
Psychological Medicine

cambridge.org/psm

Original Article

Cite this article: Hertz-Palmor N, Rozenblit D,
Lavi S, Zeltser J, Kviatek Y, Lazarov A (2024).
Aberrant reward learning, but not negative
reinforcement learning, is related to
depressive symptoms: an attentional
perspective. Psychological Medicine 54,
794–807. https://doi.org/10.1017/
S0033291723002519

Received: 6 March 2023
Revised: 28 June 2023
Accepted: 1 August 2023
First published online: 29 August 2023

Keywords:
anhedonia; attention allocation; depression
symptoms; negative reinforcement; positive
reinforcement; reward learning; selection
history

Corresponding author:
Amit Lazarov;
Email: amitlaza@tauex.tau.ac.il

© The Author(s), 2023. Published by
Cambridge University Press. This is an Open
Access article, distributed under the terms of
the Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted re-use, distribution
and reproduction, provided the original article
is properly cited.

Aberrant reward learning, but not negative
reinforcement learning, is related to depressive
symptoms: an attentional perspective

Nimrod Hertz-Palmor1,2 , Danielle Rozenblit1, Shani Lavi1, Jonathan Zeltser1,

Yonatan Kviatek1 and Amit Lazarov1,3

1School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel; 2MRC Cognition and Brain Sciences Unit,
University of Cambridge, Cambridge, UK and 3Department of Psychiatry, Columbia University Irving Medical
Center, New York, NY, USA

Abstract

Background. Aberrant reward functioning is implicated in depression. While attention
precedes behavior and guides higher-order cognitive processes, reward learning from an atten-
tional perspective – the effects of prior reward-learning on subsequent attention allocation –
has been mainly overlooked.
Methods. The present study explored the effects of reward-based attentional learning in
depression using two separate, yet complimentary, studies. In study 1, participants with
high (HD) and low (LD) levels of depression symptoms were trained to divert their gaze
toward one type of stimuli over another using a novel gaze-contingent music reward paradigm
– music played when fixating the desired stimulus type and stopped when gazing the alternate
one. Attention allocation was assessed before, during, and following training. In study 2, using
negative reinforcement, the same attention allocation pattern was trained while substituting
the appetitive music reward for gazing the desired stimulus type with the removal of an aver-
sive sound (i.e. white noise).
Results. In study 1 both groups showed the intended shift in attention allocation during train-
ing (online reward learning), while generalization of learning at post-training was only evident
among LD participants. Conversely, in study 2 both groups showed post-training generaliza-
tion. Results were maintained when introducing anxiety as a covariate, and when using a more
powerful sensitivity analysis. Finally, HD participants showed higher learning speed than LD
participants during initial online learning, but only when using negative, not positive,
reinforcement.
Conclusions. Deficient generalization of learning characterizes the attentional system of
HD individuals, but only when using reward-based positive reinforcement, not negative
reinforcement.

Major depressive disorder (MDD) is one of the most prevalent psychiatric disorders (Kessler
et al., 2005), with 12-month and lifetime prevalence rates estimated at 5.5% and 15%, respect-
ively (Kessler & Bromet, 2013). It significantly impairs quality of life and daily functioning,
affecting both physical and mental health (American Psychiatric Association, 2013).
Anhedonia, one of the two main features of depression, is defined as decreased pleasure
from, or reduced interest in, activities that were once experienced as enjoyable (American
Psychiatric Association, 2013), and is considered one of the most prominent endophenotypes
of the disorder (Beard et al., 2016; Malgaroli, Calderon, & Bonanno, 2021; Pizzagalli, 2014).
Crucially, anhedonia is also associated with poorer prognosis and treatment efficacy
(McMakin et al., 2012), outperforming all other symptoms in predicting treatment outcomes
(e.g. Fried, Epskamp, Nesse, Tuerlinckx, & Borsboom, 2016).

Recently, a new perspective on anhedonia has emerged conceptualizing it not merely as a
simple lack of pleasure, but rather as a more general or complex dysfunction in reward pro-
cessing (e.g. Pizzagalli, 2022). According to this view, as reward processing is comprised of sev-
eral discrete sub-steps (e.g. learning stimulus–reward associations; ensuing desire and
anticipation; motivation and effort in acquiring rewards; consummatory pleasure), anhedonia
may arise when one or more of these sub-steps are impaired (Kring & Barch, 2014; Pizzagalli,
2022; Rizvi, Pizzagalli, Sproule, & Kennedy, 2016). In support of this conceptualization, behav-
ioral research has found an association between anhedonia and dysregulations in the reward
system and in reward processing (Rømer Thomsen, 2015; Vrieze et al., 2013), showing, for
example, a lack of systematic behavioral preference (i.e. developing a reward-related response
bias) for rewarded stimuli among depressed and anhedonic individuals (Pizzagalli, Iosifescu,
Hallett, Ratner, & Fava, 2008; Pizzagalli, Jahn, & O’Shea, 2005).
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An important field of research that has been mainly over-
looked in this renewed view of anhedonia is the study of reward
learning from an attentional perspective – the effects of prior
reward learning on subsequent attention allocation, also known
as reward-based selection history or experience-based attention
selection (Awh, Belopolsky, & Theeuwes, 2012). As attention pre-
cedes behavior and guides thought and higher-order cognitive
processes, such as working memory and decision-making
(Desimone & Duncan, 1995; Feldmann-Wüstefeld, Busch, &
Schubö, 2019), reward-related attentional allocation seems vital
for subsequent stages of reward processing. Put differently,
exploring how one’s learning of the (rewarding) value of specific
stimuli affects the way attention is later allocated to those stimuli,
when encountered, may shed much-needed light on ensuing
anhedonia-related processes. Indeed, much research among
healthy individuals has repeatedly shown that stimuli imbued
with a rewarding value can later guide visuospatial attention allo-
cation, even without conscious intent (Anderson, 2016, 2017;
Failing & Theeuwes, 2018; Gaspelin, Gaspar, & Luck, 2019;
Schwark, Dolgov, Sandry, & Volkman, 2013).

