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Abstract Let La(z) = a121 +a22z2+---+anzn be alinear form in N complex variables z1, 22, ..., 2N
with non-zero coefficients. We establish several estimates for the logarithmic Mahler measure of Lq. In
general, we show that the logarithmic Mahler measure of Lq(2) and the logarithm of the norm of a
differ by a bounded amount that is independent of N. We prove a further estimate which is useful for
making an approximate numerical evaluation of the logarithmic Mahler measure.
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1. Introduction

Let P(z) = P(21, 29, ..., 2n) in C[2E!, 251, ..., 25'] be a Laurent polynomial in N com-
plex variables and let it not be identically zero. It can be shown by induction on N
(as in [7]) that the function z — log|P(z)| is integrable on the N-dimensional torus
TN C CV with respect to Haar measure. Alternatively, the function

0 — log|P(e(01),e(62),...,e(0n))],

27if )N

where e(f) = e*™?, is integrable on the group (R/Z)" with respect to Haar measure.

Then the value of the integral
m(P) = / log |P((01), e(02), . .. c(0)] 46
(R/Z)N

defines the logarithmic Mahler measure of P. Here we will be interested in estimating
the value of m(P) in the special case where P is a linear form. In a few cases there are
explicit formulae for m(P) which involve special values of certain L-series. For example,
Smyth (see the appendix to [4]) has shown that

V3

/ log |e(61) + €(05) + e(8)| d6 = %L(Q,X), (1.1)
(& /2)0 m

473

https://doi.org/10.1017/50013091503000701 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091503000701

474 F. Rodriguez-Villegas, R. Toledano and J. D. Vaaler
and

[ Toglel6n) + c(6a) + elt) + €l60)] 46 = 5 5C(3), (1.2)
(R/Z)* ™

where x is the non-principal Dirichlet character to the modulus 3, L(s, x) is the corre-
sponding Dirichlet L-function, and ((s) is the Riemann zeta-function. Further examples
and conjectures have been given in [1], [5], [3], [6] and [9]. Explicit formulae similar to
(1.1) and (1.2) are not known when N is large. However, Smyth [10] and Myerson and
Smyth [8] have established the estimate

(1.3)

log N
/ log|e(91)+e(92)+-~-+e(9N)|d0:%1ogN—év—l—O(Og )
R/Z)N

N

as N — oo, where v is Euler’s constant.
In the present paper we consider estimates for the logarithmic Mahler measure of a
linear form:

m(Lg) = / loglaje(fy) + aze(b2) + - - - + ane(fn)| d6, (1.4)
(R/Z)N

where Lqo(z) = a121 + agze + -+ + anzy and the coefficients aq,as,...,ay are not
all zero. Of course, it is obvious that the integral (1.4) depends only on the numbers
la1],]azl, ..., |an]|. To begin with we have the simple inequality [7, Exercise 3.3]

log |aloc < m(La) < loglal, (1.5)
where we use the vector space norms
la| = (lai[* + |ao* + - + |an[®)Y? and || = max{|a1],|az],. .., |an]}.
We are able to significantly improve the inequality on the left-hand side of (1.5).
Theorem 1.1. For all vectors a # 0 in CV we have
logla| — 37 —2 < m(Lq) < log|al, (1.6)
where v is Euler’s constant.

It is clear that
0 = inf{log|a| —m(Ls) : @ € CV, a # 0}.

In view of the bound (1.6) it would be of interest to determine the non-decreasing se-
quence of numbers

oy =sup{log|a| —m(Lg) :a € CY, a #0} and A}im on = A. (1.7)
—00

It is trivial that §; = 0 and it is easy to show that do = %log 2. As far as we know, the
value of d is not known for 3 < N. Theorem 1.1 asserts that A < %7 + 2.

We obtain Theorem 1.1 from a more elaborate inequality. This shows that if the num-
bers |a1], |az|,...,|an]| are not dominated by a few large terms, then m(Lg,) is approxi-
mately equal to log|a| — 3.
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Theorem 1.2. Let 3 < N and let a be a non-zero vector in CV. Then we have

—2[{n:1<n <N, lao < 7lan|} ™"
<m(Lg) —loglal + 3y

4 4 4
joa” Flaal" + - Hlanl® 1 << N, Jalo < mlanll Y (18)

