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Admissible Majorants for
Model Subspaces of H2,
Part I: Slow Winding of the
Generating Inner Function

Victor Havin and Javad Mashreghi

Abstract. A model subspace KΘ of the Hardy space H2 = H2(C+) for the upper half plane C+ is

H2(C+) 	 ΘH2(C+) where Θ is an inner function in C+. A function ω : R 7→ [0,∞) is called an

admissible majorant for KΘ if there exists an f ∈ KΘ, f 6≡ 0, | f (x)| ≤ ω(x) almost everywhere on R.

For some (mainly meromorphic) Θ’s some parts of Adm Θ (the set of all admissible majorants for KΘ)

are explicitly described. These descriptions depend on the rate of growth of arg Θ along R. This paper

is about slowly growing arguments (slower than x). Our results exhibit the dependence of Adm B on

the geometry of the zeros of the Blaschke product B. A complete description of Adm B is obtained for

B’s with purely imaginary (“vertical”) zeros. We show that in this case a unique minimal admissible

majorant exists.

1 Introduction

1.1 Historical Background

Let Θ be an inner function in the upper half plane C+. The model subspace KΘ of the

Hardy space H2(C+) generated by Θ is, by definition, the orthogonal complement of
ΘH2(C+):

KΘ = H2(C+) 	 ΘH2(C+).

By Beurling’s famous theorem the spaces ΘH2(C+) are the only shift invariant closed
subspaces of H2(C+), i.e., invariant with respect to multiplication by any exponential

eiσz , σ > 0 [4]. This is why KΘ is often called a shift coinvariant subspace of H2(C+).
We prefer the shorter term model subspace which appeared due to connections of
KΘ’s with the Nagy-Foiaş model of contractions in a Hilbert space [28], [29].

The model subspaces are an important theme of complex and harmonic analy-
sis. Their properties and numerous connections with various topics in analysis can
be found, e.g., in the work of Douglas, Shapiro, Shields [11], Cohn [9], Dyakonov

[13], Volberg [32], Treil [33], Nikolski [29], Ahern, Clark [1], Alexandrov [2], and in
the monograph of Cima, Ross [8]. The spaces KΘ generated by meromorphic Θ are
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closely related to the de Branges Hilbert spaces of entire functions [6]. A very partic-
ular but extremely important case is Keiσz , since e−iσz/2Keiσz is the Paley-Wiener space

of entire functions of type at most σ/2 and square summable along the real line R.
We call a measurable non-negative function ω : R 7→ [0,∞) an admissible majo-

rant for KΘ, and we write ω ∈ Adm Θ, if there exists a non-zero function f ∈ KΘ

satisfying

(1.1) | f (x)| ≤ ω(x)

almost everywhere on R. Here f (x) denotes limε→0+ f (x + iε) wherever the limit

exists. It is well known that f (x) is defined almost everywhere on R and f ∈ L2(R)
[22, page 114]. The subspace of L2(R) formed by all boundary traces of elements of
H2(C+) is isometric to H2(C+) and is denoted by H2(R) [12, pages 190–191].

Our aim is to describe some classes of admissible majorants for some classes of

model subspaces. A necessary condition for an ω to be in Adm Θ is the convergence
of its logarithmic integral

(1.2) L(ω) =

∫ ∞

−∞

Ω
+(x)

1 + x2
dx,

where

(1.3) Ω(x) = − log ω(x).

If L(ω) = ∞, then the only f ∈ H2(R) satisfying (1.1) is zero [12, pages 189–190].
The convergence of L(ω) is also sufficient for the existence of a non-zero f ∈ H2(R)

satisfying (1.1), or even | f (x)| = ω(x) a.e., provided ω ∈ L2(R) [22, page 120].
But functions in a KΘ are much more analytic than an average element of H2(R).
Namely, the elements of KΘ admit pseudo-analytic (or rather pseudo-meromorphic)
continuations to the lower half plane C−: for any f ∈ KΘ there exists a function g,

meromorphic and of the Nevanlinna class in C−, such that

lim
ε→0+

g(x − iε) = f (x)

almost everywhere on R. If Θ is analytic on an interval I ⊂ R, then g is the classical
analytic continuation of f across I. So it is natural to expect that the mere conver-

gence of L(ω) is too weak to ensure the inclusion ω ∈ Adm Θ. It may happen that
for a nice ω (say, decreasing on [0,∞), even and smooth) the integral L(ω) is finite,
but the decrease of ω is still too fast to let ω be in Adm Θ. We provide two examples.
The first one is quite simple.

Example 1.1 Θ is a finite Blaschke product with zeros z1, . . . , zn ∈ C+. Then KΘ

is the set of all rational functions P/Q where Q(z) = (z − z1) · · · (z − zn) and P is a
polynomial of degree at most n − 1. In this case

1

(1 + |x|)n+1
/∈ Adm Θ

although L(ω) < ∞.
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Note that (1 + |x|)−n ∈ Adm Θ, and this majorant is sharp in the sense that if
ω(x) = o(|x|−n) as |x| → ∞, then ω /∈ Adm Θ. The following example is much

more interesting and delicate.

Example 1.2 Θ(z) = eiσz, σ > 0. The admissibility of ω means that (1.1) holds
for a non-zero Paley-Wiener function f (entire, of type at most σ/2 and square

summable along R). In this case any nice ω with L(ω) < ∞ is in Adm Θ, but
the regularity assumptions cannot be dropped. (A concrete form of regularity of ω
entailing its admissibility is stated at the end of this subsection.)

The characterization of Adm eiσz is a difficult problem related to the uncertainty

principle in harmonic analysis (see Chapter 3 of Part II of [17]). A complete and
palpable description of Adm eiσz is hardly possible, but Beurling and Malliavin found
sufficient conditions for an ω to be in that class (actually in ∩σ>0 Adm eiσz). The
theorem of Beurling and Malliavin (the so called multiplier theorem) is one of the

deepest results of harmonic analysis of the twentieth century [5]. Several proofs are
known now. For the present state of this topic see books [23], [24] and [25].

1.2 Our Approach

In the present paper and in [18], we discuss Adm Θ for certain inner Θ’s. We concen-
trate mainly on the special case of meromorphic Θ’s, that is we assume Θ coincides in
C+ with a meromorphic function whose poles are in C−. In other words

(1.4) Θ(z) = eiσzB(z)

where σ ≥ 0 and B is a meromorphic Blaschke product for C+ (either B is finite
or its zeros tend to infinity). The case B(z) ≡ 1, i.e., the Blaschke product with

the empty set of zeros, is exactly the Beurling-Malliavin case. Our results here are
devoted mainly to the case σ = 0. (Note that KΘ1Θ2

= KΘ1
⊕ Θ1KΘ2

[1], whence
Adm Θ1Θ2 ⊃ Adm Θ1 + Adm Θ2). The Beurling-Malliavin case (σ > 0 and B ≡ 1)
and some other similar cases will be considered in [18].

We turn to the case σ = 0, i.e., Θ = B in (1.4). The set Adm B depends on B−1(0),
or to be more precise, on the divisor of B, i.e., B−1(0) and the multiplicities of zeros.
We obtain a quite satisfactory description of Adm B for purely imaginary (vertical)

zeros. The horizontal case (say, zeros on a line =z = c, c > 0) is much more difficult
and for certain sets B−1(0) is similar to the Beurling-Malliavin case. In [18] we obtain
some partial results in this direction.

Any meromorphic inner function Θ can be written as Θ(x) = eiϕ(x) on R, where
ϕ is real and continuous (in fact, real analytic). We call ϕ a continuous argument
of Θ and denote it by arg Θ. Thus arg Θ is defined up to a constant. This function
is increasing. In this paper we consider situations gravitating to our Example 1.1:

Θ = B, and arg B grows slowly (so that the unit vector B(x) is winding slowly as
x grows from −∞ to ∞; note that in Example 1.1, an extreme case, arg B is just
bounded). In this paper, as a rule, (arg B) ′(x) = o(1) as |x| → ∞. On the other
hand, in the Beurling-Malliavin case (Example 1.2) arg Θ(x) = σx is linear. Some
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inner functions Θ with arg Θ(x) growing almost linearly (and even faster) will be
analyzed in [18]. The technique used there is different from that of the present paper.

The statements of our main results involve comparison of functions on R. Let ω1

and ω2 be such functions. We write

ω1 ≺ ω2,

if ω1(x) ≤ Cω2(x) for all x ∈ R and a positive number C . We say that ω1 and ω2 are

comparable, and write
ω1 � ω2,

if ω1 ≺ ω2 and ω2 ≺ ω1.
An element ω of Adm Θ is called a minimal majorant for KΘ if any ω1 ∈ Adm Θ

satisfying ω1 ≺ ω is comparable with ω. We will be also interested in the uniqueness

of a minimal majorant. We say that the minimal majorant ω ∈ Adm Θ is unique if
it is strictly positive, continuous, and any minimal, strictly positive and continuous
majorant for KΘ is comparable with ω.

In this paper we prove the existence of unique minimal majorants for some spaces

KB, give their explicit expressions and prove their uniqueness. (Note that if arg Θ

grows fast, then, as a rule, the minimal majorant for KΘ does not exist, see [18]).

