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Abstract

We consider in this paper a topology (which we call the /4-topology) on
Minkowski space, the four-dimensional space-time continuum of special
relativity and derive its group of homeomorphisms. We define the /4-topology
to be the finest topology on Minkowski space with respect to which the
induced topology on time-like and light-like lines is one-dimensional
Euclidean and the induced topology on space-like hyperplanes is three-
dimensional Euclidean. It is then shown that the group of homeomorphisms
of this topology is precisely the one generated by the inhomogeneous Lorentz
group and the dilatations.

1. Introduction

Many topologies have now been suggested [1, 2, 3, 5] for the Minkowski space, the
four-dimensional space-time continuum of special relativity, all conforming to the
requirement that the homeomorphism group in each case is the one generated by
the inhomogeneous Lorentz group and dilatations (call this group G). That
Minkowski space be given a topology appropriate to the algebraic structure of the
space (that is, a topology which "fits" the indefinite fundamental form and the null
cones associated with it) was first suggested by Zeeman [5]. The homeomorphism
group of Zeeman's fine topology is precisely the group G. Later, it was found, on
investigation, that there exists a wide class of topologies on Minkowski space having
the same property, that is, the homeomorphism group of each of these topologies
is G [1, 2, 3]. However, there exists another nice property of the fine topology: If/
is a continuous < -preserving map of the unit interval / into Minkowski space (the
definition of <-preserving follows in the next section), then//is a connected union
of time-like intervals. Since one intuitively thinks of a path of a particle as the
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54 Sribatsa Nanda [2]

continuous image of /, this result implies that photons are excluded from the
category of particles whose paths are intuitively thought of as continuous image
of /. If, however, one wants to include the photons in this category (of course, in
this case the order < has to be changed to an order <̂  ), then the fine topology will
be unsuitable and we have to put a new topology on Minkowski space which we
call the ^4-topology. It is defined to be the finest topology with respect to which the
induced topology on time-like and light-like lines is one-dimensional Euclidean
and the induced topology on space-like hyperplanes is three-dimensional Euclidean.
It is then shown that (i) the homeomorphism group of the v4-topology is G and (ii)
i f / i s a <-preserving map of/into the Minkowski space, then//is a connected
union of a finite number of time-like and (or) light-like intervals.

2. Notation and terminology

Let M denote Minkowski space with characteristic quadratic form Q:

M = {(x0, xv x2, x3): Xi are reals}

Q(x) = xl-x\-x\-xl
Let

K={xeM: Q(x)>0 and x0>0}
and

L = {xeM: Q(x)^0 and xo>O}.

It is easy to prove that K satisfies the following three conditions,
(i) K+K = {x+y:xeK,yeK}<=K;

(ii) aK= {ax: xeK}<^K for every positive real a;
(iii) Kn(-K) = 0 where -K= {-x: xeK}.

L also satisfies (i), (ii) and (iii). A ând L are so-called positive cones and each of them
generates a partial order on M as follows:

x <yoy—xeK,

There is also another relation <. on M defined by x<.yoQ(y—x) = 0 and
yo — xo>O, that is, y—x is a future-pointing light-like (null) vector; this is not a
partial order due to lack of transitivity. With this notation, it is easy to establish
that

/either x<y
l
[or x<.y

A mapping/of (M, <) into itself is said to be order-preserving if x<y =>f(x)<f(y).
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[3] A-topology for Minkowski space 55

I f / i s one-one, then it is said to be inverse-order-preserving if/"1 is order-pre-
serving. A one-one mapping of M onto itself which is both order-preserving and
inverse-order-preserving is called an automorphism of M. Since we have two
partial orders < and < , we shall write <-automorphism or -^-automorphism
depending on which order we use. Similarly, we shall use the words <-preserving
or <! -preserving etc.

We shall denote by G the group of one-one mappings of M onto itself consisting
of (i) the Lorentz group, that is, all linear maps which leave the quadratic form Q
invariant (ii) translations and (iii) dilatations. Go will denote the subgroup of G
consisting of the < -automorphisms of M. Since every element of G either preserves
or reverses the partial order < in M, it follows that Go is of index 2 in G. We also
have the following theorem.