- 4al*
In the special case a; = ag = --- = ay = 1 the estimate (1.8) clearly implies that
/ log |e(01) + e(f2) + -+ + e(On)]dO = L log N — 2y + O(N 1), (1.9)
(R/Z)N

which slightly sharpens (1.3). We conjecture that the error term on the right-hand side
of (1.9) can be replaced by an asymptotic expansion that we determine in (4.21). Theo-
rem 1.2 allows us to obtain essentially the same estimate for more general classes of linear
forms. As an example, let p(z) be a non-zero polynomial in C[z]. Then for all sufficiently
large integers N we find that

/(R/Z)N log|p(1)e(61) + p(2)e(62) + -+ -+ p(N)e(6n)| dO
= Log{p()? +[p@) + -+ (NP} — 2y + Op(NY), (1.10)

where the constant implied by O, depends on p.
Now suppose that by, by, ...,by are complex numbers with by # 0. From Jensen’s for-
mula we find that

/ 10g|b0€(6‘0) +ble(91) ++bNe(9N)|d0
(R/Z)N+1
= log |b| +/ log™ by tbre(61) + by tbae(fa) + - + by thne(On)| dO, (1.11)
(R/Z)N

where logt x = max{0, log 2} for positive real 2. Thus, for the purpose of estimating the
Mabhler measure of a linear form, it suffices to consider integrals of the form

/ log™ |are(6y) + aze(f2) + - - + ane(fn)| d6. (1.12)
(R/Z)N

We now state a result which can be used to obtain good numerical approximations
to (1.12). In doing so we make use of the vector space norm

laly = lai| + |ag| + - - + [an].

Let 0 < a3 < ag < --- be the consecutive positive zeros of the Bessel function Jy(z). If
a is a non-zero vector in CV and [ is a positive integer, we define

N N
Y(a,l) = 2041_1J1(O‘l)72 Z GmJ1(ugm) H Jo(ugn), (1.13)
m=1 n=1
n#m
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where we have written
Gm = |am||al;t form=1,2,... N.
Theorem 1.3. Let 3 < N and let a be a vector in CV with 1 < |a|;. Then we have
/ log™ |are(61) + aze(f2) + - -- + ane(fy)|dO
(R/Z)N

o lal1

= Z ¥(a,l) / Jo(ay|al; tu)u™" du. (1.14)
1

=1

To obtain a good numerical approximation to m(L,) we require an estimate for the
tail of the infinite series on the right-hand side of (1.14).

Corollary 1.4. Let 3 < N and let

Q= (q1g2--qn)"N

denote the geometric mean of the numbers g, = |a,||a|;*. For 5 < L the tail of the
series on the right-hand side of (1.14) satisfies the inequality

(2 o \N/2 7 \(VH+D)/2
< lafy ~ ) =0 I - (1.15)

As an application of Corollary 1.4, let Kx(2z) denote the linear form

o)

2

I=L+1

lal1
z/J(a,l)/ Jo(oq|a\1_1u)u71du
1

Kn(z)=2z14+224+ -+ 2N.

Then for 5 < N < 20 we find the following numerical approximations to the logarithmic
Mahler measure m(Ky):

m(Ks) = 0.544412561752185...,  m(Ky3) = 1.003583530489340. . .,
m(Kg) = 0.627317074836909...,  m(Ky4) = 1.039935308341516. ..,
m(K7) = 0.702926292476967...,  m(Ky5) = 1.073826217256882. . .,
m(Kg) = 0.766831088069615...,  m(Kys) = 1.105565343200777 . . .,
m(Ko) = 0.824156239532393...,  m(K7) = 1.135410703767443 . . .,
m(Kio) = 0.875328658 114493 ...,  m(Kg) = 1.163575074215941 .. .,
m(Ki1) = 0.921850886732666...,  m(Kig) = 1.190 237864644479 .. .,
m(Ki2) = 0.964375789319576...,  m(Kz) = 1.215550991 648849 . . .,

We note that Equation (4.7) of Theorem 4.1 also contains an identity for the Mahler
measure of a linear form. At the end of § 4 we state a conjecture which, together with (4.7),
would provide a simpler method for estimating the numbers m(Ky).
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2. Preliminary lemmas

For each integer m =0,1,2,... let

Lon(z) = f: <T2‘) (’lf)l (2.1)

=0

denote the corresponding Laguerre polynomial, and write
Ly () = Ly (2)e” "/

for the associated Laguerre function. Let s = o + it denote a complex variable.