1.3 Our Main Themes

The main results of this paper are as follows. First, we completely characterize the
unique minimal admissible majorant for model subspaces generated by a meromor-
phic Blaschke product with zeros on the imaginary axis.

Theorem 1.3 Let {bk}k≥1 be an increasing sequence of positive numbers, and∑∞
k=1 1/bk < ∞. Let B be the Blaschke product with zeros {ibk}k≥1. Put

E(z) =

∞∏

k=1

(
1 +

z

ibk

)
.

Then 1/|E(x)| is in Adm B and it is the unique minimal majorant for KB. Moreover,

log |E(x)| �
∫ x

0

n(t)

t
dt + x2

∫ ∞

x

n(t)

t3
dt,

where n(t) is the counting function of the sequence {bk}k≥1.

The convergence of
∑∞

k=1 1/bk coincides with the Blaschke condition and cannot
be weakened. But to obtain a similar result for more general sets of zeros in C+ (not
necessarily vertical) we need somewhat stronger conditions.

Theorem 1.4 Let {zk}k≥1 be a sequence in the upper half plane C+ such that

limk→∞ |zk| = ∞ and
∞∑

k=1

log |zk|
|zk|

< ∞.
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Let B be the Blaschke product with zeros {zk}k≥1. Put

E(z) =

∞∏

k=1

(
1 − z

z̄k

)
,

so that B(z) = E∗(z)/E(z) where E∗(z) = E(z̄). If

1

|E(x)| ∈ L2(R),

then 1/|E(x)| ∈ Adm B. Moreover, the majorant 1/|E(x)| is minimal and unique.

We provide some examples to show that the condition 1/|E(x)| ∈ L2(R) is not a
consequence of the assumption

∑∞
k=1 log |zk|/|zk| < ∞ and hence we have to insert it

in the theorem (criteria for 1/E(x) ∈ L2(R) can be deduced from [7] and [34]). The
next result is our only theorem dealing with a general (not necessarily meromorphic)

inner function Θ. It generalizes an essential part of Theorem 1.4.

Theorem 1.5 Suppose there exists an outer function O ∈ H1(C+) such that

O(x) = |O(x)|Θ(x)

almost everywhere on R. Then
√
|O(x)| is a minimal majorant for KΘ.

As a matter of fact a stronger assertion is proved in Theorem 5.2. Theorem 1.5 is
an easy corollary of the complete description of moduli of elements of KΘ obtained
by Dyakonov in [13] (in [13] the Lp-analogs of KΘ are also considered; we only need

a particular case of Dyakonov’s result). From Dyakonov’s criterion we deduce a com-
plete description of Adm Θ (Theorem 4.4). This result yields a parameterization of

Adm Θ: putting Ω = log 1/ω we obtain a representation of e2iΩ̃ in terms of free pa-

rameters m and I where m is an arbitrary element of L∞(dt) such that mω ∈ L2(dt),
log m ∈ L1

(
dt/(1 + t2)

)
, and I is an arbitrary inner function. This parametrization

is used in the proof of Theorem 5.2; it is an important element of [18].

2 Representations of KΘ

In this section we discuss several aspects of model subspaces generated by a mero-
morphic inner function.

2.1 Reminder on Blaschke Products

Let {zk}k≥1 be a sequence of complex numbers in the upper half plane C+. (Some-

times we allow the index k to range through Z.) Let

bk(z) = eiαk · z − zk

z − z̄k

,
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where a real αk is so chosen that

eiαk · i − zk

i − z̄k

≥ 0.

The rational function BK =
∏K

k=1 bk is called a finite Blaschke product for the upper
half plane; BK is analytic at each point of the real line and |BK(x)| = 1 for x ∈ R. The
relation

∞∑

k=1

=zk

|zk + i|2 < ∞

is a necessary and sufficient condition for the uniform convergence of BK on compact

sets, disjoint from the closure of {z̄k ; k ≥ 1}, to a non-zero analytic function

B(z) =

∞∏

k=1

(
eiαk · z − zk

z − z̄k

)
= lim

K→∞
BK(z),

and we call B an infinite Blaschke product for the upper half plane [22, page 120]. We
have |B(z)| < 1 for z ∈ C+. Therefore, by Fatou’s theorem [22, page 57], for almost

all x ∈ R, limz →∠ x B(z) exists. Denoting that limit by B(x) (wherever it exists), one
has |B(x)| = 1 almost everywhere [22, page 66].

2.2 Meromorphic Blaschke products

A Blaschke sequence in the upper half plane, {zk}k≥1, has no accumulation point on
the real line if and only if

lim
k→∞

|zk| = ∞.

Here, since the zk stay away from zero, a necessary and sufficient condition for the
uniform convergence of BK to B on compact sets disjoint from {z̄k ; k ≥ 1} is

(2.1)

∞∑

k=1

=zk

|zk|2
< ∞.

In this case, B is a meromorphic function with poles at the z̄k. For this reason, it is
called a meromorphic Blaschke product. The function B is analytic at each point of R,
and

|B(x)| = 1 for x ∈ R.

Let us multiply B by a constant of modulus one to get B(0) = 1. Then for each z

different from all the z̄k,

B(z) =

∞∏

k=1

1 − z/zk

1 − z/z̄k

.
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2.3 Representation of a Meromorphic Blaschke Product as E∗(z)/E(z)

The following result is a direct corollary of a theorem of M. G. Krein on entire func-
tions of the Hermite-Biehler class [26, pages 317–318]. We give a direct proof.

Lemma 2.1 Every meromorphic Blaschke product can be represented as

B(z) =
E(z̄)

E(z)
for z ∈ C,

where E is an entire function with zeros at the z̄k. The order of z̄k as a zero of E is the

same as its order as a pole of B.

Proof Put

(2.2) Ek(z) =

(
1 − z

z̄k

)
exp

{
<

( 1

z̄k

)
z + · · · +

1

k
<

( 1

z̄k
k

)
zk

}
.

Suppose |z| ≤ R. Then, for |zk| ≥ 2R,

log Ek(z) = − z

z̄k

− 1

2

( z

z̄k

) 2

− · · · − 1

k

( z

z̄k

) k

− · · ·

+ <
( 1

z̄k

)
z +

1

2
<

( 1

z̄2
k

)
z2 + · · · +

1

k
<

( 1

z̄k
k

)
zk

= −i=
( 1

z̄k

)
z − i

2
=

( 1

z̄2
k

)
z2 − · · · − i

k
=

( 1

z̄k
k

)
zk

− 1

k + 1
·
( z

z̄k

) k+1

− 1

k + 2
·
( z

z̄k

) k+2

− · · · .

Here, we are using the branch of the logarithm which is zero at 1. Since |=(wn)| ≤
n|w|n−1|=w| for every w ∈ C, we have

| log Ek(z)| ≤
∣∣∣=

( 1

z̄k

)∣∣∣R + · · · +
1

k

∣∣∣=
( 1

z̄k
k

)∣∣∣Rk

+
1

k + 1
· 1

2k+1
+

1

k + 2
· 1

2k+2
+ · · ·

≤
∣∣∣=

( 1

z̄k

)∣∣∣R + · · · +
∣∣∣=

( 1

z̄k

)∣∣∣ 1

|z̄k|k−1
Rk +

1

2k

≤ =zk

|zk|2
(

1 +
1

2
+ · · · +

1

2k−1

)
R +

1

2k

≤ 2R · =zk

|zk|2
+

1

2k
.
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By this inequality and by (2.1),
∑

|zk|≥2R log Ek(z) converges absolutely and uniformly

for |z| ≤ R. Thus
∏

|zk|≥2R Ek(z) converges uniformly for such values of z. Therefore,

E(z) =

∞∏

k=1

(
1 − z

z̄k

)
exp

{
<

( 1

z̄k

)
z + · · · +

1

k
<

( 1

z̄k
k

)
zk

}

is an entire function and

E(z̄) =

∞∏

k=1

(
1 − z

zk

)
exp

{
<

( 1

z̄k

)
z + · · · +

1

k
<

( 1

z̄k
k

)
zk

}
.

The relation E(z̄)/E(z) = B(z) is now clear by inspection.

In the general case, E is not necessarily of exponential type. But if more is known

about the growth of the zk as k → ∞, the degrees of the polynomials figuring in the
exponential factors in (2.2) can be diminished. If, for instance,

∞∑

k=1

1

|zk|
< ∞,

all of those polynomials can be taken equal to zero (and the exponential factors
dropped altogether). See also [6, page 14].

2.4 Representation of Meromorphic Inner Functions

Meromorphic inner functions are generalizations of meromorphic Blaschke prod-

ucts. We call an inner function Θ ∈ H∞(C+) meromorphic if it is continuous (or
equivalently, analytic) up to R. It is easy to see that the set of meromorphic inner
functions coincides with the set of all products B(z)eiσz where B is a meromorphic
Blaschke product and σ is a non-negative real number.

