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Abstract
We give a simple diagrammatic proof of the Frobenius property for generic fibrations that does not depend
on any additional structure on the interval object such as connections.
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1. Introduction
Let C be a locally cartesian closed category equipped with a class of morphisms called fibrations.
The Frobenius property for C says that if f : X → Y and p : Y → Y ′ are fibrations of C, then so
is the pushforward p∗f : X′ → Y ′. This condition arises when modeling Pi types in intensional
type theory, because a type-in-context � �A type is interpreted as a fibration f :A→ �. If the
fibrations are part of a suitable model structure on C, then the Frobenius property is equivalent to
the condition that the model category C is right proper (Gambino and Sattler 2017).

The Frobenius property can also serve as an intermediate step toward establishing the existence
of a model category structure on C with the given class of fibrations. This is part of a broader
strategy of using notions originating in type theory to construct model category structures, as
explained in Awodey 2023). A particular class of fibrations often used in this context is the generic
(or unbiased) fibrations with respect to a given “interval” object I of C. These fibrations can be
defined in terms of a lifting property involving the “generic point” δ : 1→ I obtained by passing
to the slice category C/I, though we will find it convenient to use a more direct description (see
Definition 1).

The purpose of this note is to give a simple, diagrammatic proof of the Frobenius property for
generic fibrations that applies in wide generality (Corollary 8). In particular, it applies to carte-
sian cubical sets, and so it can be used to prove Corollary 73 of Awodey 2023). To explain the
relationship between this proof and existing proofs in the literature, we briefly outline our strategy.

In contexts where one either already has a model category structure or is in the process of
constructing one, the fibrations are the right class of a weak factorization system on C, whose
left class we refer to as trivial cofibrations. By standard adjunction arguments, the following two
statements are then equivalent:

(1) The pushforward of a fibration along a fibration is a fibration (the Frobenius property).
(2) The pullback of a trivial cofibration along a fibration is a trivial cofibration.

One could therefore either try to prove (1) directly or instead try to prove (2).
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Statement (1) is closer to the original type-theoretic motivation (the existence of Pi types).
However, directly proving (1) involves a lot of reasoning about pushforwards, which is difficult
to fit into the usual diagrammatic style of category theory (Awodey 2023, Section 5). Indeed, the
original proofs of the Frobenius property were formulated as explicit type-theoretic construc-
tions, as in Coquand (2014), Cohen et al. (2018), and Angiuli et al. (2021). Hazratpour and Riehl
(2024), whose main theorem is closely related to ours, introduce a 2-categorical calculus of pasting
diagrams and mates in order to systematize the required verifications.

Statement (2) appears more amenable to ordinary category-theoretic methods. The general
approach to proving such a statement is well-known: reduce to the case of pulling back a generat-
ing trivial cofibration u along a fibration p, and then try to express the pullback p∗u as the retract
of another generating trivial cofibration v, via a diagram obtained using the lifting property of p.
However, it is trickier than one might expect to write down the correct lifting problem and retrac-
tion diagram. When the interval object I is equipped with extra structure such as connections,
this task becomes a bit easier. Gambino and Sattler (2017) give a diagrammatic proof of statement
(2) in a setting where the interval has connections. (They use a different definition of fibrations
than the one considered here, but the two definitions become equivalent in the presence of con-
nections.) In the category of cartesian cubical sets, however, the interval object (the 1-cube) does
not have connections, so a different proof is required. The contribution of this work is to show
that connections are not required in order to give a simple diagrammatic proof of statement
(2) for the class of generic fibrations.

2. Generic Fibrations
In this section, we briefly review the definition of generic fibrations. Our terminology and notation
mostly follow Awodey (2023).

For this section and the next one, we fix a category C and a class of morphisms of C called
cofibrations, subject to the following standing hypotheses:

(H1) C has finite limits and finite colimits, and for any morphism f : X′ → X of C, the pullback
functor f ∗ : C/X → C/X′ preserves finite colimits.

