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The elliptic Hall algebra, Cherednik Hecke
algebras and Macdonald polynomials

O. Schiffmann and E. Vasserot

ABSTRACT

We exhibit a strong link between the Hall algebra Hx of an elliptic curve X defined
over a finite field [F; (or, more precisely, its spherical subalgebra U}) and Cherednik’s
double affine Hecke algebras H,, of type GL,, for all n. This allows us to obtain a
geometric construction of the Macdonald polynomials Py(g,¢~!) in terms of certain
functions (Eisenstein series) on the moduli space of semistable vector bundles on the
elliptic curve X.

Introduction

The spherical affine Hecke algebra SH¢ of a reductive algebraic group G is the convolution
algebra of G(O)-invariant functions on the affine Grassmannian Gr= G(K)/G(0O), where
K=TF;((z)) and O =TF[[z]]; see [IM65]. The Satake isomorphism identifies SHg with the
representation ring Rep(G*(C)) of the dual group of G. Now let us assume that G = G* = GL,,
so that the set of F;-points of Gr is equal to

{L CF}((2)): L is a free Fi[[z]]-module of rank n}

and Rep(G) ~ C[z!, ..., 2:71]%» In [Lus81], the nilpotent cones Ny C gly, k > 1, were embedded
into the positive Schubert variety

Gr' = {L C F[[z]] : L is a free F;[[z]]-module of rank n}
of Gr. This yields a surjective algebra homomorphism
@:L_ tHo = @ (CGLk [Nk] - SH: = C[vil][xb s 7xn]6n; (01)
k=0

see [Mac95, ch. II] or [Lus81]. Here, Hy, is the classical Hall algebra and v =1~1/2. Since the
dependence on v is polynomial, we may treat v as a formal parameter. Letting n tend to infinity
in (0.1) yields an isomorphism in the stable limit,

0L :Hy = SHE = Cvt[zy, za, .. .. (0.2)

The first main result of this paper gives affine versions of (0.1) and (0.2). In [BS05] it was
found that the Hall algebra H x of the category of coherent sheaves on an elliptic curve X defined
over [F; contains a natural ‘spherical’ subalgebra U} which is a two-parameter deformation of
the ring of diagonal invariants,

+ +1 +116,
Rn_(c[xlw"?xn’yl 7"'ayn] ;
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where &, acts simultaneously on the z-variables and the y-variables. The two deformation
parameters are the Frobenius eigenvalues o and @ of H'(X,Q,) (viewed as complex numbers).
The dependence on ¢ and @ is polynomial, so we may treat these as formal variables.

Let H,, denote Cherednik’s double affine Hecke algebra of type GLy,, and let SH, =S - H,, - S
stand for its spherical subalgebra. Here“S is the complete idempotent associated to the finite
Hecke algebra H,, C H,,. The algebra SH,, is a deformation of the ring

+1 +1 | +1 +116,
R,=Clzy, ...,y U

that depends on two parameters ¢ and q. Let SI:I:Lr be the positive part of SH,,; see §2.1. In
Theorem 3.1 we prove the following result.

THEOREM. If 0 =q ! and G=t"', then for any n there exists a surjective algebra

homomorphism ®;! : U} —» SI:I;r . This map extends to a surjective algebra homomorphism
®,: Uy := DU} — SH,,.

Here DU, is the Drinfeld double of U%. It is equipped with an action of SL(2, Z) that comes
from the group of derived autoequivalences of D’(Coh(X)). Cherednik has defined an action of
SLy(Z) on SH,,; see [Che04, Ton03]. The map ®,, is defined so as to intertwine these two actions.
The maps @, behave well with respect to the stable limit, according to Theorem 4.6.

THEOREM. The maps ®, induce an algebra isomorphism
®% : U} = SHY =lim SH;'.

One of the essential features of the construction of the spherical affine Hecke algebras as
convolution algebras of functions (on the affine Grassmannian or on the nilpotent cones) is
that it lifts to a tensor category of perverse sheaves (see, for example, [Gin95, MV00]). Such a
geometric lift also makes sense here, and fits into Laumon’s theory of automorphic sheaves. We
refer to [Sch05] and § 4.3 for more details.

In the second part of this paper, we give an application of the above geometric construction
of SH,, to Macdonald polynomials.

The Hall algebra H{¢ of the category of vector bundles on X (or on any smooth projective
curve) can be viewed as the algebra of (unramified) automorphic forms for GL,,, for alln > 1, over
the function field of X. The product is given by the functor of parabolic induction; see [Kap97]. To
obtain the whole Hall algebra H x, one needs to take into account the torsion sheaves as well. The
Hall algebra H'%" of the category of torsion sheaves on X acts on HYC by the adjoint action,
and Hy is isomorphic to the semidirect product H$® x HY". The actions of torsion sheaves
can be interpreted in the language of automorphic forms as Hecke operators. For instance, the
skyscraper sheaf O, at a point x € X corresponds to the elementary modification at x.

Under the map @1, the element 1) € U responsible for the Hecke operator of rank
one is sent to Macdonald’s element Ay =S, Y;S € SHL; see §2. The importance of this

007
element stems from the fact that in the polynomial representation of SfI;LO, the operator Aq
has distinct eigenvalues and the corresponding eigenvectors are the Macdonald polynomials
Py(q,t™1). Thus the map @1, allows us to relate Hecke eigenvectors on the Hall or automorphic
side to Macdonald polynomials on the Hecke algebra side. In particular, we are naturally led to

find Hecke eigenvectors in U} whose eigenvalues match those of the Py (g, t71).

Eisenstein series yield a way of producing new Hecke eigenvectors from old ones via parabolic
induction. In the present situation, it so happens that the simplest Eisenstein series, i.e. those
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induced from trivial characters of parabolic subgroups, already have the good eigenvalues under
the Hecke operator. Unfortunately, we are unable to construct the polynomial representation
of SHY in a geometric manner (see the remark in §5.1), and thus we cannot obtain directly a
geometric construction of Py (g, t~'). To remedy this, we lift the Macdonald polynomials from the
polynomial representation and view them inside the Hecke (or Hall) algebra itself. More precisely,
it has been shown in [BS05] that the subalgebra of U} consisting of functions supported on the
set Coh(X)(©) of semistable sheaves of zero slope is canonically isomorphic to the algebra
+1/2 —+1/2 Soo
A(Uo)fC[ 12 GHY 2y, @y, .. ).
In short, under the Fourier-Mukai transform the set Coh(X)(©) is identified with the set of torsion
sheaves on X, and any function on the set of torsion sheaves with a fixed punctual support in X
can be viewed as an element of the classical Hall algebra; see [Pol03, Theorem 14.7] for details.
If f is any function in UYL, we let f () denote its restriction to Coh(X)®, viewed as an element
of AE;E). For any [ € NT, put
)=> 1gav V2 e TULlz, 271 (0.3)
dez

with v = (o) ~1/? =#F, 1/2 , where 1(; 4y denotes the characteristic function of the set of all

coherent sheaves on X of rank [ and degree d and UX is a certain completion of U}L(. For

(l1,...,1,) € N" we form the Eisenstein series
Ei 0. (21, 0 20) = By (21) - By (22) - By, (20) € ULl 2 ) (0.4)
By a theorem of Harder, this is a rational function in zi,...,z,. Our second main result

(Theorem 7.1) reads as follows.

