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Abstract

The concept of nonautonomous (or cocycle) attractors has become a proper tool for the
study of the asymptotic behaviour of general nonautonomous partial differential equations.
This is a time-dependent family of compact sets, invariant for the associated process and
attracting “from —00”. In general, the concept is rather different to the classical global
attractor for autonomous dynamical systems. We prove a general result on the finite fractal
dimensionality of each compact set of this family. In this way, we generalise some previous
results of Chepyzhov and Vishik. Our results are also applied to differential equations with
a nonlinear term having polynomial growth at most.

1. Introduction

In this paper, we develop a general theory on the finite dimension of attractors for
nonautonomous partial differential equations and we apply it, in particular, to estimate
the fractal dimension of the attractor for the following nonautonomous equation:

B put e = R,

at
U |ago=0,
u(r) = utv

where the function h(t) is allowed to have polynomial growth in time (see condition
{(4.4) below). For these kinds of nonautonomous systems it is not possible in general
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to obtain a uniform global attractor in the sense of [5], since the trajectories can
be unbounded when time rises to infinity. A different approach was developed in
[8.9, 25] (see also [3, 16, 17, 24]), where the existence of attractors for some stochastic
and nonautonomous equations was studied. The main definitions and theorems from
the abstract theory of attractors for such systems are given in Section 2.

It is worth pointing out that in such systems the global attractor is not a compact
set, but a parameterised family @7 (¢) of compact sets. We are interested in proving
the finite dimensionality of each of the sets 27 (¢). We note that the union of all the
attractors, that is, |,z #7(¢), can be infinite dimensional. '

In the case of stochastic equations of parabolic and hyperbolic types such results
were obtained in [10, 12] and [13]. There are some technical tools in the proofs of these
papers that do not seem to be applicable to the nonautonomous case. As faras we know,
the only result for the nonautonomous case was proved in [4] under the assumption that
the function h(#) was uniformly bounded in the variable ¢. In such a case, the union of
the whole family of attractors |_J,.z 27 (¢) is bounded, and the well-known technique
of Lyapunov exponents, developed in [7], can be adapted with slight modifications.
However, when the function h(z) is allowed to have polynomial growth, the supremum
of the norm of the global attractor &7 (¢) can also have polynomial growth, so that we
cannot expect the union of attractors to be bounded.

In this paper we extend the general theory on the finite-dimensionality of compact
invariant sets in Hilbert spaces (see [1, 14,20, 23,27]) to the case of a parameterised
family of global attractors with polynomial growth at most. The invariance property
for nonautonomous attractors is now stated for a time-dependent family of compact
sets {27 (1)},er and the attraction is defined for trajectories with initial time going to
—00. Thus the idea is to construct a sequence of coverings of &/ (¢) by iterating n
times an initial covering of & (t — nT*), asn — ©0.

Further we apply this abstract theorem to the attractor of the equation given above.
We note that we are able to obtain the estimation of dimension in the case where the
function f (¢, u) is globally Lipschitz on the second variable u. In the autonomous
case it is possible to change the global Lipschitz condition to a local one by proving
that the global attractor is bounded in Lo, (£2) (see [15, 21, 28]). In our case, in order to
use a similar idea we would need to obtain an estimation of the norm in L, (2) of the
union Uts, &/ (t), Vt, which is not possible in general as we have already remarked.

2. Attractors of nonautonomous equations

In this section, we introduce the general framework in which the theory of attractors
for nonautonomous systems is going to be studied (see Crauel ez al. [8] and Schmalfuss
[26]). As a first step, we define semiprocesses as two-time dependent operators related
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with the solutions of nonautonomous differential equations. In this way, we are able to
treat these equations as dynamical systems. Secondly, we give the general definitions
of invariance, absorption and attraction and we finish with a general theorem on the
existence of global attractors for these equations.

Let (H, d) be a complete metric space (with the metric d) and {S(z, 5)}>5. 1, 5 € R,
be a family of mappings satisfying:

@ S, ) =1d,

(i) S(,s, S, t,w) =S80, t,u),forallt <s<t,ueH,

(ii1) u > S(t, T, u) is continuous in H.

This map is called a process (this term was introduced by Dafermos [11]). In
general, we have to consider S(¢, 7, ¥) as the solution of a nonautonomous equation
at time ¢ with initial condition « at time .