(H2) The cofibrations are closed under pullback.
(H3) Any morphism whose domain is the initial object of C is a cofibration.

For instance, these hypotheses are satisfied whenever C is a finitely cocomplete, locally cartesian
closed category (such as a topos) and the cofibrations of C satisfy conditions (H2) and (H3). In
particular, they hold when C is the category of cartesian cubical sets and the cofibrations satisfy
the axioms of Definition 9 of Awodey (2023). Note that we do not assume that every cofibration
is a monomorphism.

Next, fix an “interval” object I of C. In homotopy theory, we would traditionally ask that I
also be equipped with “endpoint inclusions” δ0, δ1 : 1→ I, and we would construct generating
trivial cofibrations by forming the pushout product of a cofibration c : C → Z with an endpoint
inclusion δε : 1→ I, ε = 0 or 1. The result is an “open box inclusion” c⊗ δε : Z �C C × I→ Z × I,
which includes either the bottom or the top face of the box according to whether ε equals 0 or 1. To
define “generic” (or “unbiased”) fibrations, however, we consider a more general class of open box
inclusions in which, informally, the bottom or top face of the box is replaced by a “cross-section,”
the graph of an arbitrary morphism i : Z → I.

Definition 1 (Awodey 2023, Definition 36). Given a cofibration c : C → Z and a morphism
i : Z → I, we write c⊗i δ : Z �C C × I→ Z × I for the “cogap map” of the square below.
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Z �C C × I Z × I

Figure 1. A typical generating trivial cofibration c⊗i δ : Z�C C× I→ Z× I. Here c : C→ Z is the inclusion of the endpoints
of an interval, and i : Z→ I is a general morphism, represented here as a “piecewise linear” function.

C C × I

Z Z × I

〈1,ic〉

c c×1

〈1,i〉

(The symbol δ is a fixed piece of notation from Awodey 2023), where its meaning is explained.)
Morphisms of this form c⊗i δ are called generating trivial cofibrations. A morphism of C is

a fibration if it has the right lifting property with respect to all generating trivial cofibrations
(Figure 1).

Remark 2. The terms “generating” and “trivial” notwithstanding, we do not assume a priori that
the generating trivial cofibrations actually generate a weak factorization system, nor that they
are related to a model structure on C. Note that the generating trivial cofibrations typically form
a proper class, so that even when C is locally presentable, we cannot use Quillen’s small object
argument to construct a weak factorization system whose right class is the class of fibrations.

Lemma 3 (Awodey 2023, Remark 31). For any object X of C and morphism i : X → I, the graph
〈1, i〉 : X → X × I is isomorphic to a generating trivial cofibration.

Proof. By (H1), the functor − × I preserves the initial object 0 of C, and by (H3), the unique
morphism c : 0→ X is a cofibration. Therefore, 〈1, i〉 : X → X × I is isomorphic to the generating
trivial cofibration c⊗i δ. �

Note that this morphism 〈1, i〉 : X → X × I is automatically a monomorphism (even if not
every cofibration is a monomorphism) since it admits the retraction pr1 : X × I→ X.

Lemma 4. For any cofibration c : C → Z and morphism i : Z → I, the square appearing in
Definition 1 is a pullback square, and the morphism c× 1 : C × I→ Z × I is also a cofibration.

Proof. These statements follow from applying the pullback cancellation property repeatedly in
the following diagram, whose top-left square is the square in question, and using (H2).