THEOREM. Let (I1,...,l,) €N". We have E;, _; (2,02,...,0" 12)=0 unless (l1,...,1,) is
dominant, i.e. unless (l1, . ..,1l,) is a partition, in which case

E, . 1.(z0z2..., J”_lz)(o) =wPy (o1, 0%
where A= (l1,...,l,) is the conjugate partition and w stands for the standard involution on

symmetric functions.

We give a similar construction of skew Macdonald polynomials Py /M(afl, v?). Note that the
above Eisenstein series can be lifted to some constructible sheaves via the theory of Eisenstein
sheaves; see [Lau90, Sch05]. Hence the Macdonald polynomials Py (0!, v?) may be realized as
Frobenius traces of certain canonical constructible sheaves on the moduli stack of semistable
sheaves of zero slope on X. We hope to come back to this point in the future.

There is a well-known and important geometric approach to Macdonald polynomials, based
on the equivariant K-theory of the Hilbert schemes Hilb,(C?) of points on C2. There the
polynomials Py(g,t~!) are realized as the classes of certain canonical coherent sheaves on
Hilb,,(C?); see [Hai02]. In [SV09] we related this ‘coherent sheaf’ picture to our ‘constructible
functions’ (or ‘perverse sheaf’) picture in the framework of Beilinson and Drinfeld’s geometric
Langlands duality for local systems on X in the formal neighborhood of the trivial local system.

The structure of this paper is as follows. Sections 1 and 2 recall some facts about the
elliptic Hall algebras Hy and U7, taken from [BS05], and the Cherednik double affine Hecke
algebras H, and SH,. In §3 we construct the surjective algebra morphism ®,, DUJr — SH,,,
and in §4 we study the stable limit SH;F<> of the spherical Cherednik algebra and estabhsh the
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isomorphism &7 : U} = SHZ; this is the first main result of the paper. A table that compares
the classical Hall algebra with the ‘finite’ spherical affine Hecke algebra is given in §4.3. Section 5
deals with Macdonald polynomials: we recall their definition and provide a characterization of the
family of all (possibly skew) Macdonald polynomials that will be used later. In § 6 we introduce
the Eisenstein series of relevance to this paper, and study some of their specializations. Finally,
our second main theorem, which gives a geometric construction of (possibly skew) Macdonald
polynomials from Eisenstein series, is given in §7. Several of the proofs in this paper require
lengthy computations; the details of these are presented in Appendix A to Appendix D.

Let us give a word of warning concerning notation. There is an unfortunate clash between
the conventional notation used in the quantum group or Hall algebra literature and that used
in the Macdonald polynomials literature: q generally denotes the size of the finite field in the
former case, whereas it is the modular parameter in the latter case. We have opted to comply
with the conventions of the Macdonald polynomials literature.

1. The elliptic Hall algebra

1.1 We will use the standard v-integers and v-factorials

a vl — vt , .
[Z] = [Z]U = m and [Z]' = [2] e I:Z}
as well as some positive and negative variants:

02— -2 _
L=t =, [T =2 ]

At
] o2 -1 v=2 -1’7

Let us denote by A;f Macdonald’s ring of symmetric functions,
A =ClotY[zy, zo, . . |5,

defined over C[v*1]; see [Mac95]. We will denote by ey, py and m, the elementary, the power-sum
and the monomial symmetric functions, respectively. The ring A} is equipped with a natural
bialgebra structure A : A7 — Af @ A} defined by A(p,) =p, @ 1+ 1® p, for r > 1.

We will often use notation relating to various subsets of Z?. We write Z = Z? and set
Zt={(r,d)€Z|r>00rr=0,d>0}, Z =-Z,
Z'" ={(r,d)[r=0,d>01\{(0,0)}, Z"=2Z\{(0,0)}.

1.2 Let X be a smooth elliptic curve over some finite field F;, and let Coh(X) stand for the
category of coherent sheaves on X. If F' is a sheaf in Coh(X), we call the pair F' = (tk(F), deg(F))
the class of F. The set of all possible classes of sheaves in Coh(X) is equal to Z™. We briefly
recall the definition of the Hall algebra of Coh(X); see [BS05] for further details.

Let Z(X) stand for the set of isomorphism classes of objects in Coh(X). Following [Rin90],
the C-vector space

Hx = {f:Z(X) — C: [supp(f)| < oo}

of finitely supported functions can be equipped with the convolution product

(f-g)(M)= Y o MNN p(M/N)g(N),

NCM
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where v =1"1/2 and
(P, Q) = dim Hom(P, Q) — dim Ext(P, Q)

is the Euler form. Here we write Ext(P, Q) for Ext!(P, Q). The sum on the right-hand side is
finite for any M because f and g have finite support and, for any N, M € Coh(X), the
group Hom (N, M) is finite. The above formula indeed defines an element in Hy, as for any
P, @ € Coh(X) the group Ext(P, Q) is also finite. By the Riemann—Roch theorem, we have

(P, Q) = 1k(P) deg(Q) — deg(P)rk(Q). (L.1)

By [Gre95], the algebra Hx also has the structure of a bialgebra, with coproduct

(P
(ADNPQ) = Frp i @;PQ) F(Me)

where M is the extension of P by () corresponding to . The product and coproduct are related
by the pairing

HX®HX—>(C5 a Z |Aut )

which is a Hopf pairing, i.e. it satisfies the identity (fg, h)e = (f ® g, A(h))q for any f, g and h.
Remarks.
(i) In our situation, as opposed to [Gre95], it is not necessary to twist the product in Hxy @ Hx
in order to obtain a bialgebra, because the Euler form () is antisymmetric.

(ii) The coproduct A only takes values in a certain formal completion of Hx ® Hx; see [BS05,
§2.2] for details.

The characteristic functions {1p/: M € Z(X)} form a basis for Hy. Assigning to the
element 1;; the degree (rk(M), deg(M)) yields a Z-grading on Hx that is compatible with
the (co)multiplication.

1.3 Let u(M) =deg(M)/rk(M) € QU {oco} be the slope of a sheaf M € Coh(X), and for p €
QU {oo} let C,, stand for the category of semistable sheaves of slope p. For instance, C is the
category of torsion sheaves on X. The following fundamental result on the structure of Coh(X)
is due to Atiyah.

