝑟 ,𝑘+1

���(𝑟, 𝑗) > Γ, 𝑘 ∈ [𝑛 − 1]
}

is
∑

(𝑖, 𝑗)>Γ
(ℎ𝑛−1,1 − 𝑠𝑛) =

∑
(𝑖, 𝑗)>Γ

𝑠𝑛−1,1. �
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The Schur-expansion of ℎ𝜆𝑖 𝑗 is easy to compute since 𝜆𝑖 𝑗 is only a two-part partition. In particular,

if K is the larger of
���Γ 𝑗𝑖 ��� and 𝑛 −

���Γ 𝑗𝑖 ���, then ℎ𝜆𝑖 𝑗 − 𝑠𝑛 =
𝑛−𝐾−1∑
𝑚=0

𝑠𝐾+𝑚,𝑛−𝐾−𝑚.

The following corollary gives the label-independent description, from the statistics on block-cut trees
described in Section 8.

Corollary 9.3. Let Γ be a connected simple graph, and let LBΓ, IBΓ and ICΓ be the leaf blocks, internal
blocks and internal cut edges of Γ as defined in the beginning of Section 8. For (𝑖, 𝑗) ∈ ICΓ, let 𝜆𝑖 𝑗 be
the partition

(
𝑛 −

��𝐺 (𝑖, 𝑗) ��, ��𝐺 (𝑖, 𝑗) ��) (reordered if necessary), where 𝐺 (𝑖, 𝑗) is a connected component of
the graph ([𝑛], 𝐸 (Γ) \ {(𝑖, 𝑗)}). Then

ch(LΓ)1 =
∑

(𝑖, 𝑗) ∈ICΓ

ℎ𝜆𝑖 𝑗 + (|LBΓ | + |{𝐵 ∈ IBΓ | |𝐵 | > 2}| − 1)ℎ𝑛−1,1 +

(
𝑛 − 1 −

∑
𝑗	Γ

𝔠( 𝑗)

)
ℎ𝑛,

and

ch(RΓ)1 =
∑

(𝑖, 𝑗) ∈ICΓ

(
ℎ𝜆𝑖 𝑗 − 𝑠𝑛

)
+ (|LBΓ | + |{𝐵 ∈ IBΓ | |𝐵 | > 2}|)𝑠𝑛−1,1.

Proof. This follows directly from Theorem 9.2 and the bijections/equalities described in the proof of
Lemma 8.5 (and also the proof of Proposition 8.9). �

We note that in the statement of Theorem 1.4 in the introduction, the sets are 𝐸1 = ICΓ and
𝐸2 = LBΓ ∪ {𝐵 ∈ IBΓ | |𝐵 | > 2}, and the integer 𝑘 = 𝑛 − 1 −

∑
𝑗	Γ

𝔠( 𝑗).

Example 9.4. Let Γ be the graph from Example 8.6. We may compute the representations with either
Theorem 9.2 or Corollary 9.3. Then

ch(LΓ)1 = 6ℎ12 + 4ℎ11,1 + ℎ8,4

and

ch(RΓ)1 = 4𝑠11,1 + ℎ8,4 − 𝑠12 = 4𝑠11,1 + (𝑠8,4 + 𝑠9,3 + 𝑠10,2 + 𝑠11,1).

We note that, by this formula, the symmetric function ch(LΓ)1 is h-positive for all graphs Γ. So
Theorem 9.2 and Corollary 9.3 prove an extension of the linear part of the graded Stanley–Stembridge
conjecture from Hessenberg graphs to all connected graphs.

A. Tables of polynomials

Without geometric methods, it is quite difficult to compute these representations. One can, however,
compute the dimension more easily using [17, 24]. For example, despite our current inability to compute
the representation, we do know that dim(L𝐶4 )3 = 9 = dim(R𝐶4 )3. We also note that M≤3

𝐶4
is not a free

module, but M≤2
𝐶4

is free (and ch
(
L𝐶4

)
is, in degree ≤ 2, h-positive).
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Table 1. The polynomials
∑
𝑖≥0

ch(LΓ)𝑖𝑞
𝑖 in the homogeneous basis and

∑
𝑖≥0

ch(RΓ)𝑖𝑞
𝑖 in the Schur basis for all

graphs on 3 and 4 vertices, excluding ch
(
L𝐶4

)
3 and ch

(
R𝐶4

)
3..

