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Abstract

This paper is concerned with the solution of the optimal stopping problem associated
to the value of American options driven by continuous-time Markov chains. The value-
function of an American option in this setting is characterised as the unique solution
(in a distributional sense) of a system of variational inequalities. Furthermore, with
continuous and smooth fit principles not applicable in this discrete state-space setting, a
novel explicit characterisation is provided of the optimal stopping boundary in terms of the
generator of the underlying Markov chain. Subsequently, an algorithm is presented for the
valuation of American options under Markov chain models. By application to a suitably
chosen sequence of Markov chains, the algorithm provides an approximate valuation
of an American option under a class of Markov models that includes diffusion models,
exponential Lévy models, and stochastic differential equations driven by Lévy processes.
Numerical experiments for a range of different models suggest that the approximation
algorithm is flexible and accurate. A proof of convergence is also provided.

Keywords: Markov chain; American option; free-boundary problem; optimal stopping;
Feller process; numerical approximation

2010 Mathematics Subject Classification: Primary 91G20
Secondary 60J27; 65C40

1. Introduction

American options. The valuation of American options is an active research topic that has
received a good deal of attention in the literature. Related American-type optimal stopping
problems turn up in the modelling of trading and investment decisions, and real options (see,
e.g. [4] and [6]). The theoretical and numerical aspects of American option valuation have been
investigated using a diverse collection of tools, methods, and techniques, in several different
settings; see [11] for an overview and references. It was understood early on that, as a
consequence of the embedded optionality of the time of exercise, the value of anAmerican option
is equal to the value of an optimal stopping problem. For instance, under Samuelson’s geometric
Brownian motion model, which is considered to be the benchmark model for the evolution of
the price of a risky stock, the optimal policy in the case of an American put is to exercise
at the first moment the stock price falls below a certain boundary. In this setting it was first
observed by McKean [22] that the value-function of an American option solves a free-boundary
problem. Jacka [13] and Peškir [24] established this exercise boundary to be the unique solution
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of an integral equation. Motivated by the observed features of empirical returns data the focus
in modelling has subsequently shifted to more general classes of Markov processes, such as
diffusions and jump processes. In the setting of Lévy processes the analytical characterisation of
the value-function and optimal boundary of an American put was investigated among others by
Boyarchenko and Levendorskiı̆ [5] and Lamberton and Mikou [21]. In another line of research,
going back at least as far as Cox et al. [10], a discrete-time and discrete-space approach was
developed for the valuation of American options in the setting of a binomial tree. In later
years many extensions and refinements of the discrete-time approach have been developed,
for example, to tri- and multinomial trees. The connection between the two approaches was
investigated in, e.g. Lamberton [19], Ahn and Song [2], and Szimayer and Maller [26] where
(rates of) convergence of the values ofAmerican options under binomial and trinomial, and finite
state models were established to those under the limiting Brownian or Lévy model, respectively.
Kushner and Dupuis [18] proposed numerical methods for the solution of stochastic control
problems in diffusion settings based on an approximation of the state process by Markov chains.

American options under Markov chains. In this paper we consider the optimal stopping problem
associated to an American option in the setting of a continuous-time Markov chain with discrete
state-space. Stochastic processes from this class have served as models for the evolution of
random quantities that take values in lattices. Models from this class, which contains the
classical birth–death processes, have recently also been deployed to model the state of the order
book or the limit price; see, e.g. [1] and the references therein. Furthermore, Markov chains
have been deployed as models on a discrete state-space that closely approximate continuous-
space diffusions, jump-diffusions, and general Feller processes. In a continuous-time Markov
chain setting, we solve the optimal stopping problem associated to the valuation of an American
option with a payoff that is a function of the Markov chain. While it follows from the general
theory of optimal stopping that the optimal stopping time is given by the first passage time
into a certain set (see [25]), the characterisation of the value-function as the solution of a
corresponding free-boundary problem and the identification of the optimal boundary involve
nonstandard arguments. Taking advantage of the explicit form of the semigroup we demonstrate
that the value-function of such anAmerican option is the unique solution in a distributional sense
of an associated free-boundary problem, and deduce that the value-function is in fact a classical
solution by showing that it is continuously differentiable as function of time (see Theorem 3.1
below). In cases when the payoff and Markov process are sufficiently regular, pasting principles
have been used to identify and characterise the optimal boundary. In the case that the payoff
function is continuously differentiable in a neighbourhood of the boundary and the underlying
is a real-valued Feller process, the general theory of optimal stopping (see [25]) suggests that
it can be expected that, at the boundary, the value-function is continuously differentiable if, for
the Feller process, the boundary is regular for itself, while the value-function can be expected
to be merely continuous at the boundary if, for the Feller process, the boundary is irregular for
itself. These two heuristics are known as the smooth-pasting and continuous-pasting principles,
respectively. See [25] for a general treatment of pasting principles, and [3] and [20] for an
investigation of the validity of pasting principles in the case of the optimal stopping problem
associated to an American put option under a Lévy process. However, in the case of a discrete
state-space with finite transition rates the smooth- and continuous-pasting principles no longer
apply due to the lack of smoothness that is a result of the discrete state-space. In the absence
of pasting principles, we derive an explicit characterisation of the optimal stopping boundary
directly in terms of the infinitesimal generator of the Markov chain, in the case that the optimal
stopping boundary is monotone (see Theorem 4.1 below).
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Algorithm. Deploying this characterisation, we design an algorithm for the computation
of the value-function of an American option under a continuous-time Markov chain model.
By constructing the Markov chain such that it closely follows the evolution of a given Feller
process (e.g. by using the construction from [23]), this algorithm, with the constructed Markov
chain as input, provides a method for the valuation of American options under the Feller
process in question. An advantage of the Markov chain model is its computational tractability:
we demonstrate in this paper that the described algorithm provides an efficient and accurate
method for the valuation of American options, and the computation of the optimal boundary,
using the powerful tools of matrix-based computations. The idea of valuation using Markov
chain approximation goes back at least as far as Kushner [17] in the case of diffusions, and was
further developed in, e.g. [23]. To illustrate its effectiveness, we implemented the algorithm
for a local-volatility model with jumps, and report results (such as estimates of the errors) in
Section 7. We also give a proof of convergence of the approximation method.

Contents. The remainder of the paper is organised as follows. Section 2 contains
preliminaries and notation that is used throughout the paper. Section 3 is devoted to the free-
boundary problem associated to the American option driven by a continuous-time Markov
chain and contains a characterisation of the optimal boundary, and in Section 5 an algorithm is
presented for solving this free-boundary problem. Convergence of the algorithm is established
in Section 6, and a number of numerical examples are analysed in Section 7. Appendix A and
Appendix B contain the dynamic programming algorithm for valuing American options using
Markov chains and the proof of Lemma 2.1 below.

2. Preliminaries

2.1. Setting: Markov chains

We next set the notation that will be used throughout the paper. Let X be a continuous-time,
time-homogeneous Markov chain with discrete state-space G = {xi, i ∈ N} and generator
matrix �, defined on some filtered probability space (�, G, G, P) where G = {Gt }t∈[0,T ]
denotes the completed right-continuous filtration generated by X. Assume that X is a Feller
process with càdlàg paths (see [8, Section 2.2] for background), and denote the infinitesimal
generator of X by �. To avoid explosion of the chain X in finite time, we assume that � has
uniformly bounded elements according to the following assumption.

Assumption 2.1. The infinitesimal generator � of X satisfies the condition

sup
x∈G
|�(x, x)| <∞.