THEOREM 1.1 [Ati57].

(i) For any u and i/, there is an equivalence of abelian categories €, v : Cy = Cp,.

(ii) Any coherent sheaf F decomposes uniquely as a direct sum F = Fy @ - - - ® Fs of semistable
sheaves F; € C,, with g <--- < fis.

By a standard property of semistable sheaves, we have Hom(C,,C,/)= {0} for pu> /.
By Serre duality, this implies that Ext(C,,C,)= {0} whenever p > y'. Hence any extension
0—F—G—H—0with 7€, and H € Cy is split. From the above two facts, it follows that
in Hx we have

Ly 1p=v 1 py (1.2)
if FeCu, HeCyp and p> 1.
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For pe QU {oo}, let Hg’;) stand for the subspace consisting of functions supported on the

set of semistable sheaves of slope . Since C, is stable under extensions, Hg?) is a subalgebra

of Hx. By Theorem 1.1(i), all these subalgebras are isomorphic. Let ® qu’;) denote the ordered

tensor product of spaces Hg?) with p € QU {oo}, i.e. the vector space spanned by elements of

the form a,, ® - - - ® a,, with a,, € Hg’(”) and p1 <--- < . From (1.2) and Theorem 1.1(ii) we
deduce the following; see [BS05, Lemma 2.6].

COROLLARY 1.2. The multiplication map is an isomorphism of vector spaces ® MHS‘;) S Hy.

1.4 We will mainly be interested in a certain subalgebra U} C Hx, which we now define. For
any class a € ZT we set

1= ) 1peHy.

f:a;FECu(Q)

The above sum is finite. Indeed, by Theorem 1.1(i), it is enough to check this for u(a) = oo, in
which case finiteness of the sum follows from the fact that there are only finitely many closed
points on X which are rational over a fixed finite extension of F;. Let U} be the subalgebra
generated by 1%, o € Z*. It will be useful to consider a different set of generators T, of U7,
uniquely determined by the collection of formal relations

14> 155s' =exp <Z 7&“4) (1.3)

>1 >1

for any o = (r, d) with r and d relatively prime.

To a slope u € QU {oo} we can naturally associate the subalgebra Ug’;) C UJ{( generated by

{1%%: () = pu}. Of course, Ug’;) C Hg’(‘).
PRrROPOSITION 1.3 [BS05, Theorem 4.5].

(i) The multiplication map induces an isomorphism ® #Ugg) = U}.
(ii) For any x=(r,d) € Z" with r and d relatively prime, the assignment Ty /[l] — p;/!

extends to an isomorphism of algebras Ug‘;(x)) = (A})jy=v- In particular, Ug’;(x)) is a free

commutative polynomial algebra in the generators {Tjx : 1 > 1}.

1.5 We now wish to give a presentation of U} by generators and relations. In fact, we will give
such a presentation for the Drinfeld double of U;E, which is a more symmetric object. We will

use Sweedler’s notation for the coproduct of an element and write A(z) =", mgl) ® 5652). Recall
that if H is a bialgebra equipped with a Hopf pairing ( , ), then its Drinfeld double is the algebra
generated by two copies HT and H~ of H subject to the collection of relations

1), —\(2),,(2) (@ —\(1 2),, (1) (2
SO0 g = (g NP Y, o). (L4)
1,5 1]
Here g and h range over all elements of H, and we write h™ and g~ for the corresponding
elements of HT and H~, respectively.

By [BS05, Theorem 4.5], the algebra U} is a subbialgebra of Hx, and we denote by Ux its
Drinfeld double.
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For x,y € Z*, let Axy stand for the triangle with vertices o, x and x +y, where o= (0, 0)
denotes the origin in Z. If x = (r, d) € Z*, we write d(x) = gcd(r, d). For a pair of non-collinear
vectors (X,y) € Z*, we set exy to be sign(det(x,y)).

Let R=C[o*"/2,5%/2] and K = C(c!/2,5'/2), where o and & are now treated as formal
variables.

DEFINITION. For i € N, put o; = a;(0,7) = (1 — 0*)(1 — 7)(1 — (05) ") /i € R. Let £k be the
unital K-algebra generated by elements uy, x € Z*, subject to the following set of relations.
(i) If x and x’ belong to the same line in Z, then [ux, ux/] = 0.

(ii) Assume that x and y are such that d(x) =1 and Ay y has no interior lattice point; then

Oty
aq

[ty ux] = exy

where the elements 6,, z € Z, are obtained by equating the Fourier coefficients of the

collection of relations
E Oix,s' = exp< g Qilix s’> ,
i i>1

for any x¢ € Z such that d(x¢) = 1.
The algebra £k is Z-graded by deg(ux) = x. Put

1 . ) . .
Uy = ;(0.—1/2 o 0'2/2)(5_7'/2 _ 51/2)UX

and let £g be the unital R-subalgebra of £k generated by {ux : x € Z*}. We will write £ ;E{ for the
subalgebra of Er generated by {ux :x € £Z7}. By [BS05, Proposition 5.1], the multiplication
yields an isomorphism £z ®r € 1'{ ~ER.Let £ EJF be the subalgebra generated by {ix : x € Z1T}.
We have weight decompositions

Eh=EP eilxl, &iF = P ELTx.
xeZt XEZ++

The algebra £r has an obvious symmetry: the group SLa(Z) acts by automorphisms such that

g - lix = lg(x). To aslope u € QU {oo} is naturally associated the subalgebra 8%) C SE generated

by {tq : p(a) = p}. The group SLa(Z) permutes these subalgebras.

Let o and @ be the two eigenvalues of the Frobenius endomorphism acting on the vector space
HY(X ®TF, @p), with p prime to [. We shall fix once and for all a field isomorphism C :@p.
This allows us to view ¢ and & as complex numbers. Let £ x stand for the specialization of Er
at these values of ¢ and @. Observe that

0T =#F=v"2 #XEFp)=1—-0")(1-7"). (1.5)
THEOREM 1.4 [BS05, Theorem 5.4]. For x € Z*, the assignment iy — Tx/[deg(x)] extends to
an isomorphism € x = Ux. It restricts to an isomorphism 8} = U}.
2. Double affine Hecke algebras

2.1 We set R/ = C[t*/2, ¢¥1/2] and K’ = C(t'/2, ¢/?). The double affine Hecke algebra H,, of
GL,,, abbreviated DAHA, is the K’-algebra generated by the elements Tiil, X;El and inl,
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with 1 <i<n—1and 1<j<n, subject to the following relations:

(T; +tV2)(T; =tV =0, TTTi =Ty LT, (2.
XjXp =X X5, Y;Yp=YiY], (

TX,T, = Xiv1, T7'YT7 =Y, (2.

