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Recent studies reveal the central role of chaotic advection in controlling pore-scale
processes including solute mixing and dispersion, chemical reactions, and biological
activity. These dynamics have been observed in porous media (PM) with a continuous
solid phase (such as porous networks) and PM comprising discrete elements (such as
granular matter). However, a unified theory of chaotic advection across these continuous
and discrete classes of PM is lacking. Key outstanding questions include: (i) topological
unification of discrete and continuous PM; (ii) the impact of the non-smooth geometry
of discrete PM; (iii) how exponential stretching arises at contact points in discrete PM;
(iv) how fluid folding arises in continuous PM; (v) the impact of discontinuous mixing
in continuous PM; and (vi) generalised models for the Lyapunov exponent in both PM
classes. We address these questions via a unified theory of pore-scale chaotic advection.
We show that fluid stretching and folding (SF) in discrete and continuous PM arise
via the topological complexity of the medium. Mixing in continuous PM manifests as
discontinuous mixing through a combination of SF and cutting and shuffling (CS) actions,
but the rate of mixing is governed by SF only. Conversely, discrete PM involves SF
motions only. These mechanisms are unified by showing that continuous PM is analogous
to discrete PM with smooth, finite contacts. This unified theory provides insights into the
pore-scale chaotic advection across a broad class of porous materials and points to design
of novel porous architectures with tuneable mixing and transport properties.
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1. Introduction
Fluid flow in porous media plays host to a broad range of chemical, physical, biological
and geological processes (Dentz et al. 2011; Rolle & Le Borgne 2019; Valocchi,
Bolster & Werth 2019). These processes are chiefly controlled by the transport, mixing
and dispersion of solutes, nutrients, colloids and microorganisms in the fluid phase.
Therefore, detailed knowledge of the mixing dynamics of these flows is required to
quantify, understand and predict these phenomena. For example, incomplete mixing of
solute plumes has been recognised (Gramling, Harvey & Meigs 2002; de Anna et al.
2014; Berkowitz et al. 2016; Wright, Zadrazil & Markides 2017; Valocchi et al. 2019)
to significantly impact the propagation of chemical reactions. Hence, reactive transport
models based on assumptions of complete mixing can lead to large errors (Dentz et al.
2011). In recent years, a new understanding of mixing in porous media has emerged
through the characterisation of the pore-scale kinematics that drive mixing (Lester,
Metcalfe & Trefry 2013; Lester, Dentz & Le Borgne 2016b; Kree & Villermaux 2017;
Turuban et al. 2018, 2019; Heyman et al. 2020; Souzy et al. 2020, 2021). These studies have
established that chaotic mixing – where fluid particles undergo chaotic orbits and fluid
elements are stretched exponentially in time – is inherent to steady flow in almost all 3-D
porous media. These ubiquitous kinematics have profound consequences for fluid-borne
phenomena (Aref et al. 2017), including sustenance of chemical gradients at the pore-scale
(Heyman et al. 2020), accelerated diffusive mixing (Lester, Metcalfe & Rudman 2014a),
transport (Turuban et al. 2019) and dispersion (Lester et al. 2014b) of diffusive solutes,
augmented clustering and deposition of colloidal particles (Ouellette, O’Malley & Gollub
2008; Sapsis & Haller 2010), singular enhancement of autocatalytic and competitive
reactions (Károlyi et al. 2000; Tel et al. 2005), enhanced chemical signalling (Stocker
2012), metabolic pathways (Károlyi et al. 2002; Neufeld & Hernandez-Garcia 2009), and
augmented alignment of particles (John & Mezić 2007). A complete understanding of
the mechanisms of chaotic mixing in porous media is critical for characterisation and
prediction of these phenomena. Such understanding also facilitates development of novel
methods to control and optimise these processes directly in engineered systems or via
interventions in natural systems.

Porous media may be broadly classified into two distinct classes based on continuity
of the pore-scale solid phase. The first group, continuous porous media, has a solid
phase which comprises a continuous, smooth medium, such as the open porous networks
shown in figure 1(a–e), which include vascular networks, biological materials, tissue
scaffolds, ceramic and metallic foams, static and microfluidic mixers, and catalyst
supports. Chaotic mixing arises in continuous porous media through the continual splitting
and recombination of fluid elements at pore branches and mergers, leading to efficient
mixing of fluids. The second group, classed as discrete porous media, involve a solid phase
which consists of a jammed array of discrete particles that have small point-like contacts.
Such granular matter includes gravels and sands, packed and jammed media shown in
figure 1( f–j). Although contacts between discrete particles with finite elasticity are always
finite-sized (due to non-zero confining pressure), their contacts are often very small and
so are considered to be point-wise herein. In this study, we show that transition from
infinitesimal to very small but finite contacts makes no practical difference to the mixing
dynamics. Chaotic mixing in discrete porous media arises due to the continual distortion
of fluid elements as they flow through highly tortuous paths between grains, leading to
rapid deformation and mixing of a dye plume, as shown in figure 1( j).

This classification into discrete and continuous covers most types of porous and
permeable media except for fractured media, which have constrained mixing dynamics due
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Figure 1. (a–e) Various porous networks as examples of continuous porous media: (a) tofu microstructure
(Huang et al. 2018); (b) gyroidal tissue scaffold (Melchels, Feijen & Grijpma 2009); (c) ceramic foam
(https://filterceramic.com/alu-ceramic-foam-filter); (d) vascular network of the heart (Huang et al. 2009);
(e) mixing of dyes in a 3-D micromixer (Therriault, White & Lewis 2003). (f–j) Various granular materials
as examples of discrete porous media: ( f ) granular sandstone (El Bied, Sulem & Martineau 2002);
(g) corn kernels; (h) packed corks; (i) glass beads; ( j) mixing of a continuously injected dye plume through a
random glass bead pack (Heyman et al. 2020). Fluid is refractive index-matched with the beads and only a few
beads are shown (grey) at 40 % of their true diameter.

to the pseudo-two-dimensional (2-D) nature of the fractures, and heterogeneous systems
such as granular assemblies of porous particles, which may be considered as multi-scale
combinations of continuous and discrete porous media. The fundamental differences in
pore-scale architecture between continuous and discrete porous media is an important
distinction as the fluid dynamical features at the fluid/solid interface drives chaotic mixing
in both continuous (Lester et al. 2013, 2016b) and discrete (Turuban et al. 2018, 2019)
porous media. The characteristics of chaotic mixing in these distinct classes are illustrated
in figure 2, which shows the evolution of particle trajectories and dye plumes in these
media as well as the invariant structures (skin friction field, hyperbolic manifolds, critical
lines and points) that govern chaotic mixing, as shall be explained in § 2.1.

Recent experiments have directly (Kree & Villermaux 2017; Heyman et al. 2020) and
indirectly (Souzy et al. 2020; Heyman, Lester & Le Borgne 2021) observed chaotic mixing
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Figure 2. (a–c) Characteristics of chaotic mixing in discrete porous media: (a) numerically reconstructed
trajectories of tracer particles, taken from PIV experiments within a glass bead pack (adapted from Souzy
et al. 2020); (b) numerically computed skin friction field u(x) over the surface of a sphere for steady three-
dimensional (3-D) Stokes flow within a bead pack (other spheres not shown) with node xn

p (green) and saddle
xs

p (black) points, and one-dimensional (1-D) stable Ws
1-D and unstable Wu

1-D manifolds (black lines). Inset: the
same sphere with streamlines shown close to the surface, indicating separation of streamlines in the vicinity of
the two-dimensional (2-D) unstable manifold WU

2-D. Image courtesy of Régis Turuban, Scuola Internazionale
Superiore di Studi Avanzati, Italy; (c) sequences of experimental 2-D dye trace images for steady flow in a
random bead pack at planes normal to the mean flow at different distances x downstream from the injection
point, measured in terms of the bead diameter d. These images show that bead contacts systematically trigger
stretching and folding of fluid elements, leading to the formation of sharp cusps in the dye filament. Numbers
label fixed spheres while arrows depict directions of fluid stretching (adapted from Heyman et al. 2020). (d–g)
Characteristics of chaotic mixing in continuous porous media: (d) numerical simulation of Stokes flow mixing
of a diffusive scalar in an archetypal element of an open (continuous) porous network involving a connected
pore branch and merger, illustrating the formation of striated material distributions due to fluid stretching and
folding which arises at (e) the saddle-type stagnation point (xs

p) in the skin friction field; (f ) experimental
images of dyed fluid distribution near the ‘pore merger’ in a macroscopic analogue of the pore branch and
merger shown in panel (d); (g) dyed fluids at the inlet (top) and outlet (bottom) of the macroscopic pore
merger. Cross-section of the dye distribution exiting the pore merger (not shown) agrees well with the outlet
scalar distribution shown in panel (d) (adapted from Lester & Chryss 2019).
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in discrete porous media. Figure 2(a–c) shows that chaotic mixing in granular media is
generated at contact points between grains, leading to repeated stretching and folding
motions of fluid elements that rapidly generate highly elongated and ramified material
distributions within the pore space. Similarly, pore-scale chaotic mixing has been observed
in the macroscopic analogue of an open porous network (Lester & Chryss 2019), and is
generated at saddle-type stagnation points on the pore boundary (figure 2d–g). Both sets of
observations are important as chaotic mixing generates complex, highly striated material
distributions that can quickly obscure their mechanistic origins. In both cases, saddle or
contact points appear to generate fluid stretching and folding motions in the fluid bulk,
the hallmarks of chaotic mixing. Despite these detailed observations, there exist important
outstanding challenges regarding the nature and origins of chaotic mixing in continuous
and discrete porous media.

(i) An outstanding challenge is to obtain a unified framework for the description of
chaotic mixing across both discrete and continuous porous media.

(ii) The non-smooth geometry at contact points in discrete porous media invalidates the
topological theory (Lester et al. 2013) of chaotic mixing in continuous porous media.

(iii) It is unknown how exponential fluid stretching (a characteristic of chaotic mixing)
arises at contact points in discrete porous media (Turuban et al. 2019).