THEOREM 1. The group of ^-automorphisms of M is Go [3].

We have the following cones at x:

Light cone at x: CL(x) = {y: Q(y -x) = 0},

Time cone at x: CT(x) = {y: Q(y - x) > 0} u {*},

Space cone at x: Cs(x) = {y: Q(y - x) < 0} u {x},

It may be easily seen that if K*(x) = (K+x)o{x} and L*(x) = (L+x)u{x} then
CT(x) = K*(x)u(-K*(x)) and CLT(x) = £,*(*)u(-£*(*)). Since every element
of G leaves the sign of Q fixed, it is clear that all these cones are invariant under G.
With the above notation, it is also easy to see that / is a < -automorphism if and
only if f(K*(x)) = K*(fx) for every x and similarly/is a <-automorphism if and
only iff(L*{x)) = L*{fx) for every x.

In what follows d will denote the usual Euclidean distance function on M, that is,
d(x,y) = {Si^ofo-jf)2}* and Nf(x) will denote a Euclidean neighbourhood of
radius £ about x, that is, Nf(x) = {yeM: d(x, y) < e}.

3. Definition and properties of the .4-topology

DEFINITION. The A-topology on M is defined to be the finest topology on M with
respect to which the induced topology on every time-like line and light-like line is
one-dimensional Euclidean and the induced topology on every space-like hyperplane
is three-dimensional Euclidean.
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Denote by MA and ME the set M equipped with the ^4-topology and the
Euclidean topology, respectively.

We say that a topology on M has the property (P) if the induced topology on
every time-like or light-like line is one-dimensional Euclidean and the induced
topology on every space-like hyperplane is three-dimensional Euclidean. Let
F'= {Ti}ieI be the set of all topologies on M having the property (P). It is clear
that the set F is non-empty; for, the usual Euclidean topology on M has the pro-
perty (P) and therefore belongs to F. Introduce a partial order on F as follows:
Tt s£ Tj in F if and only if 7} c 7}. Let T be the topology generated by (J* e i

 Tt>that is.
the elements of (J Tt form an open sub-base for the topology T. It is plain that
7}< Tfor each isi. Let U be a basic open set in the topology T, so that

where Ait e Tit. If L denotes a time-like or light-like line (or a space-like hyper-
plane) then

UnL=

which is clearly a one-dimensional Euclidean (or a three-dimensional Euclidean)
open set in L. Thus, the topology T, is the finest topology on M having the property
(P). Moreover, it is also unique: Suppose that T' s F is such that for each i, Tt < 7",
then T^T'^T showing that T = T'. We have thus shown the existence and
uniqueness of the y4-topology. By definition, the ,4-topology is finer than the
Euclidean topology and hence the Hausdorff topology. The open sets of MA are
peculiar and it is not possible to describe the "general" open sets (that is, the basic
open sets of the topology). To see that the ^4-topology is strictly finer than the
Euclidean topology, consider a one-one C1 map h: [0,1] = I^-ME satisfying the
following conditions:

(i) A(0) = x and A(l) = y;
(ii) t1<t2=>h(t1)<h(t^) for all t^t^el (where < means the usual partial

ordering of the reals);
(iii) any space-like hyperplane, time-like line or light-like line through x meets

hi at most at a point.
Let P = hl—{x,y). It is clear from the definition of A -topology that P is closed in
MA. We assert that P is not closed in ME for, if it were, then, Pc (c denotes the
complement) would be an open set in ME about the point x. But from the con-
struction of P, it is easy to see that any Euclidean neighbourhood of x will meet P
thus giving a contradiction.
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[5] A-topology for Minkowski space 57

4. Zeno sequences

The notion of a Zeno sequence is due to Zeeman [5]. The definition given here
in the case of /4-topology can easily be modified to apply whenever there is a
topology on M which is finer than the Euclidean topology. It will be evident in the
following sections that the technique of using Zeno sequences is quite powerful in
determining the homeomorphisms of the finer topology.