T; X, =X, T; and T;Y, =Y, T, if ‘Z—k‘| > 1, (
YiXq-- Xy =qX1 - X070, (2.

XY = Yo X M2 (2.

NN NN NN N
\]olmﬂkwl\p?—‘
—_ D T — D o —

The subalgebra H,, generated by {T;} is the usual Hecke algebra of the symmetric group
G,,, while the subalgebra Hn .x, generated by H, and {Xil} and the subalgebra Hny,
generated by H,, and {Yil} are both isomorphic to the Hecke algebra of the affine Weyl group
S, ~ &, x Z". We define a Z-grading on H,, by giving 7}, X; and Y; degrees 0, (1,0) and (0, 1),
respectively. We will make use of the subalgebra H; + of H,, generated by the elements T}, X j
and Y.

Let s; € G, denote the transposition (i,7+ 1), and let [: &, — N be the standard length

function. If w = sll -+ 8, is a reduced decomposition of we &,, weset T, =Tj, - . and put
S = Y e /2T We have 52 = [n];!5, so the element S = S/[n]; ! is 1dempotent Here,
tn/2 _ t—n/2 M1 1—¢ "
— + - _
[n]t—ma [n]; T -1 [n]; 141
and [n]f! = [1]F - - - [n]f. For any i we have T;S = ST; =t~'/25.

We will mainly be interested in the spherical DAHA of ﬂn, which is SH,, = SH,,S. We also
write SHIt = SH!+S. Before we can give bases for SH,,, we need some more notation. Let R,
denote the algebra

+1 +1 :I:lGn
C[xlﬁ"' n7y17‘ yn]

Here the symmetric group &,, acts by simultaneous permutation on the xz; and y;.
There is an action of the braid group Bj3 on three strands by automorphisms on fIn, which

is explicitly given by the following operators:

Ty — 15,

p1:4 Xi— XoYi(Tich - - - T)(T; - - - Tia),
Y Vi,
Ty — 15,
p2: QY = YViXy(TZh - T (T T2,

These operators preserve SHn, and the corresponding Bs-action factors through an SLy(Z)-
action p: SL2(Z) — Aut(SH,,) which satisfies p(A1) = p1 and p(A2) = pa, where 4; = (}9) and
Ay = (0 1)

The following technical lemma will be used frequently.

! Note that the signs in our formulas differ from the standard conventions of [Che04] according to the relationship
tth
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LEMMA 2.1. For each | > 2 let
a = Tl__11 - T2_1T1_2T2 Ty,

Then the following relations hold:

XX, =an, (2.8)

YiXi= X1V + (2 VAT T T T X, (2.9)
X =174 T LT AT T X, (2.10)

ag -y =Tyt ...Tlf_lef_Qle_é...Tfl' (2.11)

Proof. By definition we have T, 2Y; X, ' = X, V1, which is relation (2.8) for [ = 2. Multiplying
on the left and on the right by T, ' and using the fact that [T, Y] = 0, we obtain

T T2y, Ty X Ty =T, X Ty ' =g
Since T2_1X2_1T2_]L = X3_17 we get
T, TP Xt = X5,
which is (2.8) for [ =3. Similar reasoning, using multiplication on the left and on the right
by T3 ', yields (2.8) for I =4, and so on.
We now prove (2.9). From the defining relations of H,, we have
YoX| = X Vo X1 T72X, = X Vo + (112 — 7V X Yo X1 X

= X1 Yo+ (12 =7V X Vo XTI X T T

= XYy + (Y2 — VX Vo XTI 2 X0 T = X0 Yo 4 (12 — 7 Y2 Y X Ty

= XYy + (2 =7V v X,

which is (2.9) for { =2. Now we multiply on the left and on the right by 75, 1 and use the fact
that [TQ, Xl] == [TQ, Yl] =0 to get

Ty WYoTy ' Xy = X0 Ty Yo Ty b+ (112 — V)Tt ity X,

which, by virtue of the relation T, 'YoT, ! = Y3, gives (2.9) for I = 3. To obtain (2.9) for I =4,5
etc., we successively multiply on the left and on the right by 7" L T, Lete.

Next, we turn to (2.10). Recall that, by definition,
(Xt XWXy - X)X =g XN,

By (2.8) above we have X2_1Y1X2 = apY]. Since [a;, X;] =0 if k£ > [, upon conjugation by X3 we
obtain

X3 X5 W1 Xa X3 = o X5 1Y X3 = a3y,

Continuing in this manner yields, eventually,
Xgl--~X2_1Y1X2-~Xn:a2~~anY1.

Thus (2.10) will follow from (2.11), which we now prove. It is easy to check (2.11) for [ =2 and
[ = 3. Let us argue by induction on [. Fix [ and assume that

_ 1 —1 =21 -1
ag =T TOAT AT T
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Then
aze oy =Ty T TAT e T T T T T
=T T TAT e T T T T T T T
=T IVAT T Ty T T T T T T T
=Tyt LTy T T T T

=T LTy Ty T T TP T

The last expression above is of the form 77" 1z Tl_1 where, by the induction hypothesis, Z is equal
to awg - - - oy for the subalgebra of H,, generated by T5, ..., T;. In particular, T} is not involved
in Z. Using our induction hypothesis again, we deduce that

-1 —1 p—2p—1 -1
Z=Ty T TR Ty
from which
- = T1_1 o Tl—_llTl—QTl:l1 ce Tl—l

follows. Thus the lemma is proved. O

2.2 For e >0 we set P(’(‘Le) =85>, YeS. More generally, if (r,d)=g-(0,€), we put P&d) =
p(g)P(% ¢ 1f the element g € SLy(Z) fixes the pair (0, e), then p(g') = p} for some I and hence
p(d’ )P(% 0 = P(% ¢ Therefore the above definition makes sense, and for each x € Z* it yields an

element P € SH,, such that p(g)P" = Pl for any g € SLa(Z).