Conversely, only few studies to date have explored the effects of
reward-based selection history in depression, showing that while
depressed individuals exhibit an intact ability to learn stimulus–
reward associations, these fail in producing subsequent changes
in attention processes, characteristic of non-depressed individuals
(Anderson, 2017; Anderson, Leal, Hall, Yassa, & Yantis, 2014;
Brailean, Koster, Hoorelbeke, & De Raedt, 2014). While providing
initial evidence for aberrant reward-based selection history in
depression, these studies entail several limitations curbing our
understanding of this important phenomenon. Three limitations
are related to the quantification of attention allocation via
reaction-time (RT)-based measures. First, as RT-based measures
are derived from keypresses occurring at the very end of the infor-
mation processing sequence, different attentional components
taking place earlier in the process can only be indirectly inferred
from facilitated/impaired performance, providing no information
about the course and dynamics of attention deployment before or
after the moment of measurement (Lazarov et al., 2019; Lee &
Lee, 2014; Thomas, Goegan, Newman, Arndt, & Sears, 2013).
Second, RT-based tasks exhibit poor psychometric properties,
including low internal consistency and test–retest reliability
(Brown et al., 2014; Draheim, Mashburn, Martin, & Engle,
2019; Rodebaugh et al., 2016; Schmukle, 2005; Staugaard, 2009;
Waechter & Stolz, 2015), which are vital for trusting emergent
results. Third, keypresses give rise to potential confounding ele-
ments related to the execution of the required motor responses
(Hadwin & Field, 2010; Kimble, Fleming, Bandy, Kim, &
Zambetti, 2010; Krajbich, Bartling, Hare, & Fehr, 2015), which
is particularly relevant in depression due to psychomotor retard-
ation (Caligiuri & Ellwanger, 2000).†1 Two additional shortcom-
ings are related to the nature of rewards used during training/
learning, as prior research has exclusively used monetary rewards.
First, monetary reward, considered a secondary rather than a pri-
mary reinforcer, is less of a motivational driving force for
depressed individuals, who tend to exhibit a priori disinterest in
maximizing monetary gain (e.g. Godara, Sanchez-Lopez, & De
Raedt, 2019; Maddox, Gorlick, Worthy, & Beevers, 2012;
Pizzagalli et al., 2008). Indeed, primary and secondary rewards
are associated with different neurological pathways (e.g. Blood

& Zatorre, 2001; Menon & Levitin, 2005; Sescousse, Caldú,
Segura, & Dreher, 2013; Thut et al., 1997). Second, mirroring
the RT-based nature of tasks used, rewards were delivered via
reaction-based feedback for single trials, following a short time
interval between the response and reward deliverance, rather
than in a continuous ‘online’ manner that better reflects the
dynamic nature of attention allocation. This is imperative for
examining the influence of ongoing reward conditioning on con-
tinuous attentional allocation (Brailean et al., 2014).

The first aim of the study was to examine reward learning from
an attentional perspective while addressing extant limitations
of selection history research in depression (Anderson, 2017;
Anderson et al., 2014; Brailean et al., 2014). Hence, here, reward-
based selection history was examined using an eye-tracking-based
gaze-contingent music reward procedure (Lazarov, Pine, &
Bar-Haim, 2017b; Shamai-Leshem, Lazarov, Pine, & Bar-Haim,
2021), in which ongoing musical reward feedback was provided
for attention allocation to one type of stimuli over another (i.e.
two types of shapes; rounded over angular), creating an associ-
ation between the (rewarded) stimulus type and the (rewarding)
music. Attention allocation was assessed pre- and post-training
using a reliable free-viewing eye-tracking attention allocation task
(Lazarov, Abend, & Bar-Haim, 2016; Lazarov, Ben-Zion, Shamai,
Pine, & Bar-Haim, 2018; Lazarov et al., 2021a), presenting similar
stimuli to those used in training, but without gaze-contingent
music. Based on past research, we predicted a differential change
pattern in attention allocation from pre- to post-training (i.e.
near-transfer effects), such that this change would be greater
among individuals with low levels of depression symptoms, com-
pared with individuals with high levels of depression symptoms.
Potential group differences in reward learning during training
(i.e. online training) were also explored, although prior research
shows no group differences on this measure.

While encouraging a specific behavior with rewards (i.e. posi-
tive reinforcement) is clearly relevant to anhedonia and depres-
sion (Carvalho & Hopko, 2011; Manos, Kanter, & Busch, 2010),
the same behavior can be also strengthened by the removal of
an aversive or negative stimulus for performing the desired behav-
ior. This process is known as negative reinforcement (Abreu &
Santos, 2008; Reinen et al., 2021) – the removal of an aversive
stimulus to increase the probability of a (desired) behavior
being repeated (Gordan & Amutan, 2014). Thus, negative and
positive reinforcement are similar in that both can be used to
attain the same result – an increase in a (desired) behavior –
but via different reinforcing cues/stimuli. In depression and anhe-
donia, research on learning processes shows that negative
reinforcement can facilitate learning processes better than positive
reinforcement (Beevers et al., 2013; Chiu & Deldin, 2007; Eshel &
Roiser, 2010; Hevey, Thomas, Laureano-Schelten, Looney, &
Booth, 2017; Maddox et al., 2012; Reinen et al., 2021; Santesso
et al., 2008). Relatedly, attention research shows depression to
be associated with an attentional preference for aversive/dysphoric
stimuli, over neutral or positive ones (Gotlib, Krasnoperova, Yue,
& Joormann, 2004; Hamilton & Gotlib, 2008; Johnston et al.,
2015; Rudich-Strassler, Hertz-Palmor, & Lazarov, 2022; Suslow,
Husslack, Kersting, & Bodenschatz, 2020). One intriguing ques-
tion in the present context is whether implementing the same
gaze-contingent procedure while substituting the appetitive
music reward (i.e. positive reinforcement) with the removal of
an aversive sound (i.e. negative reinforcement) for performing
the desired behavior (i.e. gazing rounded shapes), would yield
similar learning patterns, within and following training. This†The notes appear after the main text.
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constituted the study’s second aim. Hence, we replicated the
above-described procedure, using a new cohort of participants,
with one pivotal change – during training, gazing rounded shapes
stopped an aversive white noise that would otherwise play.