The entire function E constructed in Lemma 2.1 enjoys the following property:

(2.3) |E∗(z)| < |E(z)|

for all z ∈ C+ and all its zeros are in the lower half plane. On the other hand, any
such E generates a meromorphic inner function Θ, namely

(2.4) Θ(z) = E∗(z)/E(z)

for all z ∈ C+. Indeed Lemma 2.1 shows that any meromorphic inner function Θ

can be represented by (2.4) with a suitable entire function satisfying (2.3) and having
zeros only in the lower half plane. For if Θ(z) = B(z)eiσz , then by Lemma 2.1,

Θ(z) =
E∗(z)

E(z)
eiσz

=
E∗(z)eiσz/2

E(z)e−iσz/2
=

E∗
1 (z)

E1(z)
,

and E1(z) = E(z)e−iσz/2 satisfies (2.3) and all its zeros are in the lower half plane.
Subsections 2.5 and 2.6 contain some well known facts on the spaces KΘ. We state

them (with short proofs) for reader’s convenience.
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2.5 Various Descriptions of KΘ

Let Θ be an arbitrary inner function for the upper half plane. Then ΘH2(R) is a
closed subspace of the Hilbert space H2(R). According to the notation introduced in
Section 1, the orthogonal complement of ΘH2(R) in H2(R) is denoted by KΘ. Thus

H2(R) = ΘH2(R) ⊕ KΘ.

The following lemma gives another characterization of KΘ which can be used as the
definition of it in all Hardy spaces H p(R), 0 < p ≤ ∞.

Lemma 2.2 For each inner function Θ

KΘ = H2(R) ∩ Θ H2(R).

Proof We use the properties Θ ∈ H∞ and ΘΘ̄ = 1. By definition, f ∈ KΘ if and
only if f ∈ H2(R) and ∫ ∞

−∞

f (x)Θ(x)g(x) dx = 0

for each g ∈ H2(R). Thus, f ∈ KΘ if and only if f ∈ H2(R) and

∫ ∞

−∞

f (x)

Θ(x)
g(x) dx = 0

for each g ∈ H2(R). This condition is equivalent to f /Θ ∈ H2(R). Therefore f ∈ KΘ

if and only if f ∈ H2(R) and also f ∈ ΘH2(R).

An inner function Θ is already defined in the upper half plane and it is analytic

there. Its nontangential limits at the points of the real line define a measurable uni-
modular function there. It can be extended to the lower half plane by putting

Θ(z) =
1

Θ(z̄)
for z ∈ C−.

Let h ∈ L2(R). Then the Poisson integral formula

Ph(z) =
1

π

∫ ∞

−∞

|=z|
|z − t|2 h(t) dt, z ∈ C \ R,

gives an extension of h to the upper and to the lower half planes. It can be shown
that h ∈ H2(R) if and only if Ph, as a function defined in the upper half plane, is in
H2(C+). Similarly, h ∈ H2(R) if and only if Ph, as a function defined in the lower half

plane, is in H2(C−). An f ∈ KΘ belongs in particular to H2(R). Therefore it has an
extension f (z) to the upper half plane, belonging to H2(C+) and given there by the
formula

f (z) = P f (z) for z ∈ C+.
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The extension of an f ∈ KΘ to the lower half plane is indirect (depending on Θ). For
such an f we have Θ̄ f ∈ H2(R) by Lemma 2.2, so, by the preceding observation, Θ̄ f

has an analytic extension to the lower half plane, equal there to

1

π

∫ ∞

−∞

|=z|
|z − t|2 Θ(t) f (t) dt = PΘ̄ f (z), z ∈ C−.

We then define the extension of f ∈ KΘ to C− by putting

f (z) = Θ(z)PΘ̄ f (z) for z ∈ C−,

with Θ(z) defined as above in C− [11]. This extension is at least meromorphic in

the lower half plane. We have limz →∠ x Θ(z) = Θ(x) and limz →∠ x = f (x) for almost
all x ∈ R. In these limits, z is allowed to tend to x non-tangentially from either half
plane. With these definitions, Lemma 2.2 yields the following characterization of KΘ.

Theorem 2.3 The space KΘ consists precisely of the functions f ∈ L2(R) having

extension to the whole complex plane C, as defined above, so that f ∈ H2(C+) and

f /Θ ∈ H2(C−).

A function f ∈ KΘ can be continued analytically across intervals of R on which Θ

is analytic. This result has important consequences in characterizing elements of KB

when B is a meromorphic Blaschke product.

Theorem 2.4 If Θ is analytic in a neighborhood of the interval (a, b) ⊂ R then any

f ∈ KΘ is also analytic there.

2.6 Paley-Wiener Spaces

Let σ > 0. Then Θ(x) = exp(iσx) is an entire inner function. In this case, the
functions f (x) ∈ KΘ differ by the factor exp(iσx/2) from those in a Paley-Wiener
space.

Theorem 2.5 Let σ > 0. Then f ∈ Keiσx if and only if f is an entire function of

exponential type, square integrable on the real line, with −σ ≤ h+ ≤ 0 and 0 ≤ h− ≤
σ, where

h+ = lim sup
y→∞

log | f (i y)|
y

and h− = lim sup
y→∞

log | f (−i y)|
y

.

Proof Since Θ(x) = exp(iσx) is analytic across R, each f ∈ Keiσx is also analytic
there. Furthermore, f ∈ H2(C+) and f /Θ ∈ H2(C−) imply that f is analytic on
C+ and also on C−, that f ∈ L2(R), and besides that the support of the Fourier-
Plancherel transform of f is a subset of [0, σ]. Thus f̂ ∈ L1(R)∩ L2(R), and for each

z = x ∈ R, f (z) =
∫ σ

0
f̂ (t)eizt dt . By the uniqueness theorem for analytic functions,

equality holds everywhere. Therefore f is an entire function of exponential type with
the indicated growth conditions on the imaginary axis.

The if part is an easy consequence of the celebrated Paley-Wiener theorem.
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Corollary 2.6 Each f ∈ Keiσx has the representation

(2.5) f (z) =

∫ σ

0

f̂ (t)eizt dt,

where f̂ ∈ L2(0, σ).

2.7 The Model Subspace KΘ With a Meromorphic Θ

Let {zk}∞k=1 be a sequence in the upper half plane with zk → ∞ as k → ∞. Let
{mk}∞k=1 be a sequence of positive integers. Suppose that

∞∑

k=1

mk=zk

|zk|2
< ∞.

Then

B(z) =

∞∏

k=1

( z̄k

zk
· z − zk

z − z̄k

)mk

is a meromorphic Blaschke product. Put Θ(z) = B(z)eiσz , σ ≥ 0.

Theorem 2.7 Let Θ(z) = B(z)eiσz , σ ≥ 0 and B be a meromorphic Blaschke product.

Then the space KΘ consists precisely of the meromorphic functions f with poles of order

at most mk at the z̄k, such that f ∈ H2(C+) and also f /Θ ∈ H2(C−).

Proof Let f ∈ KΘ. Then by Theorem 2.3, f and f /Θ are respectively analytic in the
upper and lower half planes. Hence f = Θ · f /Θ is a meromorphic function in the
lower half plane, with poles of order at most mk at the z̄k. Finally, by Theorem 2.4, f

is analytic at each point of the real line.

If, on the other hand, f ∈ H2(C+) and f /Θ ∈ H2(C−), then at least f ∈ L2(R).
Thus f ∈ KΘ by Theorem 2.3.

Corollary 2.8 Let Θ(z) = B(z)eiσz , σ ≥ 0 and B be a meromorphic Blaschke product

with zeros of order mk at zk, k ≥ 1. Then, for each j, 1 ≤ j ≤ mk, we have (z− z̄k)− j ∈
KΘ.

Corollary 2.9 Let B be the finite Blaschke product

B(z) =

K∏

k=1

( z − zk

z − z̄k

)mk

.

Then KB consists precisely of the linear combinations of the fractions (z − z̄k)− jk where

1 ≤ k ≤ K and 1 ≤ jk ≤ mk. Thus f ∈ KB if and only if

f (z) =
P(z)

∏K
k=1(z − z̄k)mk

,

where P is a polynomial of degree at most m1 + · · · + mK − 1.

https://doi.org/10.4153/CJM-2003-048-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-048-8


1242 Victor Havin and Javad Mashreghi

Suppose now that Θ is any meromorphic Blaschke product. Then, according to
Lemma 2.1 and the paragraph after it, Θ = E∗/E, where E is an entire function

satisfying (2.3). This observation enables us to give another characterization of KΘ.

Theorem 2.10 Let Θ = E∗/E, where E is an entire function satisfying (2.3). Then

the space KΘ consists precisely of functions of the form f /E where f is an entire function

with both f /E ∈ H2(C+) and f /E∗ ∈ H2(C−).

Proof Let g ∈ KΘ. Then by Theorem 2.7, g is a meromorphic function with poles
of order at most mk at the z̄k. Hence gE is an entire function, where E is the entire
function furnished by Lemma 2.1. Put f = gE. Then f /E = g ∈ H2(C+), and
f /E∗ = g/Θ ∈ H2(C−). On the other hand, if f satisfies these conditions, then

f /E ∈ KΘ by Theorem 2.7.

