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Abstract
We prove that the mapping class group is not an h-cobordism invariant of high-dimensional manifolds by exhibiting
h-cobordant manifolds whose mapping class groups have different cardinalities. In order to do so, we introduce a
moduli space of ‘h-block’ bundles and understand its difference with the moduli space of ordinary block bundles.
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1. Introduction

1.1. The main result

Automorphism groups of manifolds have been subject to extensive research in algebraic and geometric
topology. Inspired by the study of how different h-cobordant manifolds can be (see, for example, [JK15,
JK18]), in the present paper, we investigate the question of how automorphism groups of manifolds can
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2 S. Muñoz-Echániz

vary within a fixed h-cobordism class. Namely, given an h-cobordism 𝑊𝑑+1 between (closed) smooth1

manifolds M and 𝑀 ′ of dimension 𝑑 ≥ 0, how different can the homotopy types of the diffeomorphism
groups Diff (𝑀) and Diff(𝑀 ′) be?

Certain analogues of this question have led to invariance-type results. Dwyer and Szczarba [DS83,
Cor. 2] proved that when 𝑑 ≠ 4, the rational homotopy type of the identity component Diff0(𝑀) ⊂
Diff (𝑀) does not change as 𝑀𝑑 varies within a fixed homeomorphism class of smooth manifolds.
Krannich [Kra19, Thm. A] gave another instance of such a result, showing that when 𝑑 = 2𝑘 ≥ 6
and 𝑀𝑑 is closed, oriented and simply connected, the rational homology of 𝐵Diff+(𝑀) in a range is
insensitive to replacing M by 𝑀#Σ, for Σ any homotopy d-sphere.

Our main result is, however, that the homotopy types of the diffeomorphism groups of h-cobordant
manifolds can indeed be different in general. Let Γ(𝑀) denote the mapping class group of M – the
group of isotopy classes of diffeomorphisms of M (i.e., Γ(𝑀) := 𝜋0 (Diff (𝑀))). The block mapping
class group Γ̃(𝑀) is the quotient of Γ(𝑀) by the normal subgroup of those classes of diffeomorphisms
which are pseudoisotopic to the identity.

Theorem A. In each dimension 𝑑 = 12𝑘 − 1 ≥ 0, there exist d-manifolds 𝑀𝑑 (see Theorem 4.6)
h-cobordant to the lens space 𝐿 = 𝐿12𝑘−1

7 (𝑟1 : · · · : 𝑟6𝑘 ), where

𝑟1 = · · · = 𝑟𝑘 = 1, 𝑟𝑘+1 = · · · = 𝑟2𝑘 = 2, . . . 𝑟5𝑘+1 = · · · = 𝑟6𝑘 = 6 mod 7,

such that

(i) Γ̃(𝐿) and Γ̃(𝑀) are finite groups with cardinalities of different 3-adic valuations,
(ii) Γ(𝐿) and Γ(𝑀) are finite groups with cardinalities of different 3-adic valuations.

Remark 1.1. For an oriented connected manifold M, there are orientation preserving mapping class
groups Γ+(𝑀) and Γ̃+(𝑀), which have index one or two inside the whole mapping class groups Γ(𝑀)
and Γ̃(𝑀), respectively. Therefore, the conclusions of Theorem A also hold for Γ̃+(−) and Γ+(−).

Remark 1.2. Theorem A(i) is the best possible result in the following sense: let D̃iff(𝑀) denote the
(geometric realisation of the) semi-simplicial group of block diffeomorphisms of M (cf. [BLR75, p.
20] or [ERW14, Defn. 2.1]), whose p-simplices consist of diffeomorphisms 𝜙 : 𝑀 × Δ 𝑝

�
−→ 𝑀 × Δ 𝑝

which are face-preserving (i.e., for every face 𝜎 ⊂ Δ 𝑝 , 𝜙 restricts to a diffeomorphism of 𝑀 ×𝜎). Then
we have Γ̃(𝑀) = 𝜋0 (D̃iff ((𝑀)). The restriction map 𝜌𝑀 : D̃iff (𝑊) −→ D̃iff (𝑀) is a fibration with
fibre D̃iff𝑀 (𝑊), the subspace of block diffeomorphisms of W which fix pointwise a neighbourhood of
𝑀 ⊂ 𝑊 . By the s-cobordism theorem (see Theorem 2.1 below), there exists some h-cobordism −𝑊
from 𝑀 ′ to M such that𝑊 ∪𝑀 ′ −𝑊 � 𝑀 × 𝐼 and −𝑊 ∪𝑀 𝑊 � 𝑀 ′ × 𝐼. Then the group homomorphisms

Id𝑊 ∪𝑀 ′ − : 𝐶 (𝑀 ′) := D̃iff𝑀 ′×{0} (𝑀
′ × 𝐼) −→ D̃iff𝑀 (𝑊),

Id−𝑊 ∪𝑀 − : D̃iff𝑀 (𝑊) −→ D̃iff𝑀 ′ (−𝑊 ∪𝑀 𝑊) � 𝐶 (𝑀 ′)

are easily seen to be homotopy inverse to each other. But the group𝐶 (𝑀 ′) of block concordances of 𝑀 ′

is contractible (cf. [BLR75, Lem. 2.1]), and therefore, 𝜌𝑀 induces an equivalence onto the components
that it hits, and similarly for 𝜌𝑀 ′ . In other words, the classifying spaces 𝐵D̃iff(𝑀) and 𝐵D̃iff (𝑀 ′) share
the same universal cover, so

𝜋𝑖 (D̃iff (𝑀)) � 𝜋𝑖 (D̃iff(𝑀 ′)), 𝑖 ≥ 1.

The upshot is that the homotopy types of D̃iff(𝑀) and D̃iff(𝑀 ′) can at most differ by their sets of
path-components, and Theorem A(i) provides an example showcasing this phenomenon.

1We will work in the smooth setting for notational preference, but all of the results in this paper are equally valid for the
topological and 𝑃𝐿 categories. See Remarks 4.11 and 5.4 for modified arguments when 𝐶𝐴𝑇 = Top and 𝑃𝐿.
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1.2. Moduli spaces of h- and s-block bundles

Recall that for 𝑑 ≥ 5, the Whitehead group Wh(𝑀) of a compact d-manifold M (see Section 2.1)
classifies isomorphism classes of h-cobordisms starting at M. This group has an involution denoted
𝜏 ↦→ 𝜏 which, roughly speaking and up to a factor of (−1)𝑑 , corresponds to reversing the direction of
an h-cobordism (see (2.5)).

In Section 3, we will introduce the h- and s-block moduli spaces, M̃ℎ and M̃𝑠 respectively, whose
vertices (as semi-simplicial sets) are the smooth closed d-manifolds, for some fixed integer 𝑑 ≥ 0.
A path in the former (resp. latter) space between d-manifolds M and 𝑀 ′ is exactly an h-cobordism
𝑊 : 𝑀 ℎ

� 𝑀 ′ (resp. an s-cobordism𝑊 : 𝑀 𝑠
� 𝑀 ′ – that is, an h-cobordism with vanishing Whitehead

torsion (see Section 2.2)). The s-block moduli space M̃𝑠 is, somewhat in disguise, a well-known object;
in Proposition 3.6, we identify the path-component of 𝑀𝑑 in M̃𝑠 with 𝐵D̃iff(𝑀), the classifying space
for the group of block diffeomorphisms of M.

The second main result we state arises as part of the proof of Theorem A, but may be of independent
interest: there is a natural inclusion M̃𝑠 ↩−→ M̃ℎ which forgets the simpleness condition. We identify
the homotopy fibre of this inclusion (i.e., the homotopical difference between the h- and s-block moduli
spaces) as a certain infinite loop space.
Theorem B. Let M be a closed d-dimensional manifold, and let 𝐶2 := {𝑒, 𝑡} act on the Whitehead
group Wh(𝑀) by 𝑡 ·𝜏 := (−1)𝑑−1𝜏. Write 𝐻Wh(𝑀) for the Eilenberg–MacLane spectrum associated to
Wh(𝑀), and let 𝐻Wh(𝑀)ℎ𝐶2 := 𝐻Wh(𝑀) ∧𝐶2 (𝐸𝐶2)+ stand for the homotopy 𝐶2-orbits of 𝐻Wh(𝑀).
For 𝑑 ≥ 5, there is a homotopy cartesian square

Ω∞(𝐻Wh(𝑀)ℎ𝐶2) M̃𝑠

{𝑀𝑑} M̃ℎ ,

where the lower horizontal map is the inclusion of M as a point in M̃ℎ .
As we will explain in Section 3.3, this result is intimately tied to the Rothenberg exact sequence

[Ran81, Prop. 1.10.1].

Structure of the paper

Section 2 serves as a reminder of the s-cobordism theorem and some properties of Whitehead torsion.
In Section 3, we prove Theorem B. The proof boils down to arguing that certain simplicial abelian

group 𝐹alg
• (𝐴) corresponds to the spectrum 𝐻𝐴ℎ𝐶2 under the Dold–Kan correspondence (see Theorem

3.10).
Section 4 deals with part (𝑖) of Theorem A, which is proved in Theorem 4.6. We analyse the

lower degree part of the homotopy long exact sequence associated to the homotopy pullback square of
Theorem B. The proof of Theorem A(𝑖𝑖) builds on part (𝑖) and pseudoisotopy theory, and comprises
Section 5.

Appendix A is an algebraic K-theory computation required for Sections 4 and 5. Appendix B explores
the connection between Theorem B and the theory of Weiss–Williams [WW88].

2. Notation and recollections

All manifolds will be assumed to be compact and smooth (possibly with corners).

2.1. Whitehead Torsion

The Whitehead group of (𝜋, 𝑤) [Mil66, §6], where 𝜋 is a group and 𝑤 : 𝜋 → 𝐶2 = {±1} is a
homomorphism, is the abelian group
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Wh(𝜋, 𝑤) := 𝐺𝐿(Z𝜋)ab/(±𝜋)

equipped with the following involution: the anti-involution on the group ring Z𝜋 given by

𝑎 =
∑
𝑔∈𝜋

𝑎𝑔 · 𝑔 ↦−→ 𝑎 :=
∑
𝑔∈𝜋

𝑤(𝑔) 𝑎𝑔 · 𝑔
−1, 𝑎𝑔 ∈ Z (2.1)

induces an involution on Wh(𝜋, 𝑤) by sending an element represented by a matrix 𝜏 = (𝜏𝑖 𝑗 ) to its
conjugate transpose 𝜏 := (𝜏 𝑗𝑖). We will refer to this involution as the algebraic involution on Wh(𝜋, 𝑤).
We will write Wh(𝜋) for Wh(𝜋, 𝑤) if w is the trivial homomorphism, or if we are simply disregarding this
involution. If X is a finite CW-complex with a choice of basepoint in each of its connected components,
the Whitehead group of X is

Wh(𝑋) :=
⊕

𝑋 𝑗 ∈𝜋0 (𝑋 )

Wh(𝜋1 (𝑋 𝑗 )).

If 𝑋 = 𝑀 is moreover a manifold, the algebraic involution on Wh(𝑀) is that induced by 𝑤 = 𝑤1 (𝑀) ∈
𝐻1 (𝑀;Z/2), the first Stiefel–Whitney class of M. Since every inner automorphism of a group 𝜋 induces
the identity on Wh(𝜋) [Mil66, Lem. 6.1], the Whitehead group Wh(𝑋) does not depend (up to canonical
isomorphism) on the choice of basepoint in each path component of X; for this reason, we shall ignore
basepoints from now on.

Given a homotopy equivalence between finite pointed CW-complexes 𝑓 : 𝑋 �
−→ 𝑌 , we will denote by

𝜏( 𝑓 ) ∈ Wh(𝑋) its (Whitehead) torsion [Mil66, §7]. It only depends on f up to homotopy [Mil66, Lem.
7.7]. Let us collect a few properties of the Whitehead torsion 𝜏(−) that we will use throughout the paper:

◦ Composition rule: 𝜏(−) is a crossed homomorphism in the sense that if 𝑓 : 𝑋 �
−→ 𝑌 and 𝑔 : 𝑌 �

−→ 𝑍
are homotopy equivalences, then [Mil66, Lem. 7.8]

𝜏(𝑔 ◦ 𝑓 ) = 𝜏( 𝑓 ) + 𝑓 −1
∗ 𝜏(𝑔), (2.2)

where 𝑓∗ : Wh(𝑋) �
−→ Wh(𝑌 ) is the natural isomorphism induced by 𝜋1 ( 𝑓 ) : 𝜋1 (𝑋)

�
−→ 𝜋1 (𝑌 ).

◦ Inclusion-exclusion principle: if 𝑋 = 𝑋0 ∪ 𝑋1 and 𝑌 = 𝑌0 ∪𝑌1, where 𝑋0, 𝑋1, 𝑌0, 𝑌1, 𝑋01 := 𝑋0 ∩ 𝑋1
and 𝑌01 := 𝑌0 ∩ 𝑌1 are all finite CW-complexes, and

𝑓0 : 𝑋0
�
−→ 𝑌0, 𝑓1 : 𝑋1

�
−→ 𝑌1, 𝑓01 = 𝑓0 ∩ 𝑓1 : 𝑋01

�
−→ 𝑌01,

are homotopy equivalences, then the torsion of the homotopy equivalence 𝑓 = 𝑓0 ∪ 𝑓1 : 𝑋 �
−→ 𝑌 is

[Coh73, Thm. 23.1]

𝜏( 𝑓 ) = (𝑖0)∗𝜏( 𝑓0) + (𝑖1)∗𝜏( 𝑓1) − (𝑖01)∗𝜏( 𝑓01) ∈ Wh(𝑋), (2.3)

where 𝑖0 : 𝑋0 ↩−→ 𝑋 , 𝑖1 : 𝑋1 ↩−→ 𝑋 and 𝑖01 : 𝑋01 ↩−→ 𝑋 are the inclusions.
◦ Product rule: 𝜏(−) is multiplicative with respect to the Euler characteristic in the sense that for any

homotopy equivalence 𝑓 : 𝑋 �
−→ 𝑌 and any finite connected CW-complex K with basepoint ∗ ∈ 𝐾

[Coh73, Thm. 23.2],

𝜏( 𝑓 × id𝐾 ) = 𝜒(𝐾) · 𝑖∗𝜏( 𝑓 ) ∈ Wh(𝑋 × 𝐾), (2.4)

where 𝑖 : 𝑋 � 𝑋 × {∗} ↩−→ 𝑋 × 𝐾 is the inclusion.

A homotopy equivalence f as above is said to be simple, and denoted 𝑓 : 𝑋
�𝑠
−→ 𝑌 , if 𝜏( 𝑓 ) = 0.

We will write 𝑠Aut(𝑋) ⊂ ℎAut(𝑋) for the topological submonoid (see (2.2)) of simple homotopy
automorphisms of X.
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2.2. The s-cobordism theorem

Let 𝑀𝑑 be a smooth compact manifold of dimension d. A cobordism from M rel 𝜕𝑀 is a triple
(𝑊 ;𝑀, 𝑀 ′), also written as𝑊 : 𝑀 � 𝑀 ′, consisting of a (𝑑 + 1)-manifold𝑊𝑑+1 with boundary

𝜕𝑊 � 𝑀 ∪ 𝑀 ′ ∪ (𝜕𝑀 × [0, 1])

so that 𝑀 ∩ (𝜕𝑀 × [0, 1]) = 𝜕𝑀 × {0} and 𝑀 ′ ∩ (𝜕𝑀 × [0, 1]) = 𝜕𝑀 × {1} (in particular, 𝜕𝑀 ′ = 𝜕𝑀).
Cobordisms are often accompanied with an additional data of collars (i.e., open neighbourhoods of M and
𝑀 ′ in W diffeomorphic to 𝑀×[0, 𝜖) and 𝑀 ′×(1−𝜖, 1] (rel 𝜕𝑀× 𝐼) for some small 𝜖 > 0), but the choice
of such is contractible. If 𝜕𝑀 = ∅, this coincides with the usual notion of a cobordism between closed
manifolds. Such a cobordism is called an h-cobordism if the inclusions 𝑖𝑀 : (𝑀, 𝜕𝑀) → (𝑊, 𝜕𝑀 × 𝐼)
and 𝑖𝑀 ′ : (𝑀 ′, 𝜕𝑀 ′) → (𝑊, 𝜕𝑀 × 𝐼) are homotopy equivalences of pairs. In such cases, we will write
𝑊 : 𝑀 ℎ

� 𝑀 ′ to emphasise that W is an h-cobordism from M to𝑀 ′. The torsion of W with respect to M is

𝜏(𝑊, 𝑀) := 𝜏(𝑖𝑀 ) ∈ Wh(𝑀).

If 𝜏(𝑊, 𝑀) = 0, such an h-cobordism 𝑊 : 𝑀 ℎ
� 𝑀 ′ is said to be simple (or an s-cobordism), and

denoted 𝑊 : 𝑀 𝑠
� 𝑀 ′. This definition does not depend on the direction of W since the torsion of an

h-cobordism satisfies the duality formula [Mil66, §10]

𝜏(𝑊, 𝑀 ′) = (−1)𝑑 (ℎ𝑊 )∗𝜏(𝑊, 𝑀). (2.5)

Here, ℎ𝑊 : 𝑀 � 𝑀 ′ is the natural homotopy equivalence

ℎ𝑊 : 𝑀 𝑊 𝑀 ′,
𝑖𝑀
�

𝑟𝑀′

� (2.6)

where 𝑟𝑀 ′ is some homotopy inverse to 𝑖𝑀 ′ (so ℎ𝑊 is only well-defined up to homotopy).
Due to the composition rule (2.2), the torsion of an h-cobordism is nearly additive with respect

to composition: namely, if 𝑊 : 𝑀 ℎ
� 𝑀 ′ and 𝑊 ′ : 𝑀 ′ ℎ� 𝑀 ′′ are h-cobordisms, we write 𝑊 ′ ◦𝑊 :

𝑀
ℎ
� 𝑀 ′′ for the h-cobordism𝑊 ∪𝑀 ′ 𝑊 ′, which can be made smooth by pasting along collars. Then

𝜏(𝑊 ′ ◦𝑊, 𝑀) = 𝜏(𝑊, 𝑀) + (ℎ𝑊 )−1
∗ 𝜏(𝑊 ′, 𝑀 ′). (2.7)

Let ℎCob𝜕 (𝑀) denote the set of h-cobordisms rel boundary starting at M, up to diffeomorphism rel
M. We will use the following a great deal [Maz63, Bar64].
Theorem 2.1 (s-Cobordism Theorem rel boundary). If 𝑑 = dim𝑀 ≥ 5, then there is a bijection

ℎCob𝜕 (𝑀) ←→ Wh(𝑀), (𝑊 : 𝑀 ℎ
� 𝑀 ′) ↦−→ 𝜏(𝑊, 𝑀).

3. The block moduli spaces of manifolds

As explained in the introduction, we now present the h- and s-block moduli spaces of manifolds, in which
a path (i.e., a 1-simplex) is an h- or s-cobordism, respectively. To describe what higher-dimensional
simplices should be, we give the next definition, which is inspired by [HLLRW21, §2].
Definition 3.1. Fix once and for all some small 𝜖 > 0. A compact smooth manifold with corners
𝑊𝑑+𝑝 ⊂ R∞ × Δ 𝑝 is said to be stratified over Δ 𝑝 if:

(i) W is a closed manifold if 𝑝 = 0,
(ii) W is transverse to R∞×𝜎 for every proper face 𝜎 ⊂ Δ 𝑝 and𝑊𝜎 := 𝑊 ∩ (R∞×𝜎) is a (𝑑 +dim𝜎)-

dimensional manifold stratified over Δdim 𝜎 � 𝜎,
(iii) W satisfies the 𝜖-collaring conditions of [HLLRW21, Defn. 2.3.1(ii)].
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We will write 𝑊𝑑+𝑝 ⇒ Δ 𝑝 for such a manifold. A map 𝑓 : 𝑊 → 𝑉 between manifolds stratified
over Δ 𝑝 is said to be face-preserving, and denoted 𝑓 : 𝑊 →Δ 𝑉 , if for every face 𝜎 ⊂ Δ 𝑝 , we have
𝑓 (𝑊𝜎) ⊂ 𝑉𝜎 and f satisfies the collaring conditions of [HLLRW21, Defn. 2.3.1(iii)].(Roughly, f must
be the product 𝑓𝜎 × Id in the 𝜖-neighbourhood of the strata𝑊𝜎 , where 𝑓𝜎 := 𝑓 |𝑊𝜎 .) If, moreover, 𝑓𝜎
is a homotopy equivalence, simple homotopy equivalence or diffeomorphism for all 𝜎 ⊂ Δ 𝑝 , we will
write 𝑓 : 𝑊 ♠

−→Δ 𝑉 for ♠ = �ℎ , �𝑠 or �, respectively.