C C × I C

Z Z × I Z

I 1

〈1,ic〉

c

pr1

c×1 c

〈1,i〉 pr1

pr2

�
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Example 5. Let C be the category of simplicial sets with the monomorphisms as its cofi-
brations and I= �1 as the interval object. Then the fibrations in the sense of Definition 1
agree with the fibrations of the Kan–Quillen model structure, that is, the usual Kan fibrations
of simplicial sets. To see this, note that any “open prism inclusion” jn,ε : �n × {ε} ∪ ∂�n ×
�1 → �n × �1 can be obtained as a generating trivial cofibration (in the sense of Definition
1) by taking c to be the boundary inclusion c : ∂�n → �n and i to be the constant mor-
phism i : �n → �0 ε−→ �1 at the vertex of �1 specified by ε. It is well-known (Gabriel and
Zisman 1967) that the morphisms jn,ε generate the class of anodyne extensions, in the sense
that the Kan fibrations (usually instead defined using horn inclusions) are precisely the mor-
phisms of simplicial sets that have the right lifting property with respect to all of the jn,ε .
Conversely, any generating trivial cofibration c⊗i δ : Z �C C × �1 → Z × �1 is an anodyne
extension, that is, an acyclic cofibration in the Kan–Quillen model structure. This follows from
left properness and the two-out-of-three property, since the horizontal maps in the diagram of
Definition 1 are one-sided inverses to weak equivalences pr1 : C × �1 → C, pr1 : Z × �1 → Z.

3. The Frobenius Property

Proposition 6. The pullback of a generating trivial cofibration along a fibration is a retract of a
generating trivial cofibration.

Proof. A generating trivial cofibration u has the form u= c⊗i δ :D→ Z × I for a cofibration
c : C → Z and amorphism i : Z → I, where we writeD for Z �C C × I. Let p : X → Z × I be a fibra-
tion, and write p= 〈z, t〉, with z : X → Z and t : X → I. Note that given this data, we can construct
two (generally different) morphisms from X to I, namely iz and t.

In the diagram below, the bottom face is the square appearing in Definition 1. By Lemma 4,
this square is a pullback. We obtain the top square of the diagram by pulling back this square
along the morphism p : X → Z × I, producing a cube in which all faces are pullback squares, and
in particular morphisms a : XZ → X, b : XC×I → X.

XC XC×I

XZ X

C C × I

Z Z × I

b

a

p=〈z,t〉〈1,ic〉

c c×1

〈1,i〉

(∗)

Not shown in the above diagram is the original generating cofibration u= c⊗i δ :D→ Z × I, the
cogap map of the bottom face. We write p∗u : XD → X for its pullback along p. By (H1), we can
identify XD with the pushout XZ �XC XC×I and p∗u with the cogap map of the top face of (∗).

By assumption, p : X → Z × I is a fibration, so the square
X X

X × I Z × I

〈1,t〉 p=〈z,t〉

z×1

H

admits a lift H : X × I→ X, by Lemma 3. This produces a retraction diagram

X X × I X
〈1,t〉 H (†0)

and we also have the equations
zH = z ◦ pr1 : X × I→ Z, tH = pr2 : X × I→ I.
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We are to show that p∗u is a retract of a generating trivial cofibration. Specifically, we will show
that it is a retract of the generating trivial cofibration v= b⊗iz δ. (Note that b : XC×I → X is a
pullback of c× 1 : C × I→ Z × I, hence a cofibration by Lemma 4 and (H2).) We will do this by
expressing the top face of (∗) as a retract of the square

XC×I XC×I × I

X X × I

〈1,izb〉

b b×1

〈1,iz〉
(∗∗)

in the category of commutative squares of C. By functoriality of the pushout, it will follow that
p∗u, the cogap map of the top face of (∗), is a retract of v, the cogap map of (∗∗).

In the lower right corner of this retraction diagram, we will use (†0). It is then enough to
construct two retraction diagrams

XZ X XZ

X X × I X

a 〈1,iz〉 a

〈1,t〉 H

(†1)

and
XC×I XC×I × I XC×I

X X × I X

b b×1 b

〈1,t〉 H

(†2)

since both the top face of (∗) and the square (∗∗) are pullback squares.
To produce diagram (†1), note that a is a monomorphism, being a pullback of 〈1, i〉 :

Z → Z × I, so it is enough to construct dotted morphisms making the two squares commute
individually. Because the front face of (∗) is a pullback square, the diagram

XZ X Ia iz

t

is an equalizer. Hence, for the left dotted arrow in (†1), we may take the morphism a : XZ → X,
while to obtain the right dotted arrow, it suffices to show that the compositions

X X × I X I
〈1,iz〉 H iz

t

agree. We have izH = iz ◦ pr1 while tH = pr2, so both compositions equal iz.
To produce (†2), we simply pull back (†0) along the morphism c : C → Z.