Γ
∑
𝑖≥0

ch(LΓ)𝑖𝑞
𝑖 ∑

𝑖≥0
ch(RΓ)𝑖𝑞

𝑖

ℎ3 +
(
ℎ3 + ℎ2,1

)
𝑞 + (ℎ3)𝑞

2 𝑠3 +
(
2𝑠2,1

)
𝑞 +

(
𝑠1,1,1

)
𝑞2

ℎ3 (1 + 2𝑞 + 2𝑞2 + 𝑞3) 𝑠3 +
(
𝑠2,1

)
𝑞 +

(
𝑠2,1

)
𝑞2 +

(
𝑠1,1,1

)
𝑞3

ℎ4 +
(
ℎ2,2 + ℎ3,1 + ℎ4

)
𝑞 +(

ℎ2,2 + ℎ3,1 + ℎ4
)
𝑞2 + (ℎ4)𝑞

3
𝑠4 +

(
𝑠2,2 + 3𝑠3,1

)
𝑞 +

(
3𝑠2,1,1 + 𝑠2,2

)
𝑞2 +(

𝑠1,1,1,1
)
𝑞3

ℎ4 +
(
ℎ4 + 2ℎ3,1

)
𝑞 +(

ℎ4 + 2ℎ3,1 − ℎ2,2 + ℎ2,1,1
)
𝑞2 + (ℎ4)𝑞

3
𝑠4 +

(
3𝑠3,1

)
𝑞 +

(
3𝑠2,2 + 3𝑠2,1,1

)
𝑞2 +

(
𝑠1,1,1,1

)
𝑞3

ℎ4 +
(
ℎ3,1 + 2ℎ4

)
𝑞 +

(
2ℎ3,1 + 2ℎ4

)
𝑞2 +(

ℎ3,1 + 2ℎ4
)
𝑞3 + (ℎ4)𝑞

4
𝑠4 +

(
2𝑠3,1

)
𝑞 +

(
𝑠2,1,1 + 2𝑠2,2 + 𝑠3,1

)
𝑞2 +(

2𝑠2,1,1
)
𝑞4 +

(
𝑠1,1,1,1

)
𝑞4

ℎ4 + (3ℎ4)𝑞 +
(
ℎ2,2 + ℎ3,1 + 3ℎ4

)
𝑞2 +

ch(LΓ)3𝑞
3 + (ℎ4)𝑞

4
𝑠4 +

(
𝑠3,1

)
𝑞 +

(
2𝑠2,2 + 3𝑠3,1

)
𝑞2 + ch(RΓ)3𝑞

3 +(
𝑠1,1,1,1

)
𝑞4

ℎ4 + (3ℎ4)𝑞 +
(
ℎ3,1 + 4ℎ4

)
𝑞2 +(

ℎ3,1 + 4ℎ4
)
𝑞3 + (3ℎ4)𝑞

4 + (ℎ4)𝑞
5

𝑠4 +
(
𝑠3,1

)
𝑞 +

(
𝑠2,2 + 2𝑠3,1

)
𝑞2 +(

2𝑠2,1,1 + 𝑠2,2
)
𝑞3 +

(
𝑠2,1,1

)
𝑞4 +

(
𝑠1,1,1,1

)
𝑞5

ℎ4 (1 + 3𝑞 + 5𝑞2 + 6𝑞3 + 5𝑞4 + 3𝑞5 + 𝑞6) 𝑠4 +
(
𝑠3,1

)
𝑞 +

(
𝑠2,2 + 𝑠3,1

)
𝑞2 +

(
𝑠2,1,1 + 𝑠3,1

)
𝑞3 +(

𝑠2,1,1 + 𝑠2,2
)
𝑞4 +

(
𝑠2,1,1

)
𝑞5 +

(
𝑠1,1,1,1

)
𝑞6
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Table 2. The rank-generating functions and total rank for all isomorphism classes of graphs on 5 vertices. Geometric cases are marked
with †..

𝐸 (Γ)
∑

dim(LΓ)𝑖𝑞
𝑖 =

∑
dim(RΓ)𝑖𝑞

𝑖 Total

(1, 5) , (2, 5) , (3, 5) , (4, 5) 1 + 16𝑞 + 66𝑞2 + 56𝑞3 + 𝑞4 140
(1, 4) , (1, 5) , (2, 5) , (3, 5) 1 + 21𝑞 + 71𝑞2 + 31𝑞3 + 𝑞4 125
(1, 4) , (1, 5) , (2, 5) , (3, 5) , (4, 5) 1 + 12𝑞 + 42𝑞2 + 52𝑞3 + 22𝑞4 + 𝑞5 130
(1, 4) , (1, 5) , (2, 4) , (2, 5) , (3, 5) 1 + 8𝑞 + 38𝑞2 + 68𝑞3 + 13𝑞4 + 𝑞5 129
(1, 4) , (1, 5) , (2, 4) , (3, 5) , (4, 5)† 1 + 12𝑞1 + 47𝑞2 + 47𝑞3 + 12𝑞4 + 𝑞5 120
(1, 4) , (1, 5) , (2, 4) , (2, 5) , (3, 5) , (4, 5) 1 + 8𝑞 + 24𝑞2 + 49𝑞3 + 34𝑞4 + 8𝑞5 + 𝑞6 125
(1, 4) , (1, 5) , (2, 4) , (2, 5) , (3, 4) , (3, 5) 1 + 4𝑞 + 17𝑞2 + 47𝑞3 + 62𝑞4 + 6𝑞5 + 𝑞6 138
(1, 4) , (1, 5) , (2, 4) , (2, 5) , (3, 4) ,
(3, 5) , (4, 5)