(iv) Although the mechanisms of fluid stretching in continuous porous media are well
understood, an understanding of how fluid folding (Thiffeault 2004) arises is
incomplete.

(v) Experimental and numerical studies show evidence of discontinuous mixing (involv-
ing fluid cutting and shuffling) in continuous porous media that is not understood.

(vi) Although ab initio models for the Lyapunov exponent have been developed for
continuous porous media (Lester et al. 2013), no analogue exists for discrete porous
media.

These challenges (i)–(vi) highlight that the current understanding of chaotic mixing
in both continuous and discrete porous media is incomplete. In this study, we address
these outstanding questions and develop a unified description of chaotic mixing in discrete
and continuous porous media. We highlight the differences and similarities between the
mixing mechanisms in both classes of porous media, and connect these theories to the
observations and dynamical structures shown in figure 2. This unified description of
chaotic mixing in porous media provides deep insights into the generation of chaos, and
facilitates prediction and optimisation of mixing and transport across a wide range of
porous materials.

Throughout this study, for both continuous and discrete porous media, the approach
we shall use is overtly topological in that the analysis is based on the topology of porous
materials that inevitably arises from pore branches and mergers in the case of continuous
porous media, and grain contacts in the case of discrete porous media. We shall show that
topological complexity is an inherent characteristic of both classes of media and that this
complexity inevitably gives rise to chaotic mixing at the pore-scale. As this approach is
topological, it also is quite general and applies to topologically equivalent porous materials
(i.e. all those that possess pore branches/mergers or grain contacts), regardless of their
specific geometry. Indeed, recent experiments (Heyman et al. 2021) over a range of porous
media have demonstrated the ubiquity of pore-scale chaotic mixing. Although the specific
geometry may induce further mixing and transport effects, we show that the simplest
embodiments of continuous and discrete porous media are sufficient to generate chaotic
mixing.
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To simplify exposition, we therefore limit scope to highly idealised pore networks and
granular media, and ignore factors such as surface roughness, distributions of particle pore
shapes and sizes. Although porous materials with these features are considerably more
complex, they still share the basic classification into discrete or continuous porous media,
based on whether the solid phase is a continuum or comprises discrete elements with
point-like contacts. While this distinction may appear trivial for e.g. rough porous rocks
or assemblies of rough granular matter, this distinction is important from the perspective
of understanding chaotic mixing. As the stagnation points of the flow which drive chaotic
mixing in continuous porous media become degenerate contact points in discrete porous
media, it is unclear how chaotic mixing arises in these media. It is also important to note
that while transport and dispersion in both granular matter and open porous networks may
both be represented via pore network models (Bijeljic, Muggeridge & Blunt 2004), these
models are not sufficient to resolve the mechanisms of pore-scale fluid mixing, where the
distinction between discrete and continuous porous materials is significant.

The remainder of this paper is organised as follows. Topological equivalence of both
porous media classes is established and a unified description of chaotic mixing is
developed in § 2, addressing challenge (i) stated previously. The mechanisms of fluid
stretching in both porous media classes are considered in § 3, addressing challenges
(ii) and (iii). The mechanisms of fluid folding in both porous media classes are considered
in § 4, addressing challenge (iv). The origins and implications of discontinuous fluid
mixing are investigated in § 5, addressing challenge (v). In § 6, predictive models for
fluid stretching in both porous media classes are developed, addressing challenge (vi),
and conclusions are given in § 7.

2. Topology of discrete and continuous porous media

2.1. Background
To address challenges (i)–(vi), in this section (and Appendices A, B) we first briefly review
the theory (Lester et al. 2013, 2016b) of fluid stretching in continuous porous media.
To distinguish between the dynamical systems notion of ergodic mixing of non-diffusive
fluid particles and physical mixing of a diffusive solute, throughout, we use ‘fluid mixing’
or ‘chaotic mixing’ to describe the former process and ‘diffusive mixing’ for the latter. We
denote v(x) as the steady divergence-free three-dimensional (3-D) fluid velocity field in
the pore space Ω of the continuous porous medium, which satisfies the no-slip condition
v = 0 on the entire fluid/solid boundary ∂Ω and is governed by steady Stokes flow driven
by a mean pressure gradient

μ∇2v(x) − ∇ p = 0, ∀x ∈ Ω, (2.1)

with 〈∇ p〉 =const. We also define u(x) ≡ ∂v/∂x ′
3 = n · ∇v (where n is the outward

normal vector) as the skin friction field on ∂Ω , where x ′
3 is the local spatial coordinate

normal to ∂Ω . Note that while the velocity field v is zero on ∂Ω (due to the no-slip
condition), in general, the skin friction field u is non-zero.

MacKay (1994) shows that critical points x p of the skin friction field (where u(x p) = 0)
such as stagnation or re-attachment points play a central role in the generation of
chaotic mixing. These critical points generate local exponential fluid stretching if they
are non-degenerate, i.e. if the eigenvalues ηi , i = 1 : 3 of the skin friction gradient tensor
A ≡ ∂u/∂x at x = x p are all non-zero. Without loss of generality, we denote the
eigenvalues tangent to ∂Ω as η1, η2 (with η1 � η2), and η3 is the interior eigenvalue whose
eigenvector is normal to ∂Ω . The divergence-free condition means that the eigenvalues ηi
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Figure 3. Schematic of the structure of the skin friction field u surrounding type I–IV critical points (black
dots, summarised in Appendix A) on a portion (bounded by the dotted lines) of the fluid boundary ∂Ω and the
associated stable Ws and unstable Wu manifolds. The interior 2-D manifolds for type III, IV critical points
are shown as light blue surfaces. Arrows indicate the eigenvectors of the skin friction gradient tensor and the
double arrows on the streamlines reflect the sum η1 + η2 + 2η3 = 0. Adapted from Lester, Dentz & Le Borgne
(2016b).

satisfy (MacKay 1994)

η1 + η2 + 2η3 = 0, (2.2)

as
∑3

i=1 ηi = ∇ · u = −η3. Therefore, non-degenerate critical points x p consist of one
stable and two unstable eigenvalues or vice versa, and form either reattachment (η3 < 0)
or separation (η3 > 0) points, as shown in figure 3, corresponding respectively to either
the collision or emanation of an interior streamline with the critical point. As explained in
Appendix A, saddle type critical points with η1 < 0, η2 > 0 generate 2-D stable Ws

2-D and
unstable Wu

2-D hyperbolic manifolds which are 2-D material surfaces that respectively
exponentially contract or expand into the fluid bulk. Unless symmetry conditions are
imposed (Haller & Mezic 1998), these invariant 2-D hyperbolic manifolds intersect
transversely in the fluid domain, forming a heteroclinic tangle, the hallmark of chaotic
dynamics in Hamiltonian systems (Ott 2002). In practice, a single transverse intersection
of stable Ws

2-D and unstable Wu
2-D 2-D manifolds implies a chaotic tangle of infinitely

many (Ottino 1989), leading to strong fluid stretching and folding, and chaotic mixing.
MacKay (1994) shows that interior 2-D unstable manifolds form a skeleton of the flow that
comprises these surfaces of locally minimal transverse flux for diffusive solutes, and so
organise both fluid and solute transport and mixing. Conversely, if the interior hyperbolic
manifolds are one-dimensional (1-D), their impact on fluid transport is minimal.

Thus, only saddle points give rise to interior 2-D hyperbolic manifolds and chaotic
mixing. The prevalence of saddle points on ∂Ω is related to the topological complexity
of the continuous porous medium, given by the average number density ρ(χ) of the
Euler characteristic χ(Ω), which is strongly negative (Vogel 2002; Scholz et al. 2012),
reflecting the topological complexity inherent to all porous materials. For closed bounded
manifolds Ω , the Euler characteristic of Ω is related (Armstrong et al. 2019) to that of its
boundary δΩ as χ(δΩ) = 2χ(Ω), and hence the Euler characteristic of the pore boundary
is also strongly negative. The Poincaré–Hopf theorem connects the Euler characteristic
χ(δΩ) of the pore boundary to the sum of indices γp of stagnation points x p in δΩ as

χ(δΩ) = 2(1 − g) =
∑

γp(x p) = nn − ns, (2.3)

where g is the topological genus of the pore boundary, γp = +1 for node points and
γp = −1 for saddle points, and so nn and ns respectively denote the number of node
and saddle points, and |ρ(χ)| provides a lower bound for the number density of saddle
points which naturally arise at pore branches and mergers (figure 4). Although the specific
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Figure 4. Schematic of a (a) pore branch and (b) merger in continuous porous media. Non-degenerate critical
points x p (black dots) generate 2-D hyperbolic stable Ws

2-D and unstable Wu
2-D manifolds (grey) which are

surfaces of locally minimum transverse flux. The angles Δ, δ characterise the relative orientation of pore branch
and merger elements in the pore network. The red lines pertain to § 5 and depict evolution of a continuously
injected material line (red). Segments AB and CD of this material line are separated by the critical line ζ in the
pore branch, and are advected through different branches of these pores. Dotted red lines indicate connected
material elements that are not resolved by the spatial maps M, M−1 defined in (B3).

geometry of pore branches and mergers may vary, the basic topology (shown in figure 4)
that drives chaotic mixing is universal to all continuous porous media.

For open porous networks, this leads to simple predictive models (detailed in
Appendix B) for the infinite-time Lyapunov exponent λ∞ as a function of the geometry
of the pore network. In this study, we consider λ∞ as the volume average 〈·〉 of the
infinite-time limit λ̂∞(X) of the finite-time Lyapunov exponent λ(X, t) as

λ∞ ≡ 〈λ̂∞(X)〉 =
〈

lim
t→∞ λ(X, t)

〉
, (2.4)

where X denotes Lagrangian space. For ordered porous media, there can exist a mixture of
distinct regions of regular (non-chaotic) flow (where λ̂(X) = 0) and chaotic mixing (where
λ̂(X) > 0), in which case λ∞ represents a volume-weighted average of λ̂(X). Conversely,
for random porous media, fluid particle trajectories are ergodic (regardless of whether the
system is chaotic), hence the infinite-time limit λ̂∞(X) is invariant and so λ∞ = λ∞(X).