DEFINITION. A Zeno sequence Z = {zn} is a sequence of distinct points of M not
containing z such that zn^>z in ME by zn+-*z in MA.

PROPOSITION 1. A Zeno sequence Z is closed in MA but not closed in MB. Con-
versely, a sequence Z = {zn} of distinct points ofM not containing z, which converges
to z in ME is a Zeno sequence if it is closed in MA.

We omit the proof of this proposition since it is identical to that of Proposition 1
[2]. We now give a few examples.

Example 1. Let {/„} be a sequence of distinct time-like or light-like lines (or both)
passing through a point z. Let znetn be such that d(zn,z)->0. Let {zB} = Z. To
prove that Z is a Zeno sequence, we have only to show that Z is closed in MA

and in view of the definition of the ^-topology, it is enough to prove that ZnLis
finite and hence closed for every space-like hyperplane, time-like line or light-like
line L. Suppose to the contrary that ZnL contains an infinite number of points.
Since the induced topology on L is Euclidean, L is complete and Z is a Cauchy
sequence, it follows that ZnL converges to a point of L; but since the space is
Hausdorff, it must be z and, therefore, zeL. If L is a space-like hyperplane, then
by construction ZnL = 0, and if L is a time-like or a light-like line then ZnL
is at most a singleton; thus in either case we get a contradiction and our assertion
that Z is a Zeno sequence is proved.

Example 2. Let {sn} be a sequence of space-like hyperplanes passing through a
point z. Choose znesn such that d(zn,z)^-0 and not more than a finite number of
zn's lie on any space-like hyperplane. Following the same argument as above, it
is easy to prove that Z = {zn} is a Zeno sequence.

The most important property of Zeno sequences that will be used very fre-
quently is the following:

LEMMA 1. A compact set of MA cannot contain a Zeno sequence.
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PROOF. Suppose to the contrary that D is a compact set of MA containing a
Zeno sequence Z. Now Z being a closed subset of D is compact. It is easy to see
that the topology induced by MA on Z is discrete because one can always choose
a Euclidean e-neighbourhood about any point zneZ which contains no other
point of Z. Since the points of Z are distinct, it follows that Z is an infinite discrete
set and therefore cannot be compact and we have a contradiction. This proves the
lemma.

5. Homeomorphisms of MA

In this section, we shall prove that the group of homeomorphisms of MA is G.
Before going into the proof, it will be worthwhile at this point to observe that there
are essentially two types of compact sets in MA, namely three-dimensional ones
contained in space-like hyperplanes and the one-dimensional ones contained in
time-like lines or light-like lines. Moreover, it is easy to distinguish the two types
of compact sets by their connectedness properties. A closed linear interval on a
time-like or a light-like line, which is compact in the induced topology, will be
disconnected if one point other than an end point is removed; on the other hand,
a closed three-dimensional ball in a space-like hyperplane, which is compact in the
induced topology, will remain connected even after a countable set of points is
removed from it. This distinction is essential and is used frequently in the course
of the proof. We now start by proving a sequence of lemmas and finally make use
of Theorem 1 to derive the result.

LEMMA 2. Let B be a closed ball of arbitrary radius with centre x and contained in a
space-like hyperplane H which passes through the point x; let h be a homeomorphism
o/MA; then hB<= CLT{hx) is false.

REMARK. We first give an intuitive sketch and then proceed to the proof. Observe
that hB is compact and Hausdorff in MA, since B is, and A is a homeomorphism.
Now, a compact Hausdorff space cannot be compact in a finer topology and
cannot be Hausdorff in a coarser topology. But the /4-topology is strictly finer than
the underlying Euclidean topology; therefore, hB will fail to be Hausdorff in the
topology induced by the Euclidean topology unless the topologies induced on hB
by the /1-topology and the Euclidean topology are same. Now hB cannot contain
any Zeno sequence so that if one assumes that hB is contained in CLT(hx), then
one concludes that hB is a connected union of a finite number of time-like and (or)
light-like intervals; but, then, removal of a finite set of points will make this set
disconnected, whereas the pre-image will still remain connected.
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PROOF. Suppose to the contrary that A.B<= CLT(hx), then hB meets either (i) only
a finite number of time-like and (or) light-like lines passing through hx or (ii) an
infinite number of them. In the first case, removal of a single point hx from hB will
make the set disconnected; on the other hand, B remains connected even after a
countable set is removed from it; thus we arrive at a contradiction.