Study 1: positive reinforcement

Method

Participants
Participants were individuals with high (HD) and low (LD) levels
of depression symptoms – 28 HD participants [Mage = 23.0 ± 1.4,
22 (78.6%) females] and 30 LD participants [Mage = 23.4 + 1.8, 21
(70.0%) females]. Demographic and clinical characteristics by
group are described in Table 1 (left panel). See online
Supplementary Material for a detailed description of recruitment
processes; inclusion/exclusion criteria; and the power analysis
used to determine sample size.

Measures
Depression was assessed using the Patient Health Questionnaire-9
(PHQ-9; Kroenke, Spitzer, & Williams, 2001) and the Beck
Depression Inventory (BDI-II; Beck, Steer, & Brown, 1996),
trait anxiety via the State-Trait Anxiety Inventory-Trait subscale
(STAI-T; Spielberger, Gorsuch, & Lushene, 1970), anhedonia
via the Snaith–Hamilton Pleasure Scale (SHAPS; Snaith et al.,
1995), and musical anhedonia using the Barcelona Music
Reward Questionnaire (BMRQ; Mas-Herrero, Marco-Pallares,
Lorenzo-Seva, Zatorre, & Rodriguez-Fornells, 2012). See online
Supplementary Material for a detailed description of each
measure.

Experimental tasks
Attention allocation assessment task. Attention allocation was
assessed using an well-established eye-tracking-based free-viewing
task (Lazarov et al., 2016, 2018, 2021a, 2021b) adapted for the pre-
sent study (see online Supplementary Material for a full descrip-
tion). Briefly, participants freely viewed 30 4-by-4 shape matrices
(i.e. 16 shapes per matrix), presented for 6000ms each, with half
of the shapes being without sharp angles (i.e. rounded shapes)
and half having sharp angles (i.e. angular shapes; see Fig. 1,
right panel, for an example). Attention allocation was quantified
as dwell time percent (DT%) on rounded shapes (see below).

Gaze-contingent training task. The training task was a modi-
fied version of the assessment task, designed to divert partici-
pants’ attention toward rounded over angular shapes via music
reward. Specifically, before each training block, participants
chose a 12 minute music track (from an extensive music menu)
to which they wanted to listen during the task. During each
block, 30 successive shape matrices were presented, each for
24 s, with no inter-trial intervals. Importantly, the music played
only when fixating one of the rounded shapes. Fixating one of
the angular shapes stopped the music. Here, too, attention alloca-
tion was quantified as DT% on rounded shapes. See online
Supplementary Material for a full task description.

Attention allocation (DT%). For each matrix, in both tasks, two
areas of interest (AOI) were defined – the target AOI comprised
of the eight (rewarded) rounded shapes, and the non-target AOI
comprised of the eight (non-rewarded) angular shapes (see Fig. 1,
left panel). Total dwell time (in milliseconds) on each AOI in each
matrix (i.e. aggregating dwell time across the eight single shapes
comprising the AOI) was calculated, and the proportion of

dwell time (DT%) on the target AOI, relative to the total dwell
time on both AOIs, was computed, reflecting attention allocation
to rounded shapes on the matrix. DT% was then averaged across
the presented matrices in a block (30 matrices).

General procedure
The general procedure is fully described in the online
Supplementary Material (see also Fig. 2). Briefly, during day 1,
participants completed the assessment task (i.e. pre-training
assessment), followed by two training blocks (B1, B2), and then
competed the self-report measures. During day 2, participants
first completed two additional training blocks (B3, B4), followed
by the post-training assessment task, and were then questioned
for explicit rule learning.

Data analysis
Main analysis. Independent-samples t tests compared groups on
descriptive characteristics (e.g. age, PHQ-9, BDI-II, STAI-T,
SHAPS and BMRQ), with a χ2 test comparing groups on gender
ratio. An independent-samples t test was also used to compare
groups on attention allocation (DT%) at pre-training assessment.

Attention allocation during training, termed online learning,
was analyzed using a repeated-measures analysis of variance
(ANOVA) for DT% on rounded shapes, with group (HD/LD)
as a between-subject variable, and training block (B1-to-B4) as
a within-subject variable. A χ2 test was used to compare groups
on explicit rule learning.

To examine learning generalization from pre- to post-training,
termed near-transfer effects, a repeated-measures ANOVA for DT
% on rounded shapes was used, with group (HD/LD) as a
between-subject variable, and time (pre-training/post-training)
as a within-subject variable. Follow-up analyses included
separate paired-samples t tests to compare DT% on rounded
shapes between pre- and post-training within groups, and an
independent-samples t test was used to examine between-group
differences at post-training assessment. To address within-trial
changes in attention allocation during the assessment task, we
also conducted a time-course analysis of attention allocation by
entering Epoch as another within-subject variable to the above-
described ANOVA. Following extant eye-tracking-based atten-
tional research exploring within-trial changes in attention alloca-
tion (Armstrong & Olatunji, 2012; Felmingham, Rennie, Manor,
& Bryant, 2011; Kimble et al., 2010), each 6 s trial was divided
into three 2 s time epochs (i.e. Epochs 1–3).

While no study to date has specifically explored differences
between anxious and non-anxious individuals on attention
learning/training, prior research has implicated anhedonia and
deficient reward learning in anxiety disorders (e.g. Pike &
Robinson, 2022; Taylor, Hoffman, & Khan, 2022). Hence, to
rule out anxiety levels as a possible alternative explanation for sig-
nificant between-groups results, we also conducted a repeated-
measures analysis of co-variance, controlling for anxiety scores,
for significant findings.