Let 2 be a non-empty set of parametensed families of non-empty bounded sets

= {D(#)};er. In particular, D= {D()};er € 2, where D(t) = B for all ¢, and
B C H is a bounded set. In what follows, we will consider this set 2 to be fixed, so
that the concepts of absorption and attraction in our analysis are always referred to it.

For A, B C H we define the Hausdorff semidistance as

dist(A, B) = sup 1nfd(a b).

acA b

DEFINITION 2.1. Given # € R, we say that K(¢) C H is attracting at time p, if for
every D = {D(2)} € 2 we have that lim,_, _ dist(S(%, T, D(1)), K(%)) =0
A family K = {K(r)}.cn is attracting if K (%) is attracting at time 1, for all 4 € R.

The previous concept considers a fixed final time and moves the initial time to —00.
Note that this does not mean that we are going backwards in time, but we consider the
state of the system at time # starting at Tt — —o0. This is called pullback attraction
in the literature (see, for example, [19, 26]).

DEFINITION 2.2. Given 1y € R, we say that B(%) C H is absorbing at time £, if for
every D = {D(¢#)} € 2 there exists T = T (¢, D) € R such that

S(t, T, D(1)) C B(fy), forall 1 <T.

A family B= {B(1)}:cr is absorbing if B(#) is absorbing at time f,, for all £, € R.

Note that every absorbing set at time g, is attracting. -

DEFINITION 2.3. Let B = {B(1)},es be a family of subsets of H. This family is said
to be invariant with respect to the process S if S(¢, T, B(t)) = B(t), forall (z, 1) € R?,
T<t
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Note that this property is a generalisation of the classical property of invariance for
semigroups. However, in this case we have to define the invariance with respect to a
family of sets depending on a parameter.

We define the omega-limit set at time ¢, of D= {D(t)} € D as

AD, w) = 5. . D(2)).

s<lp T<S

From now on, we assume that there exists a family K = {K(#)}:er of compact
absorbing sets, that is, K(#) C H is non-empty, compact and absorbing for each
t € R. Note that, in this case, A(ﬁ, L) C K (%), for all D= {D()} € 2,56 € R. As
in the autonomous case, it is not difficult to prove that under these conditions A (5 , bo)
is non-empty, compact and attracts D= {D(#)} € 2 at time #. The proof is similar
to that of [8, Lemma 1.1], where the set 2 consists only of bounded sets.

DEFINITION 2.4. The family of compact sets o = {7 (£)}1en is said to be the global
attractor associated with the process S if it is invariant, attracting every D= {D@®)} €
2 (for all 1, € R) and minimal in the sense that if C= {C(2)};er is another family of
closed attracting sets, then & () C C(¢) forall ¢ € R.

REMARK 2.5. Chepyzhov and Vishik [4] define the concept of kernel sections for
nonautonomous dynamical systems which corresponds to our definition of a global
nonautonomous attractor with D = {D(t) = B},.g where B C H is bounded.

The general result on the existence of nonautonomous attractors is a generalisation
of the abstract theory for autonomous dynamical systems (Temam [27], Hale [18]).

THEOREM 2.6. Assume that there exists a family of compact absorbing sets. Then
the family & = {2/ (t)),er defined by

2@ =JAaDd, 1
De2
is the global nonautonomous attractor.

As the proof of this theorem repeats that of [8, Theorem 1.1] with slight modifica-
tions, we will omit it.

REMARK 2.7. All the general theory of nonautonomous attractors can be written in
the framework of cocycles (see among others, Cheban et al. [3], Crauel and Flandoli
[9], Kloeden and Schmalfuss [19], Schmalfuss [26]). We could have also followed
this notation here, but we think that, in this case, it is clearer to keep the explicit
dependence on time of the attractor, which in addition, allows a more straightforward
comparison of the results in [4].
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3. Dimension of nonautonomous attractors

In [4], Chepyzhov and Vishik prove a general result for the Hausdorff dimension
of kernel sections 27 (t) associated with a process {S(¢, T)} generated by a nonau-
tonomous differential equation. The main hypothesis is the uniform boundedness of
the set U:en &/ (t). In applications, this is related to the existence of a uniform bound
for the nonautonomous terms in the system. In our case, we allow these terms to be
unbounded in ¢, so that their results are not suitable for our situation. However, we are
able to prove a general result on the finite fractal dimensionality of the nonautonomous
attractor.