2.8 Model Subspaces KΘ and the de Branges Spaces H(E)

Any entire function E satisfying (2.3) generates the de Branges space

H(E) = { f : f is entire, f /E and f ∗/E ∈ H2(C+)}

with norm ‖ f ‖H(E) = ‖ f /E‖L2(R). Theorem 2.10 shows that H(E) and KΘ are iso-

metric as Hilbert spaces. Indeed, the operator f 7→ f /E is an isometry of H(E)
onto KΘ with Θ = E∗/E. Theorem 2.10 also enables us to estimate the growth of a
function g ∈ KB in the complex plane (see Theorem 3.1 below).

3 What Happens if 1/E ∈ KB?

Here we turn to the main results of this paper and explicitly describe admissible majo-
rants for spaces KB generated by certain meromorphic Blaschke products. The results

are sharp, since our majorants turn out to be the best possible ones in a sense. We
use symbols ≺ and � as defined in the Introduction.

3.1 Blaschke Products B = E∗/E when E is of Zero Type

Let =z > 0 and consider the finite Blaschke product

(3.1) B(z) =

K∏

k=1

( 1 − z/zk

1 − z/z̄k

)mk

=
E(z̄)

E(z)
,

where E(z) =
∏K

k=1(1 − z/z̄k)mk . Then the model space KB precisely consists of

(3.2) f (z) =
P(z)

∏K
k=1(1 − z/z̄k)mk

=
P(z)

E(z)
,

where P is a polynomial of degree at most m1+· · ·+mK−1. In particular 1/E(z) ∈ KB

and we have 1/|E(x)| � (1 + |x|)−(m1+···+mK ), which, by (3.2), is the fastest possible
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rate of decrease (along R) for elements of KB. That is why 1/|E(x)| deserves to be
called the minimal admissible majorant for KB. In the following we show that this

idea can be appropriately generalized for a class of infinite Blaschke products.
Let {zk}∞k=1 be a sequence in the upper half plane with zk → ∞ as k → ∞. Let

{mk}∞k=1 be a sequence of positive integers. Suppose that
∑∞

k=1
mk=zk

|zk|2 < ∞. Then

B(z) =

∞∏

k=1

( 1 − z/zk

1 − z/z̄k

)mk

is a meromorphic Blaschke product. We know that the model space KB consists pre-

cisely of the meromorphic functions f (z) with poles of order at most mk at the z̄k,
such that f (z) ∈ H2(C+) and also f (z)/B(z) ∈ H2(C−). Thus, according to the rep-
resentation B(z) = E∗(z)/E(z) where E(z) is an entire function with zeros of order
mk at the z̄k, the space KB consists precisely of functions of the form f (z) = g(z)/E(z)

where g(z) is an entire function with both

(3.3)
g(z)

E(z)
∈ H2(C+) and

g(z)

E(z̄)
∈ H2(C−).

Here we provide conditions to ensure 1/E(z) ∈ KB and besides 1/|E(x)| to have the
fastest possible rate of decrease (along R) for elements of KB.

This representation (3.3) enables us to estimate the growth of g(z) in terms of E(z)

for z ∈ C.

Theorem 3.1 Let f ∈ KB. Then, for the entire function g(z) = f (z)E(z), we have

|g(x + i y)| ≤ C
∣∣E(x + i|y|)

∣∣

for |y| ≥ 1, and

|g(x + i y)| ≤ C max{|E(ξ + iη)| : |ξ − x| ≤ 2, 0 ≤ η ≤ 2}

for |y| < 1. Here C is a constant depending on f .

Proof Since f (z) = g(z)/E(z) ∈ H2(C+), we have

| f (x + i y)| ≤ Const
√

y

for y > 0 [22, page 112]. We thus have

|g(x + i y)| ≤ Const
√

y
|E(x + i y)| for y > 0.

Again, g(z)/E∗(z) ∈ H2(C−), so we find in like manner that

|g(x + i y)| ≤ Const√
|y|

|E(x − i y)| =
Const√

|y|
∣∣E(x + i|y|)

∣∣
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for y < 0. These two estimates give us our first relation. For the second one we use
the estimates in Cauchy’s formula, applied to the entire function g(z). Assuming that

|=z| ≤ 1, we can write

g(z) =
1

2πi

∫

Γ

g(ζ)

ζ − z
dζ

with Γ a square of side 4 having x = <z as its center. Since the integral
∫ 2

−2
dη√
|η|

is

finite, the second relation follows immediately.

In the following we mainly use a simple consequence of this theorem.

Corollary 3.2 Let f (z) = g(z)/E(z) ∈ KB. If E(z) is an entire function of exponential

type zero, then so is g(z).

The following result shows that for a meromorphic Blaschke product B(z) =

E∗(z)/E(z), the majorant 1/|E(x)| has, in some sense, the best possible rate of de-
crease as |x| → ∞. But it is more interesting when 1/E(x) ∈ KB.

Theorem 3.3 Let B(z) = E∗(z)/E(z) where E(z) is an entire function of exponential

type zero. Let f ∈ KB and suppose that

| f (x)| ≤ 1

|E(x)| for x ∈ R.

If

lim inf
|x|→∞

| f (x)E(x)| = 0,

then f ≡ 0.

Proof Referring to Corollary 3.2 we see that the entire function g(z) = f (z)E(z) is
in particular entire and of zero exponential type. By the hypothesis, we also have

|g(x)| = | f (x)E(x)| ≤ 1, x ∈ R.

A Phragmén-Lindelöf theorem therefore implies that g(z) is bounded in both the
upper and lower half planes [23, page 28]. It is therefore constant, so, since g(xn)

tends to zero for a sequence xn tending to +∞ or −∞, it is zero.

3.2 Sharpness of a Minimal Majorant

Let Θ be an inner function and ω ∈ Adm Θ. A minimal majorant ω is sharp in
the following sense: If f ∈ KΘ and | f | ≺ ω, then either f ≡ 0 or ω ≺ | f | (since
| f | ∈ Adm Θ whenever f 6≡ 0). In particular, for a positive minimal ω ∈ Adm Θ, if
f ∈ KΘ and | f | ≺ ω and lim inf|x|→∞ | f (x)|/ω(x) = 0, then f ≡ 0.

Returning to the finite Blaschke product (3.1), we conclude that (1+|x|)−(m1+···+mK )

is the unique positive and continuous minimal majorant for KB. The positivity as-
sumption is essential. There exist other minimal majorants not comparable with
(1 + |x|)−(m1+···+mK ), e.g., |x|(1 + |x|)−(1+m1+···+mK ).

From now on we concentrate on a situation generalizing (3.1).
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Lemma 3.4 Let B be a Blaschke product. Suppose that B = E∗/E where E is an entire

function of zero exponential type whose zeros are in the lower half plane C−. If f ∈ KB

and | f | ≺ 1/|E|, then f = Const /E.

Proof According to Corollary 3.2, f = g/E where g is entire and of zero exponential

type. Our assumption, | f | ≺ 1/|E|, implies that g is bounded on R. By a Phragmen-
Lindelöf theorem [23, page 28] g is bounded on C and thus constant.

Theorem 3.5 Let B be a Blaschke product. Suppose that B = E∗/E where E is an

entire function of zero exponential type whose zeros are in the lower half plane C−. If

1/E ∈ KB, then 1/|E| is the unique minimal positive and continuous majorant.

Proof Since 1/E ∈ KB the inclusion 1/|E| ∈ Adm B is immediate. Now assume
that ω ∈ Adm B and ω ≺ 1/|E|. Hence there exists a non-zero f ∈ KB satisfying
| f (x)| ≤ ω(x) on R and thus | f | ≺ 1/|E|. By Lemma 3.4, f = C/E with a nonzero

constant C . Therefore, 1/|E| ≺ ω and ω � 1/|E|, so that 1/|E| is minimal.

To prove the uniqueness property, take a minimal positive and continuous ω ∈
Adm B. Then ω ≥ |g|/|E| on R, where g 6≡ 0 is entire and of zero type. We are
going to prove that g is a nonzero constant, whence ω � 1/|E| and, by minimality
of ω, ω � 1/|E|. Suppose g is not a constant. Then, by the Hadamard theorem [23,

page 16], g has a zero, i.e., g(a) = 0 for an a ∈ C. Then, by Theorem 2.10,

f1(z) =
g(z)

(z − a)E(z)
=

f (z)

z − a
∈ KB.

If a ∈ C \ R, then, clearly ω1(x) = ω(x)(1 + |x|)−1 � | f1(x)|, and thus ω1 ∈ Adm B

which is impossible since ω is minimal. If a ∈ R, then still ω1 � | f1| due to the
estimate min{ω(x) : a − 1 ≤ x ≤ a + 1} > 0, (by positiveness and continuity of ω),
and once again we get a contradiction with the minimality of ω.

3.3 Some Cases of Non-Existence of Minimal Majorants

Let B = E∗/E where E(z) =
∏∞

k=1(1 − z/z̄k) is a canonical product for the sequence
{zk}∞k=1 in the upper half plane satisfying limk→∞ |zk| = ∞ and

(3.4)

∞∑

k=1

log |zk|
|zk|

< ∞.

Here we have the following dichotomy.

Theorem 3.6 Let B be a meromorphic Blaschke product satisfying the conditions in

the last paragraph. Then, either

(a) 1/E(x) ∈ L2(R), and 1/|E(x)| is a minimal and positive majorant for KB.

or
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(b) 1/E(x) /∈ L2(R), and there is no minimal continuous and positive majorant for KB.