All analyses were two-sided, using α of 0.05. Effect sizes are
reported in η2p for ANOVAs and Cohen’s d for t tests. Analyses
were carried with the ‘stats’ package in R, and visualized using
the ‘ggplot2’ package (Wickham, 2011).

Sensitivity analysis. Each main analysis was followed by a sen-
sitivity analysis to ensure that emergent null findings did not stem
from lack of power (i.e. type II errors). As opposed to the main
analysis in which DT% (on rounded shapes) was averaged across
the 30 matrices per block, yielding a single index per block, here
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each single matrix (i.e. each single trial) was treated as a separate
observation. Specifically, we conducted a mixed-effects linear
regression with DT% on rounded shapes as the dependent
variable, and introduced each matrix to the model as a separate
observation, instead of collapsing the 30 matrices of each assess-
ment/training block into a single observation.2 Thus, for training,
instead of having four observations per participant (i.e. 4 training
blocks), each participant now provided 120 observations (i.e. 4
training blocks × 30 matrices per block), resulting in a substan-
tially more powerful model. Similarly, in the assessment-phase
model, each participant provided 60 observations (2 assessment

blocks × 30 matrices per block) instead of only two. Participants
were modelled as random factors to account for within-subject
variance.

As in the main analysis, to rule out anxiety levels as a possible
alternative explanation for significant between-groups results,
we introduced anxiety scores to the model as a covariate. While
groups did not differ on musical anhedonia, we decided to intro-
duce BMRQ scores to the model to ascertain that musical anhe-
donia was unrelated to performance on the tasks.

We controlled the false discovery rate (FDR) with Benjamini
and Hochberg FDR correction for multiple comparisons

Table 1. Demographic and psychopathological characteristics by group – study 1 and 2

Study 1 – music Study 2 – white noise

HD (n = 28) LD (n = 30) p value HD (n = 28) LD (n = 30) p value

Demographics, M (S.D.)

Age 23.0 (1.4) 23.4 (1.8) 0.35 23.2 (2.9) 24.3 (3.4) 0.18

Gender ratio (% females) 78.6% 70.0% 0.66 82.1% 70.0% 0.44

Clinical measures, M (S.D.), range (min–max)

BDI-II (screening) 22.0 (7.1), 15–39 1.7 (1.1), 0–4 <0.001 26.4 (8.8), 14–53 1.4 (1.5), 0–4 <0.001

PHQ-9 (screening) 14.4 (3.2), 10–22 2.1 (1.4), 0–4 <0.001 16.6 (3.9), 12–25 1.5 (1.7), 0–4 <0.001

PHQ-9 (session) 15.1 (3.5), 10–22 3.6 (2.2), 0–9 <0.001 15.4 (4.0), 10–23 3.0 (2.8), 0–9 <0.001

STAI-T 56.4 (10.8), 36–76 34.1 (7.1), 22–49 <0.001 58.8 (9.5), 39–77 33.8 (8.7), 21–65 <0.001

SHAPS 28.8 (5.9), 17–44 20.4 (5.3), 14–30 <0.001 28.5 (6.4), 16–41 21.2 (5.6), 14–34 <0.001

BMRQ/Noise annoyance 69.5 (11.7), 45–92 70.6 (12.0), 40–88 0.71 6.2 (2.5), 0–10 5.0 (2.4), 0–8 0.08

CD-RISC – – – 19.4 (7.4), 2–34 29.9 (7.0), 9–40 <0.001

Note. HD, high depression (group); LD, low depression (group); BDI-II, Beck Depression Inventory-II; PHQ-9, Patient Health Questionnaire-9; STAI-T, State-Trait Anxiety Inventory – Trait;
SHAPS, Snaith-Hamilton Pleasure Scale; BMRQ, Barcelona Music Reward Questionnaire; CD-RISC, Connor-Davidson Resilience Scale.

Figure 1. An example of a single matrix (right panel) and
the two areas of interest (AOIs; left panel). Each 4 × 4
matrix is comprised of 16 different shapes, half being
rounded with no sharp angles (i.e. rounded shapes),
and half having sharp angles (i.e. angular shapes). The
red square (in the middle of the right figure) indicates
the ‘four inner positions’. AOI, area of interest.
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(Benjamini & Hochberg, 1995). Effect sizes in the sensitivity
analysis are reported with standardized β. Analyses were carried
with the ‘lmerTest’ package in R (Kuznetsova, Brockhoff, &
Christensen, 2017).

Secondary analysis. As HD participants were not formally
assessed per the diagnostic criteria for depression, and to account
for within-group heterogeneity in PHQ-9 scores, we repeated our
analysis using PHQ-9 scores as a continuous predictor in a
mixed-effects linear model. As noted for the sensitivity analysis,
each single matrix was treated as a separate observation while
modeling participants as random effects. To address the potential
effects of anhedonia (SHAPS scores) on emergent findings (i.e.
the two groups also differed on SHAPS scores, also showing
within-group heterogeneity), while accounting for its multicolli-
nearity with PHQ-9 scores, we replicated this analysis in separate
models with SHAPS scores, rather than PHQ-9 scores, as the
predictor.

Results

Data and codes for all analyses are openly available in Open
Science Foundation.

Sample characteristics
Demographic and clinical characteristics by group are described
in Table 1 (left panel). The HD group scored significantly higher
on depression (PHQ-9; BDI-II), trait anxiety (STAI-T), and anhe-
donia (SHAPS) ( p < 0.001). No group differences emerged for
age, gender ratio, or musical anhedonia (BMRQ).