Denoting by l∞(G) the collection of bounded real-valued functions with domain G, we recall
that the semigroup of X is equal to the collection (Pt , t ∈ R+) of maps Pt : l∞(G)→ l∞(G)

that is expressed in terms of the infinitesimal generator � : l∞(G)→ l∞(G) of X by

(Ptf )(x) =
∑
y∈G

Pt(x, y)f (y), t ∈ R+, x ∈ G, f ∈ l∞(G),

Pt (x, y) = P{Xt = y | X0 = x} =: Px{Xt = y}, x, y ∈ G,

with Pt = exp(t�) = ∑∞
n=0(t

n/n!)�n and �n = �n−1 ◦ �, i.e. �nf = �n−1(�f ) for any
f ∈ l∞(G). The infinitesimal generator � is given by

�f (x) =
∑
y∈G

�(x, y)f (y), �(x, y) = (�δy)(x), x ∈ G, f ∈ l∞(G),
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with (1 − δy(x))�(x, y) ≥ 0 and
∑

z∈G �(x, z) = 0, x, y ∈ G, where δy is the Kronecker
delta, which is the map on G that is equal to 1 if x and y are equal and 0 otherwise. In particular,
it follows that the expected value of the payoff φ(XT ) at time T , where φ is an arbitrary map
from the set l∞(G), is given by

Et,x{φ(XT )} = E0,x{φ(XT−t )} = (exp((T − t)�)φ)(x), x ∈ G, t ∈ [0, T ], (2.1)

where Et,x{·} = E{· | Xt = x} denotes the conditional expectation under the measure P

conditioned on {Xt = x}. For a bounded function f : [0, T ]×G→ R we also use the notation

(Puf )(t, x) = (Puft )(x), t, u ∈ [0, T ],
where ft is the map ft : G→ R given by ft (x) = f (t, x). Discounting at rate r ≥ 0 can be
incorporated by replacing the infinitesimal generator � by the subgenerator �(r) given by

�(r) = �− rI,

where I : l∞(G)→ l∞(G) is the identity map, so (2.1) generalises to

Et,x{e−rT φ(XT )} = (exp((T − t)�(r))φ)(x), x ∈ G, t ∈ [0, T ]. (2.2)

Remark 2.1. The Markov property of the chain X together with the identity in (2.2) imply that
the discounted process {e−rtXt , t ∈ R+} is a martingale precisely, if we have

E0,x{e−rtXt } = x for all x ∈ G.

2.2. Dynkin’s lemma

Throughout this paper the following version of Dynkin’s lemma will be frequently deployed
in the analysis.

Lemma 2.1. Assume that the function F : [0, T ]×G→ R is bounded and that for any x ∈ G,
the map t �→ F(t, x) is continuous with density f (t, x) that is nonnegative for almost every
t ∈ [0, T ]. Then we have for any t ∈ [0, T ] and any G-stopping time τ taking values in the
interval [t, T ],

Et,x{e−r(τ−t)F (τ, Xτ )} = F(t, x)+ Et,x

{∫ τ

t

e−r(s−t)(�F)(s, Xs) ds

}
(2.3)

with the map �F : [0, T ] ×G→ R defined by

(�F)(t, x) = f (t, x)+ (�(r)F )(t, x), t ∈ [0, T ], x ∈ G. (2.4)

A proof is provided in Appendix B.

3. A Markov chain free-boundary problem

An American option with a payoff function given by φ and maturity T > 0, on an underlying
with price process denoted by X = {Xt, t ∈ [0, T ]}, is a derivative security that entitles its
holder to receive the payoff φ(Xt ) at any time t prior to the maturity T that he/she wishes to
exercise the contract. The most common type of American options are the American call option
with strike K , which has payoff φ(s) = (s −K)+ (with x+ = max{x, 0} for x ∈ R), and the
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American put option with strike K , which has payoff given by φ(s) = (K − s)+. We assume
that the payoff function φ : G→ R+ is nonnegative and satisfies the integrability condition

E0,x

{
sup

t∈[0,T ]
φ(Xt )

}
<∞, x ∈ G. (3.1)

The value V ∗t of the American option at time t ∈ [0, T ] with payoff function φ is given by

V ∗t = ess sup
τ∈Tt,T

E{e−rτ φ(Xτ ) | Gt },

where Tt,T denotes the set of G-stopping times taking values between t and T . The process
V ∗ = {V ∗t , t ∈ [0, T ]} is called the Snell-envelope of the collection of discounted payoffs
� = {e−rtφ(Xt ), t ∈ [0, T ]}: it is the smallest G-supermartingale that is bounded below
by �. The Markov property of X implies that V ∗t = V (t, Xt ), where the value-function of the
American option V = {V (t, x), t ∈ [0, T ], x ∈ G} is given by

V (t, x) = sup
τ∈Tt,T

Et,x{e−r(τ−t)φ(Xτ )} (3.2)

= sup
τ∈T0,T−t

E0,x{e−rτ φ(Xτ )}, (t, x) ∈ [0, T ] ×G, (3.3)

where the second line is a consequence of the homogeneity of the Markov process X. According
to the general theory of optimal stopping (see [25]), we have that the solution of the optimal
stopping problem in (3.2) is expressed in terms of a stopping region S and a continuation region
C given by

S = {(s, x) ∈ [0, T ] ×G : V (s, x) = φ(x)},
C = {(s, x) ∈ [0, T ] ×G : V (s, x) > φ(x)}.

In particular, τS(t) given by

τS(t) = inf{s ∈ [t, T ] : Xs ∈ S}
is a G-stopping time in the set Tt,T that achieves the supremum in (3.2). By combining it with
the strong Markov property of X, it follows that

{e−r(t∧τ)V (t ∧ τ, Xt∧τ ), t ∈ [0, T ]} (3.4)

is a martingale for τ = τS(0). We can decompose S as follows:

S =
⋃
x∈G

S(x)× {x}, S(x) = {s ∈ [t, T ] : V (s, x) = φ(x)}.

In the following result two properties of the value-function and its generator are recorded
that will be used later.

Proposition 3.1. The following hold for the value-function V .

(i) For each x ∈ G, the map t �→ V (t, x) is decreasing and continuous.

(ii) For each x ∈ G, the map �(r) : [0, T ] → R given by t �→ [�(r)ft ](x) with ft (x) =
V (t, x) is continuous and is decreasing when restricted to S(x).
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Proof of (i). Since, for any s, t ∈ [0, T ] with t < s, we have T0,T−t ⊇ T0,T−s it follows
from the representation in (3.3) that we have V (t, x) ≥ V (s, x) for each x ∈ G. Lebesgue’s
dominated convergence theorem, the fact that φ satisfies the integrability condition in (3.1) and
the triangle inequality imply that V (t, x) is continuous as a function of t for any fixed x ∈ G.

Proof of (ii). Since �(r) is a subgenerator, we have

�(r)(h, g) ≥ 0, g �= h, �(r)(g, g) ≤ 0, g, h ∈ G,

so it follows that for any function f satisfying:

for all x ∈ G : f (x) ≥ 0, there exists h ∈ G : f (h) = 0, (3.5)

we have that (�(r)f )(h) is nonnegative.
For any t1, t2 ∈ [0, T ], t2 ≥ t1, and g ∈ G such that (t1, g) and (t2, g) are elements of S,

the function f : G→ R given by f (x) = V (t1, x)− V (t2, x) satisfies the conditions in (3.5),
by virtue of the facts that t �→ V (t, x) is decreasing (by (i)) and that we have V (t1, g) =
V (t2, g) = φ(g) (by the definition of S). Hence, we deduce that �(r)(V (t1, g) − V (t2, g)) is
nonnegative, which shows the stated monotonicity.

Since, for each h ∈ G, we have �(r)V (t, h) =∑
g∈G �(r)(h, g)V (t, g), it follows from the

continuity of t �→ V (t, g) (shown in (i)), the boundedness of V (by (3.1)), Assumption 2.1,
and Lebesgue’s dominated convergence theorem that t �→ �(r)V (t, h) is also continuous.

The monotonicity of t �→ V (t, x) stated in Proposition 3.1(i) implies that if a point (t, x)

lies in S then any point of the form (s, x) for s > t also lies in S. Thus, since t �→ V (t, x) is
continuous, the set S(x) is closed and is of the form

S(x) = [τ(x), T ] for some τ(x) ∈ [0, T ].
Associated to the value-function of the American option is the system of variational

inequalities given by
�tV (t, x) ≤ 0 for (t, x) ∈ [0, T ] ×G, (3.6)

�tV (t, x) = 0 for (t, x) ∈ C, (3.7)

V (t, x) = φ(x) for (t, x) ∈ S, (3.8)

V (t, x) > φ(x) for (t, x) ∈ C, (3.9)

where �t denotes the infinitesimal generator of the time-space process (t, Xt ), which acts on
functions F in the set C1([0, T ] × G) (the set of functions F : [0, T ] × G → R that are
continuously differentiable as a function of the first argument), as follows:

�tF = ∂F

∂t
+�(r)F.

Since a priori we know only that the value-function V is continuous and decreasing as a function
of t , V may not be a classical solution of the system in (3.6)–(3.9) of variational inequalities.
A function V : [0, T ] × G → R is called a solution in a distributional sense of the system
in (3.6)–(3.9) if V satisfies (3.6)–(3.9) with the map �tV replaced by the map �V that was
defined in (2.4).