As an illustration, let us give the expressions for certain elements P(Z d) where r and d are
relatively prime. To simplify the notation, we will drop the exponent n from P(Cﬁ )

LEMMA 2.2. For any | € Z we have
Py = [0l SY1X{5S, (2.12)
Py = qlnly X178, (2.13)
Po,-1) = aln]y SY{ 'S, (2.14)
Py, 1y =q[n]; SX{Y;'S. (2.15)
Proof. Observe that since
SYi1S = ST, 'Y;T, 'S = tSY;S,
we have

P(O,l) =5 Z Y;S = [n]jSYls

Equation (2.12) follows from this and an application of p). In particular, we have Py =
[n];FSY1X1S. By (2.10) in Lemma 2.1, we have

Paay = qt' "[n]f SX1Y18 = ¢[n]; SX111S.
Applying p! yields (2.13). The equalities (2.14) and (2.15) are proved using similar techniques. O

The value of P, 4y when r and d are not relatively prime is usually harder to compute. Here
we give a few examples, which will be important for our purposes later on.
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LEMMA 2.3. For any l > 1 we have

P =8> X;'s, (2.16)
Pon=4q'8> V'S, (2.17)
Puoy=q'S Y _ X|S. (2.18)

Proof. Set A3 = (} _é) and Ay = (_% _(1)). Then
p(A3)Y1 =pipy ' V1= X!
and hence p(A3)Y; = X; ' for all 4. The first relation (2.16) immediately follows. The proofs of

the second and third relations are identical, so we treat only (2.17). By (2.10) in Lemma 2.1,
we have

p(AYL = py ' pipy - Vi = XY
= qY1_1T1 ce Tn—2T3—1Tn—2 R4
= qu—l - Tn—_llyn—lTW1 T,
where for the last equality we have used the relations Y[lTi = TleiH. It follows that
p(AN(Y) =dT7t - T Y Ty (2.19)

for any 1. Hence p(A4)(SY!S) = ¢'SY,!S. Tt is easy to show (and is a well-known fact) that the
elements SY!S, 1 =1,...,n, freely generate the ring SC[Y1, ..., Y,]S. Let

0:C[SY;S,...,SY"S] = SC[Yy,...,Y,]S =SC[Y;,...,Y,]°"S
and
0 :C[SY, 1S, ..., 8Y, "S] = SCly; L, ..., v, 1S=8C[y; !, ..., Y, 15S
be defined in a similar fashion. Equation (2.17) is then a consequence of the following result.
SUBLEMMA 2.4. The composition u = 0" o p(A4) 0 6= satisfies

u(SP(Y1,...,Yn)S)=¢'SP(Y; !, ... Y, H)S

n
for any symmetric polynomial P(ty, ..., t,).

Proof of sublemma. Let H:Y (respectively, HT_LY) be the subalgebra generated by H, and
the elements Yi,...,Y, (respectively, H, and the elements Yfl, ..., Y1) The assignment

n

Ti—Th i, Vi Yn_+117¢ gives rise to an isomorphism of algebras © : HZY = Hgy. It restricts to

an isomorphism of spherical algebras SO : SHIY = SH;Y This last map clearly satisfies

SO(SP(Yy,...,Y,)S)=SP(Y; !, ...,Y, 1S

n

for any symmetric polynomial P(ty,...,t,). It remains to observe that u coincides with ¢'S©
on the elements SYllS , and that these elements generate SHIYS so that, in fact, v = ¢'S©. O

This establishes (2.17) and completes the proof of Lemma 2.3. O

PROPOSITION 2.5. The elements { PP : x € Z*} generate SH,, as a K'-algebra.
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Proof. Let R’ be the localization of R’ with respect to the multiplicative set generated by
[n]:!. Let Hgfn be the R’-subalgebra form of H, generated by the elements T;, X; and Y;

for i=1,...,n—1 and j=1,...,n. We also set SI:IE,TN = SI:IE,TnS. For any (r,d) € Z™T,
let Sﬂ;fn[r, d] stand for the piece of SI"{;?’” of degree (r,d). We claim that Sﬁ;g,f . d] s
free of finite rank as an R’-module. Indeed, it is known that HE,J“ ,, is free of finite rank over
the subalgebra R'[X7, . .. s X, Y1, Y;,|87%Sn (by the PBW and Pittie-Steinberg theorems).
Since the spherical part SHE,J;L is a direct summand of HE,J;L, the same holds for SHJIQJJ’r ,,- This
proves our claim. Let 7 : SHE,‘; — R} be the specialization at ¢'/? =¢1/2 =1, where R+ is
the positive part of R,. One can check, by looking at the SLo(Z) action defined above, that

(Plg) =3 alyl

By Weyl’s theorem (see [Wey49]), the elements {W(P(T;ﬁ d)) : (r,d) € Z*t} generate the ring R\ .
Applying Nakayama’s lemma to each graded piece, we see that {Pg d) (r,d) € Z*+} generates

the algebra Sﬂ,‘t T over the field K. To finish the proof of the proposition, we use the SLo(Z)-
action once more. O

3. The projection map

3.1 Recall that K = C(c'/2,5/2), K/ = C(t'/2, ¢'/?) and £k = Eg ® K. The first main result
of this paper is the following.

THEOREM 3.1. For any n > 0, the assignment o2 V2 Y2 =12 gpd
1 n

Uy > 7qd(x) — 1Px

for x € Z* extends to a surjective C-algebra homomorphism

D, Ex — SHn

Proof. Fix an integer n and, for simplicity, drop the index n from the notation. We have to
show that the elements P?/(q**) — 1) satisfy relations (i) and (ii) of §1.5. Relation (i) is clear
for x =(0,r) and x’ = (0, 7’) when r and 7’ are of the same sign, and it follows from (2.17) in
Lemma 2.3 when r and r’ are of different signs. By applying a suitable automorphism p, with
g € SLa(Z), we deduce relation (i) for any other line in Z through the origin.

The proof of relation (ii) is much more involved. We reduce it to establishing two sets of
equalities, (3.3) and (3.9), which are dealt with in Appendix A and Appendix B, respectively.
Note that the assignment ® respects the SLa(Z)-action on both sides; hence it is enough to
check relation (ii) for one pair in each orbit under this SLa(Z)-action. By the same argument as
in [BS05, Theorem 5.4] (based on Pick’s formula), we can constrain ourselves to the case where
x=(1,0) and y = (0, ) with [ € Z*, or where x = (0, 1) and y = (I, —1) with > 0.

Case (A1l). Assume that x = (1,0) and y = (0, [) with [ > 0. We have to show that

[©(w(1,0))s P(ugp)] =—P(u@p), (3.1)
which we may rewrite as
[P0y, Popl = (1 — ql)P(l,l)- (3.2)
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By Lemma 2.2, we have

Py =qlnl; SX1S, Pogy =) SY'S, Puy=qlnl; SX1Y{S;
i
hence verifying (3.2) is equivalent to proving the following proposition.

ProrosiTioN 3.2. For any [ > 0 we have
[les, > sy} ] [Xl, Z Yl} (1—¢")SX,Y]S. (3.3)
%

Case (A2). Now let us assume that x = (1,0) and y = (0, —I) with [ > 0. We have to show that
[D(u1,0))s Plugo,—1))] = P(ua,—), (3.4)

which, after using the definitions and Lemmas 2.2 and 2.3, reduces to

[les, > SYZ,ZS} =(1-¢Hsx vy ls. (3.5)

Consider the C-algebra isomorphism ¢ : H,, — H,, given by
=T Xim Y, Yie X 62007120 ¢! gtV
see [Che04]. Applying o to (3.5) gives the equation

[Syls, Z SX;ls] =(1-¢Hsyix;!s,

which, once transformed by the automorphism p(A4s), A5 = (_(1) (1)), is none other than (3.3). Thus
this case also follows from Proposition 3.2.