Lemma 2.1. In the half-plane {s € C: —1 < Re(s)} we have

/OOO 2° Lon(2)e~® dz = (—=1)™ (s + 1) <;) (2.2)

Proof. From the Rodrigues formula we get

/ xSLm(m)e_Idxz/ 2 {DMe~Tx™Y dg,
0 0

1 d m
DM = —(—) .
m! (dac)

Then the identity (2.2) follows after integrating by parts m times. O

where

Corollary 2.2. For each integer m = 0,1,2,... we have
o) .
_ —y ifm =0,
log )L, (z)e " dz =
/0 (log)Ln(2) {—m—l ifm=1,2,...,
where 7y is Euler’s constant.

Proof. This follows by differentiating both sides of (2.2), setting s = 0, and using
I'(1) = —. O

The function x — (logz)e™*/? obviously belongs to L?{[0,00)}. As the functions

{Lo(z), L1(x),...} form a complete orthonormal system in L?{[0,00)}, we find that

M—o0

M
(log x)e*””/2 = lim Z A Lo ()
m=0

in L?-norm on [0, 00), where the coefficients a,, are determined by

Ay = / (logz)e™ /%L (x) dx = { K ) itm =0, (2.3)
0

-m~ ifm=12,....
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Thus we have

M—o0

M
(log x)e /2 = —ye™®/2 — lim e /2 Z m ™ Ly, () (2.4)
m=1

in L2norm on [0, 00).

Lemma 2.3. For all  in RY such that |z|. < 1, we have

N
0 < exp{—[z’} = [ Jo(2zs) < Lexp{—|a[*Hal + 2} + - + 2} }. (2.5)
n=1
Proof. Let 0 < a1 < ag < --- denote the positive real zeros of the Bessel function
Jo(2), so that
Jo(z) = Lh_)n;o (1 — %2)
1=1
uniformly on compact subsets of C. Then define
oo

B = _(2/n)*™ form=1,2,.... (2.6)

=1

The numbers (3, are rational,
1 1 11 19 473
51:17 ﬁ2:§7 ﬂ3:§» 64:@7 ﬁSZﬁov ﬂGZM7

and were calculated by Euler [13, pp. 500, 501]. In the open disc {z : |z| < %al} we have

= 422
log Jo(22) = Zlog(l - a2>
1=1 !

=1 m=1
=— Z m= 3,22, (2.7)
m=1
We note for later use that
> mT B =1log Jo(2) — 1< 3. (2.8)

m=2

Let x be a vector in RY, and assume that |z|,, < 1. Using (2.7) we obtain the identity

N N 00
Z(xi + log Jo(2z,,)) = Z{xi — Z mlﬁmxim}
n=1 n=1 m=1
= - i m_lﬂmsm(x)v (29)
m=2
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where we have written
Sp(x) = 2™ 4+ 23™ 4. 23,

Using (2.9) we get

exp{—|z|?} — ﬁ Jo(22,) = exp{—|sc|2}<1 —exp{i (22 + log Jo 2%))})

n=1 n=1

—eXp{—|m|2}<1—eXp{ mzzm ' B S )}) (2.10)

This verifies the lower bound on the left-hand side of (2.5). To establish the upper bound
we use (2.8). We find that

f: m_lﬂmSm(m) -
m=2

M=

{mi i m_lﬂmxim_4}
m=2
s

(), (2.11)

n=1

iMz

<

Wl
S

and then
1 — exp{—185(2)} < 185(2). (2.12)
The inequality on the right-hand side of (2.5) follows from (2.10), (2.11) and (2.12). O

3. Sums of random vectors

Let X1, X5,..., XN be independent random vectors uniformly distributed on the unit
circle in R2. Then let Y be the random vector

Y =rX;+rnXe+- - +rvXn,

where 7,72, ..., TN are positive real numbers. The random vector Y induces a probability
measure vy on the Borel subsets of R2. For 2 < N this measure is absolutely continuous
with respect to Haar measure on the additive group of R?. We assume that 3 < N and
write fn(x) for the associated probability density function. Thus we have

Prob{Y € B} = py (B) = /B fu(@) da (3.1)

for all Borel subsets B C R2. It is clear that the function  — f,.(x) is radial and it
will be convenient to define f, : [0,00) — [0, c0) by fr(|2]) = fr(x). We note that f, is
supported on the closed disc of radius |r|; and f, is supported on the interval [0, |7|].
We also define the function F,. : R? — [0,1] by

lyl
Fy(y) = Prob{|Y] < [y|} = / fr(@) de = 2m / Cufwdu,  (32)

| <]yl
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and the probability distribution function E, : [0, 00) — [0,1] by