1 + 4𝑞 + 17𝑞2 + 33𝑞3 + 43𝑞4 + 27𝑞5 + 4𝑞6 + 𝑞7 130

(1, 3) , (1, 5) , (2, 4) , (2, 5)† 1 + 26𝑞1 + 66𝑞2 + 26𝑞3 + 1𝑞4 120
(1, 3) , (1, 5) , (2, 4) , (2, 5) , (3, 5)† 1 + 17𝑞1 + 42𝑞2 + 42𝑞3 + 17𝑞4 + 1𝑞5 120
(1, 3) , (1, 5) , (2, 4) , (2, 5) , (3, 5) , (4, 5)† 1 + 8𝑞1 + 29𝑞2 + 44𝑞3 + 29𝑞4 + 8𝑞5 + 1𝑞6 120
(1, 3) , (1, 4) , (2, 4) , (2, 5) , (3, 5) 1 + 4𝑞 + 49𝑞2 + 69𝑞3 + 14𝑞4 + 𝑞5 138
(1, 3) , (1, 4) , (1, 5) , (2, 4) , (2, 5) , (3, 5) 1 + 4𝑞 + 26𝑞2 + 51𝑞3 + 36𝑞4 + 5𝑞5 + 𝑞6 124
(1, 3) , (1, 4) , (1, 5) , (2, 4) , (2, 5) ,
(3, 5) , (4, 5)†

1 + 4𝑞1 + 17𝑞2 + 38𝑞3 + 38𝑞4 + 17𝑞5 + 4𝑞6 + 𝑞7 120

(1, 3) , (1, 4) , (1, 5) , (2, 5) , (3, 4) , (3, 5)† 1 + 8𝑞1 + 29𝑞2 + 44𝑞3 + 29𝑞4 + 8𝑞5 + 𝑞6 120
(1, 3) , (1, 4) , (1, 5) , (2, 5) , (3, 4) ,
(3, 5) , (4, 5)†

1 + 8𝑞1 + 20𝑞2 + 31𝑞3 + 31𝑞4 + 20𝑞5 + 8𝑞6 + 𝑞7 120

(1, 3) , (1, 4) , (1, 5) , (2, 4) , (2, 5) ,
(3, 4) , (3, 5) , (4, 5)†

1 + 4𝑞1 + 13𝑞2 + 26𝑞3 + 32𝑞4 + 26𝑞5 +
13𝑞6 + 4𝑞7 + 𝑞8

120

(1, 3) , (1, 4) , (1, 5) , (2, 3) , (2, 4) ,
(2, 5) , (3, 5)

1 + 4𝑞 + 13𝑞2 + 35𝑞3 + 45𝑞4 + 24𝑞5 + 5𝑞6 + 𝑞7 128

(1, 3) , (1, 4) , (1, 5) , (2, 3) , (2, 4) ,
(2, 5) , (3, 5) , (4, 5)

1 + 4𝑞 + 9𝑞2 + 23𝑞3 + 39𝑞4 + 33𝑞5 +
10𝑞6 + 4𝑞7 + 𝑞8

124

(1, 3) , (1, 4) , (1, 5) , (2, 3) , (2, 4) ,
(2, 5) , (3, 4) , (3, 5) , (4, 5)†

1 + 4𝑞1 + 9𝑞2 + 19𝑞3 + 27𝑞4 + 27𝑞5 +
19𝑞6 + 9𝑞7 + 4𝑞8 + 𝑞9

120

(1, 2) , (1, 3) , (1, 4) , (1, 5) , (2, 3) ,
(2, 4) , (2, 5) , (3, 4) , (3, 5) , (4, 5)†

1 + 4𝑞1 + 9𝑞2 + 15𝑞3 + 20𝑞4 + 22𝑞5 +
20𝑞6 + 15𝑞7 + 9𝑞8 + 4𝑞9 + 𝑞10

120
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