We have the following theorem for the existence and uniqueness.
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Theorem 3.1. The function V defined in (3.2) is the unique continuous decreasing function
that solves the system of variational inequalities in (3.6)–(3.9) in a distributional sense.

Furthermore, we have

(�(r)V )(τ (x), x) = 0 for any x ∈ G satisfying τ(x) < T , (3.10)

(�(r)V )(t, x) ≤ 0 for any x ∈ G and t ∈ [0, T ] with t > τ(x). (3.11)

In particular, the value-function V is a classical solution of the system in (3.6)–(3.9).

Proof of Theorem 3.1. (i) Existence. That V is decreasing and continuous follows from
Proposition 3.1. We show that V satisfies (3.8) and (3.9), and satisfies (3.6) and (3.7) in a
distributional sense. Note that (3.8) and (3.9) hold true by the definition of the stopping and
continuation regions S and C. Next, we verify that (3.6) holds. Since t �→ V (t, x) is decreasing
and continuous, V (·, x) admits a density that is almost everywhere nonpositive. For any x ∈ G

and any t ∈ [0, T ] and any stopping time τ ∈ Tt,T we have, by Lemma 2.1 (Dynkin’s lemma),

Et,x{e−r(τ−t)V (τ, Xτ )} = V (t, x)+ Et,x

{∫ τ

t

e−r(s−t)(�tV )(s, Xs) ds

}
, (3.12)

where �tV is defined in (2.4). As the discounted value-process e−rtV (t, Xt ) is a supermar-
tingale, we have for any pair t1, t2 ∈ [0, T ] with t1 < t2 and any x ∈ G the inequality
Et1,x{e−rt2V (t2, Xt2)} ≤ e−rt1V (t1, x) which yields in view of (3.12) the relation

B(t1, t2, x1) := Et1,x

{∫ t2

t1

e−r(s−t1)�tV (s, Xs) ds

}
≤ 0. (3.13)

To see that (3.13) implies that (3.6) is satisfied (in a distributional sense), note that the left-hand
side of (3.13) is equal to

B(t1, t2, x1) =
∑
y∈G

∫ t2

t1

e−r(s−t1)�tV (s, y)Px,t1{Xs = y} ds.

Since we have Px,t1{Xs �= x} = −�(x, x)(s − t1) + o(t2 − t1) (t2 ↘ t1) for all s ≤ t2 (as X

is a continuous-time Markov chain), it follows that �tV (s, y) is nonpositive for almost every
t ∈ [0, T ] and for all y ∈ G. Thus, the claim follows from (3.13).

Finally, we check that (3.7) is satisfied. Since the stopped process e−r(t∧τS)V (t ∧ τS, Xt∧τS
)

is a Pt,x-martingale for any (t, x) ∈ C (cf. (3.4)), it follows that for any t1, t2 ∈ [0, T ] with
t1 < t2,

Et1,x{e−r(t2∧τS)V (t2 ∧ τS, Xt2∧τS
)} = Et1,x{e−r(t1∧τS)V (t1 ∧ τS, Xt1∧τS

)},
which is equal to e−rt1V (t1, x) so that, in view of the equality in (3.12), we have the equality

Et1,x

{∫ t2∧τS

t1

e−r(s−t1)�tV (s, Xs) ds

}
= 0.

A line of reasoning that is similar to the one used in the previous paragraph shows that
�tV (t, x) = 0 for almost every t ∈ [0, T ] and every x ∈ G with (t, x) ∈ C, so we deduce that
(3.7) holds (in a distributional sense).
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(ii) Uniqueness. Assume that Ṽ is a continuous decreasing function that solves the system in
(3.6)–(3.9) in a distributional sense. An application of Lemma 2.1 shows that for any stopping
time τ ∈ Tt,T , we have

Et,x{e−r(τ−t)φ(Xτ )} ≤ Et,x{e−r(τ−t)Ṽ (τ, Xτ )} ≤ Ṽ (t, x), (3.14)

where we use (3.6), (3.8), and (3.9). Taking the supremum in (3.14) over τ ∈ Tt,T shows that
V (t, x) ≤ Ṽ (t, x). Similarly, an application of Dynkin’s lemma shows that if the function Ṽ

solves the system in (3.7) and (3.8) in a distributional sense then we have

Et,x{e−r(τS−t)φ(XτS
)} = Ṽ (t, x), (t, x) ∈ [0, T ] ×G.

Hence, choosing τ = τS in (3.14) turns the inequalities into equalities and it follows that
V (t, x) = Ṽ (t, x). We deduce that the solution of the system in (3.6)–(3.9) is unique in a
distributional sense.

(iii) Equations (3.10) and (3.11). Since t �→ V (t, x) is decreasing (Proposition 3.1), we
have that V (·, x) admits a density that is nonpositive for almost every t ∈ [0, T ] and any
x ∈ G with (t, x) ∈ C. Hence, in combination with the equality in (3.7) and the continuity of
t �→ �(r)V (t, x), we have

�(r)V (t, x) ≥ 0 for all (t, x) ∈ C.

Observing that the map t �→ V (t, x) restricted to the interval S(x) = [τ(x), T ] is a constant
equal to φ(x), we see that the density of V (·, x) is equal to 0 for almost every t ∈ [τ(x), T ]
and x ∈ G for which τ(x) is strictly smaller than T . Thus, in view of the relation in (3.6) and
the continuity of the map t �→ �(r)V (t, x), we have

0 ≥ �(r)V (t, x) for any t ∈ [τ(x), T ]
and x ∈ G with τ(x) < T . Since the map t �→ �(r)V (t, x) is continuous, nonnegative
for t < τ(x) and nonpositive for t > τ(x), the intermediate value theorem implies that
�(r)V (τ(x), x) is equal to 0, and the proofs of (3.10) and (3.11) are complete. The proof of
the fact that V is a classical solution is given in the next section.

4. Characterisation of the optimal boundary

In this section we present a characterisation of the stopping region S. To simplify the
presentation we will make the following assumption throughout this and the next section.

Assumption 4.1. The stopping region is of the form

S = {(t, x) ∈ [0, T ] ×G : x ≤ B(t)},
where the optimal boundary t �→ B(t) is increasing as a function of time t with B(T ) taking a
finite value.

If the sequences X = {x1, x2, . . .} and {τ(x1), τ (x2), . . .} are nondecreasing, then the
optimal boundary is given by B(t) = sup{xi ∈ X : t ∈ [τ(xi), T ]}. This form of B is, for
example, encountered in the case of an American put option under a continuous-time Markov
chain model that is spatially homogeneous (see Figure 1).

Denote by
B = {B(τ(x)), x ∈ G} = {bi}i , bi > bi+1,

https://doi.org/10.1239/aap/1435236980 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1435236980


386 B. ERIKSSON AND M. R. PISTORIUS

75

80

85

90

95

100

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 1: The optimal boundary corresponding to an at-the-money American put option with strike
S0 = K = 100 and maturity T = 1 when interest rate and dividend yield are given by r = 0.1 and
δ = 0 and the underlying price process is given by a Markov chain that closely approximates a geometric
Brownian motion with volatility σ = 0.3. The chain has a state-space of size 200 and is constructed by
matching the instantaneous moments of the Markov chain with those of the Brownian motion, using the

procedure described in [23].