Notation 3.2. Let Λ𝑝𝑖 ⊂ Δ 𝑝 denote the i-th horn of Δ 𝑝 (𝑖 = 0, . . . , 𝑝).
◦ If 0 ≤ 𝑖0 < · · · < 𝑖𝑟 ≤ 𝑝, we write 〈𝑖0, . . . , 𝑖𝑟 〉 ⊂ Δ 𝑝 for the face spanned by the vertices
𝑖0, . . . , 𝑖𝑟 ∈ Δ 𝑝 .

◦ If W is stratified over Δ 𝑝 , we will often write 𝜕𝑖𝑊 for 𝑊〈0,...,𝑖̂,..., 𝑝〉 and 𝑊𝑖 for 𝑊〈𝑖〉 . For instance,
〈0 . . . , 𝑖̂, . . . , 𝑝〉 ≡ 𝜕𝑖Δ 𝑝 ⊂ Δ 𝑝 .

◦ If 𝐾 ⊂ Δ 𝑝 is a simplicial sub-complex, we will write 𝑊𝐾 for 𝑊 ∩ (R∞ × 𝐾). In the particular case
that 𝐾 = Λ𝑝𝑖 , we set Λ𝑖 (𝑊) := 𝑊Λ𝑝

𝑖
. For instance, if 𝜎 ⊂ Δ 𝑝 is some face, Λ𝑖 (𝜎) denotes the i-th

horn of 𝜎 (𝑖 = 0, . . . , dim𝜎).
◦ If 𝑓 : 𝑊 −→Δ 𝑉 is face-preserving, we will write 𝜕𝑖 𝑓 for 𝑓𝜕𝑖Δ 𝑝 = 𝑓 |𝜕𝑖𝑊 .
Example 3.3. A cobordism 𝑊𝑑+1 : 𝑀 � 𝑀 ′ between closed manifolds M and 𝑀 ′ is always diffeo-
morphic to a manifold𝑊 ′ ⊂ R∞ × Δ1 stratified over Δ1 with𝑊 ′

0 � 𝑀 and𝑊 ′
1 � 𝑀

′.
Definition 3.4. Fix some integer 𝑑 ≥ 0. The h-block moduli space of d-manifolds is the semi-simplicial
set M̃ℎ

• with p-simplices

M̃ℎ
𝑝 :=

⎧⎪⎪⎨⎪⎪⎩
𝑊𝑑+𝑝

⇓

Δ 𝑝
: ∃ 𝑓 : 𝑊

�ℎ
−→Δ 𝑊0 × Δ 𝑝

⎫⎪⎪⎬⎪⎪⎭, (3.1)

and with face maps given by restriction to face-strata

𝜕𝑖 : M̃ℎ
𝑝 −→ M̃ℎ

𝑝−1,
𝑊𝑑+𝑝

⇓

Δ 𝑝
↦−→

𝜕𝑖𝑊
𝑑+𝑝

⇓

𝜕𝑖Δ 𝑝 � Δ 𝑝−1,
𝑖 = 0, . . . , 𝑝.

The s-block moduli space of d-manifoldsM̃𝑠
• is its simple analogue, where�ℎ in (3.1) is replaced by

�𝑠 , and has a natural inclusion M̃𝑠
• ↩−→ M̃ℎ

• . We will let M̃ℎ and M̃𝑠 denote the geometric realisations
|M̃ℎ

• | and |M̃𝑠
• |, respectively.

Remark 3.5. Let M be a closed d-manifold and M̃𝑠
•(𝑀) denote the path-component of M in M̃𝑠

•.
Our definition of M̃𝑠

•(𝑀) differs from that of M(𝑀)• in [HLLRW21] in that our condition (ii) in
Definition 3.1 is stronger than condition (i) of Definition 2.3.1 loc. cit.; there, it is only required that W
be transverse to R∞ × 𝜎 for faces of the form 𝜎 = 𝜕𝑖Δ 𝑝 . As noted right after [HLLRW21, Defn. 2.3.1],
their defined M(𝑀)• is Kan, and our stronger requirement does not affect this Kan condition as any
proper subface of Δ 𝑝 that is not of the form 𝜕𝑖Δ 𝑝 is already a subface of any horn Λ𝑝𝑗 . Thus, M̃𝑠

• (and
similarly M̃ℎ

• ) is Kan.
The next two subsections are devoted to prove Theorem B. But first, we study the s-block moduli

space M̃𝑠 more closely. We recall that the classifying space 𝐵D̃iff (𝑀) for the simplicial group of block
diffeomorphisms has a semi-simplicial model (see, for example, [ERW14]) in which the p-simplices are

𝐵D̃iff(𝑀)𝑝 =

⎧⎪⎪⎨⎪⎪⎩
𝑊𝑑+𝑝

⇓

Δ 𝑝
: ∃ 𝜙 : 𝑊 �

−→Δ 𝑀 × Δ 𝑝
⎫⎪⎪⎬⎪⎪⎭,

and therefore, there is a forgetful inclusion 𝐵D̃iff(𝑀) ↩−→ M̃𝑠 .
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Proposition 3.6. For 𝑑 ≥ 5, there is a decomposition of M̃𝑠 into connected components

M̃𝑠 =
⊔

[𝑀𝑑 ] up
to 𝑠-cob.

𝐵D̃iff(𝑀) =
⊔

[𝑀𝑑 ] up
to diffeo.

𝐵D̃iff(𝑀). (3.2)

In order to prove this proposition, we will need the following simple observation.

Lemma 3.7. Let𝑊𝑑+𝑝 ⇒ Δ 𝑝 represent a p-simplex in M̃𝑠
•. For every face inclusion 𝜉 ⊂ 𝜎 ⊂ Δ 𝑝 , the

map 𝑊𝜉 ↩−→ 𝑊𝜎 is a simple homotopy equivalence. In particular, if 𝑝 = 1, W is an s-cobordism from
𝑊0 to𝑊1.

Proof. Let 𝑓 : 𝑊
�𝑠
−→Δ 𝑊0 ×Δ 𝑝 be some face-preserving simple homotopy equivalence. The inclusion

𝑊𝜉 ↩−→ 𝑊𝜎 is homotopic to a composition of simple maps

𝑊𝜉 𝑊0 × 𝜉 𝑊0 × 𝜎 𝑊𝜎 ,𝑓𝜉

�𝑠 �𝑠

by (2.4) 𝑓 −1
𝜎

�𝑠

where 𝑓 −1
𝜎 is any homotopy inverse to 𝑓𝜎 . Therefore, it is also simple. �

Proof of Proposition 3.6. For a closed manifold 𝑀𝑑 , let M̃𝑠
•(𝑀) denote the path-component of M in

M̃𝑠
•. We only have to argue that M̃𝑠 (𝑀) ⊂ 𝐵D̃iff(𝑀), which is the following claim when 𝑟 = −1.

Claim. Let 𝑊 ∈ M̃𝑠
𝑝 (𝑀) and suppose that for some −1 ≤ 𝑟 ≤ 𝑝 − 1, there exist face-preserving

diffeomorphisms

𝜙𝑖 : 𝜕𝑖𝑊
�
−→Δ 𝑀 × Δ 𝑝−1, 0 ≤ 𝑖 ≤ 𝑟,

such that 𝜕𝑖𝜙 𝑗 = 𝜕 𝑗−1𝜙𝑖 for 0 ≤ 𝑖 < 𝑗 ≤ 𝑟 . Then there exists some face-preserving diffeomorphism
𝜙 : 𝑊 �

−→Δ 𝑀 × Δ 𝑝 such that 𝜕𝑖𝜙 = 𝜙𝑖 for 0 ≤ 𝑖 ≤ 𝑟 . In particular,𝑊 ∈ 𝐵D̃iff(𝑀)𝑝 .

Proceed by induction on 𝑝 ≥ 0. The statement is vacuous when 𝑝 = 0, and it holds by Lemma 3.7
and the s-cobordism theorem when 𝑝 = 1. Suppose that the claim is true for 𝑝 − 1 ≥ 0. By the
induction hypothesis, we can find diffeomorphisms 𝜙𝑖 : 𝜕𝑖𝑊

�
−→Δ 𝑀 × Δ 𝑝−1 for 0 ≤ 𝑖 ≤ 𝑝 − 1 such

that 𝜕𝑖𝜙 𝑗 = 𝜕 𝑗−1𝜙𝑖 for 0 ≤ 𝑖 < 𝑗 ≤ 𝑝 − 1. By pasting these together, we obtain a (face-preserving)
diffeomorphism Λ𝑝 (𝜙) : Λ𝑝 (𝑊)

�
−→Δ 𝑀 × Λ𝑝𝑝 . Now by Lemma 3.7 and the inclusion-exclusion

principle (2.3), the inclusion Λ𝑝 (𝑊) ↩−→ 𝑊 is a simple homotopy equivalence. Unbending the corners of
Λ𝑝 (𝑊), the s-cobordism theorem for manifolds with boundary (Theorem 2.1) provides a face-preserving
diffeomorphism 𝜙 : 𝑊 �

−→Δ 𝑀 × Δ 𝑝 extending Λ𝑝 (𝜙), as required. �

By analogy to (3.2), we define 𝐵D̃iff ℎ (𝑀) to be the path-component of M in M̃ℎ , and so obtain a
decomposition

M̃ℎ =
⊔

[𝑀𝑑 ] up
to ℎ-cob.

𝐵D̃iff ℎ (𝑀). (3.3)

Remark 3.8. The semi-simplicial sets 𝐵D̃iff(𝑀)• and 𝐵D̃iff ℎ (𝑀)• have M as their natural basepoint. If
M and𝑀 ′ are s-cobordant (i.e., diffeomorphic (resp. h-cobordant)), then 𝐵D̃iff (𝑀) and 𝐵D̃iff (𝑀 ′) (resp.
𝐵D̃iff ℎ (𝑀) and 𝐵D̃iff ℎ (𝑀 ′)) are the same semi-simplicial set but equipped with different basepoints.

Digression 3.9. Let 𝐺 : sSet∗ → sGrp denote the Kan simplicial loop space functor [Kan58, §10 and
11]. As we will see in Remark 3.25, the semi-simplicial set 𝐵D̃iff ℎ (𝑀)• can be upgraded to a simplicial
set. The simplicial group D̃iff ℎ (𝑀) := 𝐺𝐵D̃iff ℎ (𝑀) has been studied in previous literature under
different names [WW88, Appendix 5]. More precisely, if 𝑑 ≥ 5, then D̃iff ℎ (𝑀𝑑) is weakly equivalent
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to D̃iff 𝑏 (𝑀 ×R), the space of block diffeomorphisms of 𝑀 ×R bounded in the R-direction. This will be
proved in Proposition B.1 of Appendix B. With this in mind, the computation of the homotopy groups
of D̃iff 𝑏 (𝑀 × R)/D̃iff(𝑀) in [WW88, Cor. 5.5] agrees with Theorem B.

3.1. A simplicial model for 𝐻 (−)ℎ𝐶2

Let A be a Z[𝐶2]-module, that is, an abelian group equipped with a Z-linear involution 𝑎 ↦→ 𝑎∗ := 𝑡 · 𝑎,
where 𝑡 ∈ 𝐶2 denotes the generator. Write 𝐻𝐴 for the Eilenberg–MacLane spectrum associated to A,
and let 𝐻𝐴ℎ𝐶2 := 𝐻𝐴 ∧𝐶2 (𝐸𝐶2)+ denote the homotopy 𝐶2-orbits of 𝐻𝐴. In this section, we present a
simplicial model

𝐹alg
• (−) : ModZ[𝐶2 ] −→ sAb

for the functor 𝐻 (−)ℎ𝐶2 : ModZ[𝐶2 ] −→ 𝐻Z − Mod in the following sense.
Theorem 3.10. Let Ω∞−Top denote the category of infinite loop spaces. There is a natural equivalence

|𝐹alg
• (−)| � Ω∞(𝐻 (−)ℎ𝐶2) : ModZ[𝐶2 ] −→ Ω∞ − Top

(i.e., there is a zig-zag of natural weak equivalences connecting the left and the right-hand functors).

3.1.1. The simplicial abelian group 𝐹alg
• (𝐴)

We now define 𝐹alg
• (𝐴) as an algebraic analogue of the semi-simplicial set 𝐹•(𝑀) (see (3.17) and

Proposition 3.24) when 𝐴 = Wh(𝑀) with the 𝐶2-action 𝑡 · 𝜏 := (−1)𝑑−1𝜏 of Theorem B. We will need
some preliminaries first.

A simplicial sub-complex of Δ 𝑝 is a collection2 K of nonempty subsets 𝜎 of [𝑝] = {0, . . . , 𝑝} such
that if 𝜉 ⊂ 𝜎 and 𝜎 ∈ 𝐾 , then 𝜉 ∈ 𝐾 too. The realisation of a subset 𝜎 ⊂ [𝑝] is the subspace

|𝜎 | := {(𝑡0, . . . , 𝑡𝑝) ∈ Δ 𝑝 : 𝑡𝑖 = 0 if 𝑖 ∉ 𝜎} ⊂ Δ 𝑝 .

Then, the realisation of a simplicial sub-complex K of Δ 𝑝 is the subspace

|𝐾 | :=
⋃
𝜎∈𝐾

|𝜎 | ⊂ Δ 𝑝 .

Since |𝐾 | = |𝐾 ′| if and only if 𝐾 = 𝐾 ′, we will often identify a simplicial sub-complex K of Δ 𝑝 with
its realisation |𝐾 |.

Let SubComp𝑝 denote the poset of simplicial complexes of Δ 𝑝 , ordered by inclusion of collections.
The assignment [𝑝] ↦→ SubComp𝑝 assembles into a cosimplicial poset SubComp• in the obvious way:
given an order-preserving arrow 𝑎 : [𝑝] → [𝑞], we set

𝑎 : SubComp𝑝 −→ SubComp𝑞 , 𝐾 ↦→ 𝑎(𝐾) := {𝑎(𝜎) ⊂ [𝑞] : 𝜎 ∈ 𝐾}.

On realisations, we have |𝑎(𝐾) | = 𝑎(|𝐾 |) ⊂ Δ𝑞 , where the second a now denotes the map Δ 𝑝 → Δ𝑞

coming from the cosimplicial space Δ•. So, for instance, the i-th coface map 𝜕𝑖 : SubComp𝑝−1 →

SubComp𝑝 identifies Δ 𝑝−1 with the i-th face of Δ 𝑝 (i.e., 𝜕𝑖Δ 𝑝−1 := 𝜕𝑖Δ 𝑝).
More important to us will be the subposet SubComp�∗𝑝 ⊂ SubComp𝑝 consisting of those sub-

complexes whose realisation is contractible (in particular, nonempty). The assignment [𝑝] ↦→

SubComp�∗𝑝 now assembles only into a semi-cosimplicial poset, for the coface maps 𝜕𝑖 :
SubComp𝑝−1 → SubComp𝑝 send SubComp�∗𝑝−1 to SubComp�∗𝑝 , but the codegeneracies fail to do so:
for instance, the codegeneracy 𝑠0 : SubComp3 → SubComp2 sends the contractible sub-complex of Δ3

cosisting of the edges {0, 2}, {2, 3} and {1, 3} (and all its subsets) to 𝜕Δ2.

2We allow the empty collection ∅ = { }.
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Seen as a category, SubComp�∗𝑝 admits all pushouts, for the pushout of contractible simplicial
complexes is also contractible. For an (abelian) group A (seen as a one-object groupoid), write
Fun(SubComp�∗𝑝 , 𝐴) for the set of functors 𝜏 : SubComp�∗𝑝 → 𝐴 and Fun�(SubComp�∗𝑝 , 𝐴) ⊂

Fun(SubComp�∗𝑝 , 𝐴) for the subset consisting of those functors 𝜏 such that for any pushout square

𝐾01 𝐾1

𝐾0 𝐾

(3.4)

in SubComp�∗𝑝 :

𝜏(𝐾01 → 𝐾1) = 𝜏(𝐾0 → 𝐾) ∈ 𝐴. (3.5)

Equivalently, by taking the transpose of (3.4),

𝜏(𝐾01 → 𝐾0) = 𝜏(𝐾1 → 𝐾).

Notation 3.11. If 𝐾, 𝐿 ∈ SubComp�∗𝑝 with 𝐾 ≤ 𝐿, there is a unique arrow 𝐾 → 𝐿. We will write
𝜏(𝐿, 𝐾) ∈ 𝐴 for 𝜏(𝐾 → 𝐿) resembling the notation for h-cobordisms. Note that 𝜏(𝐾, 𝐾) = 0 for every
K. We will sometimes refer to 𝜏(𝐿, 𝐾) as a torsion element.

Lemma 3.12. Let 𝜏 : SubComp�∗𝑝 → 𝐴 be a functor. Then 𝜏 ∈ Fun� (SubComp�∗𝑝 , 𝐴) if and only if for
every diagram in SubComp�∗𝑝 of the form

𝐾01 𝐾1

𝐾0 𝐾

𝐿,

(3.6)

the functor 𝜏 satisfies the inclusion-exclusion principle (compare to (2.3)):

𝜏(𝐿, 𝐾) = 𝜏(𝐿, 𝐾0) + 𝜏(𝐿, 𝐾1) − 𝜏(𝐿, 𝐾01). (3.7)

Proof. If 𝜏 ∈ Fun� (SubComp�∗𝑝 , 𝐴), then

𝜏(𝐿, 𝐾0) + 𝜏(𝐿, 𝐾1) − 𝜏(𝐿, 𝐾01) = 𝜏(𝐿, 𝐾) + 𝜏(𝐾, 𝐾0) + 𝜏(𝐿, 𝐾1) − 𝜏(𝐿, 𝐾1) − 𝜏(𝐾1, 𝐾01)

= 𝜏(𝐿, 𝐾),

where the second line follows from (3.5). Conversely, (3.5) follows from the inclusion-exclusion principle
(3.7) applied to the diagram (3.6) with 𝐿 = 𝐾 , noting that 𝜏(𝐾, 𝐾) = 0. �

Observe that both Fun(SubComp�∗𝑝 , 𝐴) and Fun� (SubComp�∗𝑝 , 𝐴) are abelian groups under
morphism-wise addition. Therefore, Fun(SubComp�∗• , 𝐴) defines a semi-simplicial abelian group whose
i-th face map is 𝜕Fun

𝑖 := Fun(𝜕𝑖 , 𝐴). These face maps clearly descend to Fun�(SubComp�∗• , 𝐴), and we
will write 𝜕�𝑖 ≡ 𝜕Fun

𝑖 |Fun� for their restriction. We will now construct a system of degeneracies 𝑠�𝑖 for
Fun�(SubComp�∗• , 𝐴) compatible with the 𝜕�𝑖 ’s which makes it into a simplicial abelian group – this will
be handy when invoking the Dold–Kan correspondence later in Section 3.1.2 (see also Remark 3.23).

Remark 3.13. One might consider the abelian groups Fun(SubComp𝑝 , 𝐴) and Fun� (SubComp𝑝 , 𝐴),
defined analogously. Then, Fun(SubComp•, 𝐴) defines an actual simplicial abelian group whose i-th
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face and degeneracy maps are 𝜕Fun
𝑖 and 𝑠Fun

𝑖 = Fun(𝑠𝑖 , 𝐴), respectively. However, Fun�(SubComp•, 𝐴)
is only semi-simplicial: for any nonzero 𝜏 ∈ Fun�(SubComp1, 𝐴), 𝑠Fun

1 𝜏 does not satisfy (3.5) for
𝐾 = Λ2

2, 𝐾0 = 𝜕0Δ2, 𝐾1 = 𝜕1Δ2 and 𝐾01 = 〈2〉.

Let Face• denote the sub-cosimplicial poset of SubComp• consisting of those sub-complexes of Δ•

which are faces – those collections K for which there exists some 𝜎 ⊂ [•] such that 𝜉 ∈ 𝐾 for every
𝜉 ⊂ 𝜎; thus, the empty sub-complex ∅ ⊂ Δ• is not a face. Note that Face• ⊂ SubComp�∗• and write 𝜄 for
the inclusion. The following result says that a functor in Fun�(SubComp�∗• , 𝐴) is completely determined
by the torsion elements corresponding to face inclusions.

Proposition 3.14. There is a natural isomorphism of semi-simplicial abelian groups

𝜄∗ : Fun� (SubComp�∗• , 𝐴) � Fun(Face•, 𝐴) : 𝜄!.