Online learning (DT% during training)
DT% on rounded shapes by group and training block is shown in
Fig. 3A [left panel; see Fig. 3B (left panel) for individual trajector-
ies]. Only a main effect of block emerged, F(3,168) = 24.5, p < 0.001,
η2p = 0.30, reflecting an increase in attention allocation toward
rounded shapes during training, indicative of online reward learn-
ing. The sensitivity analysis confirmed these results (online
Supplementary Table S1). Results were replicated with PHQ-9/
SHAPS scores as a continuous predictor in mixed-effects linear
models (see online Supplementary Table S9/S10, respectively).

Explicit rule learning
No significant group difference was noted for explicit rule learn-
ing [HD: 11 (39.3%) learners; LD: 14 (46.7%) learners], χ2(1) =
0.09, p = 0.76.

Near-transfer effects (DT% from pre- to post-training)
No significant group difference emerged for DT% on rounded
shapes at pre-training (HD = 0.54 + 0.08, LD = 0.52 + 0.05),
t(56) = 1.27, p = 0.21.

DT% on rounded shapes by group and assessment time is
shown in Fig. 3c [left panel; see Fig. 3d (left panel) for individual
trajectories]. A significant group-by-time interaction effect
emerged, F(1,56) = 7.82, p = 0.007, η2p = 0.12. Post-hoc analysis of
the LD group revealed a significantly higher DT% at post-training
(mean = 0.61 ± 0.18) relative to pre-training (mean = 0.52 ± 0.05),
t(29) = 2.79, p = 0.009, Cohen’s d = 0.52. For the HD group, no sig-
nificant difference was found between pre- (mean = 0.54 ± 0.08)
and post-training (mean = 0.52 ± 0.12). Group difference for DT

Figure 2. Flow diagram of the study procedures. WN, white noise.
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% on rounded shapes at post-training was significant, t(56) =
−2.15, p = 0.036, Cohen’s d = −0.57. The group-by-time inter-
action effect remained significant after controlling for anxiety
levels, F(1,56) = 7.82, p = 0.007, η2p = 0.12.

Additional analyses showed that Epoch had no effect on DT% on
rounded shapes and did not significantly interact with either time or
group (see online Supplementary Table S7); that the sensitivity ana-
lysis confirmed the main results (see online Supplementary Table S2);
and that results were replicated when treating PHQ-9/SHAPS scores
as a continuous predictor [see online Supplementary Table S11/S12
and Fig. S1/S2 (left panel), respectively].

Study 2: negative reinforcement

Method

Participants
Akin to study 1, participants were 28 HD [Mage = 23.2 + 2.9, 23
(82.1%) females] and 30 LD [Mage = 24.3 + 3.4, 21 (70.0%)
females] participants. Demographic and clinical characteristics
by group are described in Table 1 (right panel). See online
Supplementary Material for a comprehensive description.

Measures
Same measures were administered in study 2. Yet, as white noise,
not music, was used as the reinforcer, rather than assessing
musical anhedonia, we assessed resilience to adverse events via

the Connor–Davidson Resilience Scale (CD-RISC; Campbell-
Sills & Stein, 2007) and noise annoyance using a single question
developed and recommended by the International Commission
on Biological Effects of Noise (ICBEN; Fields et al., 2001). See
online Supplementary Material for a detailed description of
these measures.

Procedure, tasks, and measures
The procedure was identical to that of study 1, but with one cru-
cial change – rather than music playing when fixating one of the
rounded shapes, here gazing one of these shapes (the target AOI)
stopped an aversive white noise that would otherwise play. See
online Supplementary Material for additional information on
the procedure, tasks, and measures.

Data analysis
The statistical approach was similar to that of study 1.

Results

Data and codes for all analyses are openly available in Open
Science Foundation.

Sample characteristics
Demographic and clinical characteristics by group are described
in Table 1 (right panel). As in study 1, the HD group scored

Figure 3. DT% on target stimuli (i.e. the rounded shapes) by group and: (a) training block (B1 to B4) – the music reinforcer (left panel; study 1) and the white noise
reinforcer (right panel; study 2); and (c) assessment (pre-training, post-training) – the music reinforcer (left panel; study 1), and the white noise reinforcer (right
panel; study 2). Figures 3b and 3d are similar to Figs 3a and 3C, respectively, but with individual trajectories. Shaded area in Figs 3a and 3c represents 95% con-
fidence intervals. DT%, dwell time percent; HD, high depression; LD, low depression.
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significantly higher on depression (PHQ-9; BDI-II), trait anxiety
(STAI-T), and anhedonia (SHAPS) ( p < 0.001). The HD group
also showed significantly lower resilience (CD-RISC) ( p <
0.001), and scored marginally higher on noise annoyance ( p =
0.08). No group differences emerged for age, or gender ratio.

Online learning
DT% on rounded shapes by group and block is shown in Fig. 3a
[right panel; see Fig. 3b (right panel) for individual trajectories].
Akin to study 1, only a main effect of block emerged, F(3,168) =
17.5, p < 0.001, η2p = 0.24, reflecting the intended increase in
attention allocation (toward rounded stimuli) during training in
both groups. The sensitivity analysis confirmed these results
(online Supplementary Table S3). Like study 1, results were repli-
cated with PHQ-9/SHAPS scores as a continuous predictor (see
online Supplementary Table S13/S14, respectively).

Explicit rule learning
No significant group difference was noted for explicit rule learn-
ing [HD: 15 (53.6%) learners; LD: 13 (43.3%) learners], χ2(1) =
0.27, p = 0.61.

Near-transfer effects
No significant group difference emerged for DT% on rounded
shapes at the pre-training assessment (HD = 0.52 ± 0.04, LD =
0.50 ± 0.04), t(56) = 1.19, p = 0.24.