Figure 2: A close-up of the optimal boundary, illustrating the values bi and ti .

the set of distinct elements in {B(τ(x)), x ∈ G} that the optimal boundary takes (in order of
decreasing magnitude or, equivalently, increasing time to maturity T ; see Figure 2) and by

ti = τ(bi), i = 1, 2, . . . ,

the first epoch t in the interval [0, T ] that the optimal boundary B(t) is equal to bi . At this point
we note that (a) the sequence {ti}i is decreasing and (b) the boundary B is constant between the
epochs of ti and has a discontinuity at the epochs of ti . Given the times ti and the optimal barrier
levels bi , the American option can be valued recursively: the value-function V of the American
option is equal to the value-function of a barrier option contract with time-dependent barrier B

that entitles the holder to a rebate payment φ(XτB
) if the epoch τB = inf{t ≥ 0 : Xt ≤ B(t)} is

strictly smaller than T and to a payment φ(XT ) in the case that the epoch τB is larger or equal
to T . From the Markov property of X applied at the epochs ti and that the barrier B has jumps,
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it follows that the function V is equal to the final value VN∗ of the following recursion:

Vi(t, x) = Et,x{e−rTbi
◦θt φ(Xt+Tbi

◦θt ) 1{Tbi
◦θt<ti−1−t}

+ e−r(ti−1−t)Vi−1(ti−1, Xti−1) 1{Tbi
◦θt>ti−1−t}}

= Et,x{e−r(Tbi
◦θt∧(ti−1−t))Vi−1(ti−1, X(t+Tbi

◦θt )∧ti−1)} (4.1)

for t ∈ [0, ti−1] and all i ≥ 1 and x ∈ G, with V0(t, x) = φ(x) for t ∈ [0, T ], where
Tbi
= inf{s ≥ 0 : Xs ≤ bi} and θt denotes the shift-operator (defined by θt (ω) = ω(t + ·) for

all ω ∈ �), so Tbi
◦ θt = inf{s ≥ 0 : Xt+s ≤ bi} holds. We denote by 1 the indicator function.

Note that we have
V (t, x) = Vi(t, x) = φ(x) for any pair (x, t)

with x ∈ S and t ≤ ti−1,

V (t, x) = Vi(t, x) for any t ∈ [ti , ti−1]
and x ∈ G. Thus, the optimal value-function V is equal to Vi on the time interval [ti , ti−1].

Next, we will characterise the collection of epochs {ti}i in terms of the value of the time-space
generator �t applied to the functions Vi .

Theorem 4.1. Let Vi be defined by (4.1). For any i ∈ N with bi ∈ B and ti < T , it holds

�tVi(t, x) = 0 for x > bi, t ∈ [0, ti−1), (4.2)

�tVi(t, x) = �(r)Vi(t, x) = 0 for x = bi, t = ti , (4.3)

�tVi(t, x) = �(r)Vi(t, x) ≤ 0 for x ≤ bi, ti < t. (4.4)

�tVi(t, x) = �(r)Vi(t, x) > 0 for x = bi , t < ti, (4.5)

The proof is based on the following auxiliary lemma.

Lemma 4.1. For any i ∈ N with bi ∈ B and any x ∈ G, the function Vi(·, x) : [0, ti−1] →
R given by t �→ Vi(t, x) is decreasing and continuous. As a consequence, the function
�(r)Vi(·, bi) : [0, ti−1] → R given by t �→ (�(r)Vi)(t, bi) is continuous and decreasing on
[0, ti−1].

Proof. Let x ∈ G and i with bi ∈ B be arbitrary and given. The function t �→ Vi(t, x)

restricted to the interval (ti , ti−1) is equal to the function t �→ V (t, x), which was shown to be
decreasing from Proposition 3.1. We next turn to the t ≤ ti case. Note that for any t ∈ [0, ti−1]
we have that Vi(t, x) is equal to

Et,x{e−r(Tbi
◦θt∧(ti−1−t))Vi−1(ti−1, X(t+Tbi

◦θt )∧ti−1)} = (exp[(ti−1 − t)�̃(i)
r ]φi−1)(x), (4.6)

where φi−1 : G→ R is given by φi−1(x) = Vi−1(ti−1, x) and �̃
(i)
r is the subgenerator of X,

discounted at rate r and stopped upon first entrance into the set {x ∈ G : x ≤ bi} (see (5.1)
below).

Thus, for any t, s ∈ [0, ti−1] with t > s we have

Vi(s, x)− Vi(t, x) = [exp[(ti−1 − t)�̃(i)
r ](exp[(t − s)�̃(i)

r ] − I )φi−1](x), (4.7)

where I denotes the identity. Since t �→ Vi(t, x) is decreasing for t ∈ [ti , ti−1], we deduce
from (4.6) and (4.7),

Vi(t, x)− Vi(ti−1, x) = [(exp[(ti−1 − t)�̃(i)
r ] − I )φi−1](x) ≥ 0 (4.8)
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for any t ∈ [ti , ti−1] and x ∈ G. In view of (4.7) and (4.8), it follows that

Vi(t, x)− Vi(s, x) ≤ 0 for any s, t ∈ [0, ti−1] (4.9)

with t − s ∈ [0, ti−1 − ti]. As the difference ti−1 − ti is strictly positive, the statement in
(4.9) implies that Vi(t, x) − Vi(s, x) ≤ 0 for any s, t ∈ [0, ti−1] with t ≥ s. The proof of the
monotonicity of Vi(·, x) is complete. The continuity of t �→ Vi(t, x) for any x ∈ G follows
from the continuity of the semigroup associated to the subgenerator �̃

(i)
r , while the continuity of

t �→ (�(r)Vi)(t, bi) follows by an application of Lebesgue’s dominated convergence theorem,
which is justified in view of the continuity of t �→ Vi(t, x), the boundedness of Vi , and
Assumption 2.1.

By an argument that is analogous to the one deployed in the proof of Proposition 3.1(ii)
(noting that Vi(t, bi) = φ(bi) for any t ∈ [0, ti−1]), it follows that the monotonicity of Vi(·, x)

implies the monotonicity of t �→ (�(r)Vi)(t, bi) on the interval [0, ti−1].
Proof of Theorem 3.1 (continued). (iv) Classical solution. We start by noting that

Assumption 4.1 does not play any other role in the proof than simplifying the notation and
definitions (of, e.g. the functions Vi), and the proof in the general case is obtained by a
straightforward adaptation of the proof that follows below. To show that V is a classical solution,
it suffices to show that at every t in [0, T ] and x in G the map t �→ V (t, x) is continuously
differentiable. Noting that the restrictions of the functions V and Vi to the interval (ti , ti−1)

are equal, we deduce that V is continuously differentiable at every t in (ti , ti−1) with derivative
given by

∂V

∂t
(t, x) = ∂Vi

∂t
(t, x) = −(�̃(i)

r V )(t, x), t ∈ (ti , ti−1), (t, x) ∈ C.

Furthermore, since the function V is a solution of the system of variational equalities in (3.6)–
(3.9) and is constant as a function of t in the stopping region S it follows that

∂V

∂t
(t, x) = −(�(r)V )(t, x) for any t ∈ (ti , ti−1) (4.10)

with (t, x) ∈ C,
∂V

∂t
(t, x) = 0 for any pair (t, x) (4.11)

with t ∈ [ti , ti−1] and (t, x) ∈ S. Here, we used that for any x ∈ G, the definition of the
sequence (ti)i implies that if there exists a t ∈ (ti , ti−1) with (t, x) ∈ S then we have (t, x) ∈ S

for all t ∈ [ti , ti−1]. To complete the proof of the continuous differentiability of V we finally
consider the t = ti case. If ti is such that (ti , x) is an element of the continuation region C then
it follows from the expression in (4.10) and the fact that the continuation region is open that the
left limit and right limit of (∂V/∂t)(t, x) at ti are equal. If ti is such that (ti , x) is an element
of the stopping region S then we have τ(x) is smaller or equal to ti . In the case τ(x) < ti it
follows from (4.11) that the right- and left limit of (∂V/∂t)(t, x) at ti are equal to 0. In the
τ(x) = ti case, we note that the right limit is equal to 0, while the left limit of (∂V/∂t)(t, x)

at ti is equal to (�(r)V )(τ (x), x) which, in view of (3.10), is also equal to 0. Thus, we deduce
that at all t ∈ [0, T ] and x ∈ G the function V is continuously differentiable and the proof is
complete.

Proof of Theorem 4.1. Since Vi(t, x) = V (t, x) for t ∈ [ti , ti−1], (4.3) and (4.4) hold in
view of Theorem 3.1.
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The function Vi is the value-function of a down-and-out barrier option with maturity ti−1
rebate φ(x) and terminal payoff function Vi−1(ti−1, x). Since the process e−r(t∧ti−1∧Tbi

)Vi(t ∧
ti−1 ∧ Tbi

, Xt∧ti−1∧Tbi
) is a martingale, it follows by an analogous reasoning as the one used in

the proof of Theorem 3.1 that we have �tVi(t, x) = 0 for x > bi and t < ti−1. Hence, (4.2)
holds.

Finally, we turn to the proof of (4.5). We start by observing that (�(r)Vi)(t, bi) is nonnegative
on the interval t ∈ [0, ti] in view of Lemma 4.1 and (4.3). We next show that (�(r)Vi)(t, bi) is
in fact strictly positive on the interval [0, ti).