2.2. Topological complexity of discrete and continuous porous media
The fundamental elements of continuous and discrete media are respectively the solid
grain, and the connected pore branch and merger shown in figures 5(a) and 5(c).
Connections of pore bifurcations (figure 5c) form an extensive 3-D pore network similar
to those shown in figure 1(a–e), whereas assemblies of grains (figure 5a) form granular
media similar to that shown in figure 1(f–j).

Although pore networks can differ with respect to pore topology, and pore size and
shape distributions, they all share the basic feature of many branching and merging pores
that can be represented by the basic pore bifurcation shown in figure 5(c). As discussed
in § 2.1, the connection of many such bifurcations renders porous networks topologically
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Figure 5. Topological equivalence of the 2-D pore boundary δΩ separating the fluid (pore) Ω and solid
domains of the fundamental elements of (a) discrete and (c) continuous porous media. The normal vector
n indicates the normal vector pointing into the fluid domain (pore) Ω from δΩ , and δδΩ (green lines) is
the 1-D boundary of the pore boundary δΩ . δΩ is coloured according to its local Gaussian curvature K . (a)
Pore boundary δΩ of single spherical grain (semi-transparent) with four contact points (black) associated with
contacting grains and uniform positive curvature (K = +1) in discrete porous media. (b) Pore boundary of the
same grain as panel (a) but with the cusp-shaped contact points smoothed to form a smooth pore boundary δΩ

with finite-sized connections between contacting grains, forming boundaries δδΩ . (c) Pore boundary δΩ for a
connected pore branch and merger associated with continuous porous media.

complex in that the topological genus g of the pore-boundary δΩ is large, guaranteeing
the existence of saddle points on the pore boundary δΩ that generate chaotic mixing in
the pore space Ω . For porous networks, the topological genus g and Euler characteristic
χ(δΩ) of the pore network boundary are given by the total number nb of pore
bifurcations as

g = 1 − χ(δΩ)

2
= 1 + nb

2
. (2.5)

Hence, a straight pore (nb = 0) with periodic boundary conditions (to avoid trivial
complications associated with macroscopic boundaries of the porous medium) is
topologically equivalent to a torus and so has genus g = 1, while a periodically connected
pore branch and merger (termed a pore element) (nb = 2) forms an additional handle and
so has genus g = 2. Thus, the pair of bifurcations shown in figure 5(c) also has genus
g = 2 and Euler characteristic χ(δΩ) = −2. As shown in figure 5(c), this genus g = 2
corresponds to a pore coordination number (the number of connected pore throats) C p = 4.
The addition of more pairs of pore branches and mergers in any topological configuration
to form a pore network then increases the genus g as per (2.5). Hence, all continuous
porous media are topologically complex in that they possess a large topological genus g
number density, which is critical to chaotic mixing.

Similarly, for discrete porous media, close-packing of many grains such as those shown
in figure 5(a) generates extensive 3-D granular assemblies that are also topologically
complex, which has also been shown (Turuban et al. 2019) to be critical in generating
chaotic mixing. Although various granular materials may differ with respect to particle
sizes, shapes and number of contacts, they all share the same basic topology in that they
comprise discrete particles with point-like contacts, except for specialised cases where
discrete grains contact over a finite-sized area. These cases are not considered here for
simplicity of exposition, but topological equivalence between this class of granular matter
and continuous porous media also applies via the same approach outlined as follows. The
major difference between continuous and discrete media is that the pore boundary δΩ

of the latter is non-smooth, as the granular matter involves cusp-like contacts between
discrete grains, regardless of grain shape and orientation.
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Under periodic boundary conditions, the topological genus g and Euler characteristic
χ(δΩ) of the grain boundary δΩ of granular assemblies is given in terms of the total
number of grain contacts nc as (Turuban et al. 2019)

g = 1 − χ(δΩ)

2
= nc. (2.6)

As such, subject to periodic boundary conditions, the grain with four contact points
shown in figure 5(c) has nc = 2 (as a contact point is shared between two spheres), genus
g = 2 and Euler characteristic χ(δΩ) = −2. From (2.6), granular assemblies are also
topologically complex in that they posses a large topological genus g per unit volume.

2.3. Topological equivalence of discrete and continuous porous media
Topological equivalence between these seemingly disparate classes of porous media
may be established by smoothing the cusp-shaped contacts between grains as shown in
figure 5(b). By smoothing the cusp-shaped contact between grains, the discrete porous
material now has the characteristics of a continuous porous material in that the pore
boundary δΩ is smooth and continuous. This smoothed grain has the same topology
(g = 2, χ(δΩ) = −2) as the discrete grain shown in figure 5(a), but it is topologically
equivalent (i.e. it can be morphed solely by stretching and deforming) to the coupled pore
branch and merger shown in figure 5(c), but with the distinct difference that the fluid
domain (indicated by the outward normal n) is external to the pore boundary δΩ shown
in figure 5(a,b), whereas the fluid domain is internal to the pore branch and merger shown
in figure 5(c). Hence, discrete porous media with smoothed contacts may be considered as
the phase inverse of continuous porous media.

Despite this inverse relationship, the pore boundaries δΩ in continuous and smoothed
discrete porous media are topologically equivalent, as reflected by their topological
genus g. Thus, the Poincaré–Hopf theorem (2.3) also applies to the skin friction
field u on the boundary δΩ of smoothed discrete porous media, and so ensures the
existence of saddle points and 2-D hyperbolic manifolds regardless of the orientation
of n. As the pore boundary δΩ of smoothed discrete and continuous porous media are
topologically equivalent, they both have the same total negative Gaussian curvature K (see
Appendix C for details), hence the same basic mechanism drives chaotic mixing in these
different porous media classes. The question as to what extent this connection persists
for discrete porous media with non-smooth contacts shall be addressed in §§ 3 and 4.
Although discrete and continuous porous media have equivalent topology, their geometry
is markedly different. This is explored in more detail in Appendix C and leads to generation
of different types of critical points than those which arise in continuous porous media.
However, as shall be shown in § 3, these do not alter the generation of chaotic mixing.

In summary, when the contacts in discrete porous media are smoothed, chaotic mixing
arises via the same fundamental mechanism as continuous porous media. Such smoothed
discrete porous media is topologically equivalent to continuous porous media, albeit with
a phase inverse which does not impact the basic mechanism for chaotic mixing. Note that
although simple representations of continuous and discrete porous media have been used in
this section, these results extend to all topologically equivalent media, such as those shown
in figure 1. What remains unknown is whether this mechanism for chaotic mixing in con-
tinuous porous media extends to non-smooth, discrete porous media. Turuban et al. (2018,
2019) and Heyman et al. (2020) have respectively identified that fluid stretching and fold-
ing is generated at the contact points of such discrete porous media. In §§ 3 and 4 respec-
tively, the detailed mechanisms that govern fluid stretching and folding will be uncovered.
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Figure 6. Hyperbolic manifolds, critical points and lines in (a) continuous and (b) discrete porous media.
Intersection (dotted green line) of stable (blue surface) and unstable (red surface) 2-D hyperbolic manifolds
in (a) pore branch and merger (grey volume) in an open porous network and (b) a finite-volume numerical
simulation (with residual 10−16) of 3-D Stokes flow through a body-centred cubic (bcc) lattice of monodisperse
spheres (modified from Turuban et al. (2019), note only a few spheres in the lattice are shown for clarity). The
manifold intersection connects the saddle points (black dots) of the branch/merger in panel (a) and the contact
points (black dots) between spheres in panel (b). In panel (b), the 2-D manifolds emerge from the skin friction
field of the two spheres labelled 1 and 4, and the green points indicate node points. The open plane indicates
the orientation of transverse cross-sections in figure 9, and the black cell is the BCC unit cell.

3. Fluid stretching in continuous and discrete porous media

3.1. Comparison of fluid stretching in discrete and continuous porous media
A schematic of fluid deformation in continuous porous media is shown in figure 6(a). This
figure shows a connected pore branch/merger with offset angle Δ = π/2 and the associated
1-D and 2-D stable and unstable manifolds which emanate from the saddle points x p
situated at the pore branch and merger junctions. The intersection of the 2-D stable and
unstable manifolds forms a 1-D critical line that connects the saddle points. If many of
these pore branch/mergers are connected in series in a manner that maintains transverse
connections, then multiple 2-D stable and unstable manifolds emanate respectively from
the down- and up-stream saddle points into the element shown in figure 6(a), producing
many more manifold intersections, a heteroclinic tangle and chaotic mixing. Conversely,
if the stable and unstable 2-D manifolds connect smoothly and tangentially, they cancel
each other out and so do not produce persistent exponential stretching.

As shown in figure 6(b), a similar mechanism arises in a finite-volume simulation of
Stokes flow over a body-centred cubic (bcc) lattice of smooth spheres (Turuban et al.
2019) (note only a few spheres are shown in this figure). The same basic invariant features
arise in this flow with contact points playing a similar role to saddle points, and stable
and unstable 2-D manifolds emanate from the sphere’s skin friction fields and intersect
along 1-D critical lines that connect contact points between spheres. Multiple manifold
intersections also occur from 2-D hyperbolic manifolds emanating from other spheres up-
and down-stream of those shown in figure 6(b), leading to a heteroclinic tangle and chaos.

Figure 6(b) also shows isolated saddle points which lie along the 1-D intersection
of the 2-D manifolds with the sphere surfaces. An important difference to continuous
porous media is that fluid deformation at contact points is limited by the local cusp-
shaped geometry, potentially rendering these points degenerate (meaning at least one of
eigenvalues ηi of A is zero) with non-exponential stretching. Conversely, the smoothed
grains shown in figure 5(b) admit non-degenerate saddle points with exponential fluid
stretching. Hence, it is unclear how chaotic mixing is generated in discrete porous media.

1017 A13-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
47

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10477


D.R. Lester, J. Heyman, Y. Méheust and T. Le Borgne
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Figure 7. Schematic of evolving stable W S
2-D (blue surfaces) and unstable WU

2-D (red surfaces) manifolds
as they are advected over a finite-sized connection between two spheres (grey). Black arrows indicate fluid
stretching directions in the bulk fluid and skin friction field. Black and green points respectively indicate saddle
and node points. These manifolds become degenerate in the neighbourhood of the connection (indicated by
transition to grey colour) and exchange stability as they pass over, generating non-affine folding of material
lines (green).