Case (B). The final case to consider is that of x=(0,1) and y = (I, —1) with [ > 0. Here we
have to show that

(0
[@(u(0.1), Plug,—1))] = -t 1)(1(_@51)1)(1 —qt)’ (36)
which reduces to
- tq _)(11 — 4 [XZ: SYiS, SX{)/lls] =2(010))- (3.7)

By forming a generating series, we can write this as

1+ 1—tqn_1 [ZY“XI ]&;—HZ@ 10))$" (3.8)

>1 >1

Given the definition of 6; o), we obtain that establishing (3.6) for all [ > 0 is equivalent to proving
the following assertion.

PROPOSITION 3.3. The following holds:
3 (11—t —q¢'t) Z Lol
eXp( l ‘ SX,LSS
1—qgt)(1—t™™)
:1+§ ( [E Y, XhY| } (3.9)
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Thus, once Propositions 3.2 and 3.3 have been proved (see Appendix A and Appendix B), the
proof of Theorem 3.1 will be complete. |

3.2 We may twist the map ®,, by any of the automorphisms of £k defined in [BS05, §6.3].
Observe that the defining relations for £k are invariant under any permutation of {o, 7, (07) ~'}.
We therefore have the following result.

COROLLARY 3.4. For any v, €{0,7,(00) '} with #+/, there is a surjective algebra
morphism ®}7 : Ex — SH,, such that v ¢~', v —t~! and uy — P?/(¢%™ —1).

4. Stable limits of DAHASs

4.1 In considering stable limits of DAHASs, we will be concerned with the graded subalgebras
SH,! and SH;" of SH,,, generated by the elements PI" for x € Z* and x € ZT™, respectively.
We have

SH) = (P SH}[x|, SH.' =  SH/'x|.
x€eZt x€Z+t+
PROPOSITION 4.1. The assignment P" — P11 for each x € ZT extends to a unique surjective
K'-algebra morphism ®,, : SH}, — SH.! . A similar statement holds for SH;"T.

Proof. The proof is based on the realization of double affine Hecke algebras as certain algebras
of g-difference operators. Let D,,, stand for the algebra K’ [xfl, 8?1, .., xEl 9t with defining
relations

[z, 2] = [0;,0;] =0 and ;= ¢*x;0;.
We also denote by Dy, 1oc the localization of Dy, with respect to the elements
{z; —tl/2q"/2x]~ |[,neZ,i,j=1,...,m}.

The symmetric group &,, acts on D, 1o in an obvious fashion, and we may form the semidirect
product Dy, 1oc X &,,. The following lemma is due to Cherednik.
LEMMA 4.2 [Che04]. Set w = $y,—1 - - - s5101. There is a unique embedding of algebras
Om : Hm — Dyytoc X G
satisfying
m(Xi) = i,
—1/2 _ 41/2
om(Ty) =125 + m(si - 1),
om(Yi) = om(T3) - - om(Tm)wpm (T ") - - om(T,}).

It is known that cpm(SI:Im) cD%" % &,,. Composing the restriction of ¢,, to SH,, with

m,loc
the projection
Sm Gm +1 g+l +1 g+l
Dm,loc X S, _>Dm,loc7 P(a;i ,f)i )0’ — P(mi ,82. )

provides us with an embedding
Ym : SH,, — D%m

m,loc*
; + /
We write Dn+1,10c for K'[z1, 01, . . ., iy Omloc-
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LEMMA 4.3. We have ¢,,,(SH ) c (DIt )6m,

m,loc

Proof. It is easy to see that £ is generated by {w©,1), 0y : 1 = 1}. Hence, by Theorem 3.1,
SH* is generated by {P{& i Plloy: 12 1}; it therefore suffices to check the veracity of the lemma
for these elements, which is obvious. O

We now consider the map

Tm - (D:;ﬁoc)em - (Dm—l,loc)GWH1

that sends zy, 9 to z;,t~ Y28, for | <m and z,,, Om to zero. This is a well-defined algebra
homomorphism. We can summarize the situation in a diagram of algebra homomorphisms

m,loc
-
(Dm—l,loc)em_1

where vy, and ;1 are embeddings. Therefore, Proposition 4.1 will be proved for the algebra
SH,!t once we show that

wm—l

SH;",

T © Py (P = 1 (P71 for x € ZTT, (4.1)

LEMMA 4.4. For any x € Z*™, there exists a polynomial Qx € Fo such that the following
formula holds in SH,,, for any m:

QX(P£1)7P$72),...7P(7{L’0),P(7727;0),...):P£n.

Proof. Since £ is generated by the elements u (g ) and u( o) with [ > 1, for any x € Z** there
exists a polynomial Ry such that
RX(U(O,l)a U(0,2)) - - -5 U(1,0) U(2,0)5 - - ) = ux.
By Theorem 3.1, we may take as (Jx the polynomial defined by
Qx(2(0,1) 2(0,2)> - - » 2(1,0)5 2(2,0)5 - - )
1
= WRX(O(l)Z(O,I)a 0(2)2(0,2), - - - » 0(1)2(1,0), 0(2) 22,005 - - -)5

where we have set o(l) = 1/(¢' — 1). O

Lemma 4.4 implies that it is enough to show that (4.1) holds for x = (I, 0) or for x = (0, ). In

the case of x = (I, 0), this is obvious by definition. We shall deal with the second case. Of course,
it suffices to prove that

T © Y (S fr(Y1, ..., Y)S) = Ym—1(Sfr (Y1, ..., Ym_1,0)S5)

for any family of symmetric polynomials {f.} that generates the ring C[Y1,...,Y,]%". In
particular, for f, we can take the monomial symmetric function
mlr(Yi,---,Ym): Z Y;, }/Zr

1< <-<ip<m

We now use the following explicit computation of ¢, (Smyr(Y1,...,Y¥,)S); see [Mac95,
ch. VL5] for a proof.
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LEMMA 4.5 (Macdonald). For any n and any [ > 1,
Un(Smp (Y1, ... Y,)8) = > Ap(ar,...,xa) [] 0

Ic{1,...n} iel
where I ranges over all subsets of {1, ...,n} of size r and
t=12g; — t1/22;
AI(£17"'7$H): H : J'
4 T; — X
ieljgl
By the above lemma, we have
Tm 0 U (Smar(Ye, ..., Yo)S) = Y Ar(m,. .., wmo1, 0) [] 1200
Ic{1,..,m—1} iel
= Z A[(l’l,...,fbmfl)Hai
Ic{1,..,m—1} iel

g wm—l(sml’”(}/l; ey mel)S)