Therefore, Fun� (SubComp�∗• , 𝐴) upgrades to a simplicial abelian group with degeneracy maps

𝑠�𝑖 := 𝜄! ◦ Fun(𝑠𝑖 , 𝐴) ◦ 𝜄∗ : Fun�(SubComp�∗• , 𝐴) → Fun�(SubComp�∗•+1, 𝐴).

Proof. We begin with the definition of the map 𝜄!. For 𝜏 ∈ Fun(Face𝑝 , 𝐴), let us first define 𝜄!𝜏(𝐿, 𝐾)
for any inclusion of sub-complexes 𝐾 ⊂ 𝐿 ⊂ Δ 𝑝 in SubComp�∗𝑝 . Setting

𝜄!𝜏(𝐿, 𝐾) := 𝜄!𝜏(Δ 𝑝 , 𝐾) − 𝜄!𝜏(Δ 𝑝 , 𝐿), (3.8)

it suffices to specify 𝜄!𝜏(Δ 𝑝 , 𝐾) for any𝐾 ∈ SubComp�∗𝑝 . Note that, as defined in (3.8), 𝜄!𝜏 is immediately
a functor SubComp�∗𝑝 → 𝐴 (even for arbitrary values of 𝜄!𝜏(Δ 𝑝 , 𝐾) for 𝐾 � Δ 𝑝), since if 𝐾 ⊂ 𝐿 ⊂ 𝑀
are sub-complexes of Δ 𝑝 , then

𝜄!𝜏(𝑀, 𝐾) = 𝜄!𝜏(Δ
𝑝 , 𝐾) − 𝜄!𝜏(Δ

𝑝 , 𝑀)

= 𝜄!𝜏(Δ
𝑝 , 𝐾) − 𝜄!𝜏(Δ

𝑝 , 𝐿) + 𝜄!𝜏(Δ
𝑝 , 𝐿) − 𝜄!𝜏(Δ

𝑝 , 𝑀)

= 𝜄!𝜏(𝐿, 𝐾) + 𝜄!𝜏(𝑀, 𝐿).

We now define 𝜄!𝜏(Δ 𝑝 , 𝐾) for any3 sub-complex K of Δ 𝑝 as

𝜄!𝜏(Δ
𝑝 , 𝐾) :=

∑
𝜎∈𝐾

𝑇 (Δ 𝑝 , 𝜎), where 𝑇 (Δ 𝑝 , 𝜎) :=
∑

∅≠𝜉 ⊆𝜎

(−1)dim 𝜎+dim 𝜉 𝜏(Δ 𝑝 , 𝜉). (3.9)

Here, dim𝜎 denotes the dimension of the face 𝜎 (one less than the cardinality of 𝜎 viewed as a subset
of [𝑝]). We now establish the following properties of the functor 𝜄!𝜏:

(i) 𝜄!𝜏 satisfies the inclusion-exclusion principle (3.7), and hence, by Lemma 3.12, 𝜄!𝜏 restricted to
SubComp�∗𝑝 is an element of Fun�(SubComp�∗𝑝 , 𝐴).

(ii) 𝜄∗𝜄!𝜏 ≡ 𝜏 as functors Face𝑝 → 𝐴.
(iii) For every 0 ≤ 𝑖 ≤ 𝑝, 𝜕𝑖 (𝜄!𝜏) ≡ 𝜄! (𝜕𝑖𝜏) as functors SubComp�∗𝑝−1 → 𝐴.

To establish property (i), note that, in light of (3.8), it suffices to show that 𝜄!𝜏 satisfies the inclusion-
exclusion for diagrams (3.6) where 𝐿 = Δ 𝑝 . This follows by a simple check:

𝜄!𝜏(Δ
𝑝 , 𝐾) =

∑
𝜎∈𝐾

𝑇 (Δ 𝑝 , 𝜎)

=
∑
𝜎∈𝐾0

𝑇 (Δ 𝑝 , 𝜎) +
∑

𝜎∈𝐾\𝐾0

𝑇 (Δ 𝑝 , 𝜎)

3Not only contractible ones!
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=
∑
𝜎∈𝐾0

𝑇 (Δ 𝑝 , 𝜎) +
∑

𝜎∈𝐾1\𝐾01

𝑇 (Δ 𝑝 , 𝜎)

=
∑
𝜎∈𝐾0

𝑇 (Δ 𝑝 , 𝜎) +
∑
𝜎∈𝐾1

𝑇 (Δ 𝑝 , 𝜎) −
∑
𝜎∈𝐾01

𝑇 (Δ 𝑝 , 𝜎)

= 𝜄!𝜏(Δ
𝑝 , 𝐾0) + 𝜄!𝜏(Δ

𝑝 , 𝐾1) − 𝜄!𝜏(Δ
𝑝 , 𝐾01).

To prove (ii), it suffices yet again to show that 𝜄!𝜏(Δ 𝑝 , 𝜎) = 𝜏(Δ 𝑝 , 𝜎) for every face 𝜎 ∈ Face𝑝 .
Given a linear combination X of 𝜏(Δ 𝑝 , 𝜉)’s for 𝜉 ∈ Face𝑝 , let 𝑋(𝜂) denote the coefficient of 𝜏(Δ 𝑝 , 𝜂)
in X. We now count such coefficient 𝜄!𝜏(Δ 𝑝 , 𝜎)(𝜂) for any face 𝜂 ∈ Face𝑝 . Clearly, 𝜄!𝜏(Δ 𝑝 , 𝜎)(𝜂) = 0
if 𝜂 is not contained in 𝜎, so assume that 𝜂 ⊂ 𝜎. Then,

𝜄!𝜏(Δ
𝑝 , 𝜎)(𝜂) =

∑
𝜉 ∈𝜎

𝑇 (Δ 𝑝 , 𝜉)(𝜂) =
∑

𝜂⊂𝜉 ∈𝜎

𝑇 (Δ 𝑝 , 𝜉)(𝜂) =
∑

𝜂⊂𝜉 ∈𝜎

(−1)dim 𝜉+dim 𝜂

=
dim 𝜎−dim 𝜂∑

𝑖=0
(−1)𝑖

(
dim𝜎 − dim 𝜂

𝑖

)
=

{
1, dim 𝜂 = dim𝜎,
0, otherwise.

Since dim 𝜂 = dim𝜎 if and only if 𝜂 = 𝜎, it follows that 𝜄!𝜏(Δ 𝑝 , 𝜎) = 𝜏(Δ 𝑝 , 𝜎), as claimed.
For (iii), again we only need to show that both functors 𝜕𝑖 (𝜄!𝜏) and 𝜄! (𝜕𝑖𝜏) agree on arrows in

SubComp�∗𝑝−1 of the form 𝐾 → Δ 𝑝−1. Then,

𝜄! (𝜕𝑖𝜏) (Δ
𝑝−1, 𝐾) =

∑
𝜎∈𝐾

∑
∅≠𝜉 ⊂𝜎

(−1)dim 𝜎+dim 𝜉 𝜕𝑖𝜏(Δ
𝑝−1, 𝜉)

=
∑
𝜎∈𝐾

∑
∅≠𝜉 ⊂𝜎

(−1)dim 𝜎+dim 𝜉 𝜏(𝜕𝑖Δ 𝑝−1, 𝜕𝑖𝜉)

=
∑
𝜎∈𝐾

∑
∅≠𝜉 ⊂𝜎

(−1)dim 𝜎+dim 𝜉
(
𝜏(Δ 𝑝 , 𝜕𝑖𝜉) − 𝜏(Δ 𝑝 , 𝜕𝑖Δ 𝑝−1)

)
= 𝜄!𝜏(Δ

𝑝 , 𝜕𝑖𝐾) −
���
∑
𝜎∈𝐾

∑
∅≠𝜉 ⊂𝜎

(−1)dim 𝜎+dim 𝜉 ��� · 𝜏(Δ 𝑝 , 𝜕𝑖Δ 𝑝−1).

Now by a similar consideration as in (ii), the sum
∑
∅≠𝜉 ⊂𝜎 (−1)dim 𝜎+dim 𝜉 is (−1)dim 𝜎 (as we are not

summing over 𝜉 = ∅). Thus, using this and property (ii), we see that

𝜄! (𝜕𝑖𝜏) (Δ
𝑝−1, 𝐾) = 𝜄!𝜏(Δ

𝑝 , 𝜕𝑖𝐾) − 𝜒𝐾 · 𝜄!𝜏(Δ
𝑝 , 𝜕𝑖Δ 𝑝−1), (3.10)

where 𝜒𝐾 stands for the Euler characteristic of K. As K is contractible (so 𝜒𝐾 = 1), we obtain

𝜄! (𝜕𝑖𝜏) (Δ
𝑝−1, 𝐾) = 𝜄!𝜏(𝜕

𝑖Δ 𝑝−1, 𝜕𝑖𝐾) = 𝜕𝑖 (𝜄!𝜏) (Δ
𝑝−1, 𝐾),

as desired.
By definition, 𝜄! : Fun(Face𝑝 , 𝐴) → Fun�(SubComp�∗𝑝 , 𝐴) is clearly a group homomorphism, so,

by (iii), we have successfully constructed a morphism of semi-simplicial abelian groups

𝜄! : Fun(Face•, 𝐴) −→ Fun� (SubComp�∗• , 𝐴),

and by (ii), we also have that 𝜄! is a right inverse of 𝜄∗. To finish the proof of the proposition, it only
remains to show that 𝜄∗ is injective.

To this end, suppose that 𝜏 ∈ Fun�(SubComp�∗𝑝 , 𝐴) is a functor such that 𝜄∗𝜏 ≡ 0. We show that
𝜏(Δ 𝑝 , 𝐾) = 0 for every 𝐾 ∈ SubComp�∗𝑝 (and hence 𝜏 ≡ 0), by induction on the dimension of K – that
is, the maximal dimension of a face of Δ 𝑝 contained in K. This is clear if dim𝐾 = 0, so assume the claim
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holds for every 𝐾 ′ ∈ SubComp�∗𝑝 of dimension ≤ 𝑗 −1, and let 𝐾 ∈ SubComp�∗𝑝 be of dimension 𝑗 ≥ 1.
Suppose that there exists a j-dimensional face 𝜎 ⊂ 𝐾 and some 0 ≤ 𝑖 ≤ 𝑗 such that 𝜕𝑖𝜎 is not contained
in any other j-dimensional face 𝜎′ of K. Then, consider the sub-complex 𝐾 ′ := 𝐾 \ (Int𝜎 ∪ Int 𝜕𝑖𝜎)
and the diagram

Λ𝑖 (𝜎) 𝐾 ′

𝜎 𝐾

Δ 𝑝 .

Since Λ𝑖 (𝜎) → 𝜎 is an equivalence and the square is a pushout, it follows that 𝐾 ′ ∈ SubComp�∗𝑝 . Then,
by induction on the number of j-dimensional faces of K, we may assume that 𝜏(Δ 𝑝 , 𝐾 ′) = 0, and hence,
by the inclusion-exclusion principle (3.7) for the above diagram,

𝜏(Δ 𝑝 , 𝐾) = 𝜏(Δ 𝑝 , 𝜎) + 𝜏(Δ 𝑝 , 𝐾 ′) − 𝜏(Δ 𝑝 ,Λ𝑖 (𝜎)) = 0 + 0 − 0 = 0.

The penultimate equality follows from our assumption 𝜄∗𝜏 ≡ 0 and from our induction hypothesis as
Λ𝑖 (𝜎) is ( 𝑗 − 1)-dimensional. But such 𝜎 and 0 ≤ 𝑖 ≤ 𝑗 must always exist. For if it did not, then

𝑀 :=
⋃

𝜎∈𝐾 : dim 𝜎= 𝑗

𝜎

would be a nonempty, closed PL-manifold of dimension j, and hence, 𝐻 𝑗 (𝑀;Z/2) ≠ 0. But since K is
obtained from M by attaching faces of dimension ≤ 𝑗 − 1, then 𝐻 𝑗 (𝑀;Z/2) ↩−→ 𝐻 𝑗 (𝐾;Z/2), leading to
a contradiction as K is contractible. This concludes the proof of the proposition. �

Remark 3.15. As part of the proof, we see that, for each 𝑝 ≥ 0, the group homomorphism 𝜄! :
Fun(Face𝑝 , 𝐴) → Fun� (SubComp�∗𝑝 , 𝐴) actually factors through Fun�(SubComp𝑝 , 𝐴). However,

𝜄! : Fun(Face•, 𝐴) −→ Fun� (SubComp•, 𝐴)

does not assemble to a morphism of semi-simplicial abelian groups by (3.10); surprisingly, though, if
SubComp𝜒=1

• denotes the sub-poset of those sub-complexes with Euler characteristic one, then

𝜄! : Fun(Face•, 𝐴) −→ Fun�(SubComp𝜒=1
• , 𝐴)

is indeed a semi-simplicial isomorphism that factors the one of Proposition 3.14.

A functor 𝜏 ∈ Fun(SubComp�∗𝑝 , 𝐴) will be said to satisfy face-horn duality for 𝜎 if

𝜏(𝜎, 𝜕𝑖𝜎) = (−1)dim 𝜎𝜏∗(𝜎,Λ𝑖 (𝜎)), 𝑖 = 0, . . . , dim𝜎. (3.11)

In the above notation, 𝜏∗(𝐿, 𝐾) stands for (𝜏(𝐿, 𝐾))∗. Write 𝐷 𝑝 (𝐴) ⊂ Fun(SubComp�∗𝑝 , 𝐴) for
the subgroup of functors that satisfy face-horn duality for every face 𝜎 ⊂ Δ 𝑝 , and let 𝐷•(𝐴) ⊂
Fun(SubComp�∗• , 𝐴) denote the corresponding sub-semi-simplicial abelian group.

Remark 3.16. If 𝜏 ⊂ 𝐷 𝑝 (𝐴) ∩ Fun�(SubComp�∗𝑝 , 𝐴), then 𝜏 satisfies more general sorts of dualities.
For instance, if 𝜎 ⊂ Δ 𝑝 is a face and 0 ≤ 𝑖 < 𝑗 ≤ dim𝜎, then

𝜏(𝜎, 𝜕𝑖𝜎 ∪ 𝜕 𝑗𝜎) = (−1)dim 𝜎𝜏∗(𝜎, 𝜕𝜎 \ Int(𝜕𝑖𝜎 ∪ 𝜕 𝑗𝜎)).
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This follows from the inclusion-exclusion principle (3.7) of Lemma 3.12 applied to 𝐾 = 𝜕𝑖𝜎 ∪ 𝜕 𝑗𝜎 and
Λ𝑖 (𝜎) = (𝜕𝜎 \ Int(𝜕𝑖𝜎 ∪ 𝜕 𝑗𝜎)) ∪ 𝜕 𝑗𝜎, and 𝐿 = 𝜎. By induction, one can generalise this duality to any
proper collection of faces 𝜕𝐼𝜎 :=

⋃
𝑖∈𝐼 𝜕𝑖𝜎, 𝐼 � {0, . . . , dim𝜎}:

𝜏(𝜎, 𝜕𝐼𝜎) = (−1)dim 𝜎𝜏∗(𝜎, 𝜕𝐽𝜎), 𝐽 := {0, . . . , dim𝜎} \ 𝐼 . (3.12)

Even more generally, if 𝐾 ∈ SubComp�∗𝑝 is a union of k-dimensional faces and𝑄 ⊂ 𝜕𝐾 is a contractible
sub-complex which is a union of (𝑘 − 1)-dimensional faces, then

𝜏(𝐾,𝑄) = (−1)𝑘𝜏∗(𝐾, 𝜕𝐾 \𝑄). (3.13)

We now give a simple inductive criterion to check if a functor satisfies all face-horn dualities.

Lemma 3.17. Let 𝜏 ∈ Fun� (SubComp�∗𝑝 , 𝐴) satisfy face-horn duality for all 𝜎 � Δ 𝑝 and for the 0-th
face-horn of Δ 𝑝:

𝜏(Δ 𝑝 , 𝜕0Δ
𝑝) = (−1) 𝑝𝜏∗(Δ 𝑝 ,Λ𝑝0 ).

Then 𝜏 satisfies face-horn duality for Δ 𝑝 too (i.e., 𝜏 ∈ 𝐷 𝑝 (𝐴)).

Proof. For 𝑖 ∈ {1, . . . , 𝑝}, denote Λ𝑝0𝑖 for 𝜕{1,...,𝑖̂,..., 𝑝}Δ
𝑝 , and consider the two pushout diagrams in

SubComp�∗𝑝

Λ0 (𝜕𝑖Δ 𝑝) Λ𝑝0𝑖

𝜕𝑖Δ 𝑝 Λ𝑝0

Δ 𝑝 ,

Λ𝑖−1(𝜕0Δ 𝑝) 𝜕0Δ 𝑝

Λ𝑝0𝑖 Λ𝑝𝑖

Δ 𝑝 .

Note that Λ𝑖−1(𝜕0Δ 𝑝) is the union of the codimension one sub-faces of 𝜕0Δ 𝑝 = 〈1, . . . , 𝑝〉 ⊂ Δ 𝑝 that
contain the i-th vertex of Δ 𝑝 . We check directly that 𝜏 satisfies duality for the i-th face-horn using the
inclusion-exclusion principle (3.7).

𝜏(Δ 𝑝 , 𝜕𝑖Δ
𝑝) = 𝜏(Δ 𝑝 ,Λ𝑝0 ) + 𝜏(Λ

𝑝
0 , 𝜕𝑖Δ

𝑝)

= (−1) 𝑝𝜏∗(Δ 𝑝 , 𝜕0Δ
𝑝) + 𝜏(Λ𝑝0𝑖 ,Λ0 (𝜕𝑖Δ

𝑝))

= (−1) 𝑝𝜏∗(Δ 𝑝 ,Λ𝑝𝑖 ) + (−1) 𝑝𝜏∗(Λ𝑝𝑖 , 𝜕0Δ
𝑝) + (−1) 𝑝−1𝜏∗(Λ𝑝0𝑖 ,Λ𝑖−1(𝜕0Δ

𝑝))

= (−1) 𝑝𝜏∗(Δ 𝑝 ,Λ𝑝𝑖 ).

In the third line, we have used (3.13) for 𝐾 = Λ𝑝0𝑖 and 𝑄 = Λ0 (𝜕𝑖Δ 𝑝). �

Finally, we write 𝑍𝑝 (𝐴) ⊂ Fun(SubComp�∗𝑝+1, 𝐴) for the subgroup of functors 𝜏 such that

𝜏(𝐿, 𝐾) = 0, ∀ 𝐾 ⊂ 𝐿 ⊂ 𝜕0Δ
𝑝+1 = 〈1, . . . , 𝑝 + 1〉.

The assignment [𝑝] ↦→ 𝑍𝑝 (𝐴) defines a semi-simplicial abelian group 𝑍•(𝐴) whose i-th face map is
the restriction of 𝜕Fun

𝑖+1 to 𝑍𝑝 (𝐴).

Definition 3.18. The simplicial abelian group 𝐹alg
• (𝐴) ⊂ Fun(SubComp�∗•+1, 𝐴) has as p-simplices

𝐹alg
𝑝 (𝐴) := 𝑍𝑝 (𝐴) ∩ 𝐷 𝑝+1(𝐴) ∩ Fun�(SubComp�∗𝑝+1, 𝐴),
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as face maps 𝛿𝑖 : 𝐹alg
𝑝 (𝐴) → 𝐹alg

𝑝−1(𝐴) the restriction to 𝐹alg
𝑝 (𝐴) of 𝜕Fun

𝑖+1 , and as degeneracy maps
𝑠𝑖 : 𝐹alg

𝑝 (𝐴) → 𝐹alg
𝑝+1(𝐴) the restriction to 𝐹alg

𝑝 (𝐴) of the map 𝑠�𝑖+1 from Proposition 3.14.

Lemma 3.19. 𝐹alg
• (𝐴) as defined above is a simplicial abelian group.