F.(ly|) = Fr(y) or Fr(u):27r/0uvfr(v)dv. (3.3)

Let pux be the probability measure induced by a random vector X uniformly dis-
tributed on the unit circle. Then the Fourier transform of px is

jix(®) = [ el—ta) dux(@)

= / e(—t1 cos 270 — to sin 270) dO = Jo(27|t]).
R/Z

It follows that the Fourier transform of the measure py and the associated density
function fr.(x) is given by

N
Iy (t) = fr(t) = fr( Je( H (27, [t]). (3.4)

Lemma 3.1. If 3 < N, then the density function f,(x) belongs to L?(R?).
Proof. We use the well-known inequality [12, Theorem 7.31.2]
| Jo(22)] < (max{1, |rxz|}) "1/, (3.5)

which holds for all real 2. Then from (3.4) and Plancherel’s identity we get

N
[y = [ TT otz ehpat

Jo 2mru)|? du

max{l, |Trul}) "t du

“on o]

<o
<<T/0 u(max{1,|u|})_N du
< 0.

i :jz I ::]2

As f(z) is a radial function on R2, its transform f,.(¢) is also radial and is given
by [11, Chapter IV, Theorem 3.3]

t) = /R2 fr(x)Jo(2[t] |z]) dz = 27 /000 ufr(u)J0(2W|t|u) du. (3.6)
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For our purposes it is useful to observe that for all complex z the function
u — ufp(u)Jo(2mzu)

is bounded and compactly supported on [0, c0). Hence the integral

z —>/ wfp(u)Jo(2muz) du (3.7)
0
is defined for all complex z. Then it follows, using Morera’s Theorem, that (3.7) defines
an entire function of z.
Lemma 3.2. The identity

H Jo(2mrpz) =27 /00 wfr(u)Jo(2mzu) du (3.8)

n=1 0

holds for all complex z.

Proof. Both sides of (3.8) define entire functions. Using (3.4) and (3.6) we see that
these functions are equal on the positive real axis. Hence they are equal on C. O

For all complex z the function
u — u(1 — Fp(u))Jo(2muz)
is also compactly supported on [0, 00). In a similar manner we find that

o / ) Jo(27uz) du

defines an entire function of z.

Lemma 3.3. The identity

N N 0o
Z T d1 (277 2) H Jo(2mr,z) = 27rz/ u(1l — Fyp(u))Jo(2rzu) du (3.9)
m=1 n=1 0
n#m

holds for all complex z.

Proof. By differentiating both sides of (3.8) we obtain the identity

N N oo
Z T d1 (277, 2) H Jo(2mr,z) = 27r/ u2fr(u)J1(27rzu) du. (3.10)
m=1 n=1 0
n#m

Next we use the identity on the right-hand side of (3.3) and find that

d ~ . -

d—u(l — Fp(w)J1(2m2u) = 2mzu(l — Fyp(u))Jo(2m2u) — 2mu? fr.(u)J1 (27 2u)
u

at almost all points w in [0, c0). Hence we have

2772/0 u(l — Fr(u))Jo(2mzu) du = 27r/0 u? fr(u)Jy (27 2u) du. (3.11)

The result now follows by combining (3.10) and (3.11). O
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4. Identities for Mahler’s measure

Let 0 denote a point in the group (R/Z)" with Haar measure normalized so that (R/Z)"
has measure 1. If we identify C and R?, the coordinate functions 8 — e(6,,) provide an
example of N independent random vectors uniformly distributed on the unit circle. Then
it follows in a standard manner from (3.1) that

/ T(|7‘16(91)+7“26(92)+"'+7"N€(9N)\)d9=/ fr(@)T(|2|) do
(R/Z)N R?
= 27r/o wfp(u)T(u) du (4.1)

for all continuous functions T : [0, 00) — C. Now let s = o +it be a complex variable. As
an application of (4.1), in the half-plane {s € C: 0 < Re(s)} we define

/17-(8) = / |7‘16($1) + 7’26(302) 4+ TNG(CEN)‘QS de
(R/Z)N

— [ P hr(w) dy
]R2
=2r / w1 f, (u) du. (4.2)
0
It will be convenient to set
or(u) = 7lr)? fr(lr|v/u)  for 0 < u.
Then (4.2) can be written as
An(s) = \r|2s/ v2op(v) do. (4.3)
0

If 3 < N, then from Lemma 3.1 we have

—1 —2 o - 2d :2 o ~r 2d
WVIA\wwlu wlvuw|v
:/ | fr(2)|? dz < oco.
R2

As o, (u) is compactly supported, it follows that (4.3) provides an analytic continuation
of A, (s) into the half-plane {s € C: —1 < Re(s)}.