By an application of Dynkin’s lemma, Lemma 2.1, we obtain

Vi(t, x)− Vi+1(t, x) = Et,x{e−r(τ−t){Vi(τ, Xτ )− Vi+1(τ, Xτ )}}
− Et,x

{∫ τ

t

e−r(s−t){�tVi(s, Xs)−�tVi+1(s, Xs)} ds

}
(4.12)

for all x ∈ G, t ≤ ti and τ ∈ Tt,ti . Since by (4.2) we have

�tVi(s, x) = 0 for any x > bi,

s ∈ [0, ti−1) and any i ∈ N with bi ∈ B, and the collection {bi}i is decreasing, choosing τ in
(4.12) to be equal to

τi = min{t + Tbi+1 ◦ θt , ti}
shows that the right-most expectation in (4.12) is equal to

Et,x

{∫ τi

t

e−r(s−t){�tVi(s, Xs)−�tVi+1(s, Xs)} ds

}

= Et,x

{∫ τi

t

e−r(s−t)�tVi(s, Xs) 1{Xs=bi } ds

}
. (4.13)

Furthermore, we have that Vi(τi, Xτi
) = Vi+1(τi, Xτi

) for the following two reasons: (a) it
holds that Vi+1(ti , Xti ) = Vi(ti , Xti ) by definition of Vi+1 and (b) we have that, on the set
{t + Tbi+1 ◦ θt < ti},

Vi(t + Tbi+1 ◦ θt , Xt+Tbi+1◦θt ) = Vi+1(t + Tbi+1 ◦ θt , Xt+Tbi+1◦θt ) = φ(Xt+Tbi+1◦θt )

as it holds that XTbi+1
≤ bi+1 < bi by the definition of Tbi+1 and the fact that bi is decreasing

as a function of i. Hence, we deduce the identity

Et,x{e−r(τi−t)Vi(τi, Xτi
)} = Et,x{e−r(τi−t)Vi+1(τi, Xτi

)}. (4.14)

Combining (4.12), (4.13), and (4.14) shows that

Vi(t, x)− Vi+1(t, x) = Et,x

{∫ τi

t

e−r(s−t)�tVi(s, Xs) 1{Xs=bi } ds

}
. (4.15)

On the one hand, the construction of the value-functions {Vi} and the definition of the collection
{bi} imply that

Vi+1(t, bi) > φ(bi) = Vi(t, bi), t ∈ [0, ti), (4.16)

while, on the other hand, the equality Vi(t, bi) = φ(bi) for all t ∈ [0, ti−1] implies that
∂Vi(t, bi)/∂t = 0 for t ∈ (0, ti−1), so we have

(�tVi)(t, bi) = (�(r)Vi)(t, bi) t ∈ (0, ti−1). (4.17)
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Thus, from (4.15), (4.16), and (4.17), we deduce that

Et,bi

{∫ τi

t

e−r(s−t)�(r)Vi(s, bi) 1{Xs=bi } ds

}
> 0 for any t ∈ [0, ti]. (4.18)

Since the map t �→ �(r)Vi(t, bi) is continuous and nonnegative on the interval [0, ti] and it
is straightforward to check that (4.18) remains valid with τi replaced by τi ∧ (t + u) for any
u > 0, it follows that �(r)Vi(t, bi) > 0 for any t ∈ [0, ti).

5. Valuation algorithm

The characterisation of the free-boundary given in Theorem 4.1 can be deployed to compute
the optimal boundary and the corresponding value of an American option under the Markov
chain model. For the presentation of a valuation algorithm, we will restrict ourselves in this
section to Markov chains with a finite state-space (of size N , say).

To identify the epochs {ti} a numerical method has to be deployed since the equations

�tVi(t, bi) = 0,

are highly nonlinear in t . Except in degenerate cases, one may expect the map s �→ �tVi(s, bi)

to be strictly decreasing, in which case the equation (�tVi)(t, bi) = 0 admits a unique solution
and it is efficient to use a solver such as the Newton–Raphson method (which is the method
that was used in the examples in Section 7). (Note that although we could have attempted
to compute ti as a root of the function s �→ �(r)Vi(s, bi), we found that working with s �→
�tVi(s, bi) yielded a more efficient numerical implementation). A procedure for computation
of the value-function of an American option under a Markov chain model based on a solution
of the corresponding free-boundary problem that was outlined in the previous paragraph is
described in Algorithm 1 below. In order to be able to formulate the algorithm, we fix some
extra notation. After relabelling, we may assume without loss of generality that the elements
of the state-space G = {xi, i = 1, . . . , N}, where N is the number of states, are ordered in
decreasing order

xN < xN−1 < · · · < x2 < x1,

and we denote by

Gi:j = {xk, k ∈ {i, . . . , j}} i < j, i, j = 1, . . . , N,

the slice of the state-space consisting of the elements xi, . . . , xj . Furthermore, for any i =
1, . . . , N , denote by �̃

(i)
r and �

(i)

r the (sub)generator matrices that can be obtained directly
from the generator matrix �(r) as follows: (a) the pair satisfies

�̃(i)
r +�

(i)

r = �(r),

where we recall that �(r) = � − rI, and (b) �̃
(i)
r (x, y) is equal to �(r)(x, y) for x, y ∈ G1:i

and 0 for x, y ∈ Gi+1:N , namely,

�̃(i)
r (x, y) =

⎧⎪⎨
⎪⎩

�(x, y)− r for x ∈ G, x ≥ xi, x = y,

�(x, y) for x, y ∈ G, x ≥ xi, x �= y,

0 for x ≤ xi+1, x, y ∈ G.

(5.1)

The matrix �̃
(i)
r is the generator matrix of a Markov chain that has the same law as the chain

X that is stopped upon the first entrance into the set Gi+1:N . The role of these matrices in
barrier option valuation in Markov chain models is reviewed in Remark 5.1(ii) below.
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Algorithm 1. (Markov chain free-boundary algorithm.)
find index i of largest grid point xi ∈ G such that (�(r)φ)(xi) < 0
set t∗ ← T

while t∗ > 0
find s < t∗ such that �

(i)

r exp((t∗ − s)�̃
(i)
r i)φ(xi) = 0;

if s > 0
set φ← exp((t∗ − s)�̃

(i)
r )φ;

else if s ≤ 0
set φ← exp(t∗�̃(i)

r )φ;
set i ← i + 1; set t∗ ← s;

end
return φ

Remark 5.1. In Algorithm 1 we used the following two facts.

(i) In view of the definition of the matrix �
(i)

r and the relation (d/dt) exp(tA) = A exp(tA)

that holds for any square matrix A, we have the equality

(�t exp((t∗ − t)�̃(i)
r ))|t=s = O ⇐⇒ �(r) exp((t∗ − s)�̃(i)

r )

= �̃(i)
r exp((t∗ − s)�̃(i)

r ),

where O denotes a zero matrix of appropriate size.

(ii) The value of the knock-out option Uξ (t, x) = Et,x{e−r(T∧τ̂ )ξ(XT∧τ̂ )} with maturity T ,
payoff function ξ : G→ R+, and knock-out set Ĝ

c, with

τ̂ = inf{t ∈ R+ : Xt /∈ Ĝ},
is given by (as shown in [23])

Uξ (t, x) = [exp((T − t)�̃r )ξ ](x),

where we denote by �̃r the (sub)generator matrix

�̃r (x, y) =

⎧⎪⎨
⎪⎩

�(x, y)− r if x ∈ Ĝ, x = y,

�(x, y) if x ∈ Ĝ, y ∈ G, x �= y,

0 if x ∈ Ĝ
c, y ∈ G.

To see that this is the case, the key observation is that the barrier option in question is a European-
type option with the underlying given by the stopped process X·∧τ̂ , which is itself a Markov
chain with generator �̃0 (the (sub)generator �̃r is obtained when the discounting rate r is also
included). Note that since t → exp(tX) is smooth, the value-function Uξ (t, x) is smooth as a
function of t .