Proof. The only nontrivial thing to check is that 𝑠𝑖 sends 𝐷 𝑝 (𝐴) into 𝐷 𝑝+1(𝐴), so let 𝜏 ∈ 𝐷 𝑝 (𝐴) ∩
Fun�(SubComp�∗𝑝 , 𝐴). Without loss of generality, assume 𝑖 = 0, and by the induction hypothesis and
the simplicial identities, it suffices to check that 𝑠0𝜏 satisfies face-horn duality for the top face Δ 𝑝+1.
By Lemma 3.17, just checking this for the 0-th face-horn of Δ 𝑝+1 will suffice. Since 𝑠0𝜏 satisfies the
inclusion-exclusion principle,

𝑠0𝜏(Δ
𝑝+1,Λ𝑝+1

0 ) =
𝑝+1∑
𝑘=1

(−1)𝑘−1
∑

0< 𝑗1< · · ·< 𝑗𝑘 ≤𝑝+1
𝑠0𝜏

(
Δ 𝑝+1,

𝑘⋂
𝑟=1

𝜕 𝑗𝑟Δ
𝑝+1

)
=
𝑝+1∑
𝑘=1

(−1)𝑘−1

{ ∑
1< 𝑗1< · · ·< 𝑗𝑘

𝜏(Δ 𝑝 , 〈0, . . . ,"𝑗1 − 1, . . . ,"𝑗𝑘 − 1, . . . , 𝑝 + 1〉)

+
∑

1= 𝑗1< 𝑗2< · · ·< 𝑗𝑘

𝜏(Δ 𝑝 , 〈0, . . . ,"𝑗2 − 1, . . . ,"𝑗𝑘 − 1, . . . , 𝑝 + 1〉)

}
= (−1) 𝑝

∑
1< 𝑗1< · · ·< 𝑗𝑝+1≤𝑝+1︸��������������︷︷��������������︸

=∅

𝜏(Δ 𝑝 , 〈0, . . . ,"𝑗1 − 1, . . . ,"𝑗𝑘 − 1, . . . , 𝑝 + 1〉) = 0.

But 𝑠0𝜏(Δ 𝑝+1, 𝜕0Δ 𝑝+1) = 𝜏(Δ 𝑝 ,Δ 𝑝) = 0 = (−1) 𝑝+1(𝑠0𝜏(Δ 𝑝+1,Λ𝑝+1
0 ))∗, as required. �

3.1.2. Proof of Theorem 3.10
Recall that the Dold–Kan correspondence [GJ99, §III.2, Cor. 2.3] establishes an equivalence of cate-
gories

𝑁 : sAb Ch≥0(Z) : Γ,� (3.14)

where N is the normalised Moore complex functor, given for a simplicial group 𝐺 = (𝐺•, 𝛿•) by

(𝑁𝐺)𝑛 :=
𝑛⋂
𝑖=1

ker(𝛿𝑖 : 𝐺𝑛 → 𝐺𝑛−1), 𝑑𝑛 = 𝛿0 |(𝑁𝐺)𝑛 : (𝑁𝐺)𝑛 −→ (𝑁𝐺)𝑛−1.

Under (3.14), we will identify 𝐹alg
• (𝐴) with the (connective) chain complex Aℎ𝐶2 given by

. . . 𝐴 𝐴 𝐴 0 = (Aℎ𝐶2)−1.
1−𝑡 1+𝑡 1−𝑡

Proposition 3.20. The map 𝜓𝐴• : (𝑁𝐹alg (𝐴)•, 𝑑•) −→ Aℎ𝐶2 given by

𝜓𝐴𝑛 : 𝑁𝐹alg (𝐴)𝑛 −→ (Aℎ𝐶2 )𝑛 = 𝐴, 𝜏 ↦−→ 𝜏(Δ𝑛+1, 〈0〉) (3.15)

is a quasi-isomorphism of chain complexes. In particular,

𝜋𝑛 (𝐹
alg
• (𝐴)) � 𝐻𝑛 (𝑁𝐹alg (𝐴)) � 𝐻𝑛 (𝐶2; 𝐴) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐴

{𝑏−𝑏∗ | 𝑏∈𝐴} , 𝑛 = 0,

{𝑎∈𝐴 | 𝑎=(−1)𝑛+1𝑎∗}
{𝑏+(−1)𝑛+1𝑏∗ | 𝑏∈𝐴}

, 𝑛 ≥ 1.
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Proof. First, we verify that 𝜓• = 𝜓𝐴• is a chain map. Let 𝜏 ∈ 𝑁𝐹alg (𝐴)𝑛 and write

𝑎 := 𝜓𝑛 (𝜏) = 𝜏(Δ𝑛+1, 〈0〉), 𝑏 := 𝜓𝑛−1 (𝑑𝑛𝜏) = 𝜏(𝜕1Δ
𝑛+1, 〈0〉), 𝑐 := 𝜏(Δ𝑛+1, 𝜕1Δ

𝑛+1).

Noting that 𝜏(Λ𝑛+1
1 , 〈0〉) = 0 by inclusion-exclusion, applying 𝜏 to the diagram in SubComp�∗𝑛+1

〈0〉 Λ𝑛+1
1

𝜕1Δ𝑛+1 Δ𝑛+1

and duality of 𝜏, we obtain

(−1)𝑛+1𝑐∗ = 𝑎 = 𝑏 + 𝑐 =⇒ 𝑎 + (−1)𝑛𝑎∗ = 𝑏 + 𝑐 + (−1)𝑛
(
(−1)𝑛+1𝑐∗

)∗
= 𝑏;

that is, 𝑑𝑛 (𝜓𝑛 (𝜏)) = 𝜓𝑛−1 (𝑑𝑛𝜏).
We now have to show that the map

𝜓∗ : 𝐻𝑛 (𝑁𝐹alg (𝐴)) −→ 𝐻𝑛 (𝐶2; 𝐴)

is an isomorphism for 𝑛 ≥ 0.

Claim. For 𝑛 > 0, there is a bijection

𝜏(−) : {𝑎 ∈ 𝐴 | 𝑎 = (−1)𝑛+1𝑎∗} ←→
𝑛⋂
𝑖=0

ker(𝛿𝑖 : 𝐹alg
𝑛 (𝐴) −→ 𝐹alg

𝑛−1 (𝐴)) : 𝜓𝑛,

𝑎 ↦−→ 𝜏𝑎

𝜏(Δ𝑛+1, 〈0〉) ← � 𝜏,

where 𝜏𝑎 ∈ 𝐹alg
𝑛 (𝐴) is the functor given by

𝜏𝑎 (𝐿, 𝐾) =

{
𝑎, if 𝐾 � 𝐿 = Δ𝑛+1,
0, otherwise.

Proof of Claim. Note that the condition 𝑎 = (−1)𝑛+1𝑎∗ is exactly the face-horn duality for Δ𝑛+1, so
𝜏𝑎 is indeed an element of 𝐹alg

𝑛 (𝐴). Also observe that 𝜓𝑛 (𝜏𝑎) = 𝑎, so we only need to show that
𝜏(−) is surjective. Let 𝜏 be a cycle in 𝐹alg

𝑛 (𝐴), and set 𝑎 := 𝜏(Δ𝑛+1, 〈0〉); we check that 𝜏 = 𝜏𝑎. By
the functoriality relation 𝜏(𝐿, 𝐾) = 𝜏(Δ𝑛+1, 𝐾) − 𝜏(Δ𝑛+1, 𝐿), we may assume that 𝐿 = Δ𝑛+1, and by
Proposition 3.14 that 𝐾 = 𝜎 ∈ Face𝑛+1. Let i be such that 𝜎 ⊂ 𝜕𝑖Δ𝑛+1. As 𝜕𝑖𝜏 = 0,

𝜏(Δ𝑛+1, 𝜎) = 𝜏(Δ𝑛+1, 𝜕𝑖Δ
𝑛+1) + 𝜏(𝜕𝑖Δ

𝑛+1, 𝜎) = 𝜏(Δ𝑛+1, 𝜕𝑖Δ
𝑛+1),

so it is enough to show that 𝜏(Δ𝑛+1, 𝜕𝑖Δ𝑛+1) = 𝑎 for 𝑖 = 0, . . . , 𝑛 + 1. If 𝑖 ≠ 0, this follows from the
definition of 𝑎 := 𝜏(Δ𝑛+1, 〈0〉). Applying 𝜏 to the diagram in SubComp�∗𝑛+1

〈2, . . . , 𝑛 + 1〉 𝜕1Δ𝑛+1

𝜕0Δ𝑛+1 Δ𝑛+1
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and noting that 𝜕0𝜏 = 0, we obtain 𝜏(Δ𝑛+1, 𝜕0Δ𝑛+1) = 𝑎, as required. Also, by definition, 𝜏𝑎 is a cycle
in 𝐹alg

• (𝐴) and 𝜏𝑎 (Δ𝑛+1, 〈0〉) = 𝑎, so the claim follows. �

The previous claim shows that 𝜓∗ is surjective when 𝑛 > 0. But this is also the case when 𝑛 = 0, as

𝜓0 : 𝑁𝐹alg
0 (𝐴) = 𝐹alg

0 (𝐴) −→ 𝐴

is an isomorphism: namely, for 𝑎 ∈ 𝐴, the functor 𝜏 : SubComp�∗1 → 𝐴 given by 𝜏(Δ1, 〈0〉) := 𝑎

and 𝜏(Δ1, 〈1〉) := −𝑎∗ (and zero otherwise) is clearly in 𝐹alg
0 (𝐴) and sent to a under 𝜓0. Conversely, if

𝜏 ∈ 𝐹alg (𝐴)0 and 𝜏(Δ1, 〈0〉) = 0, duality then forces 𝜏 to be zero itself.
For injectivity of 𝜓∗, let 𝜏 ∈ 𝑁𝐹alg (𝐴)𝑛 be a cycle such that 𝜓∗ [𝜏] = 0 (i.e., 𝜏(Δ𝑛+1, 〈0〉) = 𝑏 +

(−1)𝑛+1𝑏∗ for some 𝑏 ∈ 𝐴). It is not difficult to see that there exists a functor𝑇 ∈ Fun�(SubComp�∗𝑛+2, 𝐴)
with

𝜕𝑖𝑇 =

{
𝜏, 𝑖 = 1,
0, 𝑖 ≠ 1, 𝑇 (Δ𝑛+2, 𝜕𝑖Δ

𝑛+2) :=
{

−𝑏, 𝑖 = 1,
(−1)𝑛+1𝑏∗, 𝑖 ≠ 1, (0 ≤ 𝑖 ≤ 𝑛 + 2).

By construction, T satisfies face-horn duality for any face 𝜎 ≠ Δ𝑛+1 and for the first face-horn
(𝜕1Δ𝑛+2,Λ𝑛+2

1 ). Therefore, by Lemma 3.17, it satisfies all face-horn dualities. Then T is clearly an
element of 𝑁𝐹alg (𝐴)𝑛+1 bounding 𝜏, so [𝜏] = 0 in 𝐻𝑛 (𝑁𝐹alg (𝐴)•). This finishes the proof. �

Remark 3.21. The map 𝜓𝐴• : 𝑁𝐹alg (𝐴)
�
−→ Aℎ𝐶2 is in fact an isomorphism of chain complexes. An

element 𝜏 ∈ 𝑁𝐹alg (𝐴)𝑛 is completely determined by 𝛿0𝜏(= 𝜕1𝜏) and 𝑏 := 𝜏(Δ𝑛+1, 〈0〉) ∈ 𝐴 using
functoriality and duality. By the claim in the proof of Proposition 3.20, 𝛿0𝜏 = 𝜏𝑎 for some 𝑎 ∈ 𝐴 with
𝑎 = (−1)𝑛𝑎∗. Face-horn duality for (𝜕1Δ𝑛+1,Λ𝑛+1

1 ) yields

𝑎 + (−1)𝑛+1𝑏∗ = 𝑏 =⇒ 𝑎 = 𝑏 + (−1)𝑛𝑏∗,

so 𝛿0𝜏 = 𝜏𝑎 is completely determined by 𝑏 = 𝜏(Δ𝑛+1, 〈0〉). As we will not need this fact, we leave it to
the reader to check that 𝜓𝐴• is indeed surjective.

Before moving on to the proof of Theorem 3.10, we still need some categorical background. For the
rest of the section, we shall adopt the conventions of [Sch99] – for instance, our category Ω∞ − Top of
infinite loop spaces (a.k.a. connective spectra) is modelled by the model category of Γ-spaces thereof.
For 𝐺 = {𝑒} or 𝐶2 and C a category, the category of G-objects in C is C𝐺 := Fun(𝐺,C). Observe
that there are natural isomorphisms of categories ModZ[𝐺 ] � Ab𝐺 and 𝐻Z[𝐺]-Mod � (𝐻Z-Mod)𝐺 .
There is an inclusion of categories ModZ[𝐺 ] ↩−→ sModZ[𝐺 ] sending a Z[𝐺]-module M to the constant
simplicial Z[𝐺]-module on M, denoted by 𝑀 = 𝑀•. By [Sch99, p. 332], the Eilenberg–MacLane
functor 𝐻 : ModZ[𝐺 ] → 𝐻Z[𝐺]-Mod upgrades to a functor

𝐻 : sModZ[𝐺 ] −→ 𝐻Z[𝐺]-Mod

such that, for 𝑀• ∈ sModZ[𝐺 ] , the underlying infinite loop space of 𝐻𝑀• is the realisation |𝑀• |.
Given a simplicial Z[𝐶2]-module 𝑀•, we will write (𝑀•)ℎ𝐶2 for the simplicial abelian group

(𝑀•)ℎ𝐶2 := Diag(𝑀• ⊗Z[𝐶2 ] Z[𝐸•𝐶2]) : [𝑝] ↦−→ 𝑀𝑝 ⊗Z[𝐶2 ] Z[𝐶
×(𝑝+1)
2 ] .

Now, given a 𝐶2-spectrum X, we will write 𝑋ℎ𝐶2 for the spectrum 𝑋 ∧𝐶2 (𝐸𝐶2)+. The following result
says that both meanings of (−)ℎ𝐶2 are intertwined by the Eilenberg–MacLane functor.

Lemma 3.22. For 𝑀• ∈ sModZ[𝐶2 ] , there is a natural equivalence of spectra

(𝐻𝑀•)ℎ𝐶2

∼
−→ 𝐻 ((𝑀•)ℎ𝐶2).
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Proof. According to [Sch99, Lem. 4.2], there is a natural equivalence

𝐻𝑀• ∧𝐻Z[𝐶2 ] 𝐻 (Z[𝐸•𝐶2])
∼
−→ 𝐻 ((𝑀•)ℎ𝐶2),

where we are using that 𝐻 (Z[𝐸•𝐶2]) is a cofibrant 𝐻Z[𝐶2]-module. But for a simplicial set 𝑋•,
𝐻 (Z[𝑋•]) is the free 𝐻Z-module on 𝑋• (i.e., it is (equivalent to) 𝐻Z ∧ |𝑋• |+). Thus,

𝐻𝑀• ∧𝐻Z[𝐶2 ] 𝐻 (Z[𝐸•𝐶2]) � colim𝐶2 𝐻𝑀• ∧𝐻Z 𝐻 (Z[𝐸•𝐶2])

� colim𝐶2 𝐻𝑀• ∧𝐻Z (𝐻Z ∧ (𝐸𝐶2)+)

� 𝐻𝑀• ∧ (𝐸𝐶2)+

=: (𝐻𝑀•)ℎ𝐶2 .

In the second and third equivalences, we are implicitly using that the𝐶2-spectra we are taking the colimit
of are free, and thus, the colimit coincides with the homotopy colimit. �

Finally, we will denote 𝐶 : sAb → Ch≥0 (Z) for the functor sending a simplicial abelian group
(𝑀•, 𝛿•) to the chain complex (𝐶𝑀•, 𝑑•)

𝐶𝑀𝑛 := 𝑀𝑛, 𝑑𝑛 =
𝑛∑
𝑖=0
(−1)𝑖𝛿𝑖 : 𝑀𝑛 −→ 𝑀𝑛−1.

The normalised chain complex 𝑁𝑀• is a sub-complex of 𝐶𝑀•, and in fact, the inclusion 𝑁𝑀• ↩−→ 𝐶𝑀•

is a split quasi-isomorphism [GJ99, §III.2, Thm. 2.1 & Thm. 2.4].

Proof of Theorem 3.10. Our goal is to identify 𝐹alg
• (𝐴) with 𝐴ℎ𝐶2

, functorially in 𝐴 ∈ ModZ[𝐶2 ] . To do
so, we first compare 𝑁𝐴ℎ𝐶2

and Aℎ𝐶2 .
Write 𝑀•

𝜖
� Z for the minimal resolution of Z by free Z[𝐶2]-modules

. . . Z[𝐶2] Z[𝐶2] Z[𝐶2] Z,
1+𝑡 1−𝑡 𝜖

where 𝜖 sets 𝑡 = 1. The chain complex 𝐶 (Z[𝐸•𝐶2]) together with the augmentation map 𝜖 :
𝐶 (Z[𝐸•𝐶2])0 = Z[𝐶2] → Z provides another such resolution (also known as the canonical resolution
of Z by free Z[𝐶2]-modules). Therefore, there is a map 𝐶 (Z[𝐸•𝐶2]) → 𝑀• of resolutions of Z which,
upon applying 𝐴 ⊗Z[𝐶2 ] (−), provides a quasi-isomorphism of chain complexes 𝐶𝐴ℎ𝐶2

�
−→ Aℎ𝐶2 . We

thus obtain the desired quasi-isomorphism of chain complexes

𝜙𝐴• : 𝑁𝐴ℎ𝐶2
𝐶𝐴ℎ𝐶2

Aℎ𝐶2 ,
� �

which is clearly functorial in A.
The Dold–Kan correspondence (3.14) can be upgraded to a Quillen equivalence of model categories

[Qui67, §II.4] (for the projective model structure on chain complexes), so there is a zig-zag of equiva-
lences (functorial in 𝐴 ∈ ModZ[𝐶2 ])

𝐹alg
• (𝐴) ΓAℎ𝐶2 𝐴ℎ𝐶2

.
(𝜓𝐴

• )
∨

∼

(𝜙𝐴
• )

∨

∼ (3.16)

Each map in the zig-zag is an equivalence since Γ preserves equivalences (Γ is a right Quillen functor
and every object in Ch≥0(Z) is fibrant) and because N and Γ are inverse to each other (as the Dold–Kan
correspondence (3.14) is an actual equivalence of categories). Applying geometric realisation to (3.16)
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and noting Lemma 3.22, there results a zig-zag of infinite loop spaces

|𝐹alg
• (𝐴) |

�
−→ |ΓAℎ𝐶2 |

�
←− |𝐴ℎ𝐶2

| = Ω∞(𝐻 (𝐴ℎ𝐶2
))

�
←− Ω∞((𝐻𝐴)ℎ𝐶2),

which once again is functorial in A. This finishes the proof. �

Remark 3.23. A key step in the proof is the identification of 𝐹alg
• (𝐴) with ΓAℎ𝐶2 in (3.16), via the

(homotopical) Dold–Kan correspondence. Crucially, this relies on the fact that 𝐹alg
• (𝐴) is a simplicial

abelian group (cf. Lemma 3.19), rather than just semi-simplicial, as we are unaware of a generalisation
of Dold–Kan to the semi-simplicial setting. This hopefully clarifies the need for Proposition 3.14 and
Lemma 3.19.

3.2. Proof of Theorem B

Let 𝐹•(𝑀) denote the simplicial homotopy fibre

𝐹•(𝑀) := holim
(
{𝑀𝑑} M̃ℎ

• M̃𝑠
•

)
. (3.17)

It has as p-simplices

𝐹𝑝 (𝑀) =
{
𝑊 ∈ M̃ℎ

𝑝+1 : 𝑊0 = 𝑀, 𝜕0𝑊 ∈ M̃𝑠
𝑝

}
,

and as face maps

𝛿𝑖 : 𝐹𝑝 (𝑀) −→ 𝐹𝑝−1(𝑀), 𝑊 ↦−→ 𝜕𝑖+1𝑊 = 𝑊
〈0,...,𝑖+1,..., 𝑝+1〉 , 𝑖 = 0, . . . , 𝑝.

Recall that 𝐶2 acts on Wh(𝑀) by 𝑡 · 𝜏 := (−1)𝑑−1𝜏. Our task is to find an equivalence
|𝐹•(𝑀) | � Ω∞(𝐻Wh(𝑀)ℎ𝐶2), and by Theorem 3.10 we already know that the latter space is equivalent
to |𝐹alg

• (Wh(𝑀)) |. Therefore, in order to show Theorem B, it suffices to establish an equivalence of
semi-simplicial sets between 𝐹•(𝑀) and 𝐹alg

• (Wh(𝑀)).
Let 𝑊𝑑+𝑝+1 ∈ 𝐹𝑝 (𝑀). We may find some face preserving homotopy equivalence 𝑓 : 𝑊

�ℎ
−→Δ

𝑀 × Δ 𝑝+1 with 𝑓0 = Id𝑀 : 𝑊0 = 𝑀 → 𝑀 . With such a homotopy equivalence, we can identify
𝜋1 (𝑊𝐾 ) with 𝜋1 (𝑀) for every sub-complex 𝐾 ∈ SubComp�∗𝑝 so that for 𝐾 ⊂ 𝐿, the identifications
𝜋1 (𝑊𝐾 ) � 𝜋1 (𝑀) and 𝜋1 (𝑊𝐿) � 𝜋1 (𝑀) are compatible with the induced isomorphism 𝜋1 (𝑊𝐾 ↩−→
𝑊𝐿) : 𝜋1 (𝑊𝐾 ) � 𝜋1 (𝑊𝐿). Any other choice of such a homotopy equivalence 𝑓 ′ will not change this
identification, as f and 𝑓 ′ are homotopic rel𝑊0 = 𝑀 (to see this, note that it is equivalent to showing that
a homotopy equivalence 𝑓 : 𝑀×Δ 𝑝

�
−→ 𝑀×Δ 𝑝 with 𝑓0 = Id𝑀 is homotopic rel 𝑀×Δ 𝑝0 to the identity.