Let H be a Hilbert space and &/ C H be a compact subset of H. We first recall
the definition of the Hausdorff and fractal dimensions of <.

We shall denote by B(a, r) a closed ball of radius r centred at a. Let % be a
covering of & by a finite family of balls B(x;, r;) such that sup,(r;) = 8(%) < $.
Then the d-dimensional Hausdorff measure of & is defined as follows:

“H(‘di d) = }m‘}MH(-‘Z{, d» 8),
where

_ d
uH(d,d,S)—a(g,l)fsa ' re,

where the inf is extended to all the possible coverings % of & such that §(%) < é.
It is known that there exists d = dy (&) € [0, +00] such that uy (2, d) = O for
d > dy(«f) and uy(,d) = oo ford < dy(=). The value dy (&) is called the
Hausdorff dimension of /.

The fractal dimension of & is given by

di (&) = inf{d > 0| u; (&, d) =0},
where
uy (o, d) = Tim py (o, €, d) = Time“n,,

and n, is the minimum number of balls of radius r = € which is necessary to cover &
Since uy(,d) < up(«,d) it is clear that dy (&) < d; (&), the converse being
false in general (Eden e al. [14]).

Before proving our main result in this section, we will recall a technical lemma
which will be repeatedly used in the proof (see [1, Lemma 1]).

LEMMA 3.1. Let B(a, y) C R¥ be a closed ball of radius y centred at a. For any
0 < A < y the minimum number of balls n, of radius ) which is necessary to cover
B(a, y) is less than or equal to 3y /A\)V.
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We now consider a process S(¢, 7, u) : R x R x H —» H,t > 1, having the family
of global attractors & = {&(f)},cr-

THEOREM 3.2. Suppose there exist constants Ky, K1, 0 > 0 such that
IOl < Koltl’ + Ky, Ve € R, G.D

where || ()| = sup, ¢, Y- v
Also assume that for any t € R there exist T* = T*(t), l = I(t, T*) € [1, +00),
§=468(,T*) € (0, 1/\/5) and N = N (1), such that forany u,v € A(t), 1 <t - T*,

IS+ T 1,u) =S+ T, 0)ll <Illu—vl, (3.2)
1ON(S(T + T 7, u) = S+ T T, V)| < é8llu—vl, (3.3)

where Qy is the projector mapping H onto some subspace Hj; of codimension N € N.
Then, foranyn = n(t) > Osuchthato =o(t) = (6«/51)”(\/58)" < 1, the following
inequality holds:

dy(F (1) <d(F(@)) <N +n. G4

PROOF. Let us fix ¢t € R and choose n > 0 such that 0 < 1. We also take an
arbitrary T < t — T*, and denote £(t) = 2(Kolt|® + K;). Let % be a covering
of A(t) by one ball B(a;, £(1)), a; € A(t), of radius () centred at a;. Hence
2 (t) C B(ay, £(1)).

Since &' (t + T*) = S(t + T*, t, & (1)) and using condition (3.2) we have

H(T+TYCBSEGT+ T, a), le()).

Let us denote by &y the orthoprojector onto the subspace Hy of dimension N which
is orthogonal to Hy (and then Py ® Qv = I, Hy® Hf = H). It is clear that
Py B(S(T + T, 1,a),le(r)) € BN(PyS(t + T*, 1, ay), le(1)), where BY (a, B)
denotes a closed ball in H" of radius B and centred at a.

In view of the preceding lemma we can cover BY (P S(t + T*, 1, @), le(T)) by
balls B¥ (ay;, (8/2)e(1)),j =1,...,mi,a;; € Hy and m; = m,(t) < (61/5)".