3.2. Fluid stretching at contact points
Figure 7 depicts the stable and unstable manifolds associated with a smoothed contact
between two spheres (analogous to figure 5c) whose centres are oriented normal to the
far-field flow direction. The point-wise contact between these spheres has been smoothed
to form a smooth ‘neck’ of diameter a. Due to the symmetries of this flow, the velocity
field v(x) in the symmetry plane between these two spheres has no transverse component.
As shown in figure 8(a), this symmetry plane contains an inclusion from the smoothed
contact ‘neck’ that is a diameter a disc with saddle points x p on the upstream and
downstream sides that are connected to critical lines. Figure 8(b) shows that as this finite
contact shrinks to an infinitesimal point-like contact (a → 0), these two critical points
coalesce into a single critical point. As shown in figure 8(b), this critical point appears
to be degenerate as the associated steady 2-D flow in the symmetry plane between the
spheres cannot generate exponential stretching.

Turuban et al. (2019) proposed that this critical point is a topological saddle (Bakker
1991; Brøns & Hartnack 1999), which is degenerate (i.e. the skin friction gradient tensor
A at x p has zero eigenvalues) and so does not generate exponential fluid stretching as the
manifolds are no longer hyperbolic. As a topological saddle has Poincaré index γ = −2
(Brøns & Hartnack 1999), then from (2.3), the Euler characteristic in discrete porous
media is related to the number nd of degenerate topological saddles, nodes and regular
saddles as

χ(Ω) = 2(1 − g) = nn − ns − 2nd . (3.1)

As the topological genus per grain g is equal to the number of contacts nc, then under
the assumption that all contact points are topological saddles nc = nd , the number of
non-degenerate nodes nn and saddle ns points on each grain is independent of the Euler
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Figure 8. Streamlines (thin) and critical lines (thick) for 2-D velocity field v2-D(x) in the symmetry plane
between two spheres connected by (a) a smoothed contact of diameter a and (b) and infinitesimal contact
point. Critical points are denoted as either a saddle point xs

p or a degenerate topological saddle xd
p . Due to

the no-slip condition, in both cases, the skin friction field u(x) ≡ ∂v/∂x ′
3 on the grain boundaries local to this

contact shares the same topology as the velocity field v2-D(x).

characteristic χ(Ω); ns = nn − 2. Hence, it was proposed by Turuban et al. (2019) that the
simplest possible skin friction field in discrete porous media involves two isolated node
points (nn = 2, γ = +1) and no saddle points (ns = 0), and therefore no hyperbolic 2-D
manifolds in the fluid bulk and no chaotic mixing. Hence, it was concluded that chaotic
mixing in discrete porous media is not ubiquitous as it requires bifurcation of the skin
friction field beyond its simplest possible state.

However, this conclusion is not supported by the saddle-like flow structures observed in
figure 9, which arise at the intersection of the non-degenerate stable Ws

2-D and unstable
Wu

2-D 2-D manifolds that emanate from contact points. These flow structures clearly
indicate the hyperbolic nature of the manifolds as they pass through contact points and
intersect with each other (also shown in figure 6b), whereas degenerate points are not
associated with exponential (hyperbolic) stretching (Turuban et al. 2019).

However, deeper inspection reveals that contact points are only degenerate with
respect to the 2-D flow v2-D(x) in the symmetry plane shown in figure 7, but still
exhibit exponential stretching in the direction transverse to the symmetry plane between
contacting grains. In § 2.1, it was shown that isolated node points (type III and type IV
critical points in figure 3) cannot generate 2-D hyperbolic manifolds in the fluid interior.
However, the interaction between a node and contact point can produce an interior 2-D
hyperbolic manifold, as shall first be shown for finite-sized contacts.

3.3. Hyperbolic manifolds at finite-sized contacts
Figure 7 shows that a saddle point (green) arises on each side ( upstream and downstream)
of a smoothed connection, and a pair of node points (black) also arise on each side
(upstream and downstream) of the connected spheres. The 1-D manifold along the sphere
surfaces connecting the upstream nodes and saddles is unstable with respect to these node
points and stable with respect to the saddle points. The combination of this stable 1-D
manifold with the stable 1-D manifold in the fluid interior that connects to the upstream
saddle point generates the 2-D stable manifold W S

2-D that is shown in figure 7 without
material (green) lines. Similarly, a downstream 2-D unstable manifold WU

2-D (figure 7
without material (green) lines) is generated that connects the downstream saddle and node
points. Both of these 2-D manifolds are oriented parallel to the line connecting the sphere
centres and so are termed parallel 2-D manifolds. Conversely, the manifolds transverse to
this connecting line (shown in figure 7 with material (green) lines) are termed transverse
2-D manifolds.

The local cusp-shaped geometry near contact points constrains any (un)stable 2-D
manifolds that are generated (up)downstream to pass over this connection as transverse
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Figure 9. Series of cross-sections (transverse to the mean flow) with increasing downstream distance of Stokes
flow through a bcc lattice of spheres between the two bead pairs (1–2) and (3–4) shown in figure 6(b). Purple
lines show vector field lines of the 2-D velocity field transverse to the mean flow direction, thick and thin black
lines indicate material lines advected by the flow, and red and blue lines respectively represent 2-D unstable
and stable manifolds of the flow. Intersection of the 2-D stable and unstable manifolds forms a 1-D curve that
connects the contact points of the (1–2) and (3–4) bead pairs. Modified from Heyman et al. (2020).

2-D manifolds, as per figure 6(b). The analogous situation for a porous network is shown
in figure 6(a), where the 2-D (un)stable manifold is generated by a (up)downstream saddle
point and connects with an (down)upstream saddle point. This constrained geometry forces
the transverse 2-D stable and unstable manifolds shown in figure 7 with material (green)
lines to connect tangentially over the sphere connection. The 1-D intersection (green
dotted line in figure 7) of the transverse and parallel 2-D manifolds are responsible for
the saddle-type flow structures shown in figure 9.

3.4. Hyperbolic manifolds at contact points
If the connection between the spheres in figure 7 shrinks to an infinitesimal contact
point, the up- and downstream saddle points coalesce into a single saddle point which
is degenerate with respect to the transverse manifolds, but non-degenerate with respect
to the parallel manifolds. The interior (un)stable 1-D manifolds that connect from
(down)upstream to the contact point, and the exterior (un)stable 1-D manifolds that
connect the (down)upstream node points to the contact point both persist as this contact
shrinks to a point. Hence, the parallel 2-D stable and unstable hyperbolic manifolds persist
for a contact point, and still impart exponential stretching to the fluid bulk.

Hence, node points and saddle-like contact points between grains generate 2-D
hyperbolic manifolds and chaotic mixing in discrete porous media. This basic mechanism
is very similar to that of continuous porous media, where connected contact and node
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points play the role of saddle points in continuous porous media. As there is no need for
isolated saddle points (away from contacts), chaotic mixing is inherent to discrete porous
media.

4. Fluid folding in discrete and continuous porous media

4.1. Fluid folding in discrete porous media
In this section, we describe the mechanisms that drive fluid folding in continuous and
discrete porous media. Although Heyman et al. (2020) show that contact points in discrete
porous media generate folding of fluid elements, the detailed mechanism is unclear.
Figure 7 shows that when a 2-D unstable transverse manifold impacts a contact point,
this manifold becomes locally degenerate at the contact point and transitions to a stable
2-D transverse manifold that emanates from the contact. Conversely, a 2-D stable parallel
manifold terminates at the contact point and upstream node points, and a 2-D unstable
parallel manifold emanates downstream from the contact point and downstream node
points.

This exchange in stability can generate strong folding of fluid elements in the symmetry
plane between the spheres, as indicated by the green material lines in figure 7. Although
the schematic in figure 7 is fore–aft symmetric, this can be broken by additional grains in
the assembly or contacts that are skew to the mean flow direction, meaning that folding
of material elements also manifests in the plane transverse to the mean flow direction.
As shown in the sequence of panels in figure 9, subsequent fluid stretching elongates
these folds into tight cusps and highly filamentous structures such as those observed in
figures 2(c) and 9.

These insights provide a link between the folding dynamics described here and by
Heyman et al. (2020) and recent studies (Turuban et al. 2018, 2019) that describe the
mechanisms leading to pore-scale fluid stretching in discrete porous media. This means
that chaotic mixing proceeds in discrete porous media via iterated stretching and folding
of fluid elements as they pass over contact points between grains.

4.2. Fluid folding in continuous porous media
The maps Sb, Sm (B8) can be used to uncover the folding mechanism in continuous porous
media. The dye trace images in figure 10 show evidence of cutting, shuffling, stretching
and folding of material lines as they are advected through the pore-space. To unravel these
motions, we consider the evolution of a continuously injected line source through the
pore branch and merger shown in figure 4. In this figure, the line source with segments
marked AB and CD is continuously injected along the line xr = 0 before bifurcating into
two separate segments at the critical point x p. The intersection of the 2-D stable manifold
Ws

2-D with the boundary ∂Ω represents a repelling (i.e. ∇ · u > 0) critical line ζ of the
skin friction field u. Any injected material line that crosses the mid-plane yr = 0 of the
inlet pore corresponding to Ws

2-D is stretched and folded as it is advected downstream
over ζ , and fluid particles on this critical line are held there indefinitely, as shown by the
temporal map T ∗ (B6), which has a divergent residence time for particles entering along
yr = 0. Folding of fluid elements over this critical line effectively splits the fluid element
as it is advected into two separate pores downstream. Thus, the indefinite holdup of fluid
particles at the critical line ζ manifests as the distinct segments AB, CD in each outlet of
the pore branch, yet these are connected via a continuous material line extending from the
critical line.
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Pore geometry (i):

Pore geometry (ii):

Pore geometry (iii):

Pore geometry (iv):

n = 1 n = 2 n = 3 n = 4

n = 1 n = 2 n = 5 n = 10

Figure 10. Evolution of fluid elements (black points) with pore number n over the circular inlet plane of a pore
branch (figure 4a) for various open porous networks, ranging from (i–iii) ordered to (iv) random pore networks.
Red lines depict the web of discontinuities associated with cutting and shuffling of fluid elements.