Next we observe that the function u — ¢, (u)e"/? belongs to L?{[0,00)}. The Laguerre
functions form a complete orthonormal system for L2{[0,00)}. Therefore, we have

M
lim Cm (1) Lo (1) = @r (u)e/? (4.4)

M—o0
m=0
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in L2-norm on [0, 00), where the coefficients ¢,,(r) are determined by

e |2

We note that co(r) = 1, and

c(r) = /000 or(w)(1 —u) du = A.(0) — |r|72A.(1) = 0.

Theorem 4.1. If 3 < N, then

m

Ap(s) = r[*I(s+1) > cm(r)(—l)m(s>, (4.6)

m=0
where the sequence
M s
I'(s+1) Z:Ocm(r)(—l)m (m) M=0,1,2,...,
of analytic functions converges uniformly on each closed half-plane {s : 6 < Re(s)} with

f% < §. Moreover, we have the identity

AL(0) = 2/(R/Z)N log |rie(x1) + roe(xs) + - + rye(zy)| de

=2loglr| —v— Y c";nﬂ (4.7)

m=2

Proof. From (4.3) we get

/1,ﬂ(s)|1°|7zs:/0 uw {or(u)e 2 e 2 du

- us{ﬁécmwcm(u)}e—u/? au
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If —% < § < Re(s), then, using Cauchy’s inequality, we obtain the estimate

M 2

‘ /OOC us{goT(u)e“/2 - mzzocm(r)ﬁm(u)}e“/z da
< {/OOO et du} {/Ooo ‘go,n(v)e”/Q - mZ:Ocm(r)Lm(v) i dv}
<I(26+1) i lem (7|2 (4.8)
m=M+1

Now, Lemma 2.1, (4.4) and the estimate (4.8) show that

Ap(s)|7]72* = lim OOUS{ sz: cm(r)ﬁm(u)}e_“/2 du

M= Jg —

= w}i—r>noo mi_o cm(r){/ooo w® Ly, (u)e™ du}
M

=Pl 1) Jim D () ;)

uniformly on {s: ¢ < Re(s)}. This verifies (4.6).
Because the series on the right-hand side of (4.6) converges uniformly in a neighbour-
hood of s = 0, we can differentiate it term by term. This leads to the identity

A,(s) = [r 2log [r) (s +1) 3 cm<r><—1>’”(s)

m
m=0
S () /0 w (log u) L (w)e=" du.  (4.9)
m=0

Finally, we set s = 0 in (4.9) and appeal to Corollary 2.2. In this way we establish the
identity (4.7). O

Instead of proving (4.6) first, we can argue more directly to establish (4.7) as follows.
From (4.3) we get
1(5) = v loglr) [ wton(wdut jrPe [ ulog s (u) du
0 0
and therefore

AL(0) = 2log |r| + /Ooo(log w)or(u) du. (4.10)

Now write
g(u) = (logu)e ™2 and  hy(u) = pp(u)e™/?,
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so that the integral on the right-hand side of (4.10) can be viewed as an inner product

/ " (log w)pw (u) du = {g. 1) (4.11)

in L2[0,00). We have already determined the coefficients in the expansion of both g
and h, with respect to the complete orthonormal system of Laguerre functions. The
coefficients (g, L,,) were determined in (2.3), and (h,., L,,) = ¢;n (7). Hence we get

o0

i h’l"a ‘C =7 Z Cmngr) (412)
m=2

m=0

as an application of Parseval’s formula.
There is an alternative representation for the series on the right-hand side of (4.7) that
can be derived from a generating function for the sequence m — ¢, (7).