Let us denote .#y; = (Py'BY (ay), (§/2)(x))) N o (r + T*). We take arbitrary
yij € #j. We shall show that the set of balls B(y;, ye(r)), j = 1,...,my,
y = V28 (note that we have assumed that y < 1), is a new covering of &/ (7 + T*).
Since

o+ T c |

j=l1
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it is sufficient to prove that .#,; C B(yij, ye(r)), Vj. Let y € .#,;. There exist
vy, 12 € B(ay, e(r))NF(t)suchthat S(t+ T*, 7, v)) =y, St + T*, 7, v2) = yy;.
Then ||v; — v,]| < &(r) and in view of (3.3), || @vy — OnYi;ll < d&(). On the other
hand, |Pny — Pyl < 1 Pvy — aijll + 1P y1; — aij|l < 8e(z). Hence

Iy — yi;ll < V(Ee(r))? + (Be(r))? = ye(r).

We have obtained a covering %, of &/ (t + T*) by balls of radius y£(t) such that
the number of balls is m,. Therefore n, ;) < m;, < (61 /8)Y, where n,, ;) now denotes
the minimum number of balls of radius equal to y&(r) which is necessary to cover
2 (t + T*). Then
d

pr (& (T + T*), ye(r), d) = nyen(ve(n))? < (61/8)" (\/558(1'))
Taking d = d(t) = N + n, we get -
n N
pur(F(+ T, ye(r), N +n) < (ﬁ&) (6\/51) eV = oe(r)V.

Suppose now that T < t — 2T*. Take the covering %, = {B(yy, ye(z))}2, of
2 (t+ T*) and define A#; = S(t+2T*, v+ T*, A(r+ TN By, ye(@)NNA(T +
2T, i=1,...,m,.

Now, since &/ (t + 2T*) = S(t +2T*, v + T*, & (t + T*)) and using (3.2), we
have

(v +2T") | c | BS@ +2T", 7+ T*, yu), lye(r).

i=1 i=]

It is clear that Py B(S(t +2T*, 1 + T*, y1:)), lye(x)) C BN (PyS(x +2T*, t +
T*, y11), lye(z)), Vi. In view of the preceding technical lemma, we can cover each
BY¥(PyS(x+2T*, t+T*, yi), lye(zr)) byballs BN (a;, (6/2)ye(x)),j = 1,...,n;,
a; € Hy and n; = n;(t) < (61/8)", Vi.

Let us denote #; = (9;'8”(%-, (8/2)ye(r))) N A;. We take arbitrary y; €
;. We shall show that the set of balls B(y;;, yi@),i=1,....m,j=1,...,n,
y = V28, is a new covering of &/ (t + 2T*). Indeed, since &/ (1 + 2T*) C U., M,
it is sufficient to prove that .#; C B(y;, y%e(1)), Vi,j. Lety € .#;. There
exist vy, v, € B(yy;, ye(r)) N & (t + T*) such that S(r +2T*, v + T*, v;) =y,
S(t +27*, v+ T*,v;) = y;. Then |lvyy — v;]] < ye(r) and in view of (3.3),
IlQnvy — Qwnyiill < 8ye(t). On the other hand, [|Prvy — Pyl < | Prvy — a;ll +
1Pny; —aill < 8ye(r). Hence

ly — yill < V@ye())? + Gye(@))? = yle(r).
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We have obtained a covering % of &/(t + 2T*t) by balls of radius y2e(r) such
that the number of balls is m; = m,(t) = 3_;", n;. Therefore

Ry < ) np <my(61/8)" < (61/8).

i=1

Let k € N. If we suppose that T < t — kT*, we can obtain, in the same way as
before, a sequence of coverings %;,j = 1,2, ..., k of the sets &/ (t + j T*) by balls
of radius y’ &(t) and such that the number of balls is less than or equal to (61/8Y".
Therefore ny; ) < (61/8)' ", where n, s, now denotes the minimum number of balls
of radius equal to y/ £(t) which is necessary to cover &/ (t + j T*).

Hence choosing T = t — kT* we obtain

py (Z (D), y*e(), N + 1) < («/Zs)'"’ (6&1)"" £(r)N*

< o* (Ki + Kol(z — kT*)|P)"™".

This implies that limg_o ; (2 (t), @, d) = 0, for d = N + 7. Indeed, as for k large
enough the sequence

r(k) = y*e(t — kT*) = y* (K1 + Kolt — kT*|°)

is decreasing, we have that for any ¢ > 0 small enough, one can find some k € N
such that r(k) < a < r(k — 1). Itis clear that n, < n,q < (61/8)*". Then

@M (F(@),a,N +n)= @ naa*m < Jim 61/8)* (r(k — 1YN*"

K+ Kolt — (k = TP\
=1ima"< 1+ Kolt — (k- 1) I) —o
Y

k— 00

Hence dy (27 (1)) < ds (& (t)) <N + 1.