We have thus proved that the assignment P+ PM~! for each x € ZTt extends to a
surjective K’-algebra homomorphism ¥, : SH+ — SHT . By applying the operator p(A;")
and using the fact that p(g) - P = Pjy for any g € SLo(Z) and x € Z, we deduce that the map
¥, extends to a surjective algebra homomorphism

0,,:SHZF ~ SH> X,

Here, for any n, we have written S}"I%_k for the subalgebra of SH?{ generated by the elements
PI such that x = (r, d) € Z™ satisfies d/r > —k. Letting k tend to infinity, we finally obtain that
the map ¥, extends to a surjective algebra homomorphism

W, : SHj‘n — SH*

m—1

such that U, (P™) = P! for all x € Z*. This completes the proof of Proposition 4.1. O

4.2 Proposition 4.1 allows us to define the projective limits
lim SH,,, and lim SH,.".

By construction, the collection of generators P;', m > 1, gives rise to elements Px of these
projective limits. Let SHY and SHZI' stand for the subalgebras generated by Py for x e
Z* and x € ZTT, respectively; we shall call these the stable limits of the projective systems
(SH;") and (SHT), respectively. We may view @SH% and @Sﬂj;ﬁ as completions of
SHY and SHI .

By construction, the map ®,,: Ex — SH,, sends & and ELT onto SHY and SH}*,
respectively. Let us call ®;, and ®},* the restrictions of ®,, to £f and EfT, respectively.
The collection of maps ®; and ®;t gives rise, in the limit, to algebra homomorphisms

ot E5—SHL and ¢ : €47 —SHL
THEOREM 4.6. The maps & and ®1" are algebra isomorphisms.

Proof. Both @1 and ®1" are surjective by construction; we have to show their injectivity. The

subgroup
G= {(é Tf) ‘ne Z} C SLy(Z)
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preserves ZT, and for any x € Z™ there exists g € G such that g-x € Z™". Since the map &1
is clearly compatible with the action of G on 8;; and Sﬂ;, it in fact suffices to prove the
injectivity of ®1F.

Now fix (r, d) € Z*+T. By [BS05, §5], the dimension of the weight space £51[r, d] is equal to
the number of convex paths p = (x1,...,x,) with x; € ZTT for all i and ), x; = (r, d). By the
proof of Proposition 2.5, the dimension of the weight space SI"{TJLr *[r, d] is equal to the dimension
of the space of polynomial diagonal invariants

R =Clzy, ..., Zn g1y -5 Yn)©"
of z-degree r and y-degree d.
The latter dimension is equal to the number of orbits under &, of monomials

it m%"yi” .- yhn with g, h; € N satisfying >, 9i=7and ) . h; =d; equivalently, it is equal
to the number of n-tuples of pairs {(g1, 1), . .., (gn, hn)} such that >, g; =7 and >, h; =d, or
the number of convex paths p = (x1, ..., x,) in Z*" of length r <n which have >, x; = (r, d).
It remains to observe that for any given (r, d), the length of the convex paths p = (x1, ..., x;)

in ZT* that have >, x; = (r, d) is bounded above, say by n(r, d). Hence
dim £ [r, d] = dim SH; F[r, d]
whenever n > n(r, d), and so, finally,
dim E5F[r, d] = dim SHE[r, d].
The injectivity of the map ®1;" follows, and Theorem 4.6 is proved. O
Of course, Theorem 4.6 holds for the stable limits of the twisted versions &7 and ;7"
as well (see §3.2).

Remarks. Theorem 4.6 allows us to transform the PBW basis {fp:p € Conv'} and the
canonical basis {bp, : p € Conv™} of £ defined in [Sch05, §2.3] to bases {7p : p € Conv'} and
{cp :p € Conv'} of SHE such that v, = L (8p) and cp = ®L (bp). The element cp belongs

to the completion §ﬁ; of SHt

o0

—+
which is equal to the sum @, ;) SH[r, d] over all pairs
(r,d) € Z™" of the vector spaces

§ﬁ;ro [Ta d] - H K/’Yp
P
where p runs over all paths p = (x1, ...,x,) in Conv™ satisfying Y, x; = (r, d).

4.3 Theorem 4.6 could be viewed within the context of the theory of the classical Hall algebra H,
of a discrete valuation ring O; see [Mac95, ch. II]. Recall that H is canonically isomorphic to
the algebra A} and that this isomorphism naturally fits into a chain

H, ~SHI ~ A/ (4.2)

where SH; is the stable limit of the positive spherical affine Hecke algebra of type GL, as n
tends to infinity. Hence Theorem 4.6 may be interpreted as an affine version of (4.2). Observe
that SH is a trivial one-parameter deformation A} of A*, while SHZ is a non-trivial two-
parameter deformation of the ring

+ _ +1 | +1 (S
R _(C[mlaan"'ayl » Yo 7] <.

The analogy can be summarized in Table 1.
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TABLE 1.

Classical Hall algebra H

Elliptic Hall algebra £

O-Mod

AT = (C[xl, xo, . . .]600
0L :Hy > SH
= |_|(Z+)”/6n

1o, = v 2"V Py(v?)

Coh(X)

R+:C[JJ1,J}2,.. ]G‘X’

'7yit17y§:17"‘
oL ;£ SHL

Conv' = |_|(Z+)”/6n

n

PBW basis §p

N, neN
| | Par, (V)
IZ(OA), Aell
OL (tr(I1C(0x)) = sx

K ,(v) € N[v]

Coh™*(X), (r,d) € Z*

|_| Q'r,d

r,d
Pp, p € Conv*

oL (tr(Pp)) = cp

-Ip7q G N[U, _O-/U:I

Affine Grassmannian Gr

77

Geometric Satake isomorphism 77

|_| pGLn (Nn) = Rep+ GLoo

Here Py is the Hall-Littlewood polynomial, sy is the Schur polynomial, and K , is the Kostka
polynomial. The middle portion of the table is based on the geometric version of the elliptic Hall
algebra, which involves the theory of automorphic sheaves as defined in [Lau90] and studied
in detail in [Sch05] for an elliptic curve. Here Q™ is a certain category of semisimple perverse
sheaves over the moduli stack Coh™¢(X ) of coherent sheaves of rank r and degree d over an
elliptic curve X, while the Pp, p € Conv™, are the simple perverse sheaves in |_|7,7 d Q" The
basis elements cp, defined as the traces of the Py, are analogues of the Kazhdan-Lusztig basis
elements of SH. . Finally, the coefficients Tp,q are the entries of the transition matrices between
the cp and the PBW basis elements (3 (essentially, the Poincaré polynomials of the stalks of the
P, over the stratas of Coh™?(X)); we refer the reader to [Sch05] for more details.