6. Convergence

Next, we show that the convergence of a sequence of Markov chains carries over to the
convergence of the corresponding American option values. We will assume that the price
process S is a Markov process with state-space R+ that is defined on some filtered probability
space (�, F , F, P), where F = {Ft }t≥0 denotes the standard filtration generated by S and �
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denotes the Skorokhod space of right-continuous functions with left-hand limits that map R+
to R. We take the interest rate and dividend yield to be constants equal to r and d, respectively,
and assume in this section that the discounted price process {e−γ tSt }t≥0 with γ = r − d is a
square-integrable martingale. In addition, we assume that S is a Feller process that solves the
stochastic differential equation given by

dSt

St−
= γ dt + σ(St−) dWt + p(dt × dx), t > 0,

with S0 = s > 0, where W denotes a Wiener process and p denotes a compensated random
measure with compensator given by the random measure ν(St−, dz) dt , where, for every
x ∈ R+, ν(x, dy) is a measure with support in (−1,∞) satisfying the integrability condition∫

(−1,∞)

|y|2ν(x, dy) <∞.

The value-function v : [0, T ]×R+ → R+ of theAmerican option with payoff φ : R+ → R+
on the underlying process S is denoted by

v(t, x) = sup
τ∈Tt,T (F )

Et,x{e−r(τ−t)φ(Sτ )}, (t, x) ∈ [0, T ] × R+,

with Et,x{ · } = E{ · |St = x} and the set Tt,T (F ) equal to the collection of F -stopping times
taking values between t and T . The Bermudan option, which is an American-type option for
which the epoch of exercise is restricted to take values in the grid T given by

T = {i� : i = 0, . . . , M} with � = T

M
, (6.1)

is a closely related derivative security, with value-function vM : [0, T ] × R+ → R+ given by

vM(t, x) = sup
τ∈T M

t,T (F )

Et,x{e−r(τ−t)φ(Sτ )}, (t, x) ∈ [0, T ] × R+,

where T M
t,T (F ) denotes the collection of F -stopping times taking values in the grid T intersected

with the interval [t, T ].
Let X(n) denote a sequence of Markov chains, such that {e−γ ·X(n)· } are square-integrable

martingales, that is defined on the measurable space (�, F ) and converges weakly to the Feller
process S, where the weak convergence is in the Skorokhod J1 topology (see, e.g. [14]). Let
V (n),M and V (n) denote the value-functions of a Bermudan option with M equidistant exercise
times and an American option, both with an underlying price process given by the Markov
chain X(n). Below, we show that as n and M tend to∞, both V (n)(0, x) and V (n),M(0, x) tend
to the value v(x) of the American option when the spot S0 is equal to x. More precisely, we
assume that the subsequent grids (G(n))n∈N are all nested (i.e. G

(n) is contained in G
(n+1) for

any positive integer n) and that the union ∪n∈NG
(n) is dense in R, and consider the following

convergence of a sequence of functions f (n) : G(n)→ R to a function f : R→ R:

f (n) G−→ f ⇐⇒ for all m ∈ N, for all x ∈ G
(m) : lim

n→∞,n≥m
f (n)(x)→ f (x).

Convergence is established under the condition that the functions

t �→ E0,x{〈e−γ ·S·〉t }, t �→ E0,x{〈e−γ ·X(n)· 〉t } (6.2)
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are Lipschitz-continuous on [0, T ] with Lipschitz constants given by C2 (c1x + c2)
2 and

D(n)2 (d1x + d2)
2 for some C, D(n), c1, c2, d1, d2 ∈ R+, such that supn∈N D(n) is finite,

where, for any square-integrable martingaleM ′, 〈M ′〉denotes its predictable quadratic variation.
These conditions are satisfied by many of the Markov processes S used in financial modelling,
and appropriately chosen approximating Markov chains X(n).

Theorem 6.1. Assume that φ is Lipschitz-continuous and that the functions in (6.2) are Lip-
schitz-continuous with respective Lipschitz constants given by C2 (c1x+c2)

2 and D(n)2 (d1x+
d2)

2 for some C, D(n), c1, c2, d1, d2 ∈ R+, where supn∈N D(n) is finite. The following
hold:

(i) V (n),M(0, ·) G−→ vM(0, ·) as n→∞ for any M ∈ N,

(ii) V (n),M(0, ·) G−→ v(0, ·) as min{n, M} → ∞,

(iii) V (n)(0, ·) G−→ v(0, ·) if n→∞.

Proof. We first prove the following claim: for any n ∈ N, there exist constants C̃(x) and
D̃(n, x) such that, for all M ∈ N,

|vM(0, x)− v(0, x)| ≤ C̃(x)√
M

, |V (n),M(0, x)− V (n)(0, x)| ≤ D̃(n, x)√
M

. (6.3)

We will only prove this claim when the underlying is given by S as the proof of the case that
the underlying is a Markov chain is analogous.

Observe that the collection of stopping times of the form τM = inf{s ≥ τ : s ∈ T} for
τ ∈ T0,T (F ) is equal to the set T M

0,T (F ). By an application of the triangle inequality, we find
that

|v(0, x)− vM(0, x)| ≤ sup
τ

E0,x{|e−rτ φ(Sτ )− e−rτM φ(SτM
)|}

≤ sup
τ

E0,x{|(e−rτ − e−rτM )φ(Sτ )| + |e−rτM (φ(Sτ )− φ(SτM
))|}

≤ 1

M
c(x)+K sup

τ
E0,x{|Sτ − SτM

|},

where the suprema are taken over the set Tt,T (F ) of F -stopping times taking values in the
interval [t, T ] and we used, by the triangle inequality and the Lipschitz continuity of φ,

sup
τ

E0,x{T re−rτ |φ(Sτ )|} ≤ T r(φ(x)+ 2Kx) := c(x),

where K is the Lipschitz constant. By the strong Markov property of S and the triangle
inequality the expectation on the right-hand side can be estimated by

E0,x{|Sτ − SτM
|} ≤ E0,x{E0,Sτ [|S0 − SτM◦θτ |]}. (6.4)

Another application of the triangle inequality yields the estimate

E0,s{|S0 − SτM◦θτ |} ≤ E0,s{|S0 − e−γ (τM◦θτ )SτM◦θτ |} + E0,s{|e−γ (τM◦θτ ) − 1|SτM◦θτ }
:= e1(s)+ e2(s) (6.5)
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for any nonnegative s. An application of Doob’s optional stopping theorem to the càdlàg
martingale M ′ = {M ′t = e−γ tSt }t∈[0,T ] implies that e2(s) can be bounded by

e2(s) ≤ |γ T |eγ+T/M

M
E0,s{e−γ (τM◦θτ )SτM◦θτ } =

|γ T |eγ+T/M

M
s.

Another application of Doob’s optional stopping theorem implies that the following bound
holds for any s ∈ R+:

E0,s{e2(Sτ )} ≤ |γ T |eγ+T/M

M
eγ+T

E0,s{e−γ τ Sτ } = |γ T |eγ+T/M

M
eγ+T s. (6.6)

By an application of Doob’s L2-inequality to the martingale M ′ and the Lipschitz continuity,
we find that

e1(s) ≤ E0,s

{
sup

s : s<T/M

|e−γ sSs − S0|
}

≤ 4E0,s{|e−γ T /MST/M − S0|2}1/2

= 4(E0,s{〈e−γ ·S·〉T/M})1/2

≤ 4
T 1/2

M1/2 C(c1s + c2)

for s ∈ R+. Since M ′ is a martingale, we have

E0,s{e1(Sτ )} ≤ 4
T 1/2

M1/2 C(c1eγ+T s + c2) (6.7)

for any s ∈ R+. By combining (6.4)–(6.7), it follows that (6.3) holds with

C̃(x) = 4KT 1/2C(c1eγ+T x + c2)+K|γ T |e2γ+T x + c(x).

Next, we turn to the proof of the three assertions.

Proof of (i). By extending the probability space if necessary, we may assume that the
processes S and (X(n))n are all defined on a single probability space.

Denote by H the filtration generated by the process {S, X(n), n ∈ N} and by T̃ M
t,T the

collection of H -stopping times taking values in the set [t, T ] intersected with the grid T. We
may write

vM(0, x) = sup
τ∈T̃ M

0,T

E0,x{e−rτ φ(Sτ )}, V (n),M(0, x) = sup
τ∈T̃ M

0,T

E0,x{e−rτ φ(X(n)
τ )}.