DT% on rounded shapes by group and assessment time is
shown in Fig. 3c [right panel; see Fig. 3d (right panel) for individ-
ual trajectories]. Only a significant main effect of time emerged,
F(1,56) = 18.8, p < 0.001, η2p = 0.25. Diverging from study 1, no
group-by-time interaction effect emerged, reflecting no group dif-
ferences in DT% change from pre- to post-training. Post-hoc ana-
lysis of the main effect of time revealed a significantly higher DT
% at post-training relative to pre-training in both the LD, t(29) =
2.97, p = 0.006, d = 0.55, and the HD group, t(27) = 3.16, p = 0.004,
d = 0.61, with more time spent dwelling on rounded shapes at
post-training (LD: mean = 0.57 ± 0.13; HD: mean = 0.60 ± 0.15),
compared to pre-training (LD: mean = 0.50 ± 0.04; HD: mean =
0.52 ± 0.04). No group difference in DT% on rounded shapes
emerged at post-training.

Akin to study 1, additional analyses showed that Epoch had no
effect on DT% on rounded shapes and did not significantly inter-
act with either time or group (see online Supplementary
Table S8); that the sensitivity analysis confirmed the main results
(see online Supplementary Table S4); and that results were repli-
cated when treating PHQ-9/SHAPS scores as a continuous pre-
dictor [see online Supplementary Table S15/S16 and Fig. S1/S2
(right panel), respectively].

Additional analyses

To further explore the emergent data across both studies, the
below-described additional analyses were conducted. For a com-
plete description of all data analyses and results, see online
Supplementary Material. All analysis codes are openly available
in Open Science Foundation.

First, to better elucidate the discrepancy between the two stud-
ies in the group-by-time interaction effect of learning generaliza-
tion (i.e. near-transfer effect), we conducted an integrated
group-level analysis using a unified model consisting of all parti-
cipants from both studies (N = 116). Results confirmed that the
discrepancy between the two studies was statistically significant

[i.e. a group (HD/LD)-by-time (pre-post)-by-reinforcer (music/
white noise) interaction; see online Supplementary Table S5].

Second, to better understand the emergent learning processes,
individual eye-tracking gaze data were analyzed at the individual
level, taking a within-person approach. Individual-level analyses
included exploration of: (1) learning magnitude (for both online
learning and near-transfer effects); (2) predicting learning (explor-
ing whether specific changes in DT% between subsequent train-
ing steps could predict online learning and near-transfer
effects); (3) (online) learning speed; and (4) (online) learning pat-
terns (i.e. cluster analysis).

For learning magnitude, results replicated those of the group-
level analyses – no group differences in online learning with either
reinforcer, with a significant group difference on near-transfer,
but only when reinforced with music (see Fig. 4 for descriptive
individual trajectories of online learning; 4A for music and 4B
for white noise). The associations pattern between the three learn-
ing indices (online learning, near-transfer, explicit rule learning)
further supported this result (see Fig. 5).

For predicting learning, results showed that matrices 6–10 (i.e.
change in DT% from matrices 1–5 to matrices 6–10 matrices)
were the only assemblage that consistently predicted online learn-
ing in both groups under both reinforcers. For near-transfer effects
this assemblage was predictive among LD participants under both
types of reinforcers, while among HD participants it was predict-
ive only under white noise (see online Supplementary Table S6).

Zooming in on the above-emergent ‘hot-spot’ (matrices 1–10),
learning speed results showed no group differences in speed under
the music reinforcer. Conversely, HD participants showed faster
learning compared with LD participants when reinforced with
white noise.

Finally, the cluster analysis yielded three learning patterns –
quick learners, slow learners, and non-learners, which differed
significantly on their respected learning trajectories (see Fig. 6).
Cluster distribution did not differ between reinforcer types,
which was also independent of group under both music and
white noise. Conversely, cluster was associated with explicit rule
learning under both reinforcers. Comparing clusters on near
transfer effects (i.e. learning magnitude) showed that both learner
types (quick, slow) showed significantly higher learning than non-
learners, under both reinforcers, with the two learner types not
differing under either music or white noise. See online
Supplementary Tables S_CA1–CA15.

Discussion

The present study examined reward learning in depression from
an attentional perspective. In study 1, individuals with high
(HD) and low (LD) levels of depressive symptoms underwent a
novel gaze-contingent music reward learning procedure while
their attention allocation to rewarded and non-rewarded stimuli
was examined, during and following training. While no group dif-
ferences in learning emerged during training, groups differed sig-
nificantly in their attention allocation at post-training – unlike LD
participants, HD participants showed no learning-related changes
post-training. In study 2, a similar procedure with negative (i.e.
white noise), rather than positive (i.e. music), reinforcement yielded
no group differences, with both groups showing the intended
change in attention allocation post-training. Results of both studies
were maintained when controlling for anxiety, and were replicated
when using a more powerful sensitivity analysis and when treating
depression scores as a continuous variable/predictor.
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The impaired near-transfer effect following reward learning in
HD participants concur with past research showing blunted
reward responsiveness and impaired reward learning in depres-
sion and anhedonia, from both a neuroscience (Borsini, Wallis,
Zunszain, Pariante, & Kempton, 2020; Eshel & Roiser, 2010;
Keren et al., 2018; Luking, Pagliaccio, Luby, & Barch, 2016;
Pizzagalli, 2022; Whitton, Treadway, & Pizzagalli, 2015), and a
behavioral perspective (Eshel & Roiser, 2010; Halahakoon et al.,

2020), while elaborating extant knowledge to the realm of atten-
tion. This lack of near-transfer effects is also in line with the
few early RT-based studies of selection history in depression,
that also showed less attentional capture post-training by previ-
ously rewarded stimuli in individuals with high depressive symp-
toms (Anderson et al., 2014, 2017). Yet, elaborating on these
earlier studies, here, eye-tracking methodology was used to assess
attention allocation following training, rather than RT-based

Figure 4. Individual descriptive trajectories of online learning during the training task: (a) the Music reinforcer (study 1), and (b) the white noise reinforcer (study 2).
HD, high depression; LD, low depression.
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attentional measures derived from manual keypresses, which
enabled the exploration of the time course and dynamics of atten-
tion deployment (Lazarov et al., 2019). Relatedly, eye tracking was

also used in the reward training/learning procedure itself – reward
(i.e. the music) was delivered in a continuous gaze-contingent
‘online’ manner, rather than following a short time interval