Moreover, if ω is a positive and continuous admissible majorant for KB, then so is

ω(x)/(1 + |x|).

Proof In case (b) suppose ω ∈ Adm B ∩ C(R), ω(x) > 0 for all x ∈ R. Then
| f (x)| ≤ ω(x), x ∈ R, for a non-zero f ∈ KB, f = g/E where g is an entire function
of type zero and not identically zero (see Theorem 2.10 and Corollary 3.2). Then g

cannot be a constant function, since otherwise 1/E(x) ∈ L2(R), and thus g(a) = 0

for a point a ∈ C. Then

ω(x)

1 + |x| �
| f (x)|
|x − a|

whereas f (z)/(z−a) ∈ KB, as in the proof of Theorem 3.5, and thus ω(x)/(1 + |x|) ∈
Adm B.

In case (a) the proof will be given at the end of Subsection 3.4 after some prepara-
tion and with essential use of (3.4) (it has not been used in case (b)).

3.4 A Sufficient Condition for E ∈ Cart and 1/E ∈ KB

An entire function f is said to belong to the Cartwright class if it is of finite exponen-
tial type, i.e.,

(3.5) | f (z)| ≤ AeB|z|

for all z ∈ C and some A, B > 0, and

(3.6)

∫ ∞

−∞

log+ | f (x)|
1 + x2

dx < ∞.

In this case we write f ∈ Cart.

Suppose {zk}∞k=1 is a sequence in C+, limk→∞ |zk| = ∞ and

(3.7)

∞∑

k=1

1

|zk|
< ∞.

If n(t) = Card{k : |zk| < t}, then (3.7) is equivalent to
∫ ∞

1
n(t)/t2 dt < ∞. Hence

the canonical product E(z) =
∏∞

k=1(1 − z/z̄k) converges and defines an entire func-

tion of zero exponential type, i.e., the constant B in (3.5) can be taken arbitrarily
small. In this section we assume the stronger condition (3.4) which is equivalent to

(3.8)

∫ ∞

1

log t

t2
n(t) dt < ∞,

and ensures that E is an outer function in the upper half plane.
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Lemma 3.7 Let {zk}∞k=1 be a sequence in C+, limk→∞ |zk| = ∞ and suppose that∑∞
k=1 log |zk|/|zk| < ∞. Then the entire function E(z) =

∏∞
k=1(1 − z/z̄k) ∈ Cart and

is outer in the upper half plane, i.e.,

log |E(z)| =
1

π

∫ ∞

−∞

=z

|z − t|2 log |E(t)| dt

for each z ∈ C+.

Proof We first show that E(z) is in the Cartwright class. Since

|E(x)| ≤
∞∏

k=1

(
1 +

|x|
|zk|

)
,

for x ∈ R, we have

log+ |E(x)| ≤
∞∑

k=1

log

(
1 +

|x|
|zk|

)
=

∫ ∞

0

log

(
1 +

|x|
t

)
dn(t).

Integration by parts gives

log+ |E(x)| ≤
∫ ∞

0

|x|n(t)

t(t + |x|) dt.

Hence

∫ ∞

−∞

log+ |E(x)|
1 + x2

dt

≤
∫ ∞

−∞

∫ ∞

0

|x|n(t)

t(t + |x|)(1 + x2)
dt dx

=

∫ ∞

0

{∫ ∞

0

2x

t(t + x)(1 + x2)
dx

}
n(t) dt

=

∫ ∞

0

{
1

1 + t2
log

(
1 + x2

(t + x)2

)
+

2

t(1 + t2)
arctan x

}∣∣∣∣
x→∞

x=0

n(t) dt

=

∫ ∞

0

{
π

t(1 + t2)
+

2 log t

1 + t2

}
n(t) dt,

which is finite by (3.8). Therefore, E(z) has the representation

log |E(z)| = A=z +
1

π

∫ ∞

−∞

=z

|z − t|2 log |E(t)| dt

in the upper half plane, where

A = lim
y→∞

log |E(i y)|
y

.
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This representation is comprehensively studied in the third chapter of [23]. Thus it
is enough to show that A = 0. Since, for each y > 0,

√
1 +

y2

|zk|2
≤

∣∣∣1 − i y

z̄k

∣∣∣ ≤ 1 +
y

|zk|
,

we thus have

0 ≤ log |E(i y)| ≤
∞∑

k=1

log

(
1 +

y

|zk|

)
.

Hence

0 ≤ log |E(i y)| ≤
∫ ∞

0

log
(

1 +
y

t

)
dn(t).

Integration by parts gives

0 ≤ log |E(i y)|
y

≤
∫ ∞

0

n(t)

t(t + y)
dt.

Now, by the dominated convergence theorem, we have

lim
y→∞

∫ ∞

0

n(t)

t(t + y)
dt = 0.

Thus A = limy→∞ log |E(i y)|/y = 0.

The following result will be used in our investigation of minimal majorants. It is

well known that an outer function square summable along R is in H2(C+). Combin-
ing this fact with Lemma 3.7, we arrive at the following conclusion.

Theorem 3.8 Let {zk}∞k=1 be a sequence in C+, limk→∞ |zk| = ∞ and suppose that∑∞
k=1 log |zk|/|zk| < ∞. Put E(z) =

∏∞
k=1(1 − z/z̄k) and B(z) = E∗(z)/E(z). Then

1/E(z) ∈ KB if and only if 1/E(x) ∈ L2(R).

Proof If 1/E(x) ∈ L2(R), then, by Lemma 3.7 and a variation of Smirnov’s theorem,

1/E(x) ∈ H2(R). At the same time,

1/E(x)

B(x)
=

1/E(x)

E(x)/E(x)
=

1

E(x)
∈ H2(R).

thus by Theorem 2.3, 1/E(z) ∈ KB.

Now we are ready to complete the proof of Theorem 3.6: in case (a), 1/|E(x)| is a
minimal positive majorant for KB just by the combination of Theorems 3.5 and 3.8.

In Subsections 3.5 and 3.6 we give examples clarifying some points in the proofs
of Theorems 3.6 and 3.8.
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3.5 A Blaschke Product B = E∗/E With E ∈ Cart, but 1/E 6∈ KB

The assumption 1/E ∈ KB in our Theorem 3.6 poses a problem. As we shall see

now, this inclusion may fail even if the Blaschke sequence fulfills the much stronger
condition (3.4) and the zeros zk all lie on the ray {y = x}∩C+. The following example
shows that 1/E can be far away from being an element of the model space KB. Let
us consider the Blaschke sequence zk =

√
22keiπ/4 where zk has the multiplicity [ak]

with a < 2 so that
∑∞

k=1[ak] log |zk|/|zk| < ∞ is fulfilled. The choice of a will
be specified later (it will be close to 2). Fix n ≥ 1 and let 2n ≤ x < 2n+1. Since

E(z) =
∏∞

k=1(1 − z/z̄k)[ak], we have

log |E(x)|2 =

∞∑

k=1

[ak] log
(

1 +
x2

2 · 4k
− x

2k

)
.

The terms corresponding to 1 ≤ k ≤ n − 1 are positive and the rest are negative.
Hence

n−1∑

k=1

[ak] log
(

1 +
x2

2 · 4k
− x

2k

)
≤

n−1∑

k=1

[ak] log
(

4 · x2

4k

)

≤
n−1∑

k=1

ak log(4n+2−k)

=

(
(n + 2)

n−1∑

k=1

ak −
n−1∑

k=1

kak
)

log 4

=

(
(n + 2)

an − 1

a − 1
− nan(a − 1) − a(an − 1)

(a − 1)2

)
log 4

=
(3a − 2)an − (n + 2)(a − 1) − a

(a − 1)2
log 4

≤
(

(3a − 2)

(a − 1)2
log 4

)
an.

On the other hand, we have

∞∑

k=n

[ak]
∣∣∣ log

(
1 +

x2

2 · 4k
− x

2k

)∣∣∣ ≥
∞∑

k=n

[ak]
( x

2k
− x2

2 · 4k

)

≥
∞∑

k=n

[ak]
( 2n

2k
− 4n+1

2 · 4k

)
=

∞∑

k=0

[ak+n]
( 1

2k
− 2

4k

)

≥
∞∑

k=0

ak+n

2

( 1

2k
− 2

4k

)
=

( 1

2 − a
− 4

4 − a

)
an.
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We choose a such that

( 1

2 − a
− 4

4 − a

)
> 2a +

(
(3a − 2)

(a − 1)2
log 4

)
.

Thus, for 2n ≤ x < 2n+1,

log |E(x)| ≤ −an+1 ≤ −xlog a/ log 2.

Therefore, for each x ≥ 2,

|E(x)| ≤ exp(−xlog a/ log 2).

This example shows that 1/|E(x)| can be very big for large positive x, so that 1/E(x)
is not even in L2(R), and thus 1/E(z) is not in KB.

3.6 A Blaschke Product B = E∗/E With E 6∈ Cart

The condition (3.4) cannot be dropped if we want E to belong to the Cartwright class.
Here we give an example of E with zeros on the ray {y = −x} ∩ C+ and satisfying

(3.7) but ∫ ∞

0

log+ |E(x)|
1 + x2

dx = ∞.