Theorem 4.2. If 3 < N, then

AL(0) = 2/ log |rie(x1) + roe(za) + - - + rye(zy)| de
R/Z)N

0o N
=2log|r| — v+ 2/ {exp H 2ry|r|” }ul du. (4.13)
0

Proof. Using (3.4) and the fact that f, has compact support, we have
N
[L heralth) = [ frl@) ozl ja]) da
n=1

S e L ek da e

m=0

m

Z 1zm' )|t\2m (4.14)

m=0

Then we also get

N 2 ([ |p|2k |42k 1\ o
exp<|r|2|t2>HJo<2rn|t|>=ZZ{| s }{( 1)36(2”“' }

n=1 k=0 1=0
_s iy (m) (=14 (1) } [
19121 |
== l Ur| m!
LS enlrir )
o m! ’ '
m=0
and therefore
N [e’s)
_ Cm (1) ]2
1 exp([tf?) [ Jo@ralrl ey = - 3 (1.16)
n=1 m=2 :
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We write |¢| = u in (4.16) and conclude that
N

2/ {exp H (2r,|r| ™ }uldu
0

7 = —z/ooo{i C”:n(f)u%"—l}exp(—u%du. (4.17)

m=2

Term-by-term integration on the right-hand side of (4.17) is justified because

Z Cm(’“)uzmq
m!

oo
exp(fu2) < Z |67:n(‘;")|u2m71 exp(7u2)
m=2 :

and

|Cm )l w2m—1 2 o lem ()] [ o 2
/ Z exp(—u)du:mZ:: - /0 u exp(—u®) du

m=2
0o 1/2
<{ X fentr}
m=2

< o0.

Then the result of term-by-term integration on the right-hand side of (4.17) is
-2 /OO i Cmi(r)uzm_1 exp(—u?) du = — i cm(’r). (4.18)
0 m=2 m! m=2 m

The identity (4.13) follows now from (4.17) and (4.18). O

The identity (4.15) provides an interesting representation for ¢,, () in the special case
r = 1y, where 1y is the vector in RY having 1 in each coordinate. We find that

(o)
1 N™ 2m
1+ Z Cm(In) N2 = exp{Nz? 4+ Nlog Jo(22)}

m!
= exp{NZ llﬂlzm}. (4.19)
=2

If we expand the right-hand side of (4.19) and equate coefficients, we obtain the identity

m=2

en(ly)=m! Y (-1t (LLm)NLm for m = 2,3,. (4.20)

1<LL[m/2]
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where

T(L,m) _ Z ﬁ]ﬁﬁk}g ﬁ

kET(L,m) kky -k

and
T(L,m)={ke€Z":0<k and ky + kg + -+ kr = m}.

For example, we find that

—1 —2 6N — 11 50N — 57

c2(1n) = N c3(1n) = SN2 ca(In) = TRNE cs(1n) = 5Ve

This leads formally to

_icm(lN)_i 5 1 a7 N
m AN  144N2?  96N3  86400N*4 ’

(4.21)

m=2
and we conjecture that (4.21) is in fact an asymptotic expansion (numerically, summing
the series until the terms stop decreasing does seem to give the correct value up to roughly
N decimal places).

5. An elementary inequality

Lemma 5.1. Let « be a vector in RY and let y be a real number such that 0 < y <
|| Assume that the coordinates of @ are non-decreasing,

O0<ri <2 <3< <2y,

and set xg = 0. Let M be the unique integer that satisfies 0 < M < N — 1 and x); <
Y < Tapr41. Then we have

~ ;N —1/2 9 N y V2
“ldu < = . :
/y_1 (H max{l,xnu}> udu < N :H (mn) (5.1)

n=1

Proof. Set Ry =0 and

N . 1/2
Rm_H<w"‘) form=1,2,3,...,N

We find that

(N=m)/2
Rm+1:<xm+1> >1, form=1,2,...,N—1,
RTﬂ an

and therefore 0 = Ry < R; < Ry < --- < Ry = 1. Next we observe that

o s N ~1/2 N —1/2 oo 9
1 _ —1-N/2 _ _
/fl (l |1 max{l,xnu}) u” du = { | I1 mn} /gf1 u du = N{Rl Ry},
1 n—= n—

1 (5.2)
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and for each m=1,2,..., N — 1 we have

;! N —1/2
/1 (H max{l,xnu}> u ! du
Tm+1 “\p=1
N ~1/2 gz}
:{ H mn} /1 T SOV T

n=m+1 m+1

9 { N }—1/2

= H Tn {(Im+1)(N7m)/2 - (zm)(Nim)/Z}
N - m n=m-+1
N 1/2 N 1/2
o 2 Tm+1 Lm
e AL - I ) )
n=m-+1 n=m-+1

2

= N mt1 = R} (5.3)

In a similar manner, if 0 < y < z1, we find that

/yoi (Tf[l max{l,xnU})_l/Qu_l du = if{,f[l (i)l/Q — RO}7 (5.4)

and if z,, <y < Typ41, where m =1,2,... /N — 1, then

/;T: <ﬁ[1 max{1, aznu})_l/Zu_l du = 3 m{ ﬁ (y)1/2 _ Rm}. (5.5)