Figure 5. Correlation between learning indices, stratified by
group and reinforcer: (a) Near transfer and online learning;
(b) near transfer and explicit rule learning; and (c) online learn-
ing and explicit rule learning. Asterisks represent p < 0.001.
Shaded area represents 95% confidence intervals. HD, high
depression; LD, low depression.
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after the manual response (i.e. the keypress), better corresponding
with the dynamic nature of ongoing attention allocation (Brailean
et al., 2014). Finally, music reward, considered a primary reinfor-
cer, was used, rather than monetary reward, considered a second-
ary reinforcer which is less motivating for depressed individuals
(e.g. Godara et al., 2019; Maddox et al., 2012; Pizzagalli et al.,
2008). The fact that groups did not differ on musical anhedonia,
also found to be unrelated to performance on the tasks, suggests
that current findings cannot be attributed to group differences on
the rewarding value of the music (i.e. the liking aspect of
anhedonia).

Unlike group differences in near-transfer following reward
learning (study 1), no corresponding group differences were
noted when using a similar negative-reinforcement procedure
(study 2), echoing previous (non-attentional) research showing
enhanced sensitivity to negative outcomes among depressed indi-
viduals (Baek et al., 2017; Beevers et al., 2013; Chandrasekhar
Pammi et al., 2015; Hevey et al., 2017; Johnston et al., 2015;
Maddox et al., 2012; Reinen et al., 2021; Santesso et al., 2008;
Smoski et al., 2008; Trew, 2011), while expanding extant knowl-
edge to the realm of attention. Our integrated and exploratory
analyses further support the difference between the effects of posi-
tive and negative reinforcement among HD and LD individuals.
Specifically, results showed that while positive and negative rein-
forcements yielded similar online learning in both groups, near-
transfer effects (the intended shift in attention post-training)
were noted under both reinforcements only among LD partici-
pants, while HD participants presented near-transfer effects
exclusively under negative reinforcement. This suggests that for
HD individuals, aversive reinforcers may yield better learning-
based shifts in attention, compared with positive reinforcers,

reflecting a specific aberration in reward-related selection history
in depression. This is further supported by the emergent correla-
tions between the three learning indices (i.e. online learning,
explicit rule learning, and near-transfer effects), which were posi-
tively associated among LD participants regardless of reinforcer
type. Conversely, association with near-transfer effects among
HD participants emerged only when using negative, but not posi-
tive, reinforcement. Predicting learning based on the first 10 train-
ing matrices echoed these findings, as these matrices predicted
online learning in both groups under both reinforcer types, but
were predictive of near-transfer effects under both reinforcer
types only among LD participants. For HD participants, predic-
tion emerged only under the white noise reinforcer. Taken
together, these results echo the ‘inverse functionality’ effect –
hypo- and hyper-striatal activity among depressed individuals in
response to reward and punishment, respectively (Groenewold,
Opmeer, de Jonge, Aleman, & Costafreda, 2013; Johnston et al.,
2015; Scheuerecker et al., 2010; Ubl et al., 2015), highlighting
the potency of negative reinforcers in the facilitation of learning
and attention modulation among depressed individuals. While
this phenomenon is well-established in neuroscience, it has
been relatively neglected in behavioral research, including
attention.

Unlike the divergent results of the two studies/reinforcers
when exploring near-transfer effects, examining performance
during training (i.e. online learning) yielded similar results in
both studies – both HD and LD participants showed the intended
increase in attention allocation toward rounded shapes (online
learning), echoing previous research on learning in depression,
using both positive (e.g. Anderson, 2017; Anderson et al., 2014)
and negative reinforcement (e.g. Maddox et al., 2012; Reinen

Figure 6. Clustered trajectories of online learning during training. Bold lines represent averaged trajectories of the clusters classified by K-means, with training
matrices (1–120) as input. Light lines depict individual trajectories. Shaded areas represent 95% confidence intervals. DT%, dwell time percent.
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et al., 2021). Our cluster analysis of gaze data during training fur-
ther supports the notion that HD and LD participants do not dif-
fer in online learning, regradless of reinforcer type. Specifically,
while three significant clusters emerged (i.e. quick learners, slow
learners, and non-learners), cluster distribution did not differ
between the two reinforcer types (positive, negative) or between
groups (HD, LD) under both the music and white noise
conditions.

Surprisingly, exploring learning speed during the first 10 train-
ing matrices showed a higher learning speed in the HD group,
compared to the LD group, when reinforced with white noise,
but not when reinforced with music, which may represent a pos-
sible ‘compensation’ mechanism enabling generalization of learn-
ing under negative reinforcement. Put differently, heightened
experienced averseness of negative outcomes among HD indivi-
duals may better motivate or enable generalization of learning,
which is absent when encountering rewards. Thus, ‘escaping’
aversive stimuli might be better embedded and reflected in subse-
quent selection history. The fact that compared with LD partici-
pants, HD individuals scored significantly lower on resilience to
adverse events, and scored higher on noise annoyance (albeit at
trend level), supports this suggestion, with noise annoyance also
predicting attention allocation during training with white noise
(at trend level).