In the second case, observe that every Euclidean e-neighbourhood of hx will
meet hB such that the points of intersection are on an infinite number of time-like
or light-like lines emerging from hx; for, otherwise, we can arrive at a contradiction
in the same manner as above. Thus we have enough points in hB in any arbitrary
Euclidean e-neighbourhood of hx to construct a Zeno sequence. Choose a point
znetn, where {tn} is a sequence of distinct time-like and (or) light-like lines passing
through hx and intersecting hB, such that zn^-hx in ME where each znehB. This
is a Zeno sequence contained in hB and by Lemma 1 we have a contradiction. Hence
the lemma is proved.

LEMMA 3. Let B and h be as in Lemma 2; then there exists a ball BT or radius r such
that (i) 5r<= B and (ii) hBr<^ Cs(hx).

PROOF. If B is such that hB<= Cs(hx), then choose Br = B. If not, then from
Lemma 2 it follows that hB is partly in CLT(hx) and partly in Cs(hx). Let
A = hBnCLT(hx). If A is finite, say {xt,x2, ...,xn}, then the pre-image
{h~1x1,h-1x2,...,h-1xn} can be removed from B and a suitable B^B-h'1 A can
be chosen such that hBr<= Cs(hx).

If A is infinite, then there are two cases to be considered: (i) hx is a limit point of A
in ME and (ii) hx is not a limit point of A in ME. In the second case, there exists
a neighbourhood 0 of hx which does not meet A. Then choose a suitable
BT<=(h-10)nB, so that hBr<=Cs(hx). In the first case when every Euclidean
neighbourhood of hx meets A, three cases may arise: (1) A meets an infinite
number of time-like or light-like lines through hx; (2) A meets only a finite number
of such lines with at least one point on a time-like line; (3) A lies on only a finite
number of light-like lines through hx. In case (1), a Zeno sequence can be con-
structed as in Lemma 2; in case (2), removal of the point hx will make hB—hx
disconnected thus giving contradictions. We are now left with case (0 (3). We shall
show that this case cannot occur.

Now write D = hBn Cs(hx). Since B is compact, so is hB; therefore hB cannot
contain a Zeno sequence by virtue of Lemma 1. Hence one can choose e>0 such
that Nf(hx) n D = Fe is contained in the union of a finite number of space-like
hyperplanes passing through hx. For, if every FB required infinitely many space-like
hyperplanes, we could construct a Zeno sequence. Observe that Fe is non-empty;
for otherwise we can arrive at a contradiction as follows. Suppose that Fe is empty,
then Nf(hx) n hB is contained in a finite number of light-like lines through hx.
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Since h-\Nf(hx)) is an open set about x, U = h~1{Nf{hx))nB is an open set
about x in the induced topology of B. Choose a closed ball K<= JJ with centre x.
It is then clear that h V is contained in a finite number of light-like lines through hx.
This is a contradiction in view of Lemma 2.

Now choose a closed ball Br of radius r in Bnh~\Nf(hx)) so that hBr is a
union of sets contained in a finite number of space-like hyperplanes and a finite
number of light-like lines through hx. This is impossible since Br—x is connected,
whereas hBr—hx is disconnected. This completes the proof of the lemma.

For convenience, we now make the following definition.

DEFINITION. A set is said to be a s-set if it is contained in a space-like hyperplane.

The next lemma helps us to determine the nature of the image hBr completely.

LEMMA 4. If Br and h are as in Lemma 3, then there exists a ball Bs<=^ Br such that
hBB is a union of a finite number of s-sets.