This, in turn, follows from the fact that it is block homotopic rel 𝑀 ×Δ 𝑝0 to the identity by an Alexander
trick-like argument similar to [BLR75, Lem. 2.1] and that ℎAut(𝑀)• � +ℎAut(𝑀)•). Once we have made
such an identification of fundamental groups, we can define the functor 𝜏𝑊 ∈ Fun(SubComp�∗𝑝 ,Wh(𝑀))

𝜏𝑊 (𝐿, 𝐾) := 𝜏(𝑊𝐾
�
↩−−→𝑊𝐿) ∈ Wh(𝑀).

The composition rule (2.2) of the Whitehead torsion and the inclusion-exclusion principle
(2.3) guarantees that 𝜏𝑊 satisfies (3.7), and therefore, by Lemma 3.12, 𝜏𝑊 is an element of
Fun�(SubComp�∗𝑝 ,Wh(𝑀)). In fact, by the definition of the 𝐹•(𝑀), the functor 𝜏𝑊 is a p-simplex
in this space (remember that 𝜏∗ in (3.12) should now be replaced by (−1)𝑑−1𝜏).

Proposition 3.24. For 𝑑 = dim𝑀 ≥ 5, there is an equivalence of semi-simplicial sets

𝜏(−) : 𝐹•(𝑀)
�
−→ 𝐹alg

• (Wh(𝑀)), 𝑊 ↦−→ 𝜏𝑊 .
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Together with Theorem 3.10, this will prove Theorem B. In particular, by Proposition 3.20,

𝜋𝑛 (𝐹•(𝑀)) � 𝐻𝑛 (𝐶2; Wh(𝑀)) �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Wh(𝑀 ){

𝑏+(−1)𝑑𝑏 | 𝑏∈Wh(𝑀 )
} , 𝑛 = 0,

{𝑎∈Wh(𝑀 ) | 𝑎=(−1)𝑑+𝑛𝑎}{
𝑏+(−1)𝑑+𝑛𝑏 | 𝑏∈Wh(𝑀 )

} , 𝑛 ≥ 1.
(3.18)

Proof of Proposition 3.24. We need to prove that 𝜏(−) induces isomorphisms in homotopy groups. To
prove surjectivity, let 𝑎 ∈ Wh(𝑀) be such that 𝑎 = (−1)𝑑+𝑛𝑎 and let𝑊𝑑+𝑛+1 : 𝑀 ×Λ𝑛+1

0
ℎ
�𝑊〈1,...,𝑛+1〉

be an h-cobordism rel boundary with 𝜏(𝑊, 𝑀 ×Λ𝑛+1
0 ) = 𝑎. The manifold W admits a stratified structure

over Δ𝑛+1 with 0-th horn Λ0(𝑊) = 𝑀 × Λ𝑛+1
0 and 0-th face 𝑊〈1,...,𝑛+1〉 . It is not difficult to see that

𝜏𝑊 = 𝜏𝑎 by Proposition 3.14 and noting that 𝜏𝑊 satisfies face-horn dualities for all faces (in particular,
Δ𝑛+1).

For injectivity, let 𝑊 ∈ 𝐹𝑛 (𝑀) be a cycle such that [𝜏𝑊 ] = 0 in 𝜋𝑛 (𝐹alg
• (Wh(𝑀)). By the first

step in the proof of Proposition 3.20, 𝜏𝑊 = 𝜏𝑏+(−1)𝑑+𝑛𝑏 for some 𝑏 ∈ Wh(𝑀). Let 𝑉 : 𝑊 ℎ
�𝑊 ′ be

an h-cobordism rel boundary with torsion 𝜏(𝑉,𝑊) = −𝑏 (after having identified 𝜋1 (𝑊) with 𝜋1 (𝑀)
appropriately. Then 𝜋1 (𝑉) and 𝜋1 (𝑊

′) get identified with 𝜋1 (𝑀) too). We claim𝑊 ′ is (face-preservingly)
diffeomorphic to 𝑀 ×Δ𝑛+1 (i.e., we have to show that 𝜏(𝑊 ′,Λ0(𝑊

′)) = 0 by the s-cobordism theorem).
Since Λ0(𝑊

′) = Λ0 (𝑊) = 𝑀 × Λ𝑛+1
0 ,

𝜏(𝑊,Λ0 (𝑊)) + 𝜏(𝑉,𝑊) = 𝜏(𝑊
′,Λ0 (𝑊

′)) + 𝜏(𝑉,𝑊 ′)

which, by duality, yields

𝜏(𝑊 ′,Λ0(𝑊
′)) = 𝑏 + (−1)𝑑+𝑛𝑏 − 𝑏 − (−1)𝑑+𝑛+1(−𝑏) = 0.

Let 𝜙 : 𝑊 ′ � 𝑀 × Δ𝑛+1 be a diffeomorphism fixing Λ0 (𝑊
′) = 𝑀 × Λ𝑛+1

0 , and consider 𝑉 ′ :=
𝑀𝜙 ◦ 𝑉 , where 𝑀𝜙 : 𝑊 ′ 𝑠

� 𝑀 × Δ𝑛+1 denotes the mapping cylinder4 of 𝜙. Then using the canonical
diffeomorphism rel boundary Δ𝑛+1 � Λ𝑛+2

1 , the manifold 𝑉 ′ admits a stratified structure over Δ𝑛+2

with 𝜕1𝑉
′ = 𝑊 and Λ1 (𝑉

′) = 𝑀 × Λ𝑛+2
1 . Therefore, 𝑉 ′ provides a null-homotopy of W in 𝐹•(𝑀), as

desired. �

Remark 3.25. The semi-simplicial sets M̃ℎ
• and M̃𝑠

• admit compatible systems of degeneracies that
make them into simplicial objects. Namely, the i-th degeneracy map 𝑠𝑖 : M̃ℎ/𝑠

𝑝 → M̃ℎ/𝑠
𝑝+1 sends

a p-simplex 𝑊𝑑+𝑝 ⇒ Δ 𝑝 to the pullback W pr ×siΔp+1, where pr : 𝑊 → Δ 𝑝 is the composition
𝑊 ⊂ R∞ × Δ 𝑝 � Δ 𝑝 , and 𝑠𝑖 : Δ 𝑝+1 → Δ 𝑝 is the linear i-th codegeneracy map. The pullback
𝑊 pr×𝑠𝑖 Δ

𝑝+1 is regarded as a manifold stratified over Δ 𝑝+1 under the inclusion

𝑊 pr×𝑠𝑖 Δ
𝑝+1 ↩−→ R∞ × Δ 𝑝+1, ((𝑤, 𝑥), 𝑦) ↦−→ (𝑤, 𝑦),

for (𝑤, 𝑥) ∈ 𝑊 ⊂ R∞ × Δ 𝑝 and 𝑦 ∈ Δ 𝑝+1 such that 𝑥 = 𝑠𝑖 (𝑦). The semi-simplicial homotopy fibre
𝐹•(𝑀) thus inherits a simplicial structure which agrees with that of 𝐹alg

• (Wh(𝑀)) (i.e., the map 𝜏(−) of
Proposition 3.24 becomes an equivalence of simplicial sets).

3.3. Relation to the Rothenberg exact sequence

The purpose of this section is to derive a consequence of Theorem B in a different direction to Theorem A.
The reader may want to skip it on first reading.

4This should really be the mapping cylinder with collars (see Definition 3.1(𝑖𝑖𝑖)). Namely, given a diffeomorphism (possibly
rel boundary) 𝜙 : 𝐴 � 𝐵, we define 𝑀𝜙 by 𝐴× [0, 1/2] ∪𝜙×{1/2} 𝐵 × [1/2, 1].
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For a finite group G and a naïve G-spectrum X, we will denote by 𝑋 𝑡𝐺 the Tate construction of X
[ACD89, Defn. 2.2], that is, the homotopy cofibre of the norm map (cf. [WW89, Prop. 2.4]) 𝑁 : 𝑋ℎ𝐺 →

𝑋ℎ𝐺 , where 𝑋ℎ𝐺 := 𝑋∧𝐺 (𝐸𝐺)+ are the homotopy G-orbits of X as before, and 𝑋ℎ𝐺 := 𝐹 (Σ∞+ 𝐸𝐺, 𝑋)𝐺
denotes the homotopy G-fixed points of X. Here, 𝐹 (−,−)𝐺 is the G-equivariant mapping spectrum.
When 𝑋 = 𝐻𝐴 for some Z[𝐺]-module A, 𝜋𝑠∗ ((𝐻𝐴)ℎ𝐺) = 𝐻∗(𝐺; 𝐴) while 𝜋𝑠∗ ((𝐻𝐴)ℎ𝐺) = 𝐻−∗(𝐺; 𝐴),
and the norm map in degree zero 𝐴𝐺 → 𝐴𝐺 is multiplication by the norm element 𝑁 =

∑
𝑔∈𝐺 𝑔 ∈ Z[𝐺].

Therefore, when 𝐺 = 𝐶2 and 𝐴 = Wh(𝑀),

𝐻∗(𝐶2; Wh(𝑀)) := 𝜋𝑠∗ (𝐻Wh(𝑀)𝑡𝐶2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐻∗−1(𝐶2; Wh(𝑀)), ∗ ≥ 2,
{𝑎∈Wh(𝑀 ) | 𝑎=(−1)𝑑𝑎}{
𝑏+(−1)𝑑𝑏 | 𝑏∈Wh(𝑀 )

} ⊂ 𝐻0(𝐶2; Wh(𝑀)), ∗ = 1,

{𝑎∈Wh(𝑀 ) | 𝑎=(−1)𝑑−1𝑎}{
𝑏+(−1)𝑑−1𝑏 | 𝑏∈Wh(𝑀 )

} ⊂ 𝐻0(𝐶2; Wh(𝑀)), ∗ = 0,

𝐻−∗(𝐶2; Wh(𝑀)), ∗ ≤ −1.

Let Lℎ/𝑠 (𝑀) denote the quadratic ordinary/simple L-theory spectrum of 𝑀𝑑 [Ran92, §13], whose
homotopy groups are the L-theory groups 𝐿ℎ/𝑠∗ (Z[𝜋1𝑀]). In this section, we establish a spacified
version of the positive-degree part of the Rothenberg exact sequence for quadratic L-theory [Ran81,
Prop. 1.10.1].

Proposition 3.26. For 𝑑 ≥ 5, there is an equivalence of spaces

Ω∞+𝑑+1 hofib
(
L𝑠 (𝑀) → Lℎ (𝑀)

)
� Ω∞+1(𝐻Wh(𝑀)𝑡𝐶2). (3.19)

Proof. Let S̃ℎ/𝑠• (𝑀) denote the ordinary/simple block structure spaces of M [Qui70]. Roughly speaking,
a p-simplex in the space S̃ℎ/𝑠• (𝑀) is a pair (𝑊𝑑+𝑝 , 𝑓 ) consisting of a manifold W stratified over Δ 𝑝 and
a face-preserving homotopy equivalence 𝑓 : 𝑊

�ℎ/𝑠
−→Δ 𝑀 × Δ 𝑝 . For 𝑑 ≥ 5, surgery theory establishes a

diagram of fibration sequences [Qui70, §3]

Ω∞+𝑑+1L𝑠 (𝑀) S̃𝑠 (𝑀) (𝐺/𝑂)𝑀+
∗

Ω∞+𝑑+1Lℎ (𝑀) S̃ℎ (𝑀) (𝐺/𝑂)𝑀+
∗ .

Taking homotopy fibres, we obtain an equivalence

Ω∞+𝑑+1 hofib
(
L𝑠 (𝑀) → Lℎ (𝑀)

)
� hofib

(
S̃𝑠 (𝑀) −→ S̃ℎ (𝑀)

)
. (3.20)

However, it is not difficult to see that there is another diagram of fibration sequences

𝑠Aut(𝑀) S̃𝑠 (𝑀) M̃𝑠

ℎAut(𝑀) S̃ℎ (𝑀) M̃ℎ ,

incl. of
cpts.

𝑢

𝑢

where u is the (geometric realisation of the) forgetful map sending a p-simplex (𝑊𝑑+𝑝 , 𝑓 ) in
S̃ℎ/𝑠• (𝑀) to 𝑊 ∈ M̃ℎ/𝑠

𝑝 . Taking again homotopy fibres (in the basepoint components correspond-
ing to M and Id𝑀 ), we get a map 𝑢 : hofib(S̃𝑠 (𝑋) −→ S̃ℎ (𝑋)) → |𝐹•(𝑀) | � Ω∞(𝐻Wh(𝑀)ℎ𝐶2)

which is an equivalence onto the components that are hit. For each [𝑎] ∈ 𝐻0(𝐶2; Wh(𝑀)), write
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Ω∞
[𝑎]
(𝐻Wh(𝑀)ℎ𝐶2 ) ⊂ Ω∞(𝐻Wh(𝑀)ℎ𝐶2) for the connected component corresponding to [𝑎]. There is

hence a chain of equivalences

Ω∞+𝑑+1 hofib
(
L𝑠 (𝑀) → Lℎ (𝑀)

) (3.20)
� hofib

(
S̃𝑠 (𝑋) → S̃ℎ (𝑋)

)
�

⊔
[𝑎] ∈Im(𝜋0 (𝑢))

Ω∞
[𝑎] (𝐻Wh(𝑀)ℎ𝐶2).

To establish (3.19), it remains to argue that Im(𝜋0 (𝑢)) = 𝐻1(𝐶2; Wh(𝑀)). Choose a 0-simplex in
hofib(S̃𝑠• (𝑋) −→ S̃ℎ• (𝑋)), that is, a 1-simplex (𝑊, 𝑓 ) ∈ S̃ℎ1 (𝑀) such that 𝑊0 = 𝑀 , 𝑓0 = Id𝑀 and
𝑓1 : 𝑊1

�𝑠
−→ 𝑀 × {1} is a simple homotopy equivalence. In particular,𝑊 : 𝑀 ℎ

�𝑊1 is an h-cobordism
starting at M. By definition of 𝜓Wh(𝑀 )

• (see (3.15)),

𝜋0 (𝑢) : 𝜋0

(
hofib

(
S̃𝑠 (𝑋) −→ S̃ℎ (𝑋)

))
−→ 𝐻0(𝐶2,Wh(𝑀)), [𝑊, 𝑓 ] ↦−→ [𝜏(𝑊, 𝑀)] .

Now 0 = 𝜏( 𝑓0) = (𝑖𝑀 )
−1
∗ 𝜏( 𝑓 ) + 𝜏(𝑊, 𝑀) and, by duality, 0 = (ℎ𝑊∗ )

−1𝜏( 𝑓1) = (𝑖𝑀 )
−1
∗ 𝜏( 𝑓 ) +

(−1)𝑑𝜏(𝑊, 𝑀). Putting these two together, we obtain 𝜏(𝑊, 𝑀) = (−1)𝑑𝜏(𝑊, 𝑀), so it follows that
Im(𝜋0 (𝑢)) ⊂ 𝐻1 (𝐶2; Wh(𝑀)). For the other inclusion, let 𝑊 ∈ 𝐹0 (𝑀) be such that 𝜏(𝑊, 𝑀) =

(−1)𝑑𝜏(𝑊, 𝑀), and pick some face-preserving homotopy equivalence 𝑓 : 𝑊
�ℎ
−→Δ 𝑀 × 𝐼. By post-

composing f with 𝑓 −1
0 × 𝐼, for some 𝑓 −1

0 homotopy inverse to 𝑓0, we may assume that 𝑓0 = Id𝑀 . Then

𝜏( 𝑓1) = (𝑖𝑊1)
−1
∗ 𝜏( 𝑓 ) + (−1)𝑑ℎ𝑊∗ 𝜏(𝑊, 𝑀) = (𝑖𝑊1)

−1
∗ 𝜏( 𝑓 ) + ℎ𝑊∗ 𝜏(𝑊, 𝑀) = ℎ

𝑊
∗ 𝜏( 𝑓0) = 0,

so 𝑓1 : 𝑊1 �𝑠 𝑀 × {1} is a simple homotopy equivalence, and thus, (𝑊, 𝑓 ) represents a 0-simplex in
hofib(S̃𝑠• (𝑋) −→ S̃ℎ• (𝑋)). This concludes the proof of Proposition 3.26. �

Remark 3.27 (Speculative). The equivalence (3.19) can presumably be upgraded to one of infinite loop
spaces, and should hold also for 𝑑 < 5 (we need this assumption in our statement only because of the use
of surgery theory in the proof). The argument should be completely “surgery-free” but still similar to that
of Theorem B, by replacing the block moduli spaces M̃ℎ/𝑠

• with the L-theory semi-simplicial sets Lℎ/𝑠•

as defined in [Qui70, §2]. More generally, an equivalence of spectra Σ−𝑑 hofib
(
L𝑠 (𝑀) → Lℎ (𝑀)

)
�

𝐻Wh(𝑀)𝑡𝐶2 should hold.

Remark 3.28 (Relation to Weiss–Williams II). As will be explained in Appendix B, Theorem B is
closely related to the first part of the seminal series Automorphisms of Manifolds and Algebraic K-
Theory by Weiss and Williams [WW88]. That said, the techniques we have used in this section are
reminiscent of those in Part II of the same series [WW89], as was pointed out to us by the anonymous
referee, to whom we are grateful. Let us briefly comment on this now.

Given a ring with anti-involution R (e.g., 𝑅 = Z[𝜋1𝑀] with the anti-involution described in (2.1)),
the authors of [WW89] construct a map from the L-theory spectrum of R (with various decorations,
such as h and s) to K(𝑅)𝑡𝐶2 , the Tate construction of the algebraic K-theory spectrum of R (with the
corresponding decoration). As noted in [WW89, p. 52], these maps can be used to derive ‘higher order’
Rothenberg exact sequences, which are not quite the one we study in Proposition 3.26 – our version
concerns the ‘change of decoration’ from h to s, whereas theirs arise from the Postnikov truncations
𝜏≥∗K(𝑅).

To construct these maps, they present a simplicial resolution of K(𝑅) given by

[𝑛] ↦→ K(Fun(Face𝑛,Ch𝑅)),

where Ch𝑅 denotes the Waldhausen category of chain complexes of projective left R-modules. They
then introduce a notion of duality in K(Fun(Face𝑛,Ch𝑅)) of Poincaré duality flavour [WW89, pp.
77–78], which is reminiscent of our face-horn duality (3.11). By similar techniques to those of Vogell
[Vog85], this duality upgrades K(Fun(Face•,Ch𝑅)) to a simplicial 𝐶2-spectrum.
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By contrast, our work concerns only the (reduced) first algebraic K-theory group of R, rather than the
entire spectrum. For instance, given an object 𝐶 ∈ Fun(Face𝑛,Ch𝑅) such that 𝐶 (𝜎) is free and finitely
generated for all 𝜎 ⊂ Δ𝑛 and such that 𝐶 (𝜎) → 𝐶 (𝜉) is a quasi-isomorphism for all 𝜎 ⊂ 𝜉 ⊂ Δ𝑛,
we focus on the functor Face𝑛 → 𝐾1(𝑅) that assigns to each face inclusion 𝜎 ⊂ 𝜉 the torsion of
𝐶 (𝜎) → 𝐶 (𝜉). On a different note, our 𝐹alg (−)-construction models the homotopy 𝐶2-orbit spectrum
𝐻 (−)ℎ𝐶2 , as opposed to the 𝐶2-spectrum 𝐻 (−).

In any case, even though our work and that in [WW89] are clearly related, we have not yet fully
worked out the details of how they connect, but it would be very interesting to do so.

4. Proof of Theorem A(i)

By analysing the lower-degree portion of the long exact sequence of homotopy groups associated to the
homotopy pullback of Theorem B, we propose a general strategy to prove Theorem A(𝑖) (see Proposition
4.5). We then present an example of an h-cobordism 𝑊 : 𝐿 ℎ

� 𝑀 , where L is as in the statement of
Theorem A, which satisfies the conditions of the proposed strategy. All throughout, let 𝑀𝑑 denote a
closed smooth manifold of dimension 𝑑 ≥ 5.

4.1. A general strategy

From the homotopy cartesian square of the homotopy fibre 𝐹•(𝑀) (see (3.17)), we obtain an associated
long exact sequence of homotopy groups

. . . 𝜋𝑛 (𝐹•(𝑀)) 𝜋𝑛 (M̃𝑠 , {𝑀}) 𝜋𝑛 (M̃ℎ , {𝑀}) . . .