Upon exiting their respective pores, these segments are reoriented at angle Δ before
entering the branch merger. The solid red lines in figure 4 denote parts of the material line
that are resolved by the spatial map M (B3), and the dashed red lines indicate material
elements that are not resolved by this map yet remain connected in 3-D due to continuity.
The bifurcation and folding process is then reversed in the pore merger (figure 4b), where
fluid elements from separate pores are merged together over the attracting (i.e. ∇ · u < 0)
critical line ζ formed by intersection of the 2-D unstable manifold Wu

2-D and the pore
boundary ∂Ω . Fluid elements that pass near this attracting critical line also experience
diverging residence times, leading to further folding of material elements prior to the
merger of elements arriving from different inlet pores.

When projected onto the (2-D) pore outlet planes, this strong folding of fluid elements
over the critical lines ζ in the 3-D pore space manifests as an effective ‘cutting’ of material
elements, as shown in figure 10. In the following subsection, we consider the nature of such
discontinuous mixing and its interplay with 3-D fluid stretching and folding. In addition
to this strong folding that manifests as discontinuous mixing, the spatial map M also
imparts weaker folding that is illustrated by its affine Ma (B4) and non-affine Mn (B5)
components.
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Fluid cutting is also encoded in the non-affine map Mn , such that fluid elements with
yr > 0 (yr < 0) are mapped to the upper (lower) branch in figure 4(a). Weak folding of
material elements in these 2-D outlets arises from the nonlinear component of the non-
affine map Mn and its inverse M−1

n , which map fluid particles along the straight line
yr = 0 to the curved lower pore boundary. Although these maps only induce weak folding,
subsequent fluid stretching amplify these folds into the sharp kinks observed in figure 10.
However, figure 10 shows that packing of highly elongated material lines into the 2-D pore
outlet is dominated by cutting of material elements rather than weak non-affine folding.

Hence, strong folding of fluid elements in continuous porous media arises via a similar
mechanism to that of discrete porous media. In continuous media, fluid elements are held
up at pore junctions, whereas for discrete media, fluid elements are held up at contact
points, both leading to strong folding. However, for continuous porous media, this hold-up
generates discontinuous mixing when projected onto a 2-D plane transverse to the mean
flow direction. Such discontinuous mixing does not occur in discrete media due to the
infinitesimal contacts. In addition, the non-affine nature of M imparts weak folding that
may be amplified into sharp kinks by subsequent fluid stretching. As weak folding plays a
secondary role, in § 5, we focus on strong fluid folding which manifests as discontinuous
mixing.

5. Discontinuous mixing in continuous porous media

5.1. Origins of discontinuous mixing
Figure 10 shows the evolution of material distributions in an open porous network under
stretching and folding (SF) and cutting and shuffling (CS) actions for the following ordered
and random pore network types:

(i) ordered network corresponding to 3-D baker’s map: Δ = π/2, δ = 0, λ∞ = ln 2 ≈
0.693;

(ii) ordered network, chaotic mixing: Δ = π/2, δ = π/6, λ∞ = ln[(5√
3 + √

11)/8] ≈
0.403;

(iii) ordered network, non-chaotic mixing: Δ = π/4, δ = π/4, λ∞ = 0
(iv) random network, chaotic mixing: Δ ∼ U [0, π], δ ∼ U [0, π], λ̄∞ ≈ 0.118.

As expected, the ordered network (i) shown in figure 10 corresponding to the baker’s map
exhibits the fastest mixing, whereas the random network (iv) is significantly slower. The
evolution of these material distributions shown in figure 10 are produced via application
of the advective maps M, M−1 described in Appendix B for the various values of δ, Δ

described previously.
The origins of the CS actions shown in figure 10 are illustrated in figure 4(a), where

the line segments AB, CD are advected to the different outlets of the pore merger element
in an apparently discontinuous manner. However, as indicated by the dashed red lines in
figure 4(b), these segments are actually connected by a material line that is stretched and
folded as it is advected over saddle point x p.

In many applications, this 3-D distribution of fluid elements is less relevant than the 2-D
distribution in a planar cross-section corresponding to the pore outlet planes in figure 4
and images in figure 10. Material lines and sheets that are continuous in 3-D can manifest
as discontinuous elements in this 2-D frame, even within the same pore. Henceforth, we
consider mixing of fluid elements in these 2-D planes as being ‘discontinuous’, although
we understand the fluid undergoes smooth and continuous 3-D deformation, unlike e.g.
granular matter or plastic materials that deform via slip planes.
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Hence, chaotic mixing in continuous porous media is akin to mixed cutting and
shuffling (CS) and stretching and folding (SF) actions observed during chaotic mixing of
discontinuously deforming systems (Juarez et al. 2010; Christov, Lueptow & Ottino 2011;
Sturman 2012; Smith et al. 2016, 2017a,b, 2019), such as granular tumblers (Christov et al.
2011; Smith et al. 2017b), and microfluidic micro-mixers based on iterated pore branches
and mergers (Sudarsan & Ugaz 2006). The motions imparted by the spatial maps Sb, Sm
as fluid elements flow through each pore branch and merger shown in figure 4(a,b) can be
summarised as ‘cut-stretch-fold-rotate’ in the pore branch, and ‘compress-fold-glue-rotate’
in the pore merger.

For the pore branch, ‘cut’ refers to splitting of fluid elements along the critical line ζ ,
‘stretch’ refers to the affine stretching (by Ma) by a factor of 2 in the yr direction,
‘fold’ refers to non-affine folding (by Mn) of elements to conform to the outlet pore
boundaries, ‘rotate’ refers to reorientation (by R(Δ)) of fluid elements due to orientation
of the downstream pore mergers. In the pore merger, ‘compress’ refers to the compression
(by M−1

a ) of fluid elements by a factor of 1/2 in the yr direction, ‘fold’ refers to non-
affine folding (by M−1

n ) to conform with the required semi-circular disc, ‘glue’ refers to
gluing of these semi-circular discs to form the disc-shaped pore outlet and ‘rotate’ refers
to reorientation (by R(δ)−1). As fluid elements are in general not smoothly reconnected
at the gluing step, these actions lead to cutting and shuffling of material elements, as
shown in figure 10. Conversely, for discrete porous media, the infinitesimal nature of grain
contacts means that these discontinuities have zero extent and so only purely continuous
deformation arises.

5.2. Coupled continuous and discontinuous mixing
The introduction of discontinuous CS actions significantly alters the mixing process as
constraints associated with fluid continuity are relaxed. One impact is that the Poincaré
index is no longer conserved, leading to the formation of new coherent Lagrangian
structures such as leaky KAM surfaces around elliptic tori, and pseudo-elliptic and
pseudo-hyperbolic points (Smith et al. 2017a,b). The natural mathematical framework
to analyse CS motions is via piecewise isometries (PWIs) (Sturman 2012), where
fluid elements are removed (cutting) and placed in different locations and orientations
(shuffling). For CS-only systems, these actions generate a web of discontinuities
(figure 10), which comprises the forward iterates of the cutting line (corresponding to the
line yr = 0 in the map M associated with bifurcation of fluid elements along the critical
line ζ in the pore branch element), and complete mixing occurs if this web becomes space-
filling with time. Under these conditions, pure CS actions leads to weak ergodic mixing,
and associated mixing measures decay at an algebraic rate in time.

Conversely, for pure SF actions in continuous systems, fluid stretching arises from
affine deformations, whereas folding is associated with non-affine deformation. Together,
these stretching and folding actions can generate chaotic advection which is characterised
by strong ergodic mixing and mixing measures that decay at an exponential rate. To
understand how combined SF and CS actions impact the mixing dynamics of continuous
porous media in both ordered and random pore networks, we examine the four network
geometries (i–iv) described in Appendix B.1, whose mixing dynamics is shown in
figure 10. In all cases, these SF and CS actions lead to complete mixing of fluid elements,
albeit at significantly different rates.

5.3. Measures of continuous and discontinuous mixing
Conventional tools such as Lyapunov exponent, scalar variance decay and entropy
measures are not suitable to characterise discontinuous mixing as they are based on
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dissipative or continuous mixing. The mix-norm measure (Mathew, Mezić & Petzold
2005) was developed to quantify multiscale mixing across diverse applications, including
non-dissipative and discontinuous mixing. The mix-norm Φ(c) ∈ [0, 1] captures the extent
of mixing of a zero mean concentration field c(x) across different normalised length scales
s ∈ [0, 1] (where s = 1 corresponds to the velocity correlation length scale 
) as

Φ(c) =
√∫ 1

0
φ(c, s)2μ(ds), (5.1)

φ(c, s) =
√∫

p∈Ω

d2(c, p, s)μ(d p), (5.2)

d(c, p, s) = 1
vol[B( p, s)]

∫
x∈B( p,s)

c(x)μ(dx), (5.3)

where μ denotes the Lebesgue measure, d(c, p, s) is the average of c(x) over the ball
B( p, s) := {x : |x − p| < s/2} centred at point p in the fluid domain Ω , φ(c, s) is the
L2-norm of d over Ω and Φ(c) is the L2-norm of φ(c, s) over s ∈ [0, 1]. As such, the
L2-norm φ(c, s) characterises the variance of the scalar field c(x) after averaging over
length scale s and the mix-norm Φ(c) accounts for mixing across all scales by quantifying
the L2 norm of this measure over all s.