In our example of Section 3.5 the ray was bent to the right to make the zeros closer to
(0,∞) and |E(x)| small on that interval. Now, our ray is bent to the left, so that the

zeros are far from (0,∞) and thus |E(x)| is big for large positive x’s.

Let us consider the Blaschke sequence zk =
√

22kei3π/4 with multiplicity [ 2k

k log2 k
],

k ≥ 2. Fix n ≥ 2 and let 2n ≤ x < 2n+1. Then, with a very generous estimate, we
have

log |E(x)|2 =

∞∑

k=2

[ 2k

k log2 k

]
log

(
1 +

x2

2 · 4k
+

x

2k

)

≥
∞∑

k=n+2

( 1

2
· 2k

k log2 k

)
· 1

2

( x2

2 · 4k
+

x

2k

)

≥ x

4

∞∑

k=n+2

1

k log2 k
≥ x

8 log log x
.

Thus log+ |E(x)| is not summable with respect to dx/(1+x2). This example shows that
the condition

∑
k 1/|zk| < ∞ is not enough to ensure that E(z) is in the Cartwright

class.
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3.7 Blaschke Products With Zeros on the Imaginary Axis

In our examples of Sections 3.5 and 3.6 we could place our zeros on any line y = mx

with m > 0 or m < 0 but not on the imaginary axis. For purely imaginary zeros the
Blaschke condition (2.1) (coinciding with (3.7)) is sufficient for the inclusion 1/E ∈
KB. Note that (3.7) is equivalent to the Blaschke condition (2.1) for any sequence

{zk}∞k=1 situated in a Stoltz domain and |zk| → ∞ as k → ∞, but it is only for purely

vertical zeros that it guarantees 1/E ∈ KB.

Lemma 3.9 Let bk > 0, k ≥ 1, and suppose that
∑∞

k=1 1/bk < ∞. Then the entire

function E(z) =
∏∞

k=1(1 + z/ibk) is outer in the upper half plane.

Proof Naturally, we first show that E(z) is in the Cartwright class. But in this case

|E(x)|2 =
∏∞

k=1

(
1 + x2

b2
k

)
, x ∈ R. Thus we have

0 ≤ log |E(x)| =
1

2

∞∑

k=1

log
(

1 +
x2

b2
k

)
=

1

2

∫ ∞

0

log
(

1 +
x2

t2

)
dn(t).

Integration by parts gives

log |E(x)| =

∫ ∞

0

x2n(t)

t(t2 + x2)
dt.

Hence

∫ ∞

−∞

log |E(x)|
1 + x2

dt ≤
∫ ∞

−∞

∫ ∞

0

x2n(t)

t(t2 + x2)(1 + x2)
dt dx

=

∫ ∞

0

{∫ ∞

−∞

x2

t(t2 + x2)(1 + x2)
dx

}
n(t) dt

=

∫ ∞

0

{
2πi · i

2t(t2 − 1)
+ 2πi · it

2t(1 − t2)

}
n(t) dt

=

∫ ∞

0

π

t(t + 1)
n(t) dt < ∞.

Therefore, E(z) has the representation

log |E(z)| = A=z +
1

π

∫ ∞

−∞

=z

|z − t|2 log |E(t)| dt

in the upper half plane. But to show that A = 0, we proceed as in the proof of
Lemma 3.7 and use the convergence of

∫ ∞

1
n(t)
t2 dt .

In contrast to Theorem 3.8, when zeros are on the imaginary axis no extra condi-
tion is needed to ensure 1/E ∈ KB.
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Theorem 3.10 Let bk > 0, k ≥ 1, and suppose that
∑∞

k=1 1/bk < ∞. Put E(z) =∏∞
k=1(1 + z/ibk) and B(z) =

∏∞
k=1

1−z/ibk

1+z/ibk
. Then 1/E ∈ KB.

Proof Since

|E(x)|2 =

∞∏

k=1

(
1 +

x2

b2
k

)
≥

(
1 +

x2

b2
1

)
,

we have 1/E ∈ L2(R). Thus, by Lemma 3.9, 1/E ∈ H2(C+), whence 1/E ∈ KB (see
the proof of Theorem 3.8).

3.8 Asymptotic Behavior of E

The asymptotic behavior of the majorant ω(x) =
∏∞

k=1 1/
√

1 + x2/b2
k , studied in the

Section 3.7, can be made explicit if the sequence {bk}∞k=1 is regular. If, for example,
bk = kp, k ≥ 1 and p > 1, then the asymptotic of log |E(x)| for |x| → ∞ can be
found in [26, page 64]. Indeed, we will show that there are positive constants c, C

and A with

Aec|x|1/p ≤ |E(x)| ≤ eC|x|1/p

for x ∈ R. Here we study some estimates to illustrate the following phenomenon:
for purely imaginary zk’s and for some nice ω (even and decreasing on (0,∞)) the

mere convergence of the logarithmic integral L(ω) =
∫ ∞

−∞
Ω

+(x)
1+x2 dx does not imply

the inclusion ω ∈ Adm B. This is in contrast to the situation when zk’s are on a line
parallel to R (see [18]).

Let n(t) denote the number of bk in the interval (0, t). Integration by parts gives

∫ b

0

dn(t)

t
=

n(b)

b
+

∫ b

0

n(t)

t2
dt,

so that the convergence of
∑∞

k=1 1/bk implies
∫ ∞

0
n(t)
t2 dt < ∞ and n(t) = o(t)

(t → ∞). Hence,

log(|E(x)|2) =

∞∑

k=1

log
(

1 +
x2

b2
k

)
=

∫ ∞

b1

log
(

1 +
x2

t2

)
dn(t)

=

(
1 +

x2

t2

)
n(t)

∣∣∣
∞

t=b1

+

∫ ∞

b1

2x2n(t)

t(t2 + x2)
dt = 2x2

∫ ∞

b1

n(t)

t(t2 + x2)
dt,

and thus

(3.9) log |E(x)| �
∫ x

0

n(t)

t
dt + x2

∫ ∞

x

n(t)

t3
dt.

Therefore, if

n(t) � tα,

https://doi.org/10.4153/CJM-2003-048-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-048-8


Admissible Majorants for Model Subspaces of H2, Part I 1253

for some α in (0, 1), then there are positive constants c, C and A with

Aec|x|α ≤ |E(x)| ≤ eC|x|α

for all x ∈ R. We conclude that e−c|x|α ∈ Adm B whereas ω /∈ Adm B if ω(x) =

o(e−C|x|α ) (|x| → ∞), since 1/|E| is a minimal majorant for KB. These statements

can be made more precise depending on the concrete nature of bk. Here we only
mention that for bk = k2, by a direct computation using the Euler product for sin z,
we obtain ∣∣∣

∞∏

k=1

(
1 +

x

ik2

)∣∣∣ ≈ 1

2π
√
|x|

e
π
√

2

√
|x|

as |x| → ∞ (x ∈ R), i.e., the quotient of the left and right sides tends to one. Thus

√
1 + |x| exp(−π

√
|x|/2) ∈ Adm B,

where

B(z) =

∞∏

k=1

( 1 − z/ik2

1 + z/ik2

)
,

but

(3.10) (1 + |x|)ε exp(−π
√

|x|/2) /∈ Adm B,

for all ε < 1/2. Especially,

(3.11) exp(−|x|α) /∈ Adm B,

for all α > 1/2.

4 Moduli of Elements In KΘ

This section contains an important ingredient to be used in the rest of this paper and
throughout [18]. Let Θ be an inner function, and write

|KΘ| = {| f | : f ∈ KΘ}.

4.1 Hilbert transform

We conclude this paper with a generalization of Theorem 1.3 to minimal majorants

for KΘ’s with an arbitrary inner Θ (Theorem 5.1 in Section 5.1). To do so we need to
make a digression devoted to the Hilbert transform and present it in a form we need.
Sections 4.2–4.7 are mainly devoted to admissibility criteria (to be used in the proof
of Theorem 5.1 and in [18]).

Let u be a real function in L1( dt
1+t2 ). Then

U (z) =
1

π

∫ ∞

−∞

=z

|z − t|2 u(t) dt
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is a harmonic function in the upper half plane with

lim
z →∠ x

U (z) = u(x)

for almost all x ∈ R. Let V be a harmonic conjugate of U . Such a function V is
defined up to an additive constant. It is well known that limz →∠ x V (z) exists for almost
all x ∈ R [22, page 58]. This limit is called a Hilbert transform of u, and is denoted
by ũ. Since ũ depends on V , it is defined up to an additive constant. Furthermore,

the Hilbert transform of a constant function is another constant. Hence the Hilbert
transforms of u and u+c are the same up to an additive constant. Thus we assume that
the correspondence u ↔ ũ is between two classes of functions, each class consisting
of a real function and all those obtainable by adding real constants to it. The formula

V (z) =
1

π

∫ ∞

−∞

( <z − t

|z − t|2 +
t

1 + t2

)
u(t) dt

gives a harmonic conjugate of U . Here the term t
1+t2 is included to ensure the con-

vergence of the integral. In this case, limz →∠ x V (z) is equal to

lim
ε→0

1

π

∫

|x−t|>ε

( 1

x − t
+

t

1 + t2

)
u(t) dt

for almost all x ∈ R [22, page 110]. This limit is usually written as

1

π
−
∫

R

( 1

x − t
+

t

1 + t2

)
u(t) dt.