T
n=m-+1 n

Now let M be as in the statement of the lemma. Then we have

o s N —1/2
/ (H max{l,:cnu}) utdu
y—1

n=1
1/2

IIT/II N .
= / (H max{1, xnu}> utdu
v\
N —1/2
(H max{1, xnu}) utdu

m=0 7 Tmi1 M=l
N 1/2 M—1
_ 2 ﬂ (y)1/2+2]§:1 Roi1 2M R,
N - M sy T = N-—m = N—m
i () S s
N—Mn:M+1 T, = (N =m+1)(N —m)
N 1/2
<y 1 (f)/ (56)
n=M+1
This proves the lemma. O
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We note that there is equality in the inequality (5.6) whenever 0 < y < z;. In partic-
ular, there is equality in (5.6) in the case where 1 = a9 = -+ = zn.

6. Proof of Theorem 1.2

The value of the Mahler measure m(L,) is unchanged if we replace the coefficients a,,
with |a,| = ry, for each n = 1,2,..., N. Then by Theorem 4.2 it suffices to bound the
integral

N

/ {exp H (2r,|r| )}u_ldu,
0

which appears on the right-hand side of (4.13). As the value of this integral is a homo-
geneous function of r» with degree zero, we may assume without loss of generality that
lr| = 1. We also write R = |r|! so that 1 < R < N'/2. We then have

oo N
/ {exp H (2r,u }u_l du =1 + I + I3, (6.1)
0 n=1

where
R N
I = / {exp(—u2) — H J0(2rnu)}u1 du,
0 n=1
I, = / exp(—u?)u~t du
R
and

- /: {Tf[l J0(2rnu)}u1 du.

In order to estimate I; we appeal to (2.5). We conclude that

R
0< L < %/ exp{—u?} Sy (ur)u~" du
0

<1 ( / P expl—u?) du) Sa(r)

The integral I is trivial to estimate:

0< I <R /R ue™ du = 1R"2" 1 (6.3)
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In order to estimate I3 we use the inequality (3.5). Then we get

N

|I5] < /:{H |J0(2rnu)|}u1du

n=1
1/2

s s N -
< / <H max{l,wrﬂu}) utdu
R n=1

_ /ﬂ : (ﬁ[l max{1, |rn|u}>_1/2u_1 du. (6.4)

We may assume without loss of generality that 0 < ry < ry < --- < ry. Then we apply
the inequality (5.1) with M the unique integer satisfying 0 < M < N — 1 and

| < (mR)™H =77 rloo < Jraral-
Alternatively, we apply (5.1) with
N-M={n:1<n< N and |r|e < 7|} (6.5)

We note that the cardinality of the set on the right-hand side of (6.5) is at least 1. Thus
the estimates (5.1) and (6.4) imply that

T3] < 2l{n:1<n <N, |rfe <mlral} 7 (6.6)

If we combine (6.2), (6.3) and (6.6), we find that

o N
—2[{n:1<n <N, |r|e <7lral} ! < / {exp(uQ) - H J0(2rn|r|1u)}u1 du
0

n=1

N
1 _
<H{r) o+ i ety

n=1

+2{n:1<n <N, [Pl < 7lra|} ™t (6.7)

The expression on the right-hand side of (6.7) can be simplified. Observe that

N 2
w|r _
{n:1<n< N, [Pl < 7|ral} <Z( | n|) = %|r|2
oo

n=1
and therefore
P2, < T {n:1<n <N, |r|e < 7lral} 7"

Thus (6.7) implies that

/ooo{eXp(UQ) - ﬁ ‘70(27’n7’|1u)}u1 du

N
1 —
<4{Zri}+4l{n:1<n<m [Ploo < 7lral} T (6.8)

n=1

The inequality (1.8) follows now from (4.13), (6.7) and (6.8).

https://doi.org/10.1017/50013091503000701 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091503000701

Estimates for Mahler’s measure of a linear form 491

7. Proof of Theorem 1.3
We apply (4.1) with T(x) = log™ = and find that

/ log™ lare(01) + aze(f2) + -+ - + ane(On)|dO = / fr(x) log™ || d
(R/Z)N R2
= 271'/ wfy(u)log™ udu
0

[ 5
= /1 (1—Fp(u)utdu. (7.1)

As before let 0 < a3 < as < --- denote the consecutive positive zeros of the Bessel
function Jy(z). We recall the basic identity [13, Chapter 18, §1]

1 .
0 if I #£m,
2 Ji Jo(amu) du =
/0 udo(aru)Jo(amu) du {Jl(ozl)2 if I =m.