We have, by the triangle inequality and the Lipschitz continuity of φ (with Lipschitz
constant K),

|vM(0, x)− V (n),M(0, x)| ≤ sup
τ∈T̃ M

0,T

E0,x{e−rτ |φ(X(n)
τ )− φ(Sτ )|}

≤ K sup
τ∈T̃ M

0,T

E0,x{|Sτ −X(n)
τ |} (6.8a)

≤ KE0,x

{
sup
t∈T
|X(n)

t − St |
}
, (6.8b)
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where in the last two lines we used that any stopping time τ in the set T̃ M
0,T takes values in

the grid T. As, by assumption, X(n) converges weakly to S in the Skorokhod topology as
n→∞, it follows that X

(n)
t converges to St in distribution as n→∞ for any fixed t ∈ T. The

Skorokhod representation theorem implies that, for any given t ∈ T, there exists a probability
space carrying random variables X̃

(n)
t , n ∈ N, and S̃t that have the same distribution as (n)

t

and St , respectively, such that X̃
(n)
t converges almost surely to S̃t as n → ∞. The uniform

integrability of the collection (X
(n)
t , St , t ∈ T, n ∈ N) (which is in turn a consequence of the

fact that C(x)+ supn D(n, x) is finite) thus implies that

Ex{|St −X
(n)
t |} → 0 as n→∞ (6.9)

for any t ∈ T, which also implies that the supremum in (6.8a) and (6.8b) converges to 0 since T

contains M elements. The proof of (i) is completed by combining (6.8a) and (6.8b), and (6.9).

Proof of (ii) and (iii). The triangle inequality implies that the differences between
V (n)(0,

x), and v(0, x), and V (n),M(0, x) and v(0, x) can be estimated as

|V (n)(0, x)− v(0, x)| ≤ |V (n)(0, x)− V (n),M(0, x)| + |V (n),M(0, x)− v(0, x)|,
|V (n),M(0, x)− v(0, x)| ≤ |V (n),M(0, x)− vM(0, x)| + |vM(0, x)− v(0, x)|. (6.10)

Let ε > 0 be arbitrary. By virtue of (6.3) and the fact that supn D(n, x) is finite, it follows that
there exists an Mε such that, for all M ≥ Mε and for all n ∈ N,

max
{
|vM(0, x)− v(0, x)|, sup

n∈N
|V (n)(0, x)− V (n),M(0, x)|

}
≤ ε. (6.11)

Fixing an M larger than Mε, (i) implies that there exists an Nε such that

|V (n),M(0, x)− vM(0, x)| ≤ ε for all n ≥ Nε.

Combining this estimate with (6.10) and (6.11) yields the estimates |V (n)(0, x)−v(0, x)| ≤ 3ε

and |V (n)(0, x)− V (n),M(0, x)| ≤ 2ε. Since ε was arbitrary, the statements in (ii) and (iii)
follow.

7. Numerical illustrations

To provide an illustration of the effectiveness of the method we report the results of the ap-
proximation of the value of the American put option by the free-boundary approach
(Algorithm 1, which we will refer to as ‘FB’). The algorithm for the pricing of American
options takes as input a Markov chain X that closely approximates the Feller process S which
is constructed by suitably specifying its state-space and generator matrix: the state-space will be
taken to be nonuniform with higher density in relevant areas (e.g. around the spot value S0 and
the strike K , in the case of a put option) and the generator matrix is chosen so as to match the first
two instantaneous moments of S. The smallest and largest points of the state-space are taken
sufficiently small and large, respectively, to guarantee that the truncation error is negligible at
the level of accuracy that is considered in the examples below (these levels were determined
after some numerical experimentation). Along these lines, an algorithm for the construction
of a Markov chain was developed in [23] which we will deploy in the numerical illustrations
below. By way of comparison, we also report the results of the dynamic programming algorithm

https://doi.org/10.1239/aap/1435236980 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1435236980


396 B. ERIKSSON AND M. R. PISTORIUS

that proceeds by first approximating the American option by a Bermudan option by restricting
the possible exercise times to a finite set and subsequently valuing the Bermudan option under
the Markov chain X according to the well-known dynamic programming procedure. (This
algorithm is referred to as the ‘DP’ algorithm and a description in the current Markov chain
setting is presented in Appendix A). Additional numerical examples can be found in [12].

7.1. The CEV-Kou model

We consider the valuation of the American put option under the jump diffusion that evolves
according to the stochastic differential equation

dSt

St−
=

(
r − d − λξ

(
St−
S0

)β)
dt +

(
St−
S0

)β

dLt ,

Lt = σWt +
Nt∑
i=1

(eKi − 1), t > 0, S0 = s > 0,

where W is a Brownian motion, N a Poisson process, and the Ki are independent random
variables following a double exponential distribution given by

fK(k) = pλpe−λpk 1(0,∞)(k)+ (1− p)λmeλmk 1(−∞,0)(k), k ∈ R,

with λp > 0, λm > 0, and p ∈ [0, 1]. The parameter ξ is given by

ξ = E{eK1 − 1} = pλp

λp − 1
+ (1− p)λm

λm + 1
− 1.

The processes W and N and the collection of random variables {Ki, i ∈ N} are assumed to be
mutually independent.

The model under consideration is a combination of the Kou model [15], a geometric Lévy
process with double exponential jumps (obtained by setting β = 0), and the constant elasticity of
variance (CEV) model [9], a diffusion with local volatility function given by a power (obtained
by taking λ = 0). In particular, taking λ = β = 0, yields the geometric Brownian motion
(GBM) model. This model, which we refer to as the CEV-Kou model, has an infinitesimal
generator that acts on f ∈ C2

c (R+) as

Lf (x) = LDf (x)+LJ f (x), x ∈ R+,

LDf (x) = (r − d)xf ′(x)+ σ 2

2

(
x

S0

)2β

x2f ′′(x),

LJ f (x) =
∫

(−1,∞)

[f (x(1+ y))− f (x)− f ′(x)xy]fK(log y)
dy

y
.

The results obtained by deploying the DP and FB algorithms are reported in Figures 3 and 4
and Table 1. Figure 3(a) shows the absolute error for the dynamic programming problem for
a varying number of exercise times with fixed size of the state-space. The slope of the line in
Figure 3(a) is approximately −1, which corresponds to a linear decay of the error of the DP
method in 1/M if the number of states is fixed, where M is the number of time steps.

In Figure 3(b) we show the absolute error for the FB and DP methods with a fixed number
of exercise times. We observed that the outcomes of the FB method appear to converge slightly
faster than those of the DP method, but at the expense of longer execution times. Figure 3(b)
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Table 1: The values ofAmerican put options under the CEV-Kou model with model parameters r = 0.05,
σ = 0.2, p = 0.3, λp = 50, λm = 25, and λ = 3, obtained by using the FB and DP methods. The

parameter β is given in the table, and the option parameters are K = 100, S0 = 100, and T = 1.

Size N

β = −1 β = −3

200 400 200 400

DP M = 3200 6.6926 6.6957 6.6576 6.6609
M = 6400 6.6926 6.6958 6.6577 6.6610

FB 6.6927 6.6958 6.6578 6.6611

4.5 5.0 5.5 6.0 6.5 7.0 7.5
−8.5

−8.0

−7.5

−7.0

−6.5

−6.0

−5.5

−5.0

log(M )

L
og

ar
it

hm
 o

f 
ab

so
lu

te
 e

rr
or

4.5 5.0 5.5 6.0 6.5 7.0 7.5
−10

−9

−8

−7

−6

−5

−4

log(N )

L
og

ar
it

hm
 o

f 
ab

so
lu

te
 e

rr
or
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Figure 3: (a) The absolute error of the American put option values generated by the DP method for a
varying number of exercise times M using a Markov chain with state-space of fixed size N = 1600. As a
reference, a value is taken at the outcome of the DP method for M = 12800 exercise times. The Markov
chain is an approximation to the CEV-Kou model with model parameters given by r = 0.05, d = 0,
σ = 0.2, β = −1, p = 0.3, λp = 50, λm = 25, and λ = 3. The option parameters are fixed to be equal
to K = 100 (strike), S0 = 100 (spot), and T = 1 (maturity). (b) The absolute error of the American
put option prices with the same parameters under the same model as in (a) for varying sizes N of the
state-space of the Markov chain for the FB method and DP method with M = 6400. In both (a) and (b)
the reference values for the computation of the errors of the values generated by the FB and DP methods
are taken as equal to the outcomes generated by these two methods with N = 800 and N = 3200 states,

respectively.

appears to show a quadratic speed of convergence in 1/N with N the cardinality of the state-
space G. Figure 4 contains the execution times for the outcomes obtained by the FB and DP
algorithms for a varying number of states N of the approximating Markov chain, showing that
the DP algorithm is the faster of the two. We observed that the change in execution time when
varying the number of exercise times is very small. One explanation for this small change
is that the bulk of the computational effort is in calculating the matrix exponential exp(��),
and it appears that the time to calculate exp(��) is only marginally affected by the size of �,
and decreasing � often results in slightly faster calculations. For β = 0, the CEV-Kou model
reduces to the Kou model. In Table 2 we compare the results obtained using the DP and FB
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Table 2: Displayed are American put option prices under the Kou model (which is equal to the CEV-Kou
model with β = 0). The final two columns are obtained from [16]. In all cases it is assumed that the
spot is S0 = 100, the maturity is T = 1, the interest rate is r = 0.06, the volatility is σ = 0.2, and
the probability of an upward jump is p = 0.6, with the remaining parameters as given in the table. We
employ a Markov chain with state-space of size N = 400, and for the DP algorithm we used M = 3200

exercise times.