PROOF. The argument is essentially a repetition of the one given above. Suppose
that hBr is not contained in any finite union of space-like hyperplanes through hx.
We already know from Lemma 1 that we cannot have a Zeno sequence in hBn that
is, it is impossible to choose a Cauchy sequence in hBr with one point each on
each space-like hyperplane; hence it is possible to choose e>0 such that
Nf(hx)nhBr lies in some finite union of space-like hyperplanes through hx.
If we choose B8<=-h~\NE(hx))nBr, then clearly hBa is a union of a finite number of
s-sets. This proves the assertion.

Moreover, since B is compact, the topology induced on hBs by MA is Euclidean;
therefore

h\BB:B8 >MA-^ME

is an imbedding, where id denotes the identity map of M; so that it becomes easy
to form an idea about the nature of the image hBa.

LEMMA 5. Let H be a space-like hyperplane through x and h a homeomorphism of
MA\ then (i) hH is a countable union of s-sets and (ii) ME—hHhas two components.

PROOF. At each rational point x of H (a point whose coordinates are rationals
with respect to some frame of reference) choose a ball Bs(x) as in Lemma 4 above;
hBs(x) is then a union of a finite number of s-sets. Since the rational points of H are
countable and dense, the first assertion follows.
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[9] A-topology for Minkowski space 61

To prove the second assertion, note that the induced topology on H is Euclidean,
so that hH^R3. Moreover, MA—hH has two components; therefore, ME-hH
has at most two components, since the ^4-topology is finer than the Euclidean
topology. We claim that ME-hH has exactly two components; for, if not, then
ME—hH is connected and therefore any two points p and q of ME—hH can be
arc-connected by a polygonal path; since the topology induced by the ,4-topology
on the polygonal path is Euclidean, it follows that MA—hH is arc-connected,
which is a contradiction.

LEMMA 6. Let x<^y and h a homeomorphism of MA, then there exists a point
zs[x,y], the line segment joining the points x and y, such that h[x,z] = [hx,hz] with

or

PROOF. Suppose to the contrary that there exists no such z with the above
property, that is, for no ze [x,y],h[x,z] is contained in a time-like line or a light-
like line emerging from hx. Choose a sequence of points Z = {zn} in [x,y] such that
zn^-x and the lines {tn} joining hzn and hx are all distinct. Passing to a sub-
sequence if necessary, assume that all the tn's are either (i) time-like and (or) light-
like lines or (ii) space-like lines. In the first case, {hzn} is a Zeno sequence in the
compact set h[x,y] giving a contradiction. In the second case we claim that no
more than a finite number of points of {hzn} lie in any space-like hyperplane
through hx. For, otherwise, one can choose a subsequence {hznj lying on a space-
like hyperplane at hx which still converges to hx. Choose a ball B8 (as in Lemma 4)
with centre hx. Since the subsequence converges to hx, Bs contains all but a finite
number of points of the subsequence. On the other hand, h~1Bs^ Cs(x) does not
meet (x,y] at all. Thus in either case we arrive at a contradiction. Hence our
assumption that such a z does not exist is false.

DEFINITION. Let x<^y and h a homeomorphism of MA, then h is said to preserve or
reverse the orientation of[x,y] according as the sign of the expression

(hz)0-(hx)0/(z0-x0)

is positive or negative, where z is determined as in Lemma 6.

LEMMA 7. Let x<^y,y'; then a homeomorphism h of MA either preserves both or
reverses both orientations.

PROOF. Suppose to the contrary that h preserves the orientation of one and
reverses that of the other, that is, assume that x<^z, x<^z', hx^hz and hz'^hx.
Take a space-like hyperplane H at z. Clearly (x, z] and {x, z'\ belong to the same
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component of MA-H. On the other hand, by Lemma 5 (hx,hz] and Qix,hz'] are
in different components of h(MA — H) = MA — hH. Since components are pre-
served by any homeomorphism we have a contradiction.