Write |a,| = 1, and R = |a|y = |r|1. Then define functions ¥; : [0, R] - Rforl =1,2,...
by

(7.2)

@ (u) = RV J1(ag) " (2u) Y2 Jo (o R ).
From (7.2) we conclude that the functions {¥;(u), ¥2(u), ...} form an orthonormal sys-
tem in L2{[0, R]}, and this system is complete [13, Chapter 18, §24]. Define functions
Gr:[0,R] - R and H, : [0, R] — R by

and

It follows that

R
(G, ) = 21/2R*1J1(al)*1/ Jo(auR™ ) du, (7.3)
1
and using Lemma 3.3 we find that
N N

(Hp, W) =220, Ty (o) Z rmJ1(gm) H Jo(ougn)- (7.4)

m=1 n=1

n#m

It now follows using (7.3), (7.4) and Parseval’s identity that
7] .
/ (1— Fo(u))u du = (Gy. H,)
1

<Gr7 g/l><Hr7 Wl>

M

-~
Il
—

M

lal1
W(a,l) /1 Jo(oulal T uyu du. (7.5)

~

1
We get (1.14) in the statement of Theorem 1.3 by combining (7.1) and (7.5).
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In the special case ry = ro = --- = ry, the Fourier-Bessel expansion arising from (7.4)
was first obtained by Bennett [2]. The general case considered here is also recorded in [2].

However, [2, Eqn (12)] contains a non-trivial typographical error.

8. Proof of Corollary 1.4

For 0 < u we define

Ag(u) = (2)1/2 cos(u — /4).

U

Then the estimate
Jo(u) = Ag(u) + O(u™>/?) as u — oo

is well known (see [11, Lemma 3.11] or [13, Chapter VII]). In fact, it can be shown that

|Jo(u) — Ao(u)| < %ufs/z for £ < u,

and this can be used to verify the inequality

/000 u{Jo(u) — Ag(u)}* du < 1.

We also find that o
o <o +sin®op = 7T/ uAo(u)? du.
0

Then using (7.2), (8.2) and Minkowski’s inequality we have

(O;)W < {/Oa uJo(u)? du}l/z + {/Oa u{Jo(u) — Ao(u)}2du}

1 1/2

< {a%/ uJo(alu)2 du} +1
0

= 271/2al|J1(ozz)| +1

and therefore
7_‘,71/2 _ al—l/Q < (%al)1/2|J1(O‘l)|~

If 16 < «u, that is, if 6 < [, then (8.4) implies that
o M (ag) T2 <8
Next we use the inequality (3.5) and the identity
1
Jo(z)? + Ji(z)? = 2/ uJo(zu)? du
0

to show that A
Ji(z)? < () forall z € R, 2 # 0.
||

https://doi.org/10.1017/50013091503000701 Published online by Cambridge University Press

(8.1)

(8.2)

(8.3)

1/2


https://doi.org/10.1017/S0013091503000701

Estimates for Mahler’s measure of a linear form 493
Then we find that

N N
Z GmJ1(ugm) H Jo(ugn)

m=1 n=1

n#Em

N 9 \/2 9 \N/2
<22 ] ( ) =2!/2 <> . (86)
Ao \TGn 0y TQuoy

We also use the inequality (8.1) to prove that

lal1 ) )
‘/ Jo(aulaly u)u~" du| < 3|af¥?a; /2. (8.7)
1

By combining (8.5), (8.6) and (8.7) we arrive at the estimate

9 \N/2
<70|a|§’/2() a NH3)/2, (8.8)

lal
’w(a,l)/l Jo(onlal tuyu du -

provided 6 < [.
Finally, it is known [13, Chapter 15, § 32] that the positive zeros of the Bessel function
Jo(z) satisfy the inequality

-1 <o gw(l—%) forl=1,2,....
It follows that
—(N+3)/2 — _
Z a (N+3)/ < - (N43)/2 Z (i— %) (N+3)/2
l=L+1 l=L+1
< (N2 /OO (t— Ly~ V+9/2 gy
L+(1/2)
2
< - (N+3)/2 L-(N+D/2, ,
ST N +1 (89)

The bound (1.15) in the statement of Corollary 1.4 follows by combining (8.8) and (8.9).
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