K λ λp λm FB DP Kou binomial Kou approximation

90 3 50 25 2.6709 2.6707 2.66 2.72
90 3 50 50 2.4568 2.4566 2.46 2.51
90 7 25 50 3.2282 3.2280 3.24 3.29
90 7 50 50 2.6662 2.6660 2.66 2.72

100 3 50 25 6.2700 6.2698 6.26 6.29
100 3 50 50 6.0120 6.0118 6.01 6.03
100 7 25 50 7.0524 7.0522 7.07 7.09
100 7 50 50 6.2891 6.2889 6.28 6.31
110 3 50 25 12.0559 12.0557 12.04 12.00
110 3 50 50 11.8442 11.8440 11.84 11.78
110 7 25 50 12.8296 12.8294 12.85 12.79
110 7 50 50 12.0928 12.0926 12.08 12.03

Optimal Boundary Dynamic Programming
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Figure 4: Displayed are the execution times for the computation of the American put option deploying
the FB and the DP (M = 6400 exercise times) methods for various sizes N of the approximating Markov
chain. The option parameters are fixed and taken to be K = 100 (strike), S0 = 100 (spot), and T = 1
(maturity). The underlying price process follows a CEV-Kou model with parameters r = 0.05, d = 0,
σ = 0.2, β = −1, p = 0.3, λp = 50, λm = 25, and λ = 3. Computations were carried out in Matlab®

on a laptop with Intel® CoreTM Duo T2500 2GHz.

methods in the case β = 0 with those reported in [16]. Note that although the results are
reported in [16] for an interest rate equal to r = 0.05, we match the numbers in [16] by using
the value r = 0.06. We believe that this is a misprint in [16]. For λ = 0, the CEV-Kou model
reduces to the CEV model and in Table 3 we report the outcomes of the FB and DP methods in
the β = 0 and β = − 1

3 cases, and the results obtained in [27] using a finite difference method.
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Table 3: Value of the at-the-money American put option with strike S0 = K = 100. In the upper part
of the table the underlying is a GBM (β = 0) with parameter values taken from [7] (r = 0.1, δ = 0,
σ = 0.3, and maturity T = 1). The row CR refers to Carr’s [7] randomisation algorithm with the number
of randomisation steps taken equal to 15 (using Richardson’s extrapolation). In the lower part of the table
the underlying is given by the CEV model with parameters taken from [27] (r = 0.05, q = 0, σ = 0.2,
β = − 1

3 , and maturity T = 0.5). The row ‘WZ’ refers to results obtained by [27] using a finite difference
scheme. The row ‘Binomial’ refers to the outcomes of a binomial tree algorithm with 2000 time steps
(above) and 5000 time steps (below). For the Markov chain for the DP method and FB method, ‘Size’

denotes the size of the state-space of the Markov chain.

β = 0

N = 200 N = 400 N = 800

DP M = 3200 8.3316 8.3359 8.3370
M = 6400 8.3318 8.3361 8.3371

FB 8.3320 8.3363 8.3373

CR 8.3371

Binomial 8.3378

β = − 1
3

N = 400 N = 600 N = 800

DP M = 1600 4.6488 4.6490 4.6491
M = 3200 4.6488 4.6491 4.6491

FB 4.6489 4.6491 4.6492

WZ 4.6489

Binomial 4.6491

Appendix A. Dynamic programming algorithm

A Bermudan option with payoff function φ and a finite set of admissible exercise times
T ⊂ [0, T ] is a derivative security that may be exercised at any time τ ∈ T yielding payoff
φ(Xτ ). For the ease of presentation, we restrict ourselves to the case of an equidistant grid
given in (6.1) with mesh size � = T/M . The value V (t, x) of the Bermudan option at time
t ∈ T in case we have {Xt = x} is given by

V (t, x) = max
τ∈Tt,T (�,G)

Et,x{e−r(τ−t)φ(Xτ )}

for t ∈ T, and x ∈ G, where Tt,T (�, G) is the set of G-stopping times τ taking values in
[t, T ] ∩T, where G = {Gt , t ∈ [0, T ]} denotes the filtration generated by the Markov chain X.
At any time t ∈ T, the holder of the Bermudan option has the choice between immediately
exercising or continuing to wait. The former results in a payoff of φ(Xt ), while in the latter
case the expected reward of postponing exercise, assuming that the holder continues to follow
an optimal strategy from time t to maturity, is Et,Xt {e−r�V (t +�, X�)}. Thus, for any t ∈ T,
the value V (t, x) is at least equal to the larger of φ(x) and Et,x{e−r�Vt+�(X�)}. The DP
principle states that in fact equality holds: with Vi(x) = V (i�, x), we have

Vi(x) = max(φ(x), Ei�,x{e−r�Vi+1(X(i+1)�)})
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for i = 0, . . . , M − 1, and x ∈ G. Noting that in view of the form of the semigroup in (2.1),
we have

Et,x{e−r�Vi+1(X�)} = [exp(��(r))Vi+1](x).

By deploying the DP principle, we obtain the following recursive procedure to compute the
values of Vi(x) ranging over all initial values x ∈ G and all time-steps i = 0, . . . , M .

Algorithm 2. (Procedure to compute the value of a Bermudan option.)
set �← T/M

set V ← O ∈ R
N×(M+1)

set V ( : , M + 1)← φ( : )
evaluate A = exp(��(r))

for i = M to 1
V ( : , i)← A[V ( : , i + 1)];
V ( : , i)← max(φ( : ), V ( : , i));
i ← i − 1;

end
return V

Remark A.1. (i) The algorithm returns the matrix (Vi(x), (i�, x) ∈ T × G) of values of the
Bermudan option on the time-space grid T × G, where V (:, i) denotes the ith column of the
matrix V and contains the values Vi+1(x) for x ∈ G.

(ii) Note that when, as assumed above, the time-grid T is equidistant, the exponentiation of the
matrix �� needs to be computed only once. If the time-grid T is chosen nonequidistant,
the above algorithm will computationally be a good deal more expensive, since a costly
exponentiation would need to be carried out at every iteration of the recursive procedure.

Appendix B. Proof of Dynkin’s lemma (Lemma 2.1)

Proof. First, assume that, in addition to the stated assumptions, the map F(·, x) : [0, T ] → R

is continuously differentiable for every x ∈ G. An application of Itô’s lemma to the semi-
martingale {e−rtF (t, Xt )}t∈[0,T ] shows that the process {Mt }t∈[0,T ] with

Mt = e−rtF (t, Xt )− F(0, X0)−
∫ t

0
e−rs

[
∂F

∂t
+ (�F)− rF

]
(s, Xs) ds

is a local martingale. In view of the assumptions on F and � it follows that M is in fact a
uniformly integrable martingale. An application of Doob’s optional stopping theorem implies
that for every G-stopping time τ taking values in [t, T ], we have Et,x{Mτ } = 0, so (2.3) holds.

Next, assume that F is as stated in the lemma, with density f . Since the set G of functions
G : [0, T ] × G → R that is continuously differentiable at t ∈ [0, T ] for every x ∈ G is
dense in the set of continuous real-valued functions with domain [0, T ] × G, there exists a
sequence of functions (Gn)n in G that almost everywhere converges to F . An application of
Lebesgue’s dominated convergence theorem which is justified by the facts that F is bounded
and � has uniformly bounded diagonal (cf. Remark 2.1) shows that (2.3) is true under the stated
assumptions.
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