XC×I XC×I × I XC×I

C

X X × I X

Z

b b×1 b

c
〈1,t〉

z

H

z◦pr1 z
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6 R. Barton

The resulting objects and vertical morphisms are the correct ones because of the equation zH =
z ◦ pr1 and the pullback squares below, in which the middle square is the right face of (∗).

XC×I × I XC×I C × I C

X × I X Z × I Z

pr1

b×1 b

pr1

c×1 c

pr1 p pr1 �

Remark 7. We give a more informal account of the constructions involved in this proof. For
simplicity, let us assume that the cofibration c : C → Z is a monomorphism and that C is a topos,
so that the pushout appearing in the definition of a generating trivial cofibration is the union of
subobjects. We also write as though an object X of C has actual elements x : X.

The fibration p : X → Z × I equips each x : X with “coordinates” z(x) : Z and t(x) : I. Inside
Z × I, the original generating trivial cofibration u :D→ Z × I cuts out the subobject consisting of
those pairs (z, t) such that either t = i(z), or z belongs to the subobject C ⊆ Z. Hence the pullback
p∗u : XD → X cuts out those x : X such that either t(x)= iz(x), or z(x) belongs to C ⊆ Z.

For x : X and t′ : I, we think of H(x, t′) : X as “transporting” x to have t-coordinate t′, while
leaving its z-coordinate unchanged. The commutativity of the upper triangle in the lifting prob-
lem used to construct H says that if t(x)= t′, so that the old and new t-coordinates are the same,
then H(x, t′) is the original point x. This is where we use the fact that we work with generic
fibrations.

The cofibration v appearing in the proof cuts out those points (x, t′) : X × I such that either
t′ = iz(x), or z(x) belongs to C ⊆ Z. Call this subobject E⊆ X × I. We claim that the morphisms

X X × I X
〈1,t〉 H

carry XD ⊆ X into E⊆ X × I and vice versa. For instance, if (x, t′) : X × I satisfies t′ = iz(x), then
t(H(x, t′))= t′ = iz(x)= iz(H(x, t′)), so H(x, t′) ∈ XD. The other cases are similar but easier.

Deducing the Frobenius property is now a standard matter of manipulating lifting conditions
and adjunctions. We call a morphism of C a trivial cofibration if it has the left lifting property
with respect to all fibrations. Then, for any object Y of C, call a morphism u :A→ B of the slice
category C/Y a (generating) trivial cofibration whenever its underlying morphism of C is one.
Using this terminology, we then observe the following:

• The fibrations of C are closed under pullback and the trivial cofibrations of C are closed under
retracts, since these classes are defined by lifting properties (see, e.g., Hirschhorn (2019)).

• For a morphism f : X → Y of C, the following conditions are equivalent:
(1) As a morphism of C, f is a fibration.
(2) Viewing X as an object of C/Y via f , for every generating trivial cofibration u :A→ B of

C/Y , the function (− ◦ u) :HomC/Y (B, X)→HomC/Y (A, X) is surjective.
(3) The same condition as (2), but with the word “generating” removed.
Indeed, unpacking statements (2) and (3) shows that they say precisely that f has the right
lifting property with respect to every (generating) trivial cofibration of C.