The sign
∫

R
represents a singular integral; it is usually not an integral in the ordinary

sense. We thus have a representation of the form

(4.1) ũ(x) =
1

π
−
∫

R

( 1

x − t
+

t

1 + t2

)
u(t) dt.

Remark Suppose u in (4.1) vanishes in (x0 − ε, x0 + ε) where x0 ∈ R, ε > 0. Then

ũ is analytic at x0. Indeed, the integral in (4.1) becomes

∫

R\(x0−ε,x0+ε)

1 + xt

x − t
· u(t)

1 + t2
dt

and thus converges uniformly with respect to complex values of x satisfying |x−x0| <
ε/2.

The following result is an immediate consequence of the theorems of Kolmogorov
[22, page 98] and Smirnov [22, page 74].

Theorem 4.1 If u and ũ are in L1( dt
1+t2 ), then

˜̃u = −u.
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Under certain conditions we can drop the term t
1+t2 in (4.1) or replace it by some-

thing else. For example, if
∫ ∞

−∞
|u(t)|
1+|t| dt < ∞, a harmonic conjugate can be defined

by the formula

V (z) =
1

π

∫ ∞

−∞

<z − t

|z − t|2 u(t) dt.

In this case, limz →∠ x V (z) is equal to

lim
ε→0

1

π

∫

|x−t|>ε

u(t)

x − t
dt

for almost all x ∈ R, and we can write

(4.2) ũ(x) =
1

π
−
∫

R

u(t)

x − t
dt.

This formula can be used when u ∈ Lp(dt), 1 ≤ p < ∞, since then by Hölder’s

inequality
∫ ∞

−∞
|u(t)|
1+|t| dt < ∞. When u ∈ L∞(dt), formula (4.2) does not always

work, and then we have to use (4.1). On the other hand, if u is bounded on R and

|u(t)| ≤ C|t| in a neighborhood of the origin, then

ũ(x) =
1

π
−
∫

R

( 1

x − t
+

1

t

)
u(t) dt

for almost all x ∈ R.
The Hilbert transform appears in the construction of outer functions: given a

Lebesgue measurable h ≥ 0 on R with log h ∈ L1( dt
1+t2 ), put

O(x) = Oh(x) = exp
(

log h(x) + i ˜log h(x)
)

= h(x) exp
(

i ˜log h(x)
)

for almost all x ∈ R (since h and ˜log h are defined almost everywhere). Obviously

|Oh(x)| = h(x) for almost all x ∈ R, and thus Oh ∈ H p(R), 0 < p ≤ ∞, if and only
if h ∈ Lp(dt); Oh, or its analytic counterpart

Oh(z) = exp

(
i

π

∫ ∞

−∞

( 1

z − t
+

t

1 + t2

)
log h(t) dt

)
, z ∈ C+,

is the outer function with modulus h [22, page 120].

4.2 A Complete Characterization of |KΘ|
The following lemma connects |KΘ| to Θ. It is a particular case of a more general
result by Dyakonov [13]. We give a direct proof for reader’s convenience.

Lemma 4.2 Let the function h(x) ≥ 0 be defined and measurable on R. Then h ∈
|KΘ| if and only if h2Θ ∈ H1(R). Furthermore, if h ∈ |KΘ|, then

h exp(i ˜log h)

is an outer function in KΘ.
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Proof Suppose that h ∈ |KΘ|. Then there is a real function ϕ defined on R such that
h exp(iϕ) ∈ KΘ. Hence by Lemma 2.2, h exp(iϕ) ∈ H2(R) and h exp(iϕ) ∈ ΘH2(R).

Thus h exp(iϕ) and Θh exp(−iϕ) are both in H2(R). Therefore

h2
Θ = h exp(iϕ) · Θh exp(−iϕ) ∈ H1(R).

On the other hand, suppose that h2Θ ∈ H1(R). Since h2 = |h2Θ| ∈ |H1(R)|,
O = h exp(i ˜log h) is an outer function in H2(R), and there is, besides, an inner
function I such that h2Θ = O2I. Thus

ŌΘ = h exp(−i ˜log h) · Θ =
h2Θ

h exp(i ˜log h)
=

O2I

O
= OI ∈ H2(R).

Therefore O ∈ KΘ.

In the following, we consider functions ω ≥ 0 defined on R. We always write Ω(x)
for − log ω(x). It will be assumed throughout the remaining discussion that

∫ ∞

−∞

|Ω(x)|
1 + x2

dx < ∞.

Note that we are not, for now, assuming ω(x) to be bounded above, and, therefore,
Ω(x) is not assumed to be bounded below.

Lemma 4.3 Let m be a non-negative measurable function on R with m 6≡ 0. Then

the following are equivalent.

(a) mω ∈ |KΘ|;
(b) mω ∈ L2(dt), log m ∈ L1( dt

1+t2 ), and there is an inner function I such that

Θ exp(2iΩ̃) = I exp(2i l̃og m).

Furthermore, if (a) or (b) holds, then

mω exp
(

i ˜log(mω)
)

is an outer function in KΘ.

Proof Suppose that mω ∈ |KΘ|. Then by Lemma 4.2, m2ω2
Θ is a non-zero function

in H1(R). Thus, by the Smirnov factorization theorem, m2ω2Θ = OI, where O and
I are respectively the outer and inner factors of m2ω2Θ. Hence (mω)2 = |m2ω2Θ| ∈
L1(dt) and log |m2ω2Θ| = 2 log m + 2 log ω ∈ L1( dt

1+t2 ). Thus mω ∈ L2(dt), and

log m ∈ L1( dt
1+t2 ). Furthermore,

m2ω2
Θ = OI = m2ω2 exp

(
i ˜log(m2ω2)

)
· I

= m2ω2 exp(2i l̃og m) exp(2i l̃og ω) · I.
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Hence Θ exp(2iΩ̃) = I exp(2i l̃og m).

Now suppose that (b) holds. Since mω ∈ L2(dt), and log(mω) ∈ L1( dt
1+t2 ),

O = m2ω2 exp(2i l̃og m + 2i l̃og ω)

is an outer function in H1(R). Therefore

m2ω2
Θ = m2ω2 exp(−2iΩ̃) · exp(2iΩ̃)Θ

= m2ω2 exp(−2iΩ̃) · · · exp(2i l̃og m) · I

= m2ω2 exp(2i l̃og m + 2i l̃og ω) · I = OI ∈ H1.

Hence by Lemma 4.2, mω ∈ |KΘ|, and mω exp
(

i ˜log(mω)
)

is an outer function

in KΘ.

4.3 A Criterion for Admissibility

We use Lemma 4.3 to characterize admissible majorants for KΘ.

Theorem 4.4 Given a measurable function ω(x) ≥ 0 on R, the following are equiva-

lent.

(a) There exists an f ∈ KΘ with f 6≡ 0 and | f | ≤ ω, i.e., ω ∈ Adm Θ;

(b) There exists an m ∈ L∞(dt) with m ≥ 0, mω ∈ L2(dt) and log m ∈ L1( dt
1+t2 ),

such that, for some inner function I, we have

Θ exp(2iΩ̃) = I exp(2i l̃og m).

Moreover, if (a) or (b) holds,

mω exp
(

i ˜log(mω)
)

is an outer function in KΘ.

Proof There exists a non-zero function f ∈ KΘ with | f | ≤ ω if and only if there is
an m ∈ L∞(R), m ≥ 0, m 6≡ 0, such that mω ∈ |KΘ|. Now apply Lemma 4.3. We see

in that way that f = mω exp
(

i ˜log(mω)
)

will do the job.

We are going to rephrase Theorem 4.4 in terms of the argument of Θ. But first we
have to define this notation.
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4.4 Circular Part and Arguments of a Complex Valued Function

Let u : R 7→ C be a Lebesgue measurable unimodular function on R, i.e., |u(x)| = 1
almost everywhere on R. Denote by Arg the function defined on C \ {0} by the
identity

ei Arg(ζ)
=

ζ

|ζ| , Arg(ζ) ∈ (−π, π].

Then Arg ◦u (= Arg u) is Lebesgue measurable on R and exp(i Arg u) = u almost

everywhere on R. Any real Lebesgue measurable function ϕ satisfying exp(iϕ) = u

almost everywhere on R is called an argument of u. Let us call Arg u the principal

argument of u. Clearly, Arg u ∈ L∞(dt), and any argument ϕ of u can be written as
Arg u + 2πS where S is a Lebesgue measurable integer valued function on R.

If u is unimodular and continuous on R, then it has a continuous argument which

is unique up to an additive constant 2πk, k ∈ Z; this argument is in C
p(R) if u is.

For example, the continuous argument of eiσx, σ > 0, is σx, whereas Arg eiσx is a
sawtooth 2π/σ periodic function coinciding with σx on (−π/σ, π/σ].