In case [x,y] and [x,y'] are oriented oppositely and h preserves one and reverses
the other orientation, the same argument applies since A"1 is also a homeomor-
phism. This completes the proof of the lemma.

LEMMA 8. Any homeomorphism h of MA either preserves or reverses the partial
order <^.

PROOF. Let x<^y and hx<^hz, that is, h preserves the orientation of [x,y]. By
applying Lemma 6, we have for each z e [x, y], a neighbourhood Nz such that hNz

consists of one or two time-like and (or) light-like intervals. As [x, y] is compact, we
can obtain a finite covering NZl(i= 1,2,...,«) and hence a finite set of points
x = zo<^z1<^z2<^ ... such that for each /, A[zi_1,zf] is an interval on a time-like and
(or) a light-like line. Applying Lemma 7, we obtain hx<^hy in a finite number of
steps. Similarly, if h reverses the orientation of [x, y], then hy<^ hx.

To prove that h either preserves or reverses the partial order < ,̂ we proceed as
follows: Let x<£y and p4,q where x, y, p, q are arbitrary points of M. Choose a
point u such that x<^u and p-^u. From the first paragraph and Lemma 7 it follows
that if hx<^hy then hx<^hu and since x<^u, and p4,u, hx<^hu implies hp<^hu.
Similarly hp-^hq. Thus all partial orders are preserved if one is preserved. In the
same manner, all orders are reversed if only one is reversed.

We have therefore the following:

THEOREM 2. The group of homeomorphisms of MA is G.

PROOF. Let A be a homeomorphism of MA; then by Lemma 8, h either preserves
or reverses the partial order < .̂ In the latter case, compose it with the time reflec-
tion g defined by

£(•*<)> Xl> X2' X3J = ( "" *0> xl> X2> X3J >

so that hog becomes ^-preserving. By Theorem 1, either h or hog belongs to Go.
In any case h e Go u Gog~l = G. This completes the proof.

The ,4-topology has a very interesting property. Intuitively, one thinks about the
path of a particle as the image of a continuous map/ : / = [0, l]->M such that
at each point the path enters into the null cone L; in other words, if rlf t2el, then
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[11] A-topology for Minkowski space 63

tx<t2 implies that f{t^)<^f(t£). (Here < denotes the usual ordering of the real
numbers.) In case of Zeeman's fine topology, the image of a continuous map
/ : I->MF satisfying t1<t2=>f(t1)<f(Q is a union of a finite number of time-like
intervals (MF denotes the set M equipped with the fine topology). In particular,
this excludes photons since photons travel along null lines. In case of ,4-topology,
however, one can follow exactly the same argument as that of Zeeman to prove
the following:

PROPOSITION 2. Let f: I^-MA be a continuous map such that tvt2el with t1<t2

implies that f(tj)<^f{t^; then fI is a connected union of finite number of time-like and
(or) light-like intervals.

6. Final remarks

Williams in his paper [4] has suggested a topology on Minkowski space which is
characterized by the property that the induced topology on time-like and space-like
lines is Euclidean and that it is the finest such topology on M having this property.
This definition, which uses only time-like and space-like lines, offers a few advan-
tages. For example, it lends itself readily for possible generalization to curved
space-times where curves are important, whereas space-like hypersurfaces are of
little physical significance.

However, this topology differs significantly from the ^-topology (or from Zee-
man's fine topology) in its group of homeomorphisms. Williams has proved that
the C1-subgroup of homeomorphisms of this topology is G [4, Theorem 3]. Without
the C1-condition, it is doubtful whether the result will still be valid. Another
notable feature of Williams' topology is that if/: I->MW is a continuous map,
where Mw denotes Minkowski space with Williams' topology, then /( / ) is a
connected union of time-like and (or) space-like intervals. If, however, / is
assumed to be order-preserving, then it follows that/(/) is a connected union
of time-like intervals representing the path of an inertial particle under a finite
number of collisions. This, as pointed out in the introduction, excludes the path of
photons. The /4-topology is significantly different from William's topology in
this respect.
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