Several limitations should be acknowledged. First, participants
were individuals with high and low levels of depression symp-
toms. While stringent inclusion criteria were used (i.e. two
depression measures at screening; score stability on the
PHQ-93), future research should replicate the present study
using clinically diagnosed MDD patients. Still, using depression
scores as a continuous, rather than a grouping, variable yielded
similar results, strengthening our confidence in current findings.
Second, as the present study aimed to explore selection history
in depression, building on past research in the field (Anderson,
2017; Anderson et al., 2014; Brailean et al., 2014), participants
were recruited based on depression scores. It is very likely, how-
ever, that anhedonia – a key feature of depression (American
Psychiatric Association, 2013) – plays a primary role in reward-
based selection history in depression, possibly contributing to
emergent results. Indeed, our sensitivity analysis with anhedonia
scores yielded similar results to those obtained with depression
scores. To further elucidate the specific role of anhedonia in
reward-based selection history, future research could replicate
the present one while recruiting participants based on anhedonia
symptoms (e.g. SHAPS scores), or specifically recruit those high
on anhedonia but low on depression. Relatedly, as anhedonia is
a clinical feature of additional psychopathologies (e.g. PTSD),
future research could also replicate the present study in these
other conditions. Third, the present study did not include
a follow-up assessment of attention allocation to examine the sta-
bility of near-transfer effects over time, which is especially import-
ant for the effects noted for HD participants under negative
reinforcement (study 2). Future research in depression should
explore this, as previously done for positive-reinforcement proce-
dures (Schneier & Lazarov, 2022; Shamai-Leshem et al., 2021).
Fourth, as non-emotional geometrical shapes were used, we
could not explore whether negative reinforcement could coun-
ter/overcome attention biases to negative information characteriz-
ing depressed individuals (Suslow et al., 2020), especially as
positive-reinforcement procedures have failed in doing so
(Shamai-Leshem et al., 2021). Future studies could replicate the
present study using emotional stimuli (e.g. sad/happy faces).

Fifth, rounded shapes were randomly chosen by the research
team to serve as the target shape type, assuming no a priori dif-
ferences between groups on attentional preference for rounded
vs. angular shapes. Indeed, the pre-training assessment task
showed no group differences in DT% (which was around 0.5 in
both groups across both studies). Yet, we encourage future
research to counterbalance the angular vs. rounded shapes as tar-
get shapes. Finally, reward-based selection history was explored
using an established gaze-contingent paradigm previously used
in depression (Shamai-Leshem et al., 2021). While advantageous
in some aspects, this paradigm is ‘deterministic’ in nature as
reinforcement is delivered using a 100% ratio – each fixation on
rounded shapes resulted in music playing (study 1)/removal of
noise (study 2). Hence, it does not entail the trial-wise dynamics
of probabilistic reinforcement learning tasks used in past research
on selection history in depression (Anderson, 2017; Anderson
et al., 2014). As probabilistic reinforcement learning tasks have
shown a bidirectional interaction between attention allocation
and trial-and-error reinforcement learning processes (e.g. Leong,
Radulescu, Daniel, DeWoskin, & Niv, 2017), future research
could incorporate non-100% (positive or negative) reinforcement
ratios within the present paradigm.

Current findings may have some clinical implications, espe-
cially for reinforcement-based interventions. In attention,
research has utilized gaze-contingent attention modification pro-
cedures to modify patients’ (biased) attention to dysphoric over
positive/neutral stimuli (for reviews see Gotlib & Joormann,
2010; LeMoult & Gotlib, 2019; Suslow et al., 2020), hoping to alle-
viate depression symptoms (Möbius, Ferrari, van den Bergh,
Becker, & Rinck, 2018; Shamai-Leshem et al., 2021; Woolridge,
Harrison, Best, & Bowie, 2021). Especially relevant is a recent ran-
domized control trial that used a similar gaze-contingent music
reward procedure to divert participants’ attention away from
sad and toward happy faces (Shamai-Leshem et al., 2021).
While online learning was observed during training, no signifi-
cant differences in symptom reduction were noted between the
active and a placebo group that received non-contingent music
throughout training (see also Möbius et al., 2018; Woolridge
et al., 2021 for similar null findings). Importantly, the two groups
also did not differ on pre-to-post changes in attention allocation
(i.e. near-transfer effects). Considering current results, this lack of
clinical efficacy may be attributed to aberrant reward-based selec-
tion history in depression, namely, failure to induce experienced-
based shifts in attention following training. Put differently, if
near-transfer effects are not achieved post-training, why should
far-transfer effects (i.e. symptom change) follow? (Lazarov,
Abend, Seidner, Pine, & Bar-Haim, 2017a). Indeed, using the
same procedure in social anxiety showed a significant reduction
in attention allocation post-treatment, sustained 3 months follow-
ing training (Zhu et al., 2022), which partially mediated a signifi-
cant reduction in symptoms (Lazarov et al., 2017b). Thus,
present findings strengthen the specificity of aberrant reward-based
selection history to depression. Taking a broader perspective, pre-
sent results may be also relevant for other interventions, such as
behavioral activation, that aim to induce or restore positive affect
in depressed patients by encouraging rewarding activities (Hopko,
Lejuez, Ruggiero, & Eifert, 2003). Yet, due to reward bluntness,
this most often remains an unmet therapeutic goal (Craske et al.,
2019). Current results accentuate the intricacy, including atten-
tional ones, of relying on hedonic capacity in MDD interventions.

To conclude, present results implicate aberrant selection his-
tory in individuals with high levels of depression symptoms, but
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only when based on positive reinforcement, that is, when using
rewards. When negative reinforcement is used, no deficits emerge.
Current findings may offer future avenues for both clinical and
basic research on learning and attention in depression and anhe-
donia, highlighting the efficacy of negative, over positive,
reinforcement in producing experience-based changes in atten-
tion allocation.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291723002519.
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Notes
1 Motor confounds in attentional research can be also addressed when using
reaction-time-based tasks (i.e. tasks entailing keypresses) by either modeling
these using, for example, sequential-sampling models, or by using conditions
where motor demands are matched, but factors expected to affect information
processing are not.
2 Random intercepts were allowed to vary at the participant level (to estimate
whether non-significant effects potentially resulted from type-II errors by
enhancing statistical power, while accounting for inter-individual differences
in baseline DT% on rounded shapes).
3 Future research should assess score stability of both depression measures (i.e.
PHQ-9 and BDI-II).
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