Hence, Φ = 1 for scalar distributions that are completely segregated at the largest length
scale of the system and Φ(c) = 0 for mixtures that are well mixed at all scales. Under
weak ergodic mixing characteristic of CS systems, the mix-norm Φ(cn) (where cn is the
concentration field after n of iterations of the mixing process) decays algebraically with n,
whereas under strong mixing characteristic of SF systems, Φ(cn) decays exponentially
with n. For SF systems that can be represented by a linear map such as Ma , the mix-norm
decays exponentially at a rate of half the Lyapunov exponent (Mathew et al. 2005) as

Φ(cn) = Φ(c0) exp
(

−λ∞n

2

)
. (5.4)

Although many studies have considered mixing due to purely CS or SF actions, only a
handful (Smith et al. 2016, 2017, 2019a,b) have considered the impact of coupled CS
and SF motions. Smith et al. (2017a,b) show that the combination of CS and SF motions
can either act to retard or enhance the rate of strong mixing given by SF actions alone,
depending upon whether hyperbolic and pseudo-elliptic points form a complete set of
building blocks for Lagrangian structures (Smith et al. 2017b), similar to hyperbolic and
elliptic points in SF-only systems. In this case, CS can retard mixing and the Lyapunov
exponent in (5.4) forms an upper bound for the decay rate of the mix-norm. For mixed CS
and SF systems, a key question regarding the impact of discontinuous deformation upon SF
mixing is the rate and extent to which the web of discontinuities becomes space-filling. To
quantify this, we consider the growth rate of line elements in the pore geometries (i)–(iv)
whose mixing dynamics are shown in figure 10.

Figure 11(a) shows that the mean growth of the normalised length ρn ≡ 〈δln/δl0〉 of
an ensemble of infinitesimal line elements in the ordered and random pore networks is
well approximated by the theoretical estimate (B1) of the Lyapunov exponent λ∞, hence,
exponential fluid stretching is captured by linearisations of the spatial maps Sb, Sm . For
the non-chaotic case (Δ = π/4, δ = π/4), the Lyapunov exponent is zero and the relative
length ρn grows linearly as ρn ≈ ρ0 + n/2. As all of these pore geometries completely mix
as t → ∞, then the growth of the total length ln of the web of discontinuities follows the
same stretching process as the fluid phase.
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Figure 11. (a) Relative elongation ρ of infinitesimal material lines in (a) ordered and (b) random pore networks
where black, red, grey and blue lines and points respectively correspond to the (i) the baker’s map, (ii) chaotic,
(iii) non-chaotic and (iv) 100 realisations of random pore geometries. Points represent numerical results from
maps Sb, Sm , and lines represent stretching rates based upon the Lyapunov exponent for ordered (B1) and
random (B2) networks, except for the non-chaotic case where stretching evolves linearly as ρn = ρ0 + αn. Thin
blue lines in panel (b) represent stretching of 102 realisations of the random network and the thick blue line the
ensemble average. (c) Growth of the total length ln of the web of discontinuities with number n of pore branches
and mergers with same colour code as for panels (a) and (b). Points represent numerical results from maps
Sb, Sm , and lines represent analytic predictions based on stretching rates for chaotic (5.5) and non-chaotic
(5.6) cases. (d) Evolution of mix-norm Φ(cn) in pore networks with chaotic and (inset) non-chaotic mixing,
where points represent numerical results from maps Sb, Sm and (5.1)–(5.3), and lines represent the mix-norm
estimate (5.4) based upon pure SF motions and the Lyapunov exponent given by (B1) and (B2).

As an additional cut is added to the web of discontinuities at each iteration of the
map Λn (B10), the evolution of ln is related to the growth of the length Ln of finite
material lines with initial length L0 = 2 (corresponding to the length of the cut along
the chord yr = 0) as ln =∑n

i=0 Li . As the exponential stretching rate in chaotic pore-scale
flows is log-normally distributed (Lester et al. 2016b) with mean stretching rate λ∞ and
variance σ 2

λ , for pore geometries that admit chaotic mixing, these finite line elements grow
exponentially as Ln ≈ 2 exp(Λ∞n), where Λ∞ = λ∞ + σ 2

λ /2 and σ 2
λ is found (Lester et al.

2016 b) to be σ 2
λ ≈ 0.1144 for random networks, whereas for the ordered networks, this
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variance is negligible, σ 2
λ ≈ 0. Thus, the length ln of the web of discontinuities for pore

networks that exhibit chaotic mixing evolves with n as

ln ≈ 2
exp (Λ∞(n + 1)) − 1

exp (Λ∞) − 1
. (5.5)

Conversely, for the non-chaotic case Δ = δ = π/4, the length of line elements grows
linearly as Ln ≈ 2 + n and so the total length of the web of discontinuities grows
algebraically as

ln ≈ (n + 1)(n + 4)

2
. (5.6)

Figure 11(c) shows that for all pore geometries (i)–(iv), the growth rate of the web of
discontinuities is well approximated by these scalings, indicating that the stretching of
line elements mediates cutting and shuffling.

5.4. Interactions between continuous and discontinuous mixing
To determine how CS actions of these maps impact the mixing dynamics, we compute
the mix-norm Φ(n) for all four cases, and the results are summarised in figure 11(c). For
the chaotic mixing cases, figure 11(c) indicates that the mix-norm decays exponentially at
a rate that is half the Lyapunov exponent in (5.4), suggesting that the CS actions do not
contribute significantly to rate of mixing, but rather these are dominated by the exponential
SF dynamics. For the non-chaotic case, the mix-norm decays linearly at a rate that is
also half the growth rate α, also suggesting that mixing is governed by fluid stretching
as stretching also mediates the CS process. Although it is tempting to conclude that SF
motions dominate the mixing process, it is important to note that the estimate (5.4) of the
mix-norm only accounts for the amount of stretching experienced by fluid elements, and
does not consider whether packing of stretched material lines into a finite-sized pore is
achieved by either folding or cutting of this material.

Figure 10 clearly shows that material lines experience much more cutting (due to
strong 3-D folding) rather than weak folding (arising from the non-affine map Mn),
hence, cutting of material lines is integral to this packing process. Therefore, although
CS plays a critical role in mixing by facilitating packing of elongated material elements
into the pore-space, of the SF motions, only fluid stretching is required to achieve chaotic
mixing as weak fluid folding plays a secondary role. As such, the theoretical estimates
for the Lypaunov exponents in both ordered (B1) and random (B2) networks (which have
been validated against line stretching simulations using the spatial maps (B8)) provide an
accurate means of predicting the mixing rate in continuous porous media, and represent
useful quantitative tools for the control and optimisation of mixing in engineered porous
media. These insights into these CS and SF actions provide a complete description of the
mechanisms that govern mixing in continuous porous media.

6. Unified prediction of Lyapunov exponent
While the prediction of the Lyapunov exponent for continuous porous media is well
established (see Appendix B.2), current models (Heyman et al. 2020) for discrete porous
media rely on experimental or numerical observations. Here, we derive a novel general
formulation for the Lyapunov exponent that encompasses continuous and discrete porous
media.

1017 A13-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
47

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10477


D.R. Lester, J. Heyman, Y. Méheust and T. Le Borgne

After contact 1-2

2

δ

δ

ε

π/21

Approaching next contact 3-4

3
3

4

I

d

(a) (b)

Figure 12. Illustration of the mechanism motivating the stretching model for discrete porous media, adapted
from figure 9. (a) Immediately after a contact, the material line (black) is oriented at an angle δ from the stable
manifold (blue line) due to asymmetry of the bead pack. This leads to a cusp of initial size ε that elongates
along the unstable manifold (red line). (b) When approaching the next contact, the cusp has elongated to a
length approximately equal to the grain diameter d.

6.1. Lyapunov model in discrete porous media
In the deformation model for continuous media presented in Appendix B.2, fluid stretching
and compression transverse to longitudinal flow direction is decoupled over the pore
branch and merger. In a branch, fluid stretching (by a factor 2) in the transverse
direction parallel to the branching is fully compensated by deceleration in the longitudinal
direction, while the other transverse component is neutral. The reverse situation occurs
symmetrically in a merger.

In discrete porous media, fluid stretching and compression act in both transverse
directions (figure 9). To formulate a Lyapunov model for discrete media, we thus
assume that compression and stretching occur simultaneously and perpendicularly in the
transverse plane along the stable and unstable manifolds, respectively. Fluid deformation
from one contact point to the next in the 2-D plane transverse to the mean flow direction
is approximated by the deformation gradient tensor

F =
(

α 0
0 1/α

)
, (6.1)

where α � 1 quantifies stretching along the unstable manifold. Note that the deformation
represented by F is equivalent to the deformation D(Δ) over a couplet in the pore network
model (B9) with Δ = π/2 and α = 2. After passing the contact, the un/stable manifolds are
inverted (figure 9a.3), which is reflected by a reorientation of F of angle π/2 (transition
from figure 9a.2 to figure 9a.4). However, the presence of other beads generates an
asymmetry in the orientation of the hyperbolic manifolds upstream and downstream of the
contact point, inducing a perturbation of angle δ (figure 9a.4). Therefore, the downstream
(un)stable manifold is oriented at an angle ϕ = π/2 + δ from the upstream (un)stable
manifold. Since the material line at the contact point is aligned with the upstream unstable
manifold, it becomes oriented at an angle δ from the compression direction downstream
of the contact point as per figures 12(a) and 9(a.4).