COROLLARY 3.3. Let conditions (3.1)~3.3) hold. Then

_ log 6+/21(t, T*))

3.5
log v/25(t, T*) )

dy(F (1)) < ds (A (1)) < N(1) (1

REMARK 3.4. Note that if the constants T*, N, I and § do not depend on ¢, then the
estimate is uniform for all &/ (¢).
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4. Applications to a nonautonomous partial differential equation

Consider now the nonautonomous partial differential equation

?

a—': —Au+f (@t u) = k@),
u |ae=0,

u(r) = Uy,

215

“.1)

where f € C'(R%, R), h(-) € L% (R, L*(2)),  is a bounded open subset of R” and

thereexistr > 0,p > 2,¢ > 0,i=1,...,7, such that

alulff —c; < f(t, wu < cs|ul’ + c4,
fll(t» u) Z —Cs,
a2 < cslt]” + ¢34

for all u, t € R.

4.2)
(4.3)
(4.4)

Denote H = L*(2) with norm | - ||, V = H,(2). For a norm in another space X

we shall use the notation || - ||x.

THEOREM 4.1. For any 1, T € R, T > 1, u, € L*(Q) there exists a unique
solution u(-) € C([r, T}, H) N L*(t, T; V) N LP(x, T; L?()). Moreover, for all

u;, v, € LX), t € [z, T) it holds that

lu(e) — vl < e*“Nu, — v

4.5)

PROOF. The existence of a solution for any u, € L?(2) was proved in [6, Theo-
rem 2.1]. The uniqueness property and (4.5) can be obtained in exactly the same way

as in [21, Theorem 1.1] or [6, Theorem 3.1].

Denote S(t, T, u.) = u(t), where u(r) = u,, which is a process. We denote by
SE(H) the class of families of bounded sets B = {B(1)}.er (B(t) C H) such that

x {log |B(D)II*, 0
_ max {log [B@I*, 0} _

100 T

’

(4.6)

that is, the class of sets with subexponential growth on the time variable. In this case

2 = SE(H) (see the notation in Section 2).

LEMMA 4.2. Foranyt € R, there exists a bounded set By(t) in H such that for any

family Be SE(H) and any ty < t, there exists T = T(ﬁ, L) < ty such that

S(n, 7, B(1)) C Bo(r), VTt <T, V1, €[n,1].
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PROOF. Multiplying (4.1) by u(s) = S(s, 7, u,), u, € B(r), and using (4.2) and
(4.4) we have

1d
Ed—llull2 +IVul® + cillully, < (€@ + lullllhs)]

< au§) + —IIuII + Z—MIIh(S)II2

< ou() + -IIVu||2 + 2T(C‘slsl +a)’,  (48)
1

where 1 (2) is the Lebesgue measure of Q in R". Therefore
d 2 2 P d 2 2 P
—llull® + Asllull® + 2alluly, < ——Null® + 1Vull® + 2e|lullz.
ds ds
1
< 20u(82) + l—(06|5|' + o).
1
By the Gronwall lemma

I 1
u()I? < e u? + / e~h=s) (2Czu(9) + A—(CGISI' + 67)2) ds,
T 1
so that the ball

Bo)={y € H: bl = VK@ +al,

witha > 0, K(¢) = f_'oo e M0 2e0u(Q) + (cslsl” + ¢1)*/xy) ds, satisfies (4.7).
Indeed, in view of condition (4.6), we can find T(B, 1,) such that e @Dy, 1% <a,
Vi < T(B ),Yu, € B(t), Vi< <t

COROLLARY 4.3. For any u, € B(t), t < T(B, t,),
t
/ (IVull® + 2 llullf,) ds < R(t, 1),
4]
where
1 t
R(t9, 1) =2, (SO (t — 1p) + )\—/ (cols|” + ¢7)*ds + K1) + a.
1 fo
PROOF. It is a consequence of Lemma 4.2 and (4.8).