Let f : R 7→ C be a Lebesgue measurable function on R. Suppose f (x) 6= 0
almost everywhere on R. We call f /| f | the circular part of f (since f (x)/| f (x)| is

the projection of the points f (x) on the unit circle T). By definition an argument of
f /| f | is an argument of f .

4.5 Continuous Arguments of a Meromorphic Blaschke Product

Since a meromorphic Blaschke product B is analytic and non-vanishing on R, there
is a real C∞ function, say arg B, such that

B(x) = exp
(

i arg B(x)
)

for x ∈ R.

This function is unique up to an additive constant 2πk, k ∈ Z, so that arg B(x) + 2πk

is the general form of continuous arguments of B(x). Thus its derivative is defined
uniquely. In the simple case where

bzk
(x) =

z̄k

zk

· z − zk

z − z̄k

= exp
(

i arg bzk
(x)

)
,

we have, by taking the logarithmic derivative,

(4.3)
d arg bzk

(x)

dx
=

b ′
zk

(x)

ibzk
(x)

=
2=zk

|x − zk|2
.

Since bzk
(0) = B(0) = 1, we can (and do) always assume that arg bzk

(0) = 0, and
similarly that arg B(0) = 0. Then,

(4.4) arg bzk
(x) =

∫ x

0

2=zk

|t − zk|2
dt = 2 arctan

( x −<zk

=zk

)
+ 2 arctan

( <zk

=zk

)
.
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Lemma 4.5 If B(z) =
∏∞

k=1 bzk
(z) is a meromorphic Blaschke product, then

B ′(x)

B(x)
= i

d arg B(x)

dx
= 2i

∞∑

k=1

=zk

|x − zk|2

for each x ∈ R. The series converges uniformly on compact subsets of R.

Proof The sequence BK =
∏K

k=1 bzk
converges uniformly to B on compact sets dis-

joint from {z̄k ; k ≥ 1}. Since R is disjoint from the sets {z̄k ; k ≥ 1} and
{zk ; k ≥ 1},

∑K
k=1 b ′

zk
/bzk

converges uniformly to B ′/B on compact subsets of R

[10, page 174].

Corollary 4.6 If B(z) =
∏∞

k=1 bzk
(z) is a meromorphic Blaschke product, then

arg B(x) =

∞∑

k=1

arg bzk
(x)

for each x ∈ R. The series converges uniformly on every bounded interval.

Proof By Lemma 4.5 and the monotone convergence theorem

arg B(x) =

∫ x

0

d arg B(t)

dt
dt =

∫ x

0

∞∑

k=1

2=zk

|t − zk|2
dt

=

∞∑

k=1

∫ x

0

2=zk

|t − zk|2
dt =

∞∑

k=1

arg bzk
(x).

4.6 de Branges’ Phase Function

Let Θ be a meromorphic inner function. As we saw in Section 2.4, Θ(x) = E(x)/E(x),
x ∈ R, where E is an entire function satisfying (2.3). Since E does not vanish on
C+ ∪ R, it has a continuous arg E(x) which coincides with −ϕ(x) + kπ where ϕ is

the so called phase function of E [6, page 54], and k is an integer. The phase function
plays an outstanding role in the de Branges theory.

Now, a continuous argument of Θ, arg Θ, can be expressed as follows:

arg Θ(x) = −2 arg E(x) = −2ϕ(x) + 2kπ, k ∈ Z.

4.7 A Sufficient Condition for Admissibility

The condition

Θ exp(2iΩ̃) = I exp(2i l̃og m).
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in Theorem 4.4 is equivalent to

(4.5) Arg Θ + 2Ω̃ = Arg I + 2l̃og m + 2πS,

where Arg Θ and Arg I are the principal arguments of Θ and I and S is a measurable

integer valued function on R. Thus we arrive at the following sufficient condition for
an ω to be in Adm Θ.

Theorem 4.7 Suppose there exists an m ∈ L∞(dt) with m ≥ 0, mω ∈ L2(dt) and

log m ∈ L1( dt
1+t2 ), such that

arg Θ + 2Ω̃ = 2l̃og m + S,

where S is a step function with values all equal to integral multiples of 2π. Then ω ∈
Adm Θ.

Proof The identity arg Θ + 2Ω̃ = 2l̃og m + S implies 4.5. Now apply Theorem 4.4.

5 Θ is the Circular Part of an Outer Function

Here we prove Theorem 1.5 stated in the Introduction. Let Θ be an inner function in
C+. Then there exist many outer functions O whose circular part is Θ. Indeed, take

any bounded argument of Θ (say, the principal one, Arg Θ) and put P = −Ãrg Θ.
Then P ∈ Lp

(
dt/(1 + t2)

)
, 1 ≤ p < ∞, since Arg Θ is bounded [14, page 114]. Put

h = exp P and O = Oh. We have Oh = exp(P + i Arg Θ) and OhΘ̄ = exp P ≥ 0.

5.1 Θ as the Circular Part of an Outer Function in H1(R)

We restate Theorem 1.5 in a slightly different form.

Theorem 5.1 Suppose Θ is the circular part of an outer function O ∈ H1(R). Then√
|O(x)| is a minimal majorant for KΘ. Moreover,

√
|O(x)| ∈ |KΘ|.

Proof Put h(x) =
√
|O(x)|, so that O = Oh2 . Then

h2(x)Θ(x) = |O(x)|Θ(x) = Oh(x) ∈ H1(R),

and thus by Lemma 4.2 h ∈ |KΘ|. Hence h ∈ Adm Θ.
Suppose ω ∈ Adm Θ and ω ≺ h. Hence ω/h is a non-negative bounded function.

Therefore, the following more general result (Theorem 5.2) implies h ≺ ω.

Theorem 5.2 Let O be an arbitrary outer function (not necessarily in H1(R)). Sup-

pose Θ is its circular part. Put h(x) =
√
|O(x)|. If ω ∈ Adm Θ and

(5.1)

∫ ∞

−∞

ω(x)

h(x)
· dx

1 + x2
< ∞,

then h ≺ ω.
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Proof Put α = ω/h. Then log α ∈ L1
(

dx/(1 + x2)
)

, (since log ω and log h ∈
L1

(
dx/(1 + x2)

)
). The inclusion ω ∈ Adm Θ means mω ∈ |KΘ| for an m ∈ L∞(dt),

0 ≤ m ≤ 1, and, by Lemma 4.2, m2ω2
Θ = m2α2h2

Θ ∈ H1(R). Thus m2α2ω2
Θ =

Om2α2h2 I where I is inner. But log(mα) ∈ L1
(

dx/(1 + x2)
)

, since log(mαh) and log h

are in L1
(

dx/(1 + x2)
)

, whence Om2α2 makes sense, and

Om2α2 =
Om2α2h2

Oh2

=
m2α2h2

ΘĪ

h2Θ
= m2α2Ī

almost everywhere on R, so that m2α2 = Om2α2 I; (5.1) means α2 ∈ L1/2(dx/(1+x2)),
whence m2α2 ∈ L1/2

(
dx/(1 + x2)

)
, and thus (Om2α2 ◦ γ)(I ◦ γ) ∈ H1/2(D) where

γ is a conformal mapping of the unit disc onto C+. But an element of H1/2(D) with
non-negative boundary values almost everywhere on T = {|z| = 1} is constant [27].
We see that mα = Const > 0, and m ≤ 1 implies α ≥ c for a positive constant c.

Now, the hypothesis of Theorem 1.5 means there exists an argument arg Θ of Θ

(i.e., Arg Θ + 2πS where S is an integer valued Lebesgue measurable function on R)

satisfying

(5.2) arg Θ = P̃,

where P is a real element of L1
(

dx/(1 + x2)
)

such that exp P ∈ L1(dt); actually,

P = log |O|. A condition sufficient for the existence of such P is this:

(5.3) arg Θ and ãrg Θ ∈ L1
(

dx/(1 + x2)
)

and exp(−ãrg Θ) ∈ L1(dt).

In this case, we just put P = −ãrg Θ and (5.2) follows.

5.2 Another Interpretation of
∑

k log |zk|/|zk| < ∞
We can now illustrate these facts by our Theorem 1.4. Under the assumptions of

Theorem 1.4, (5.2) is fulfilled with P(x) = −2 log |E(x)|. Indeed,

arg Θ = −2 arg E = −2l̃og |E|,

since E is an outer function in the upper half plane. Moreover, exp P(x) = 1/|E(x)|2
∈ L1(dt), since 1/|E(x)| ∈ L2(dt). The condition (5.3) is fulfilled if and only if∑∞

k=1 log bk/bk < ∞. Since

arg B(x) = 2

∞∑

k=1

arctan
( x

bk

)
,

we have ∫ ∞

−∞

| arg B(x)|
1 + x2

dx = 4

∞∑

k=1

∫ ∞

0

arctan(x/bk)

1 + x2
dx.
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But

∫ ∞

0

arctan(x/bk)

1 + x2
dx � 1

bk

+

∫ ∞

1

arctan(x/bk)

x2
dx � 1

bk

+

∫ ∞

1/bk

arctan t

t2
dt � log bk

bk

.

Therefore, ∫ ∞

−∞

| arg B(x)|
1 + x2

dx �
∞∑

k=1

log bk

bk

.
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