The asymmetry that generates the perturbation angle δ also induces a small cusp of
initial size ε (figure 12a) that is amplified via compression and stretching to a fold of the
order of the grain diameter d at the following contact (figures 12(b) and 9a.5). Hence,
the deformation between the two successive contact points is given by α ≈ d/ε. The net
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deformation D2n arising from subsequent stretching events over 2n + 1 contact points may
then be represented as

D2n =
n∏

j=1

(
F · [R(ϕ) · F · R(ϕ)�

])
, (6.2)

where R(ϕ) is the rotation matrix. The eigenvalues ri of D2n are

ri =
{
ξ ±

√
ξ2 − 1

}n/2

, ξ = cos2 δ + sin2 δ

2α2

(
1 + α4

)
. (6.3)

The perturbation angle δ can be approximated from the initial cusp size ε as tan δ ≈
ε/d, hence, for small perturbation angle δ, δ ≈ tan δ and δ ≈ ε/d = 1/α. Under these
assumptions and in the limit δ → 0, the eigenvalues ri are

ri ≈
(

3 ± √
5

2

)n/2

. (6.4)

Hence, the effective stretching from one contact point to the next (n = 1) is given by
the largest eigenvalue r ≈ 1.618. If Xc is the average length of the critical line connecting
contact points (Heyman et al. 2020), then the elongation ρ over longitudinal distance X is

ρ = exp
(

X

Xc
ln(r)

)
, (6.5)

and so the dimensionless Lyapunov exponent is

λ∞ = d

Xc
ln(r), (6.6)

where d is the mean grain size. This model (6.6) can be tested against simulations of
Stokes flow through bcc sphere lattices (Turuban et al. 2018, 2019). In this system, the
Lagrangian kinematics and distance between contact points is varied by changing the mean
flow orientation θ with respect to the lattices symmetries (Turuban et al. 2019). The latter
was estimated by measuring the distance of critical lines between successive contacts,
described by an analytical model using simple geometrical principles. The prediction of
(6.6) is in relatively good agreement with the measured Lyapunov exponents λ∞ for all
angles θ using either numerical estimates or the analytical expression for Xc (figure 13).
It captures the evolution of the absolute value of the Lyapunov as a function of θ ,
while previous predictions for this system were only relative (Turuban et al. 2019). Note
that Heyman et al. (2020), who measured experimentally the Lyapunov exponent λ∞ in
random loose granular packings, linked it to a folding frequency assuming r = ln(2). The
different value of r derived here should therefore introduce a minor adjustment to the
estimated folding frequency in random packings

6.2. General formulation for the Lyapunov exponent
The models of (B1) and (6.6) for the Lyapunov exponent in continuous and discrete porous
media, respectively, can be described by the general expression

λ∞ = f ln(r), (6.7)
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Figure 13. Comparison of predicted and computed (Turuban et al. 2019) Lyapunov exponent λ∞ in BCC sphere
lattices with various flow orientations θ with respect to the lattice symmetries. The numerically computed
of Lyapunov exponents are shown as black circles. The predictions of (6.6) using the numerically measured
distance Xc and the analytical approximation Xc(θ) are shown as red squares and red dashed lines respectively.

with f the dimensionless frequency of folding events and r the average incremental stretch
at each event,

r = lim
n→∞

〈
ρn+1

ρn

〉
. (6.8)

For continuous media, the frequency f of folding events is unity, as folding occurs at every
pore branching or merging, but the magnitude of stretching r ∈ [1, 2] in (B1) varies with
the pore network parameters δ, Δ (Lester et al. 2013). Conversely, for discrete media, the
stretching increment is fixed at r = 1.618, but the frequency of contacts varies with the
average length of critical lines between contact points as f = d/Xc as per (6.6) which
can be controlled by e.g. altering the flow orientation in crystalline lattices (Turuban et al.
2018).

These distinct controls on the Lyapunov exponent λ∞ are illustrated in figure 14 over
the phase space { f, r}. For continuous media, the Lyapunov exponent can vary from zero
to the theoretical maximum ln 2 ≈ 0.6931 for continuous 3-D systems given by the baker’s
map. For discrete media λ∞ ranges from zero to approximately 0.218 based on an upper
bound of d/Xc ≈ 0.45. While the considered granular packings and pore networks shown
in figure 14 cover limited regions of the phase space { f, r}, more complex porous media,
such as rocks or hierarchical media, may have mixed continuous/discrete porous media
attributes and thus exhibit mean Lyapunov exponents that lie in between these extremes.

7. Conclusions
Despite fundamental differences in pore-scale geometry and topology, we have shown that
discrete and continuous porous media share the same basic mechanism for the generation
of chaotic mixing, leading to a unified description of pore-scale mixing in continuous and
discrete porous media. The topological complexity inherent to all porous media generates
exponential fluid deformation at critical points in the fluid/solid boundary that propagates
into the fluid interior. This stretching manifests as 2-D hyperbolic un/stable manifolds that
form a transverse heteroclinic connection in all but highly symmetric cases, generating
fluid stretching and folding and chaotic mixing.
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Figure 14. Distribution of Lypapunov exponents λ∞ predicted from unified theory (6.7) as a function of
dimensionless folding frequency f and net incremental stretching r . The Lyapunov exponent for granular
packings and pore networks are located on the black and red lines, respectively, and random loose granular
packing and the random pore network are indicated by a grey and orange dots, respectively.

In § 2, continuous and discrete porous media were shown to be topologically equivalent
by considering continuous porous media as discrete porous media with finite-sized
connections between grains. Although this topological equivalence involves inversion of
the fluid and solid phases, this does not impact chaotic mixing because it is generated by
the total negative Gaussian curvature K of the fluid–solid boundary δΩ in both classes
of media. These media do however differ in that δΩ in continuous media has mostly an
overall negative curvature and so admits saddle points, whereas discrete media has mostly
positive curvature with node points, except at cusp-shaped contacts which have divergent
negative curvature. This difference has significant implications for generation of chaotic
mixing as saddle points inherently generate chaotic mixing, whereas node and contact
points alone do not.

In § 3, both classes of media were shown to exhibit similar fluid stretching dynamics,
controlled by interior stable and unstable 2-D manifolds that intersect transversely along
1-D critical lines that connect with boundary saddle points (continuous media) or contact
points (discrete media). It was also established, contrary to prior understanding (Turuban
et al. 2019), that while contact points between grains in discrete media are degenerate
(in that the local velocity gradient tensor has a zero eigenvalue), in concert with
node points, they can still generate hyperbolic 2-D manifolds and chaotic mixing. This
establishes that chaotic mixing is ubiquitous in discrete porous media as contact points are
inherent to these materials.

The mechanisms that drive fluid folding in both discrete and continuous porous media
were uncovered in § 4. For discrete porous media, hold-up of fluid at contact points
generates strong folding during advection, which manifests as weak folding transverse
to the mean flow direction due to symmetry breaking. This weak folding is then amplified
by fluid stretching and compression, leading to the formation of highly striated material
distributions. For continuous porous media, strong folding is generated by fluid hold-up at
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critical lines in pore branches. Although fluid mixing is continuous in the 3-D pore space,
when projected to downstream 2-D planes transverse to the mean flow, this hold-up and
strong folding manifests as discontinuous mixing, which is explored in § 5. Weak folding
also occurs in continuous media due to advection over pore branches and mergers, which
is also amplified by stretching and compression to form striated fluid distributions.

The impacts of discontinuous mixing due to fluid hold-up at pore branches in continuous
media were considered in § 5. Although similar hold-up occurs in discrete porous media
at contact points, their infinitesimal size means that they do not generate finite-sized
discontinuities. Fluid elements in continuous media undergo both continuous (SF) and
discontinuous (CS) actions , which may be summarised as ‘cut-stretch-fold-rotate’ in pore
branches and ‘compress-fold-glue-rotate’ in pore mergers, leading to generation of a web
of discontinuities along which cutting and shuffling occur. For systems that undergo CS
only, complete mixing occurs if this web becomes space filling. We show that growth of the
web of discontinuities can be accurately predicted by fluid stretching models, and highly
stretched fluid elements are predominantly packed into finite-sized pores by CS rather
than folding. As CS is mediated by SF, evolution of the mix-norm measure (Mathew et al.
2005) in continuous media is accurately predicted by estimates (5.4) based solely on the
Lyapunov exponent.

In § 6, a generalised model for the dimensionless Lyapunov exponent in discrete porous
media was presented. This model (6.6) encodes the fluid stretching mechanisms uncovered
in § 3, and agrees well with numerical and experimental observations. Consequently, a
unified model for the dimensionless Lyapunov exponent in both discrete and continuous
porous media was also developed, which comprises the product of the magnitude of
stretching increments r and their dimensionless frequency f . For continuous media, the
frequency is unity, but the stretching increment varies due to the orientation of the pore
branches and mergers in the network. Conversely, for discrete media, the stretching incre-
ment over a contact is fixed, but the frequency varies with the length of critical lines that
connect contact points. These specific models cover a limited range of the parameter space
{ f, r}, whereas more complex media such as heterogeneous materials may span this space.

As such, the Lyapunov exponent can be used to quantify mixing in all porous media
(figure 14) and provide a basis for optimisation of mixing and transport in engineered
porous materials. Thus, predictive theories (Lester et al. 2013; Heyman et al. 2020) for
the Lyapunov exponent play an important role in understanding and quantifying mixing
in porous media, and recently developed characterisation techniques (Heyman et al. 2021)
facilitate measurement of the Lyapunov exponent for a broad range of porous materials.
In conjunction with previous studies (Lester et al. 2013, 2016b; Kree & Villermaux 2017;
Turuban et al. 2018, 2019; Heyman et al. 2020; Souzy et al. 2020), these insights provide
a complete description of the mechanisms that govern mixing in porous media, and so
facilitate the development of improved theories of a wide range of physical, chemical and
biological fluid-borne phenomena in porous media.

This study points towards fertile research directions involving experimental or
computational methods. Although several experimental studies (Kree & Villermaux 2017;
Heyman et al. 2020; Souzy et al. 2020; 2021) have focused on chaotic advection in
discrete porous media, only limited experimental studies Lester & Chryss (2019) have
examined mixing in continuous porous media. Examination of discontinuous mixing in
these networks is an open problem, including verification of the mechanisms posited in
this study. The extension to examine chaotic mixing in both continuous and discrete non-
ideal porous media is an open question. Aside from the study of Heyman et al. (2021),
no other known studies have resolved chaotic mixing in non-ideal porous materials, hence,
the impacts of features such as surface roughness, grain/pore size and shape distributions
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upon chaotic mixing are an open research topic. The results in this study also point to the
exploration of novel porous architectures with tuneable mixing and transport properties.
With the advent of rapid prototyping, the parameters controlling the mixing efficiency, as
summarised in figure 14, could be optimised to develop and experimentally test pore-scale
architectures with optimised transport properties for a variety of applications.
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Appendix A. Critical point classification
The four different types of non-degenerate critical points x p on the pore boundary ∂Ω

depicted in figure 3 are:

(i) separation point η3 > 0, attractor for u(x), η1 < 0, η2 < 0;
(ii) reattachment point η3 < 0, repeller for u(x), η1 > 0, η2 > 0;

(iii) separation point η3 > 0, saddle for u(x), η1 < 0, η2 > 0;
(iv) reattachment point η3 < 0, saddle for u(x), η1 < 0, η2 > 0.