LEMMA 4.4. Forany t € R, 1y < t there exists a set B,(ty, t) bounded in V and
compact in H such that for any B € SE(H) there exists T = T(B, 1) < 1t such that
Vr < T,

S(@t, t, B(r)) C Bi(t, t). 4.9)
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PROOF. Multiplying (4.1) by —Au, where u(r) = S(r, 7, u;), u, € B(r), and
integrating by parts we have

l1d 2 2 1 , 1 2
5= IVull® + 1Aull® + (fulr, W)Vu, Vu) = (h, Au) < |A(NDI° + =l Aull”.
2dr 2 2
Using (4.3) we obtain

d 2 _ d 2 2 2 2

EIIVMII < ZIIVuII + 1Aull® < 1A + 2esl| Vaull™. (4.10)

Denote a; = a,(¢) = f,; Nh ()2 dr, a; = ay(t) = exp(Rcs(t — 1)). Assume that
ty <5 < r < tand multiply (4.10) by exp(—2cs(r — %)). Then

di (€725 Vull?) < AP~ < [lh(n)I.
- |

Integrating over (s, t) we obtain
t
V@) < | Vu(s)lI* + ez""""’f AN dr < (IVu()I® + ar) a.

Finally, integrating with respect to s over (%, t) and using Corollary 4.3 we have
(t — DIVu@I? < (R(10, 1) + ar(t — 0))az, Yz < T(B, 1),

so that, taking into account the compact embedding V C H, the closure in H of the
set

Bi(to, 1) = {u € H(®) : IVull® < (W +a.) 02}
)

is the desired set.

THEOREM 4.5. The process S has the global attractor o = {2 () };er- Moreover,
there exist Ky, Ky, 6 > 0 such that

Il ON" < Koltl® + K1, ViteR, “.11)
so that & € SE(H).

PROOF. The existence of the global attractor is a consequence of Lemma 4.4 and
Theorem 2.6.
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Further, we note that, choosing # in Lemma 4.4 such that t — p = ! > 0, we have

IBi(to, )l < B sup IVyll < B((R(to, )/ + a;) @)"?

yeB (10,0
t 172
<B ((u+/ (csls|” + e1)? ds) az) :
)

1 1 [
V=g <2cm(52)l + . / (csls|” + c1)?ds + K(1) + a) .
1 [

where

From the definition of K (¢), we are ensured the existence of R,, R;, ¢ > 0 such that
KOOI < Rt + Ry, V2.
Hence, since &7 (¢) C B, (%, t) Yt, estimation (4.11) follows.

THEOREM 4.6. Suppose there exists a positive and nondecreasing function £(t)
defined for all t € R and such that forallt < t,u,v € R,

If (rw) — f (z,0)] < E@)]u—v]. (4.12)
Then there exist Ly, L, > 0 depending on 2 and n such that .
du( (1)) < dy (4 (1)) < max {L,(§(D)"?, Lz(Cs)"/z} . (4.13)

PROOF. The proof is similar to that of [1, Theorem 7]. Let us first prove condi-
tion (3.2). We take a fixed ¢ € R, and arbitrary solutions «(-), v(-). It is easy to obtain
in a standard way that

1d
575 1) = v + |V (uls) = v())I?
s
+ (f (s, u(s)) — f (s, v(s)), u(s) —v(s)) =0, foralls e R.

In view of (4.3),

d
7 lu(s) = v()I? < 2¢5]uls) — v(s))>.
A

Let us now take 7* > 0 to be determined later on and depending on ¢. Gronwall’s
lemma implies that for any 7 € R,

lu(z + T*) = v(x + TI* < 47 [lu(x) — v(@)I?, (4.14)

so that (3.2) holds with I(z, T*) = 7.
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Denote m(s) = u(s) — v(s). Multiplying
dm(s)

— Am(s) + f (s, u(s)) — f (s, v(s)) =0
by Qn m(s), we get
1d
Ezll Qv m($)|I* + 1V Qv m)I? + (f (s, u(s)) — f (5, v(5)), Qv m(s)) = 0.