. . . 𝜋1 (M̃ℎ , {𝑀}) 𝜋0 (𝐹•(𝑀)) 𝜋0 (M̃𝑠) 𝜋0 (M̃ℎ).
𝜕

(4.1)

For 𝑛 ≥ 1, the boundary map 𝜕 : 𝜋𝑛 (M̃ℎ , {𝑀}) → 𝜋𝑛−1 (𝐹•(𝑀)) sends an n-cycle 𝑊𝑑+𝑛 ∈ M̃ℎ
𝑛

based at M to W as an (𝑛 − 1)-cycle in 𝐹•(𝑀). So the image of the lowest-degree boundary map
𝜕 : 𝜋1 (M̃ℎ , {𝑀}) → 𝜋0 (𝐹•(𝑀)) consists of those classes represented by h-cobordisms𝑊 : 𝑀 ℎ

� 𝑀 .

Definition 4.1. An h-cobordism 𝑊 : 𝑀 ℎ
� 𝑀 ′ is said to be inertial [JK18, Defn. 2.1] if 𝑀 ′ is diffeo-

morphic to M. The set of inertial h-cobordisms starting at M (up to diffeomorphism rel M) is denoted
by 𝐼 (𝑀) ⊂ ℎCob(𝑀) � Wh(𝑀).

Example 4.2. Given an h-cobordism 𝑊 : 𝑀 ℎ
� 𝑀 ′, denote 𝑊 : 𝑀 ′ ℎ� 𝑀 for W with the reversed

cobordism direction. The double 𝐷 (𝑊) := 𝑊 ◦𝑊 = 𝑊 ∪𝑀 ′𝑊 [Mil66, p. 400] is an inertial h-cobordism
𝑀

ℎ
� 𝑀 with torsion (see (2.5) and (2.7))

𝜏(𝐷 (𝑊), 𝑀) = 𝜏(𝑊, 𝑀) + (−1)𝑑𝜏(𝑊, 𝑀).

The subgroup of double h-cobordisms of 𝑀𝑑 ,

D(𝑀) := {𝜎 + (−1)𝑑𝜎 : 𝜎 ∈ Wh(𝑀)} ⊂ Wh(𝑀), (4.2)

is therefore a subset of 𝐼 (𝑀) too. Also observe from (3.18) that

𝐻0 (𝐶2; Wh(𝑀)) = Wh(𝑀)/D(𝑀).

Lemma 4.3. Let 𝐼 (𝑀 )
D (𝑀 )

denote the image of 𝐼 (𝑀) under the projection Wh(𝑀) � 𝐻0(𝐶2; Wh(𝑀)).
Under the isomorphism 𝜋0 (𝐹•(𝑀)) � 𝐻0(𝐶2; Wh(𝑀)) established in (3.18),
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Im
{
𝜕 : 𝜋1 (M̃ℎ , {𝑀}) → 𝜋0 (𝐹•(𝑀)) �

Wh(𝑀)
D(𝑀)

}
=
𝐼 (𝑀)

D(𝑀) .

Proof. The inclusion (⊂) is immediate. Conversely, if 𝑊 : 𝑀 � 𝑀 ′ is an inertial h-cobordism with
𝜙 : 𝑀 � 𝑀 ′, let 𝑊 ′ : 𝑀 � 𝑀 denote the h-cobordism 𝑀𝜙−1 ◦ 𝑊 . Recall that the isomorphism
𝜋0 (𝐹•(𝑀)) � 𝐻0(𝐶2; Wh(𝑀)) sends the class represented by W to that of its torsion 𝜏(𝑊, 𝑀) =
𝜏(𝑊 ′, 𝑀). As𝑊 ′ represents a class in 𝜋1 (M̃ℎ , {𝑀}), we are done. �

Recall from Proposition 3.6 and (3.3) that 𝐵D̃iff(𝑀) and 𝐵D̃iff ℎ (𝑀) are the connected components
of M̃𝑠 and M̃ℎ , respectively, which contain 𝑀𝑑 as basepoint. We will denote D̃iff ℎ/D̃iff (𝑀) ⊂ 𝐹•(𝑀)
for the union of connected components corresponding to 𝐼 (𝑀 )

D (𝑀 )
. By exactness of (4.1), these are exactly

the components of 𝐹•(𝑀) that map to 𝐵D̃iff(𝑀) ⊂ M̃𝑠 . We thus obtain a fibration sequence

D̃iff ℎ/D̃iff(𝑀) 𝐵D̃iff(𝑀) 𝐵D̃iff ℎ (𝑀). (4.3)

For the remainder of this section, let𝑊𝑑+1 : 𝐿𝑑 ℎ
� 𝑀𝑑 be an h-cobordism with torsion 𝜏 := 𝜏(𝑊, 𝐿) ∈

Wh(𝐿). The homotopy long exact sequences of the fibration (4.3) for L and M yield the diagram

𝜋2 (𝐵D̃iff ℎ (𝐿)) 𝐻1 (𝐶2; Wh(𝐿)) 𝜋1 (𝐵D̃iff (𝐿)) 𝜋1 (𝐵D̃iff ℎ (𝐿)) 𝐼 (𝐿)
D (𝐿)

𝜋2 (𝐵D̃iff ℎ (𝑀)) 𝐻1 (𝐶2; Wh(𝑀)) 𝜋1 (𝐵D̃iff (𝑀)) 𝜋1 (𝐵D̃iff ℎ (𝑀)) 𝐼 (𝑀 )
D (𝑀 )

,

(†)�base pt.
change

𝜕

�ℎ𝑊∗ �base pt.
change

𝜕

𝜕 𝜕

(4.4)

where we have used the isomorphism 𝜋𝑛 (D̃iff ℎ/D̃iff (−)) � 𝐻𝑛 (𝐶2; Wh(−)) for 𝑛 ≥ 1 from Proposi-
tion 3.24. We are trying to compare the middle terms of the two extensions above, since

𝜋1 (𝐵D̃iff (−)) � 𝜋0 (D̃iff (−)) =: Γ̃(−).

We first study the left part of the extensions in (4.4).

Proposition 4.4. For 𝑛 ≥ 2, the following square commutes:

𝜋𝑛 (𝐵D̃iff ℎ (𝐿)) 𝐻𝑛−1 (𝐶2; Wh(𝐿))

𝜋𝑛 (𝐵D̃iff ℎ (𝑀)) 𝐻𝑛−1 (𝐶2; Wh(𝑀)).

�base pt.
change

𝜕

�ℎ𝑊∗

𝜕

In particular, the square decorated by (†) in (4.4) commutes.

Proof. The basepoint change map sends an n-cycle 𝑉𝑑+𝑛 ∈ 𝐵D̃iff ℎ (𝐿)𝑛 to the manifold (see Figure 1)

𝑊#𝑉 := 𝑉 ∪𝐿×𝜕Δ𝑛 (𝑊 × 𝜕Δ𝑛).

The union is made along the boundary 𝜕𝑉 = 𝐿 × 𝜕Δ𝑛. The manifold 𝑊#𝑉 is naturally stratified
over Δ𝑛, and clearly represents an n-cycle in 𝐵D̃iff ℎ (𝑀). As mentioned before, the boundary map
𝜕 : 𝜋𝑛 (𝐵D̃iff ℎ (𝐿)) −→ 𝐻𝑛−1 (𝐶2; Wh(𝐿)) sends [𝑉] to the class represented by 𝜏(𝑉,𝑉0) = 𝜏(𝑉, 𝐿) in
𝐻𝑛−1 (𝐶2; Wh(𝐿)). We thus need to show that

𝜏(𝑊#𝑉, 𝑀) ≡ ℎ
𝑊
∗ 𝜏(𝑉, 𝐿) mod {𝜎 + (−1)𝑑+𝑛−1𝜎 : 𝜎 ∈ Wh(𝐿)}.
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Figure 1. Illustration of𝑊#𝑉 and 𝑃 := 𝑉 ∪𝐿×{0} 𝑊 when 𝑛 = 2.

We compute 𝜏(𝑊#𝑉, 𝑀) directly. For any subspaces 𝐴, 𝐵 ⊂ 𝑊#𝑉 with 𝐴 ⊂ 𝐵, write 𝑖𝐵𝐴 for the inclusion.
If 𝑃 := 𝑉 ∪𝑉0=𝐿 𝑊 (see Figure 1), we can factor the inclusion 𝑖𝑊#𝑉

𝑀 : 𝑀 = 𝑀 × {0} ↩−→ 𝑊#𝑉 as

𝑀 𝑊#𝑉

𝑊 𝑃.

�

�

�

�

We compute the torsion of these three maps using the inclusion-exclusion principle (2.3):

𝜏(𝑊, 𝑀) = (−1)𝑑ℎ𝑊∗ 𝜏,
𝜏(𝑃,𝑊) = (𝑖𝑊𝐿 )∗𝜏(𝑉, 𝐿) + (𝑖

𝑊
𝑊 )∗𝜏(𝑊,𝑊) − (𝑖

𝑊
𝐿 )∗𝜏(𝐿, 𝐿)

= (𝑖𝑊𝐿 )∗𝜏(𝑉, 𝐿),

𝜏(𝑊#𝑉, 𝑃) = (𝑖
𝑃
𝑉 )∗𝜏(𝑊#𝑉,𝑉) + (𝑖

𝑃
𝑊 )∗𝜏(𝑊,𝑊) − (𝑖

𝑃
𝐿 )∗𝜏(𝑊, 𝐿)

= (𝑖𝑃𝑉 )∗(𝑖
𝑉
𝜕𝑉 )∗𝜏(𝑊 × 𝜕Δ𝑛, 𝐿 × 𝜕Δ𝑛) − (𝑖𝑃𝐿 )∗𝜏

= 𝜒(𝜕Δ𝑛) · (𝑖𝑃𝐿 )∗𝜏 − (𝑖
𝑃
𝐿 )∗𝜏

= (−1)𝑛−1(𝑖𝑃𝐿 )∗𝜏.

In the penultimate line, we have used that 𝑖𝑃𝑉 ◦ 𝑖
𝑉
𝜕𝑉

◦ 𝑖𝐿×𝜕Δ
𝑛

𝐿×0 = 𝑖𝑃𝐿 and the product rule (2.4) of 𝜏(−), for
which we need the condition 𝑛 ≥ 2 for 𝜕Δ𝑛 to be connected. By the composition rule (2.2), we get

𝜏(𝑊#𝑉, 𝑀) = (−1)𝑑ℎ𝑊∗ 𝜏 + (𝑖𝑊𝑀 )
−1
∗ (𝑖𝑊𝐿 )∗𝜏(𝑉, 𝐿) + (−1)𝑛−1(𝑖𝑃𝑀 )

−1
∗ (𝑖𝑃𝐿 )∗𝜏

= (−1)𝑑ℎ𝑊∗ 𝜏 + ℎ𝑊∗ 𝜏(𝑉, 𝐿) + (−1)𝑛−1ℎ𝑊∗ 𝜏

= ℎ𝑊∗ 𝜏(𝑉, 𝐿) + (−1)𝑛−1
(
ℎ𝑊∗ 𝜏 + (−1)𝑑+𝑛−1ℎ𝑊∗ 𝜏

)
,

where in the second line we have used the commutative diagram

𝑀 𝑊 𝐿

𝑃,

�

�
�

�

�

so (𝑖𝑃𝑀 )
−1
∗ (𝑖𝑃𝐿 )∗ = (𝑖

𝑊
𝑀 )

−1
∗ (𝑖𝑊𝐿 )∗ = ℎ

𝑊
∗ . This finishes the proof.

�

In the next section, we will focus on the task of finding an example of 𝑊 : 𝐿 ℎ
� 𝑀 for which

Γ̃(𝐿) ≠ Γ̃(𝑀) as in Theorem A(i). By the previous result, we should make the right-hand sides of the
two extensions in (4.4) differ. In order to do so, we will use the following.
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Proposition 4.5. Let𝑊 : 𝐿 ℎ
� 𝑀 be such that

I
𝐼 (𝐿)

D(𝐿) = 0 but
𝐼 (𝑀)

D(𝑀) ≠ 0, II 𝜋1 (𝐵D̃iff (𝐿)) is finite.

Then 𝐼 (𝑀 )
D (𝑀 )

is finite of cardinality 𝑁 > 1 and

|𝜋1 (𝐵D̃iff(𝐿)) | = 𝑁 · |𝜋1 (𝐵D̃iff (𝑀)) | < ∞.

In particular, Γ̃(𝐿) ≠ Γ̃(𝑀).

Proof. If 𝐼 (𝐿)
D (𝐿) = 0 then 𝜋1 (𝐵D̃iff(𝐿)) surjects onto 𝜋1 (𝐵D̃iff ℎ (𝐿)), and hence, the latter is finite too.

As 𝜋1 (𝐵D̃iff ℎ (𝑀)) � 𝜋1 (𝐵D̃iff ℎ (𝐿)) surjects onto 𝐼 (𝑀 )
D (𝑀 )

, this is also finite, say of cardinality 𝑁 > 1
since 𝐼 (𝑀 )

D (𝑀 )
≠ 0. Write

𝐾 :=
{
𝑥 ∈ 𝜋1 (𝐵D̃iff ℎ (𝑀)) � 𝜋1 (𝐵D̃iff ℎ (𝐿)) : 𝜕𝑥 = 0 ∈

𝐼 (𝑀)

D(𝑀)

}
.

We now have two extensions of finite groups

0 𝐻1(𝐶2; Wh(𝐿))/Im 𝜕 𝜋1 (𝐵D̃iff(𝐿)) 𝜋1 (𝐵D̃iff ℎ (𝐿)) 1

0 𝐻1(𝐶2; Wh(𝑀))/Im 𝜕 𝜋1 (𝐵D̃iff(𝑀)) 𝐾 1,

�

where the left vertical isomorphism is a consequence of Proposition 4.4. Even though 𝜕 is a crossed
homomorphism, we still have that 𝑁 · |𝐾 | = |𝜋1 (𝐵D̃iff ℎ (𝑀)) | = |𝜋1 (𝐵D̃iff ℎ (𝐿)) |, and therefore, the
result follows. �

4.2. The candidate𝑊 : 𝐿 ℎ
� 𝑀

Let 𝐿2𝑛−1
𝑝 (𝑟1 : · · · : 𝑟𝑛) denote the linear lens space with fundamental group 𝐶𝑝 and weights 𝑟1, . . . , 𝑟𝑛

mod 𝑝 – that is, the quotient of the sphere 𝑆2𝑛−1 by the free (left) 𝐶𝑝-action given by

𝑡 · (𝑧1, . . . , 𝑧𝑛) := (𝜁𝑟1 𝑧1, . . . , 𝜁
𝑟𝑛 𝑧𝑛), (𝑧1, . . . , 𝑧𝑛) ∈ 𝑆

2𝑛−1 ⊂ C𝑛,

where 𝑡 ∈ 𝐶𝑝 is the generator and 𝜁 = exp(2𝜋i/𝑝). We identify 𝜋1 (𝐿
2𝑛−1
𝑝 (𝑟1 : · · · : 𝑟𝑛)) with 𝐶𝑝 by

sending the homotopy class represented by the loop

[0, 1] −→ 𝐿2𝑛−1
𝑝 (𝑟1 : 𝑟2 : · · · : 𝑟𝑛), 𝑠 ↦−→ [𝜁 𝑠 ·𝑟1 , 0, . . . , 0]

to 𝑡 ∈ 𝐶𝑝 . The goal of this section is to prove

Theorem 4.6. Let L be the lens space 𝐿12𝑘−1
7 (𝑟1 : · · · : 𝑟6𝑘 ) with

𝑟1 = · · · = 𝑟𝑘 = 1, 𝑟𝑘+1 = · · · = 𝑟2𝑘 = 2, . . . 𝑟5𝑘+1 = · · · = 𝑟6𝑘 = 6 mod 7.

The element 𝑢 := 2+2𝑡− 𝑡3− 𝑡4− 𝑡5 is a unit in Z[𝐶7] with inverse 𝑢−1 = 1−2𝑡 +3𝑡2−3𝑡3+3𝑡4−2𝑡5+ 𝑡6,
and hence represents an element of Wh(𝐿). Then the h-cobordism𝑊 : 𝐿 ℎ

� 𝑀 with torsion 𝜏(𝑊, 𝐿) = 𝑢
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Figure 2. h-cobordisms rel boundary 𝐷 (𝑊) ℎ
� 𝐿 × 𝐼 and 𝐷 (𝑊) ℎ

� 𝑀 × 𝐼.

satisfies conditions I and II of Proposition 4.5 with 𝑁 =
/// 𝐼 (𝑀 )
D (𝑀 )

/// = 3. In particular,

|𝜋1 (𝐵D̃iff (𝐿)) | = 3 · |𝜋1 (𝐵D̃iff(𝑀)) | < ∞,

and Theorem A(𝑖) holds.

The proof of Theorem 4.6 will be established in Propositions 4.7 and 4.10 below.

Proposition 4.7. The h-cobordism 𝑊 : 𝐿 ℎ
� 𝑀 of Theorem 4.6 satisfies condition I of Proposition

4.5. In fact, //// 𝐼 (𝑀)D(𝑀)

//// = 3.

Proof. The algebraic involution ·̄ : Wh(𝜋) → Wh(𝜋) is trivial when 𝜋 is a finite abelian group [Bas74,
Prop. 4.2]. Therefore, by (4.2), the subgroups of double h-cobordisms D(𝐿) and D(𝑀) are trivial
since L and M are odd-dimensional and orientable (so their first Stiefel–Whitney classes vanish), and
𝜋1 (𝐿) � 𝜋1 (𝑀) � 𝐶7 is certainly finite abelian. It thus suffices to show that 𝐼 (𝐿) = 0 and |𝐼 (𝑀) | = 3.

The first assertion follows from [Mil66, Cor. 12.12]. We now prove that 𝐼 (𝑀) ≠ 0 (i.e., we construct
nontrivial inertial h-cobordisms starting at M). For a diffeomorphism 𝜙 ∈ Diff (𝐿), write 𝑉𝜙 for the
inertial h-cobordism

𝑉𝜙 := 𝑊 ◦ 𝑀𝜙−1 ◦𝑊 : 𝑀 ℎ
� 𝐿

ℎ
� 𝐿

ℎ
� 𝑀

(i.e., 𝑉𝜙 = 𝑊 ∪𝜙−1 𝑊 ∈ 𝐼 (𝑀)). Observe that ℎ𝑊 : 𝑀 �
−→ 𝐿 is homotopy inverse to ℎ𝑊 : 𝐿 �

−→ 𝑀

because𝑊 ◦𝑊 = 𝐷 (𝑊) and𝑊 ◦𝑊 = 𝐷 (𝑊) are h-cobordant rel boundary to the trivial h-cobordisms
𝐿 × 𝐼 and 𝑀 × 𝐼, respectively (see Figure 2). So ℎ𝑊 ◦𝑊 = ℎ𝑊 ◦ ℎ𝑊 is homotopic to ℎ𝐿×𝐼 = Id𝐿 (and
similarly, ℎ𝑊 ◦ ℎ𝑊 � Id𝑀 ). The h-cobordism 𝑉𝜙 then has torsion

𝜏(𝑉𝜙 , 𝑀) = 𝜏(𝑊, 𝑀) + (ℎ
𝑊 )−1

∗ 𝜏(𝑊 ◦ 𝑀𝜙−1 , 𝐿)

= (−1)12𝑘−1ℎ𝑊∗ 𝑢 + ℎ
𝑊
∗ 𝜙∗𝑢

= ℎ𝑊∗ (𝜙∗𝑢 − 𝑢),

where we have used that 𝑢 = 𝑢 by the triviality of the algebraic involution. Therefore, if we are able to
find self-diffeomorphisms 𝜙 of L for which 𝜙∗𝑢 ≠ 𝑢 in Wh(𝐿), then we will have achieved our task.

Claim. There are orientation-preserving self-diffeomorphisms 𝜙𝑖 : 𝐿 �
−→ 𝐿 for 𝑖 ∈ (Z/7)× such that

𝜋1 (𝜙𝑖) : 𝑡 ↦→ 𝑡𝑖 .
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Proof of Claim. In fact, by the main theorem of [HJ83] (see (4.5) below), the natural map 𝜋0 (Diff (𝐿)) →
𝜋0 (𝑠Aut(𝐿)) is surjective, so it will suffice to find simple homotopy automorphisms 𝑓𝑖 ∈ 𝑠Aut(𝐿)
for each 𝑖 ∈ (Z/7)× such that 𝜋1 ( 𝑓𝑖) : 𝑡 ↦→ 𝑡𝑖 . By [Olu53, Thm. II.b & Thm. V], the natural map
𝛾 : 𝜋0 (ℎAut(𝐿)) → Aut(𝜋1𝐿) � (Z/7)× is injective with image

Im 𝛾 = {𝑖 ∈ Z/7 : 𝑖 6𝑘 ≡ ±1 mod 7}.