Types (i) and (ii) critical points are node points, whereas types (iii) and (iv) critical
points form saddle points. If, subject to technical conditions, the critical points are strongly
hyperbolic (Surana, Grunberg & Haller 2006), the eigenvector directions indicated in
figure 3 impart local exponential stretching of the fluid which persists away from the
critical points as a continuation of these eigenvectors in the form of 1-D or 2-D stable
Ws and unstable Wu hyperbolic manifolds. Hence, the stable and unstable manifolds
from types (iii) and (iv) saddle points represent material surfaces that are respectively
exponentially contracting or expanding in the fluid bulk. In addition, there also exist two
types of degenerate critical points that arise at contact points:

(i) degenerate separation point η3 > 0, attractor for u(x), η1 < 0, η2 = 0;
(ii) degenerate reattachment point η3 < 0, repeller for u(x), η1 > 0, η2 = 0.

Although these points are degenerate with respect to the η2 eigenvalue, they still exhibit
exponential stretching/contraction in the η1 and η3 directions, as discussed in § 3.2.

Appendix B. Fluid advection and stretching in porous networks

B.1. Advective mapping in continuous porous media
As indicated by the angle θ ≡ Δ − δ in figure 4, the 2-D stable and unstable manifolds
emanating from the saddle points may either intersect smoothly (θ = 0) or transversely
(θ �= 0), leading respectively to either zero net stretching or chaotic mixing. In Appendix B,
we show how simple but accurate maps of advective mixing in the pore branch and merger
can be generated, leading to accurate predictions of fluid stretching in pore networks, as
quantified by the dimensionless (infinite-time) Lyapunov exponent λ∞ ≡ λ̂∞
/〈v1〉, where
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 the characteristic length scale of the medium (such as the length of a pore branch/merger)
and 〈v1〉 is the mean longitudinal velocity. The expression for λ∞ in ordered porous media
with fixed δ, Δ is then

λ∞(δ, Δ) = ln
∣∣∣ξ +

√
ξ2 − 1

∣∣∣, ξ = 9
8

cos δ − 1
8

cos(2Δ + δ), (B1)

where λ∞ = 0 for |ξ |� 1, and maximum deformation (λ∞ = ln 2) occurs for Δ = (n +
1/2)π , δ = nπ , n = 0, 1, . . .. Chaotic mixing also occurs in random porous networks
with uniformly distributed reorientation angles (Δ, δ ∼ U [0, 2π]), where the Lyapunov
exponent is given by the ensemble average

λ̄∞ ≡ 1
4π2

∫ 2π

0

∫ 2π

0
λ∞(δ, Δ) dδ dΔ ≈ 0.1178, (B2)

which agrees very well with direct numerical simulations (Lester et al. 2013). Although the
mechanisms that generate such exponential stretching in continuous porous media are now
well understood, there exist much that is unknown regarding porous media more broadly,
as summarised in questions (i–vi) which are addressed in the following sections.

This basic mechanism of fluid stretching has been used to develop a simple yet
remarkably accurate model of advection in pore networks. Numerical simulations (Lester
et al. 2014b, 2016a) of Stokes flow through the pore branch shown in figure 4(a) have
shown that particle advection from a pore branch inlet to either outlet is well-approximated
by the dimensionless spatial map M=Mn ◦Ma ,

M : (xr , yr ) �→
⎧⎨
⎩
(

xr , 2yr −√1 − x2
r

)
if yr > 0,(

xr , 2yr +√1 − x2
r

)
if yr � 0,

(B3)

which comprises affine Ma and non-affine Mn parts

Ma : (xr , yr ) �→ (xr , 2yr ) , (B4)

Mn : (xr , yr ) �→
⎧⎨
⎩
(

xr , yr −√1 − x2
r

)
if yr > 0,(

xr , yr +√1 − x2
r

)
if yr � 0,

(B5)

where (xr , yr ) are the local transverse coordinates within a pore branch inlet or outlet, such
that x2

r + y2
r = 0, 1 respectively correspond to the pore centre and boundary. Note these

maps are not area preserving due to 3-D effects, but the composite is area preserving.
The inverse spatial map M−1 =M−1

a ◦M−1
n accurately approximates advection of fluid

particles over a pore merger and the temporal T ∗ map also accurately approximates the
advection time t of fluid particles over a pore branch as

T ∗ = T (M), T : t �→ t + 1
1 − x2

r − y2
r
, (B6)

whereas the inverse temporal map T (M−1) approximates advection of fluid particles over
a pore merger. These maps may be extended to pore branches and mergers with respective
orientations ϕb, ϕm in the xr−yr plane via the reoriented spatial maps

Sb(ϕb) = R(ϕb) ◦M ◦ R−1(ϕb), (B7)

Sm(ϕm) = R(ϕm) ◦M−1 ◦ R−1(ϕm), (B8)
where R is the rotation operator about the pore centre. The reorientation angle Δ between
the pore branch and merger in figure 4 is Δ ≡ ϕm − ϕb. Rapid advection of fluid particles
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in ordered and random model porous networks is performed via the map S over a coupled
pore branch and merger (termed a couplet)

S = Sb(ϕb) ◦ Sm(ϕm) = R(ϕb) ◦D(Δ) ◦ R−1(ϕb), (B9)

where D(Δ) =M ◦ R(Δ) ◦M−1 ◦ R−1(Δ). For a series of n concatenated couplets, the
composite map Λn is then

Λn =R(ϕb,n) ◦
⎛
⎝ n∏

j=1

L
(
δ j , Δ j

)⎞⎠ ◦ R−1(ϕb,n), (B10)

where L(δ, Δ) ≡ R(δ) ◦D(Δ) and δ is the angle between couplets: δ j = ϕb, j+1 − ϕb, j for
j = 1 : n − 1 and δn = ϕb,1 − ϕb,n . Previous studies (Lester et al. 2014a,b) have considered
both random pore networks with a uniform distribution of the reorientation angles δ j ∼
U [0, 2π ], Δ j ∼ U [0, 2π] and ordered pore networks with deterministic sequences of
angles δ j , Δ j . Examples of application of these maps to simulate mixing in both ordered
and random pore networks is shown in figure 10.

B.2. Lyapunov models in continuous porous media
These advective maps can also generate accurate predictions of the fluid stretching in
continuous porous media, as quantified by the dimensionless (infinite-time) Lyapunov
exponent λ∞. Linearisation of M in (B10) yields (Lester et al. 2013) the expression
(B1). Hence, ordered 3-D porous networks represent extreme cases with respect to fluid
stretching and deformation. As shown in figure 10, while a large class (|ξ |� 1) of ordered
media do not exhibit chaotic advection (λ∞ = 0), some ordered networks exhibit maximal
stretching (λ∞ = ln 2 ) associated with the baker’s map. For random porous networks,
the Lyapunov exponent is given by (B2). For such random pore networks, persistent fluid
stretching arises because material lines undergoing stretching rotate towards the stretching
direction which amplifies stretching, whereas material lines undergoing contraction rotate
away from the contracting direction, retarding contraction. The Lyapunov exponent λ̄∞ ≈
0.1178 is thus a manifestation of the asymmetry between these stretching and contraction
processes.

Appendix C. Impact of pore boundary geometry on critical points
The different geometry of smoothed discrete and continuous porous media is reflected by
the distribution of local Gaussian curvature K = κ1κ2 (where κ1 = 1/r2, κ2 = 1/r2 are the
principal (maximum and minimum) local curvatures with corresponding radii r1, r2) over
the surfaces shown in figure 5. The Gaussian curvature K of a plane and a cylinder is zero
(as at least one of the principal curvatures is zero), but is positive for a sphere and negative
for a hyperbolic surface such as a saddle. However, as these fundamental elements share
the same topology, their total curvature is equivalent, as reflected by the Gauss–Bonnet
theorem, ∫

δΩ

K dA +
∫

δδΩ

kg ds = 2π χ(δΩ) = −4π, (C1)

where kg is the geodesic curvature of the 1-D boundary δδΩ . For the pore branch/merger
(figure 5c) and the smoothed grain (figure 5b), the net contribution of δδΩ to (C1) is
zero due to periodicity, but for the discrete grain (figure 5a), the boundary δΩ terminates
at the contact points xc, hence, there is a contribution of angle −2π to (C1) at each
contact point (Grinfeld 2013) due to the cusp-shaped angle π formed with each contacting
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sphere. As the spherical discrete grain in figure 5(a) has uniform Gaussian curvature
K = 1/r2, the first integral in (C1) is 4π , whereas the second integral is −8π . Thus,
whilst the discrete grains have positive curvature, grain contacts act as infinitesimal regions
of infinite negative curvature, giving total negative curvature of −4π . The smoothed
grain shown in figure 5(c) shows the finite contact regions have finite negative curvature,
which yields the total negative curvature of −4π . Conversely, the branch/merger shown in
figure 5(a) has predominantly negative or zero curvature.

Although the total curvature of these elements is preserved as per (C1), the distribution
of Gaussian curvature K impacts the number and type of critical points as saddle (node)
points tend to arise in negative (positive) curvature regions. Hence, saddle points arise
in continuous porous media near pore branch/merger junctions, whereas smoothed grains
admit node points on the grain surface and saddle points near contact points.

Thus, the simplest arrangement of critical points for the branch/merger shown in
figure 5(a) involves two saddle points xs

p near the pore junctions, satisfying (2.3) as∑
γp(xs

p) = −ns = χ(δΩ). Conversely, the simplest arrangement of critical points for the
grain with smoothed connections shown in figure 5(c) involves two node points xn

p on the
grain surface and two saddle points xs

p per contact (ns = 4 once periodicity of contacts
is accounted for), satisfying (2.3) as

∑
γp(xs

p) = nc − ns = χ(δΩ). Therefore, despite
topological equivalence, the different geometry of smoothed discrete porous media can
generate different types of critical points than continuous porous media.
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