LetO < Ay < A < --- < Ay — 00 be the eigenvalues of —A in H;(2). Since
IV Oxm(s)| = Anyill @vm(s)|I?, and using conditions (4.12) and (4.14), we obtain
fors<t+T*<t,

d
AL Ovm(HI? < =2xn1ll Qum ()11 + 25 (1) lm(s)|I?
< =2Anll Qvm ()1 + 26(1)**C7 lu(r) ~ (@)1

22N 41(s=

Multiplying both sides by e ) we have

d
7 (I Qum(s) 2™ +1¢=7) < 26 (r) X+ 6D y(7) — v(x)|%.

s
Integrating over (t, T + T*) we get

. t
IQnm(z + TP ™ < Jlu(z) — v(2)|)? (1 b 20 (o 1)) :
Cs + Anyi

Hence

C5+)‘N+'—§(t)e—21~+:T'+ (1) echT')
Cs+Ang Cs+Angl

IQxm(z+THI? < fu(@)—v(@)|? (

cs+ Ang
=8%(t, T*, N)|lu(r) — v(m)|I*

< [u() (o) [e-zx~+.r~+§(—1)e2m.]

Choosing appropriate N = N (#) and T*, we obtain §(1) = 8(¢, T*, N) < 1//2.
Then condition (3.3) is satisfied. It follows from Theorems 4.5 and 3.2 that

de (& (1)) <N +n,

where 7 is given by the condition (6ﬁl(r))~(ﬁ5(t))" =o(r) < 1.

We shall further prove (4.13). It is well-known (see [2, page 201], [22, page 136))
that Ay = O(N*¥™), as N — 00, so that there exists D > 0 such that Ay /N¥" > D,
VN € N. If we put = N then

orz(t) = (125(t)l(t))2N =122 (8-2).~+|T'+2c5T‘ 3 & e4c,T') ]
s+ Ang
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Denote y = 12. We have to choose T* and Ay,; in such a way that

o2t _ L (4.15)
2y?’
t . 1
50 par , (4.16)
Cs + Anyi 2y’ +«a

where a > 0.
It follows from (4.15) that T* = (log2y?)/(2(An41 — ¢s)). Hence (4.16) will be
satisfied if the following inequality holds:

Ccs+ A
(An41 — cs) log ('(272#;2»)) > 4cslogV2y.

Using the inequality Ay, > D(N + 1)¥" we get

Cs + Anti
(2y2 + a)§(n)

¢cs + DN + 1)2/")

(An+1 — cs) log ( Qyr+a)E(D)

) > ((N + 1)¥"D — cs) log <

Choosing N = N (¢) such that D(N + 1)¥" > 5¢s and

cs+ D(N + 1)2/"
arrarm 2V

the inequality (4.16) holds. Hence it is sufficient to choose N satisfying
N > max {(D:§(0))" — 1, (5¢s/D)"* - 1},

where D, = ¢v/2y (2y*+ «)/D. We take N = max {[(D:&(1))™?], [(5cs/ D)"21},
where [x] denotes the integer part of x, and then N < max {(D,£(2))"/?, (5cs/ D)"?}.
Finally, Theorem 3.2 implies that

dr (& (1)) < 2N < 2max {(D:£(t)"?, (5¢5/ D)"?}
= max {Ll(f(f))"ﬂ, Lz(Cs)"/z} )

where L, = 2(D\)"?, L, = 2(5/D)"2.

From the previous result we can also obtain a uniform bound in ¢ for the fractal
dimension of the attractors.

COROLLARY 4.7. There exists a positive constant K depending on n, 2, cs and £ (-)
(but not on t) such that dy (2 (t)) < d; (H(1)) < K, forallt € R.
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PROOF. Fix some t* € R. Since £(¢) is non-decreasing, Theorem 4.6 gives

dy (& (1)) < max { L, (§())™?, La(cs)™?}
< max {L (E(t"N"?, La(cs)™?}, forall 1<t

On the other hand, note that (4.14) implies that S(¢z + T, r) is Lipschitz with constant
e*T, forall T > 0. Then, by [23, Proposition 13.2] we get

di (@ +T))=di(SE+ T, )& (1)) <dp (I (1)), @.17)
so that
df (& (1)) < max {LI(E(I'))"/Z, Lz(cs)"/z} = K, forallt e R. (4.18)

REMARK 4.8. We note that (4.18) is satisfied for all t* € R. Hence the best
estimate is obtained by the limit K = lim._, o max {L(§(+*))"?, L(cs)"*}, which
exists because the function is non-decreasing and bounded below by 0.
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