The classes [ 𝑓 ] sent to 𝑖 ∈ (Z/7)× with 𝑖𝑛 ≡ +1 mod 7 (resp. 𝑖𝑛 ≡ −1 mod 7) are orientation-preserving
(resp. orientation-reversing). But if 𝑖 ∈ (Z/7)×, 𝑖6 ≡ 1 mod 7 and so 𝑖6𝑘 ≡ 1 mod 7 too. Therefore,
for each 𝑖 ∈ (Z/7)×, there exists some (orientation-preserving) homotopy automorphism 𝑓𝑖 ∈ ℎAut(𝐿)
such that 𝜋1 ( 𝑓𝑖) : 𝑡 ↦→ 𝑡𝑖 . By [Mil66, Lem. 12.5], 𝑓𝑖 is a simple homotopy automorphism if and only if

( 𝑓𝑖)∗Δ (𝐿) = Δ (𝐿) ∈ Q[𝐶7]/∼,

where Δ (𝐿) denotes the R-torsion of L [Mil66, Lem. 12.4]. Here, two elements 𝑥, 𝑦 ∈ Q[𝐶7] are related
𝑥 ∼ 𝑦 if and only if there exists some 𝑔 ∈ 𝐶7 such that 𝑥 = ±𝑔 · 𝑦. Recall also [Mil66, p. 406] that the
R-torsion of L is

Δ (𝐿) =
6𝑘∏
𝑗=1
(𝑡𝑟 𝑗 − 1) =

6∏
𝑗=1
(𝑡 𝑗 − 1)𝑘 ,

and so

( 𝑓𝑖)∗Δ (𝐿) = ( 𝑓𝑖)∗
���

6∏
𝑗=1
(𝑡 𝑗 − 1)𝑘��� =

6∏
𝑖=1
(𝑡𝑖 · 𝑗 − 1)𝑘 = Δ (𝐿), 𝑖 ∈ (Z/7)×.

Therefore 𝑓𝑖 is a simple homotopy equivalence for 𝑖 ∈ (Z/7)×, as claimed. �

Now it is easily checked that (𝜙6)∗𝑢 = 𝑢, so (𝜙2)∗𝑢 = (𝜙5)∗𝑢 and (𝜙3)∗𝑢 = (𝜙4)∗𝑢 in Q[𝐶7]/∼.
However, the three nontrivial units

𝑢 = 2 + 2𝑡 − 𝑡3 − 𝑡4 − 𝑡5, (𝜙2)∗𝑢 = 2 + 2𝑡2 − 𝑡6 − 𝑡 − 𝑡3, (𝜙3)∗𝑢 = 2 + 2𝑡3 − 𝑡2 − 𝑡5 − 𝑡

represent different elements in Wh(𝐿) (for instance, the difference between the powers of t of the terms
whose coefficient is 2 in the three units is different mod 7). By our previous argument, the h-cobordisms
𝑉𝜙1 = 𝑀 × 𝐼, 𝑉𝜙2 and 𝑉𝜙3 are pairwise non-diffeomorphic inertial h-cobordisms starting at M, so
|𝐼 (𝑀) | ≥ 3. Note that 𝑉𝜙𝑖 � 𝑉𝜙7−𝑖 for 𝑖 = 1, . . . 6. Conversely, suppose that 𝑉 : 𝑀 ℎ

� 𝑀 is an inertial
h-cobordism (by possibly post-composing with a mapping cylinder, we may assume that the target of
W is M itself). Then the inertial h-cobordism 𝑊 ◦ 𝑉 ◦𝑊 : 𝐿 ℎ

� 𝐿 must be trivial as 𝐼 (𝐿) = 0, and
(ℎ𝑊 ◦𝑉 ◦𝑊 )−1

∗ = (ℎ𝑊 )−1
∗ (ℎ𝑉 )−1

∗ ℎ𝑊∗ = (𝜙𝑖)∗ for some 𝑖 ∈ (Z/7)× because Aut(𝜋1𝐿) � (Z/7)×. Using
𝜏(𝑊 ◦𝑉 ◦𝑊, 𝐿) = 0, we get that

𝜏(𝑉, 𝑀) = (ℎ𝑉 )−1
∗ ℎ𝑊∗ 𝑢 − ℎ

𝑊
∗ 𝑢 = ℎ𝑊∗ ((𝜙𝑖)∗𝑢 − 𝑢) = 𝜏(𝑉𝜙𝑖 , 𝑀)

(i.e., V is diffeomorphic to 𝑉𝜙𝑖 rel M). Hence, |𝐼 (𝑀) | = 3, and this finishes the proof. �

Remark 4.8. This is an example of how badly behaved the set of inertial h-cobordisms of a manifold
may be. For instance in the case at hand, it is not an h-cobordism invariant. It is also not a subgroup of
Wh(𝑀) � Wh(𝐶7) � Z2 (see [Bas64, §7] and [Ste78, pp. 202–205]) because 𝐼 (𝑀) is a finite subset
with cardinality strictly greater than 1. See [Hau80, Rmk. 6.2] for more instances of this phenomenon.

Warning 4.9. The main theorem of [KS99] states that 𝐼 (𝑀) = 0 if M is a fake lens space – that is,
the orbit space of a free (possibly non-linear) action of a finite cyclic group on a sphere. This clearly
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contradicts Proposition 4.7, but we believe that the proof of the result in [KS99] is fallacious: following
a trail of references [KS99, Claim 2], [KS92, Prop. 3.2] and [Kwa86, p. 353], it is eventually stated
that if 𝜏 ∈ Wh(𝑀) is the torsion of some inertial h-cobordism of M, then 2𝜏 = 0. This supposedly
follows from the proof of [Mil66, Prop. 12.8], but in the statement of this result, it is required that the
h-cobordism between special manifolds be compatible with the given identifications of the fundamental
groups (i.e., that ℎ𝑊∗ : Wh(𝑀) → Wh(𝑀 ′) has been trivialised beforehand). This requirement does not
hold in the case of [Kwa86, p. 353], and is exactly what we exploit in the proof of Proposition 4.7.

We now deal with II . Since the natural map 𝜋0 (Diff(𝐿)) → 𝜋0 (D̃iff (𝐿)) � 𝜋1 (𝐵D̃iff (𝐿)) is
surjective, it suffices to show

Proposition 4.10. The mapping class group Γ(𝐿) = 𝜋0 (Diff (𝐿)) of L is finite. In particular,𝑊 : 𝐿 ℎ
� 𝑀

satisfies condition II of Proposition 4.5.

Proof. According to the main result of [HJ83], the mapping class group of L fits into an extension of
groups

0 𝑄 ⊕ 𝐻 𝜋0 (Diff(𝐿)) 𝜋0 (𝑠Aut(𝐿)) 0. (4.5)

The group H is the image of [Σ𝐿+,Top/𝑂]∗ in [Σ𝐿+, 𝐺/𝑂]∗. By [HS76, Thm. 1.1], the group Q also
appears in an exact sequence

𝐿𝑠2𝑛+2 (Z[𝐶7]) −→ 𝐻0(𝐶2; 𝜋0 (𝐶 (𝐿))) −→ 𝑄 −→ 𝐿𝑠2𝑛+1 (Z[𝐶7]), (4.6)

where 𝜋0 (𝐶 (𝐿)) is the group of (isotopy classes) of pseudoisotopies of L. By a computation of Hatcher–
Wagoner [HW73] and corrections of Igusa [Igu82], it fits in yet another exact sequence

Wh+1 (𝐶7;F2) 𝜋0 (𝐶 (𝐿)) Wh2 (𝐶7) 0 (4.7)

as long as dim 𝐿 ≥ 7; this is our case. In (4.6) and (4.7), for an abelian group with involution 𝜋,

◦ 𝐿𝑠∗ (Z𝜋) are the simple quadratic L-groups of the group ring Z𝜋,
◦ Wh2(𝜋) is the abelian group (with involution) defined as the cokernel of the map arising from

algebraic K-theory (see (B.1))

𝜋𝑠2 ((𝐵𝜋)+) −→ 𝐾2(Z𝜋) −→ Wh2 (𝜋) −→ 0, (4.8)

◦ Wh+1 (𝜋;F2) := 𝐻0(𝐶2;F2 [𝜋]) with a certain involution.

We now show that each of the groups in the extension (4.5) are finite. As mentioned in the proof of
Proposition 4.7, 𝜋0 (𝑠Aut(𝐿)) ⊂ 𝜋0 (ℎAut(𝐿)) ⊂ (Z/7)×, so it is definitely finite.

By Proposition A.1, 𝐾2(Z[𝐶7]) is finite, and hence, so is Wh2(𝐶7) by (4.8). Since F2 [𝐶7] is finite,
Wh+1 (𝐶7;F2) is so too. Moreover, the (simple) L-theory of Z𝜋 for finite groups 𝜋 of odd order is zero in
odd degrees [Bak75, Thm. 1]. Therefore, 𝐿𝑠2𝑛+1 (Z[𝐶7]) = 0, and thus, Q is finite by (4.6).

The finiteness of H is a consequence of the following two observations: firstly that the infinite loop
space Top/𝑂 has finite homotopy groups in every degree (see [KS77, Thm. 5.5]), and secondly that if X
is a (pointed) finite CW-complex and Y a (pointed) space with finite homotopy groups in every degree,
then the set [𝑋,𝑌 ]∗ of (pointed) maps from X to Y up to homotopy is finite – indeed, this follows easily
by induction on the skeleta {𝑋𝑘 }𝑘≥0 of X by considering the cofibre sequences

𝑋𝑘−1 𝑋𝑘
∨
𝑖∈𝐼𝑘 𝑆

𝑘 ,

where 𝐼𝑘 is a finite set (because X is a finite CW-complex). Hence, [Σ𝐿+,Top/𝑂]∗ is finite, and thus,
so is H. This finishes the proof. �
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Remark 4.11. For 𝐶𝐴𝑇 = Top or 𝑃𝐿, the group H of (4.5) should be replaced by the image of
[Σ𝐿+,Top/𝐶𝐴𝑇]∗ in [Σ𝐿+, 𝐺/𝐶𝐴𝑇], which readily vanishes for 𝐶𝐴𝑇 = Top and is seen to be finite
too for 𝐶𝐴𝑇 = 𝑃𝐿 (see, for example, [Bru68]), so the same argument in the proof of Proposition 4.10
goes through.

5. Proof of Theorem A(𝑖𝑖)

In this section, we finish the proof of Theorem A using the candidate 𝑊 : 𝐿 ℎ
� 𝑀 of Theorem 4.6. We

would hope that Diff(𝐿) and D̃iff(𝐿) differ as much as Diff(𝑀) and D̃iff (𝑀) do, so that the difference
of block mapping class groups established in Theorem 4.6 carries over to the Diff-level. This is the case
in some range and up to extensions [WW88, Thm. A].
Theorem 5.1 (Weiss–Williams). Let 𝑀𝑑 be compact a smooth d-manifold. There exists a map

Φ𝑠 : D̃iff/Diff (𝑀) −→ Ω∞
(
H𝑠

Diff (𝑀)ℎ𝐶2

)
which is (𝜙𝑀 + 1)-connected, where 𝜙𝑀 denotes the concordance stable range of M (which by Igusa’s
theorem [Igu88] is at least min( 𝑑−4

3 , 𝑑−7
2 )).

Remark 5.2. The 𝐶2-spectrum H𝑠
Diff (𝑀), known as the (smooth) s-cobordism spectrum of M, is the 1-

connective cover of the (non-connective smooth) h-cobordism spectrum HDiff (𝑀). This latter spectrum
is roughly built out of deloopings of spaces of h-cobordisms (cf. [WW88, Lem. 1.12]), and its infinite
loop space HDiff (𝑀), the space of stable h-cobordisms, coincides with that of Σ−1WhDiff (𝑀) by the
stable parametrised h-cobordism theorem of Waldhausen–Jahren–Rognes [WJR13]. Here, WhDiff (𝑀)
stands for the smooth Whitehead spectrum of M (see Section B.2). Moreover, the negative homotopy
groups of these two spectra abstractly coincide (cf. [WW88, Cor. 5.6]), which lead Weiss and Williams
to rename HDiff (𝑀) by Σ−1WhDiff (𝑀) (though conjecturally true, this was not fully justified).

The only property we will use about H(−) is that its homotopy groups (ignoring the involution) are
invariants of the homotopy type of (−), as those of Σ−1WhDiff (−) are. In particular, if 𝑊 : 𝐿 ℎ

� 𝑀 is
an h-cobordism, there is an isomorphism of groups

𝜋𝑠∗ (HDiff (𝐿)) � 𝜋𝑠∗ (HDiff (𝑀)). (5.1)

We will not need to analyse the involutions in H(𝐿) and H(𝑀), but one can show that these two
𝐶2-spectra are equivalent (in fact, the homotopy type of H(−) is nearly an invariant of the tangential
homotopy type of (−); see [ME23, §5] for more details on the involutions in HDiff (𝑀) and WhDiff (𝑀)).
It is also not difficult to see that the involution on 𝜋0 (HDiff (𝑀)) � Wh(𝑀) corresponds to the rule
𝜏 ↦→ (−1)𝑑−1𝜏 (cf. [ME23, Cor. 5.8]), which fits well with Theorem B. We expand on the relation
between Theorems B and 5.1 in Section B.2.

Now since 𝑑 = 12𝑘 − 1 ≥ 11 (so 𝜙𝑀 + 1 ≥ 2), it follows from Theorem 5.1 that 𝜋1 (D̃iff/Diff (𝐿)) �
𝜋𝑠1 (H

𝑠
Diff (𝐿)ℎ𝐶2). As H𝑠

Diff (𝐿) is 1-connective, its homotopy fixed point spectral sequence (cf. [BK72])
then yields isomorphisms

𝜋1 (D̃iff/Diff (𝐿)) � 𝐻0 (𝐶2; 𝜋𝑠1 (HDiff (𝐿))),

𝜋1 (D̃iff/Diff (𝑀)) � 𝐻0 (𝐶2; 𝜋𝑠1 (HDiff (𝑀))),

(5.2)

for potentially different 𝐶2-actions on 𝜋𝑠1 (HDiff (𝐿)) � 𝜋𝑠1 (HDiff (𝑀)). Consider the extensions

𝜋1 (D̃iff/Diff (𝐿)) 𝜋0 (Diff(𝐿)) 𝜋0 (D̃iff (𝐿)) 0,

𝜋1 (D̃iff/Diff (𝑀)) 𝜋0 (Diff(𝑀)) 𝜋0 (D̃iff (𝑀)) 0.

𝜕

𝜕

(5.3)
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We know from Theorem 4.6 that |𝜋0 (D̃iff (𝐿) | = 3 · |𝜋0 (D̃iff (𝑀)) |, so in order to prove Theorem A(𝑖𝑖),
it suffices to establish the next result.
Proposition 5.3. The groups 𝜋1 (D̃iff/Diff (𝐿)) and 𝜋1 (D̃iff/Diff (𝑀)) are finite and their cardinality is
not divisible by 3. Together with Theorem 4.6, it follows that the 3-adic valuations of |Γ(𝐿) | and |Γ(𝑀) |
differ. This proves Theorem A(𝑖𝑖).
Proof. Given (5.1) and (5.2), we need only verify the first claim for the abelian group 𝜋𝑠1 (HDiff (𝐿)) �
𝜋1 (HDiff (𝐿)). Since dim 𝐿 = 𝑑 ≥ 11, it follows from Igusa’s lower bound on the concordance stable
range that 𝜋1 (HDiff (𝐿)) = 𝜋0 (𝐶 (𝐿)), which fits in the extension (4.7).

We have already argued in the proof of Proposition 4.10 that both of the groups Wh2 (𝐶7) and
Wh+1 (𝐶7;F2) in the extension are finite. Both summands are moreover 3-locally trivial (Wh+1 (𝐶7;F2) is
2-tosion, and Wh2 (𝐶7) is a quotient of 𝐾2(Z[𝐶7]), which has no 3-torsion by Proposition A.1). Any
quotient of this group (e.g., those of (5.2)) will have this same property, so the result follows. The proof
of Theorem A is now complete. �

Remark 5.4. For 𝐶𝐴𝑇 = Top or 𝑃𝐿, the h-cobordism spectrum HDiff (𝐿) should be replaced by its
topological version HTop (𝐿) (this is, in fact, the one that appears originally in [WW88]). To argue that
𝜋𝑠1 (HTop (𝐿)) � 𝜋𝑠2 (WhTop(𝐿)) is finite and 3-local as in the previous proof, we consider the diagram
of cofibre sequences of spectra (see (B.1) and (B.2))

S ∧ 𝐿+ A(𝐿) WhDiff (𝐿)

A(∗) ∧ 𝐿+ A(𝐿) WhTop (𝐿)

WhDiff (∗) ∧ 𝐿+ ∗ ΣWhDiff (∗) ∧ 𝐿+.

𝜄

𝛼

Then 𝜋𝑠2 (WhTop (𝐿)) will be finite and 3-locally trivial if 𝜋𝑠2 (ΣWhDiff (∗) ∧ 𝐿+) � 𝜋𝑠1 (WhDiff (∗) ∧ 𝐿+)

is. This, in turn, follows from the Atiyah–Hirzebruch spectral sequence, as WhDiff (∗) � WhDiff (𝐷5)
by the homotopy invariance of the Whitehead spectrum, and because the latter is 1-connective by the
s-cobordism theorem (in fact, it is 2-connective by Cerf’s pseudoisotopy theorem).
Remark 5.5 (Another possible example). Theorem A may also holds for the lens space 𝐿 = 𝐿8𝑘−1

5 (𝑟1 :
· · · : 𝑟4𝑘 ), where

𝑟1 = · · · = 𝑟𝑘 = 1, 𝑟𝑘+1 = · · · = 𝑟2𝑘 = 2, . . . 𝑟3𝑘+1 = · · · = 𝑟4𝑘 = 4 mod 5,

and the h-cobordism 𝑊 : 𝐿 ℎ
� 𝑀 with 𝜏(𝑊, 𝐿) = [1 − 𝑡 − 𝑡4] ∈ Wh(𝐶5). The argument for part (𝑖)

is exactly analogous to that of Subsection 4.2, but part (𝑖𝑖) is trickier. The inertia set 𝐼 (𝑀) will have
size two (instead of three), and the group Wh+1 (𝐶5;F2) does have 2-torsion. The alternative then is to
show directly that the map 𝜕 in (5.3) is injective by identifying 𝜋1 (D̃iff/Diff(𝐿)) with the cobordism
group 𝜋0 (B(𝐿)) of [HJ83, p.1]. However, this argument does rely on the claim made in the proof of
[HJ83, Sublemma 4.2] that a certain map 𝐻0(𝐶2; Wh2(𝐶5)) → 𝐿St

8𝑘−1 (𝐶5) is injective when inverting
the prime 2. We do not know how to prove this, nor have we found a reference that does.

A. An algebraic K-theory computation

The aim of this section is to prove the following.
Proposition A.1. For p a prime, 𝐾2(Z[𝐶𝑝]) is finite. Moreover, when 𝑝 = 7, its 3-torsion part vanishes:

𝐾2(Z[𝐶7])(3) = 0.
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Remark A.2. The author would like to thank John Nicholson for making him aware of the paper
[ZTC19, Thm. 2.7] which, taken together with the computation in [ZXDS21, Thm. 1.1], easily implies
Proposition A.1 when 𝑝 = 7; this is the only case needed in the proof of Theorem A. By the time we
became aware of this fact, we had already come up with an alternative proof, which we believe to be
a nice application of a celebrated result of Land–Tamme. For this reason, we still present our original
proof below, but the pragmatic reader may wish to skip this section.