• For a fibration p : Y ′ → Y , the pullback functor p∗ : C/Y → C/Y ′ takes generating trivial
cofibrations to trivial cofibrations.
Indeed, suppose u :A→ B is a generating trivial cofibration of C/Y . The underlying mor-
phisms of u and p∗u fit in a diagram as shown below, in which both squares are pullbacks.
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A′ A

B′ B

Y ′ Y

p∗u u

p

Above, the morphism B′ → B of C is a pullback of p, hence a fibration. So by Proposition 6,
the morphism p∗u is a retract of a generating trivial cofibration, hence a trivial cofibration.

Corollary 8. Under hypotheses (H1)–(H3) of Section 2, suppose f : X → Y and p : Y → Y ′ are
fibrations such that the pushforward p∗f : X′ → Y ′ exists. Then p∗f is also a fibration. In particular,
if C is locally cartesian closed, then its fibrations satisfy the Frobenius property.

Proof. We regard X′ (via p∗f ) as an object of the slice category C/Y ′. It comes equipped with an
isomorphism HomC/Y (p∗A, X)∼=HomC/Y ′(A, X′) natural in A ∈ C/Y ′.

We must show that if u :A→ B is any morphism of C/Y ′ whose underlying morphism in C is
a generating trivial cofibration, then the function (− ◦ u) :HomC/Y ′(B, X′)→HomC/Y ′(A, X′) is
surjective. Using the above isomorphism, this is equivalent to the statement that the function
(− ◦ p∗u) :HomC/Y (p∗B, X)→HomC/Y (p∗A, X) is surjective, which is true because p∗u is a
trivial cofibration of C/Y . �

By a similar adjunction argument, we deduce that if C is locally cartesian closed and p : Y ′ → Y
is a fibration, then the pullback functor p∗ : C/Y → C/Y ′ preserves all trivial cofibrations. Note
that these arguments do not actually require the existence of trivial cofibration–fibration factoriza-
tions, nor that a general trivial cofibration can be presented as a retract of a transfinite composition
of pushouts of generating trivial cofibrations.

Example 9. Continuing Example 5, we see that in the Kan–Quillen model category structure on
simplicial sets, the pullback of an acyclic cofibration along a fibration is again an acyclic cofibra-
tion. Because the pullback of an acyclic fibration is always an acyclic fibration, we deduce that the
pullback of any weak equivalence along a fibration is again a weak equivalence; that is, the model
category of simplicial sets is right proper. A similar proof is given in Gambino and Sattler (2017),
using the fact that the interval object �1 has connections. We have shown that the connections
are not really needed for such an argument.

Remark 10. Suppose the interval object I is equipped with a chosen point p : 1→ I. Then wemay
define a different class of fibrations, the p-biased fibrations, as those with the right lifting property
with respect to the pushout products c⊗ p : Z �C C × I→ Z × I of all cofibrations c : C → Z of
C with the fixed morphism p. In general, the p-biased fibrations need not have the Frobenius
property; that is, the analogue of Corollary 8 for p-biased fibrations does not hold.

Specifically, take C to be the category of simplicial sets with all monomorphisms as cofibra-
tions, I to be �1, and p : 1→ �1 to be the morphism selecting the 0th vertex. Then the p-biased
fibrations are the left fibrations of Joyal (2008), by Proposition 2.1.2.6 of Lurie (2009). We claim
the left fibrations do not satisfy the Frobenius property. By adjunction, this is equivalent to the
claim that the morphisms with the left lifting property with respect to left fibrations, namely, the
left anodyne extensions, are not stable under pullback along left fibrations. For example, the mor-
phism p : 1→ �1 is itself a left anodyne extension, while the inclusion q : 1→ �1 of the other
vertex is a left fibration. (This can be checked directly or by using Proposition 2.1.1.3 of op.cit.)
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8 R. Barton

The pullback q∗p : 1×�1 1→ 1 has empty domain, so it is not a left anodyne extension, because
left anodyne extensions are in particular weak equivalences.

The correct statement in this situation is that the pushforward of a right fibration along a left
fibration is again a right fibration, and vice versa. See Section 21 of Joyal (2008) or Section 4.1.2 of
Lurie (2009).
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