The main ingredient of this computation is the main theorem of Land–Tamme [LT19]: Given a
Milnor square of ring (spectra)

𝐴 𝐵

𝐴′ 𝐵′

(i.e., a pullback square of ring spectra with 𝜋0 (𝐵) → 𝜋0 (𝐵
′) surjective), they functorially associate a

connective ring spectrum R for which there is a Mayer–Vietoris sequence for algebraic K-theory

. . . 𝐾𝑖+1(R) 𝐾𝑖 (𝐴) 𝐾𝑖 (𝐴
′) ⊕ 𝐾𝑖 (𝐵) 𝐾𝑖 (R) . . . (A.1)

for every 𝑖 ∈ Z. Moreover, there is an equivalence of spectra R → 𝐴′ ⊗𝐴 𝐵 (but not of E1-rings in
general) and a map of E1-rings R→ 𝐵′. For p a prime, the pullback square we will consider is

Z[𝐶𝑝] � Z[𝑡]/(1 − 𝑡 𝑝) Z(𝜁𝑝) � Z[𝑡]/(1 + 𝑡 + · · · + 𝑡 𝑝−1)

Z Z/𝑝,

𝑡=1 𝑡=1
mod 𝑝

(A.2)

or rather that induced by applying the Eilenberg–MacLane functor 𝐻 (−) to (A.2). A straightforward
computation of TorZ[𝐶𝑝 ]

𝑖 (Z,Z(𝜁𝑝)) shows that

𝜋𝑠𝑖 (R) �
{
Z/𝑝, 𝑖 = 2𝑘 ≥ 0,

0, otherwise.

Hence, the natural map R → 𝐻Z/𝑝 is an isomorphism on 𝜋0 and a Z[1/𝑝]-equivalence of connective
E1-rings. Therefore, by [LT19, Lem. 2.4], it induces an isomorphism of localised K-theory 𝐾∗(R) ⊗
Z[1/𝑝] � 𝐾∗(Z/𝑝) ⊗ Z[1/𝑝]. A portion of the exact sequence (A.1) localised away from p thus reads(

𝐾3(Z) ⊕ 𝐾3(Z(𝜁𝑝)) 𝐾3(Z/𝑝) 𝐾2(Z[𝐶𝑝]) 𝐾2(Z) ⊕ 𝐾2(Z(𝜁𝑝))
)
⊗ Z

[
1
𝑝

]
. (A.3)

We first analyse the (3-adic part of the) map 𝐾3(Z) → 𝐾3(Z/𝑝) for 𝑝 ≠ 3.

Lemma A.3. The map 𝐾3(Z)(3) → 𝐾3(Z/𝑝)(3) is injective for 𝑝 ≠ 3.

Proof. According to [Qui76, Claim 4], for every integer 𝑘 ≥ 1 and odd prime ℓ ≠ 𝑝, the composition
𝜋𝑠4𝑘−1 → 𝐾4𝑘−1(Z) → 𝐾4𝑘−1(Z/𝑝) is injective on Im(𝐽 : 𝜋4𝑘−1 (𝑂) → 𝜋𝑠4𝑘−1)(ℓ) : indeed, Diagram 4
loc. cit. is the commutative diagram

𝜋𝑠4𝑘−1 𝐾4𝑘−1(Z/𝑝) � Z/(𝑝2𝑘 − 1)

Q/𝑎𝑘Z Q/Z[ 1
𝑝 ],

−𝑒 𝜃
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where e denotes Adams’ invariant, which is injective on Im 𝐽, 𝜃 is injective with image the unique
subgroup of order 𝑝2𝑘 − 1, and 𝑎𝑘 is 1 or 2 depending on whether k is odd or even, respectively. The
lower horizontal map is the natural one, which is injective on ℓ-torsion if 2𝑝 does not divide ℓ.

For 𝑘 = 1, the image of the J-homomorphism is the whole of 𝜋𝑠3 � Z/24, 𝐾3(Z/𝑝) � Z/( 𝑝2 − 1) by
[Qui72, Thm. 8(i)], and 𝐾3(Z) � Z/48 by [LS76]. Noting that 3 | 𝑝2 − 1 if 𝑝 ≠ 3 is prime, the result
readily follows from the previous claim when ℓ = 3. �

Proof of Proposition A.1. It is well known that 𝐾2(Z) � Z/2 [Mil71, Cor. 10.2], 𝐾3(Z/𝑝) � Z/(𝑝2−1)
and𝐾2 of the ring of integers of a number field is finite [Qui73, Thm. 1], [Bor74, Prop. 12.2] (in particular,
𝐾2(Z(𝜁𝑝)) is). A very similar argument to [LT19, Lem. 2.4] replacing the Serre class of Λ-local abelian
groups with the Serre class of finitely generated abelian groups shows that the map 𝐾3(R) → 𝐾3(Z/𝑝)
is an equivalence mod this Serre class, so as 𝐾3(Z/𝑝) � Z/(𝑝2 − 1) is finitely generated, so is 𝐾3(R).
In fact, since 𝐾3(R) is finitely generated and 𝐾3(R) ⊗ Z[1/𝑝] � 𝐾3(Z/𝑝) ⊗ Z[1/𝑝] � Z/(𝑝2 − 1) is
finite, 𝐾3(R) is finite too. It follows from (A.3) that 𝐾2(Z[𝐶𝑝]) is finite for every p.

Let now 𝑝 = 7 so that 𝐾3(Z/7) � Z/48, and hence by Lemma A.3, the map Z/3 � 𝐾3(Z)(3) →
𝐾3(Z/7)(3) � Z/3 is an isomorphism. Now 𝐾2(Z(𝜁7)) = Z/2 [ZXDS21, Thm. 1.1], and localising
(A.3) at the prime 3(≠ 𝑝 = 7), we get that 𝐾2(Z[𝐶7])(3) = 0. �

B. Connections to Weiss–Williams I

B.1. The group of h-block diffeomorphisms D̃iff ℎ (𝑀)

Recall that D̃iff 𝑏 (𝑀×R)• denotes the semi-simplicial group of block diffeomorphisms of𝑀×R bounded
in the R-direction – a p-simplex consists of a face-preserving (cf. Definition 3.1) diffeomorphism
𝜙 : 𝑀 × R × Δ 𝑝

�
−→Δ 𝑀 × R × Δ 𝑝 such that there exists some positive constant 𝐾 > 0 with

|prR𝜙(𝑥, 𝑡, 𝑣) − 𝑡 | < 𝐾 for all (𝑥, 𝑡, 𝑣) ∈ 𝑀 × R × Δ 𝑝 . In this section, we prove

Proposition B.1. For 𝑑 = dim𝑀 ≥ 5, there is a zig-zag of weak equivalences of Kan semi-simplicial
sets

Ω𝐵D̃iff ℎ (𝑀)• D̃iff 𝑏
>1/2(𝑀 × R)• D̃iff 𝑏 (𝑀 × R)•.�

R• �

In particular, there are homotopy equivalences

D̃iff ℎ (𝑀) := |𝐺𝐵D̃iff ℎ (𝑀)• | � |Ω𝐵D̃iff ℎ (𝑀)• | � D̃iff 𝑏 (𝑀 × R).

Let us explain the new notation. Recall that the simplicial loop spaceΩ𝐵D̃iff ℎ (𝑀)• has as p-simplices
those (𝑝 + 1)-simplices 𝑊 ⇒ Δ 𝑝+1 of 𝐵D̃iff ℎ (𝑀)• with 𝑊0 = 𝑀 and 𝜕0𝑊 = 𝑀 × Δ 𝑝 . The sub-semi-
simplicial set D̃iff 𝑏

>1/2(𝑀 × R)• ⊂ D̃iff 𝑏 (𝑀 × R)• has as p-simplices those bounded diffeomorphisms

𝜙 : 𝑀 × R × Δ 𝑝
�
−→Δ 𝑀 × R × Δ 𝑝 with

𝜙(𝑀 × (1/2,∞) × Δ 𝑝) ⊂ 𝑀 × (1/2,∞) × Δ 𝑝 .

The map R• sends a diffeomorphism 𝜙 ∈ D̃iff 𝑏
>1/2(𝑀 × R)𝑝 to the region in 𝑀 × R × Δ 𝑝 enclosed by

𝑀 × {0} × Δ 𝑝 and 𝜙(𝑀 × {1} × Δ 𝑝), seen as a (𝑝 + 1)-simplex in 𝐵D̃iff ℎ (𝑀)•. More precisely, if we
denote this region by 𝑅𝜙 , then

R𝑝 (𝜙) :=
(
𝑅𝜙 ∪𝜙−1 𝑀 × Δ 𝑝

)
/∼, (𝑥, 0, 𝑣) ∼ (𝑥, 0, 𝑤), ∀ 𝑣, 𝑤 ∈ Δ 𝑝 , 𝑥 ∈ 𝑀,

where 𝜙−1 : 𝜙(𝑀 × {1} × Δ 𝑝)
�
−→ 𝑀 × Δ 𝑝 (see Figure 3). The manifold R𝑝 (𝜙)

𝑑+𝑝+1 is stratified
over Δ 𝑝+1 with R𝑝 (𝜙)0 = [𝑀 × {0} × Δ 𝑝] � 𝑀 and 𝜕0R(𝜙) = [𝜙(𝑀 × {1} × Δ 𝑝)] = 𝑀 × Δ 𝑝 , so it
constitutes a p-simplex in Ω𝐵D̃iff ℎ (𝑀)•. Clearly, R• is a semi-simplicial map.
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Figure 3. The map R• with 𝑝 = 2 and dim𝑀 = 0.

We have to argue that both of the maps in the zig-zag of Proposition B.1 are equivalences. We begin
with the inclusion.

Lemma B.2. The inclusion D̃iff 𝑏
>1/2(𝑀 × R)•

�
↩−−→ D̃iff 𝑏 (𝑀 × R)• is a weak equivalence.

Proof. For a smooth function 𝜌 : Δ 𝑝 → R, let 𝑇𝜌 denote the bounded diffeomorphism

𝑇𝜌 : 𝑀 × R × Δ 𝑝
�
−→ 𝑀 × R × Δ 𝑝 , (𝑥, 𝑡, 𝑣) ↦−→ (𝑥, 𝑡 + 𝜌(𝑣), 𝑣).

We first show that if 𝜙 ∈ D̃iff 𝑏 (𝑀 ×R)𝑝 with 𝜕𝑖𝜙 ∈ D̃iff 𝑏
>1/2 (𝑀 ×R)𝑝−1 for all 𝑖 = 0, . . . , 𝑝, then there

exists some 𝜓 ∈ D̃iff 𝑏
>1/2(𝑀 × R)𝑝 with 𝜕𝑖𝜓 = 𝜕𝑖𝜙 for 𝑖 = 0, . . . , 𝑝 (simplicially) homotopic to 𝜙 in

(D̃iff 𝑏 (𝑀 × R)•, D̃iff 𝑏
>1/2(𝑀 × R)•). So let 𝜙 be such a diffeomorphism and set

𝑡− := 1/2 − min
{
prR(𝜙(𝑥, 1/2, 𝑣) : 𝑥 ∈ 𝑀, 𝑣 ∈ Δ 𝑝

}
.

As 𝜙 is continuous, there exists some 𝛿 > 0 such that for a 𝛿-neighbourhood 𝐵𝛿 (𝜕Δ 𝑝) of 𝜕Δ 𝑝 ⊂ Δ 𝑝 ,

𝜙(𝑀 × (1/2,∞) × 𝐵𝛿 (𝜕Δ 𝑝)) ⊂ 𝑀 × (1/2,∞) × Δ 𝑝 .

Let 𝜌 : Δ 𝑝 → R≥0 be a smooth cut-off function such that

𝜌 |𝐵𝛿/2 (𝜕Δ 𝑝)≡ 0, 𝜌 |Δ 𝑝\𝐵𝛿 (𝜕Δ 𝑝)≡ 𝑡−.

Then 𝜓 := 𝑇𝜌 ◦ 𝜙 ∈ D̃iff 𝑏
>1/2(𝑀 × R)𝑝 is as required. Moreover, the diffeomorphism

𝑇(−) ·𝜌 ◦ 𝜙 : (𝑀 × R × Δ 𝑝) × 𝐼
�
−→ (𝑀 × R × Δ 𝑝) × 𝐼, (𝑥, 𝑡, 𝑣, 𝑠) ↦−→ 𝑇𝑠 ·𝜌 (𝜙(𝑥, 𝑡, 𝑣))

provides the required simplicial homotopy between 𝜙 and 𝜓.
It follows easily from the previous claim that 𝜋𝑝 (D̃iff 𝑏

>1/2(𝑀 × R)•) → 𝜋𝑝 (D̃iff 𝑏 (𝑀 × R)•) is an
isomorphism for all 𝑝 ≥ 0. �

Lemma B.3. The map R• is a weak equivalence.

https://doi.org/10.1017/fms.2025.10087 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10087


34 S. Muñoz-Echániz

Figure 4. Geometric Eilenberg swindle.

Proof. There is a map of fibration sequences

Ω𝐵D̃iff(𝑀)• D̃iff(𝑀)•

Ω𝐵D̃iff ℎ (𝑀)• D̃iff 𝑏
>1/2 (𝑀 × R)•

D̃iff ℎ/D̃iff (𝑀)• D̃iff 𝑏
>1/2 (𝑀 × R)/D̃iff(𝑀)• D̃iff 𝑏 (𝑀 × R)/D̃iff(𝑀)•.

𝑀(−)

�

×IdR

R•

[R• ] �

The map 𝑀(−) is the mapping cylinder construction, so it is an equivalence. In [WW88, Cor. 5.5], it is
shown that the map

𝜋∗([R•]) : 𝜋∗(D̃iff 𝑏 (𝑀 × R)/D̃iff(𝑀)) −→ 𝐻∗(𝐶2; Wh(𝑀))

is injective if ∗ = 0 and an isomorphism if ∗ ≥ 1. Clearly, the image of 𝜋0 ([R•]) lies inside 𝐼 (𝑀 )
D (𝑀 )

�

𝜋0 (D̃iff ℎ/D̃iff(𝑀)), as R0(𝜙) is an inertial h-cobordism for any 𝜙 ∈ Diff𝑏 (𝑀 ×R). By the five lemma,
𝜋∗(R•) is an isomorphism for ∗ ≥ 1, and 𝜋0 (R•) is injective (note that 𝐼 (𝑀 )

D (𝑀 )
is just a set, but this does

not cause any difficulties in the argument).
It remains to show that 𝜋0 (R•) is surjective. We do this by an Eilenberg swindle-like argument as

in [WW88, Cor. 5.5]: namely, given an inertial h-cobordism𝑊 ∈ Ω𝐵D̃iff ℎ (𝑀)0, fix two trivialisations
(rel the left ends)𝑊 ∪ −𝑊 � 𝑀 × [0, 1] and −𝑊 ∪𝑊 � 𝑀 × [0, 1]. Then there are two different ways
of identifying the Eilenberg swindle

𝑆(𝑊) := · · · ∪𝑊 ∪ −𝑊 ∪𝑊 ∪ · · · = · · · ∪ −𝑊 ∪𝑊 ∪ −𝑊 ∪ . . .

with𝑀×R =
⋃
𝑖∈Z 𝑀×[𝑖, 𝑖+1] (in a bounded way). After shifting by an integer, these two identifications

give rise to a bounded diffeomorphism 𝜙 ∈ D̃iff 𝑏
>1/2(𝑀 × R)0 such that R0 (𝜙) is diffeomorphic to

𝑀 × [0, 2] ∪𝑀×{2} 𝑊 (see Figure 4). The homotopy

𝑡 ∈ [0, 1] ↦−→ 𝑀 × [0, 1 − 2𝑡] ∪𝑀×{1−2𝑡 } 𝑊

provides a 1-simplex in Ω𝐵D̃iff ℎ (𝑀)• between R0 (𝜙) and W, so 𝜋0 (R•)([𝜙]) = [𝑊], as required. We
also obtain that 𝜋0 (D̃iff 𝑏 (𝑀 ×R)/D̃iff(𝑀)) � 𝐼 (𝑀 )

D (𝑀 )
⊂ 𝐻0(𝐶2; Wh(𝑀)), which very slightly improves

[WW88, Cor. 5.5]. �
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Proof of Proposition B.1. Every term in the zig-zag is a Kan complex; the (simplicial) loop space of
a Kan complex is Kan, and both D̃iff 𝑏 (𝑀 × R∞)• and D̃iff 𝑏

>1/2(𝑀 × R)• are Kan (here, we use the
collaring condition on face-preserving maps of Definition 3.1). Moreover, the simplicial loop space and
the Kan loop group are weakly equivalent functors. Since geometric realisations of weak equivalences
between Kan complexes are homotopy equivalences, the homotopy equivalence in the second line of
the statement follows. �

B.2. The Whitehead spectrum and Theorem B in the context of Weiss–Williams I

For each space X, there exists a spectrum WhDiff (𝑋), the non-connective smooth Whitehead spectrum
of X, which recovers the Whitehead group of X,

𝜋𝑠1 (WhDiff (𝑋)) = Wh(𝑋).

It is defined to fit in a split5 cofibre sequence of spectra

Σ∞+ 𝑋 A(𝑋) WhDiff (𝑋),
𝜄 (B.1)

where A(−) denotes Walhausen’s non-connective A-theory spectrum [Wal85, WJR13]. The map 𝜄 is
the composition of the unit map of A-theory Σ∞+ 𝑋 = S ∧ 𝑋+ → A(∗) ∧ 𝑋+ and the assembly map
𝛼 : A(∗) ∧ 𝑋+ → A(𝑋). The topological and piecewise linear versions of the Whitehead spectrum of a
space X coincide, and are denoted, slightly abusively, by WhTop(𝑋). Explicitly, it fits in a similar cofibre
sequence of spectra

A(∗) ∧ 𝑋+ A(𝑋) WhTop(𝑋).
𝛼 (B.2)

The Whitehead spectrum is an invariant of the homotopy type of X, for both 𝜄 and 𝛼 are.
With this in mind, let us explain the relation of Theorem B to the work of [WW88]. Following the

trend of the paper, define the connective (smooth) h-cobordism spectrum to be

Hℎ
Diff (𝑀) := 𝜏≥0Hℎ

Diff (𝑀),

the 0-connective cover of the non-connective version HDiff (𝑀). By [WW88, Cor. 5.6] and [ME23, Cor.
5.8], it fits in a 𝐶2-equivariant fibration sequence of spectra

H𝑠
Diff (𝑀) Hℎ

Diff (𝑀) 𝐻Wh(𝑀), (B.3)

where 𝐶2 acts on Wh(𝑀) as in Theorem B. In [WW88, Thm. B & C], there is established the outer
solid square of the homotopy commutative diagram

D̃iff/Diff (𝑀) Ω∞
(
H𝑠

Diff (𝑀)ℎ𝐶2

)
D̃iff 𝑏 (𝑀 × R)/Diff(𝑀) D̃iff ℎ/Diff (𝑀) Ω∞

(
Hℎ

Diff (𝑀)ℎ𝐶2

)
D̃iff 𝑏 (𝑀 × R∞)/Diff(𝑀) Diff 𝑏 (𝑀 × R∞)/Diff(𝑀) Ω∞

(
HDiff (𝑀)ℎ𝐶2

)

Φ𝑠

≈

∼

Prop. 𝐵.1

Φℎ

≈0

∼ Φ
≈0

5The splitting is provided by the composition of the Dennis trace map Tr : A(𝑋 ) → Σ∞+ 𝐿𝑋 postcomposed with the evaluation
map Σ∞+ 𝐿𝑋 → Σ∞+ 𝑋 . Note that non-connective K-theory is the universal localising invariant in the sense of [BGT13], so the usual
Dennis trace map from connective K-theory to topological Hochshild homology indeed factors through non-connective K-theory.
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and proved to be homotopy cartesian. The decoration ≈ stands for (𝜙𝑀 + 1)-connected, and ≈0 for
(𝜙𝑀 + 1)-connected onto the components that are hit, where we recall that 𝜙𝑀 is the concordance
stable range for M (see Theorem 5.1). The existence of the dashed arrow Φℎ is analogous to that
of Φ𝑠 (in a similar notation as in [WW88, §4], replace the filtration of 𝑋 := Diff 𝑏 (𝑀 × R∞) by
ΣFilt𝑖 (𝑋) := Diff 𝑏 (𝑀 × R𝑖+1)). The connectivity of Φℎ can be deduced from that of Φ𝑠 and Φ.

Now observe that the composition

Φℎ/𝑠 : D̃iff ℎ/D̃iff (𝑀) |𝐹•(𝑀) | Ω∞
(
𝐻Wh(𝑀)ℎ𝐶2

)�0 Thm. B
�

provides a filler in the diagram of fibre sequences

D̃iff/Diff (𝑀) Ω∞
(
H𝑠

Diff (𝑀)ℎ𝐶2

)
D̃iff ℎ/Diff(𝑀) Ω∞

(
Hℎ

Diff (𝑀)ℎ𝐶2

)
D̃iff ℎ/D̃iff(𝑀) Ω∞

(
𝐻Wh(𝑀)ℎ𝐶2

)
,

Φ𝑠

≈

Φℎ

≈0

Φℎ/𝑠

�0

where the right vertical sequence is obtained from (B.3) by applying the functor Ω∞((−)ℎ𝐶2). The lower
subsquare ought to be homotopy commutative, but we do not have a proof of this claim.
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