In the bottom part of the table, we point out two important features of the classical picture for
which we do not know of any analogue in the elliptic Hall algebra setting: one is that functions
on the nilpotent cone N, may be lifted to functions on some Schubert variety of the affine
Grassmannian Gr of type GL,; the other is that the category of perverse sheaves | |, Pqr,, (M) is
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equivalent to the category Rep™ (GLy) of finite-dimensional polynomial representations of GL
(see [Gin95, MV00]).

5. Macdonald polynomials

5.1 Macdonald discovered in [Mac88] a remarkable family of symmetric polynomials Pj(q, t)
that depend on two parameters and from which many of the classical symmetric functions can
be obtained via specializations. Because of our sign conventions (see the footnote in §2.1), we

will actually be working with Py (g, t~!) rather than Py(q, t).
The Macdonald polynomials are defined as eigenfunctions of certain difference operators
acting on the spaces of symmetric functions
Sm
Ay = K'[z1,...,2,]°™.

Recall the embedding t,, : SH} — DS which gives rise to an action p,, of SH} on Ao

m,loc?

Consider the following linear operator on A’(n %

m —1/2,. _ 41/2..
t T, —t/x
Dm:qhxsaq+~-~+sty:§:<II L J)@.
=1 \ji ’
By [Mac95, ch. VI, (3.10)], the operator D,, is upper triangular with respect to the basis {m}
of monomial symmetric functions and has distinct eigenvalues.

We are interested in the stable limit as m goes to infinity of the corresponding eigenfunctions.
Let 0,, : AZ]L H A?;;)l be the specialization x,, = 0. It is not true that 6,, o D,, = D,,_1 0 0,,;
however, the operator E,, = t(m_l)/Q(Dm — [m]) does satisfy 6,, o Ey;, = Ep—1 0 05, Recall that
the space

A?l_],t) = KI[J,‘l, €T, .. .]600

of symmetric functions is the projective limit of (Ag £ 0.,) in the category of graded rings;
see [Mac95, ch. I, Remark 1.2.1]. Hence the operators E,,, m > 1, give rise to a linear operator E
on the space AEZ B This operator is still upper triangular with respect to the basis {m,}, and it

has distinct eigenvalues {a)} given by
ay = Z(qki — 1)t (5.1)
i1
The Macdonald polynomial is defined to be the unique a)-eigenvector of F such that

P\(q, t™hH emy @ @ K'm,,.
p<A

For a pair of partitions u C A, the skew Macdonald polynomial Py, (g, t=1) is determined by the
coproduct formula
A(P)\ q,t 1 ZP q,t ®P)\/u(q7 1)'
HCA

Jr

Here A:Af  — AT " is the standard coproduct on the ring A(q " (satisfying, for

()~ Moo ® A,
example, A(p;) =p, ® 1 + 1 ® p; for power-sum functions p; = Y, 1).

(]

Examples.

(i) We have Pyr(q,t7!) =e,.
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(ii) We have

r—1 1— ql+1
P(r)(Q7 t_l) = H 1— 14 Z Z)\(Cbt ) P,
=0 Abr
where
1(A) 1 g
Zx (g, til) = ZX H 1_7;],)\2.7 Z(1migme..) = i"img!
=1 %

In particular,

(1-—g)(1 4t I+ -t ,

P = :
(2)(Q7t ) 2(1—qt‘1) P2 2(1—qt_1) P

Remark. The representations p, : Sﬁ+ — End(AE” t)) lift, after a suitable renormalization, to

a stable limit representation peg : SHoo — End(A( t)) in which Py 1) =S(>_,; Yi)S acts as the

operator E. By composing with the isomorphism ®7 , we obtain a representation of the Hall
algebra SK on A in which the element u ), i.e. the so-called Hecke operator, acts as
Macdonald’s operator E/(¢ —1). We will not need this representation here (but see [SV09,

§4.3]).

5.2 There are many different characterizations of Macdonald polynomials; see [Hai02], for
instance. The characterization that best fits our needs treats the polynomials Py(q,t~!) and
Py/u(q, t~1) at the same time. First, let us recall some standard notation from [Mac95].

Let u C A be two partitions, and put |A/u| = |A| — |p|. The skew partition A/u is said to be
a vertical strip if \; — p; < 1 for all 4, i.e. if the corresponding diagram contains at most one box
per row. A skew partition \/p is a horizontal strip if its conjugate X'/’ is a vertical strip. If \/u

is a horizontal strip, we put
I 1 Il
bl = L D=t
o (1= 57 Hgr=i) (1 — 5 g—)

where the sum ranges over all pairs (i, j) with ¢ <j such that p, =X, but p, =X, —1. In
particular, we have )/, (g, t71) =1 if A/ is a horizontal strip containing no empty columns.

PROPOSITION 5.1. The family { Py, (q, t=1) : u C A} is uniquely determined by the following set
of properties.

(i) The polynomial P, (q; t~1) is homogeneous of degree |\/p|.
(ii) We have

A(P)\/,u gt 1 Z PV/;L q,t ®P)\/V(q7 1)'
uCrCA

(iii) If A/u is not a horizontal strip, then

Pyu(a, the @ K'm, where r = |\/pl.
v<(r)
(iv) If A/p is a horizontal strip, then

Py /(g thHe Va/uld; tHm, @ @ K'm, where r = |\/pul.
v<(r)
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Proof. Properties (i) through (iv) are all known to hold for Macdonald polynomials: statement
(i) follows from [Mac95, ch. VI, §7, (7.9’)], while statements (iii) and (iv) are consequences
of [Mac95, ch. VI, § 7, (7.13”)]). We now prove the uniqueness of polynomials satisfying properties
(i) through (iv). Let @y/,(g, t') be such a family. When |A/u| =1, by (iv) we have

Q@ t™ ) =y/u(g 7 )my =Py (g, t7h).

Let r > 1 and assume that Q,,(¢,t™") = P/, (g, t~ DY for all n/v satisfying |n/v| <r. Let \/p
be a skew partition with |\/u| =r. By (ii) and the induction hypothesis,

A(Q)\/,u((L til)) :Q)\/,u(Q7 )®1+1®Q/\/p, q,t 1 Z Qu/p qt ®Q)\/I/(Q7 1)

wCrCA

:Q)\/,U(Q7 )®1+1®Q/\/p, q,1t 1 Z Pu/p, q,1t ®P)\/V(Q7 1)'
uCrCA

It follows that Q) /,(q; t=1) — Py/ulq, t~1) is contained in
Ker(A —d®1-1® Id) = K/p|)\/ﬂ"

But then the coefficient of py/, in Qy/.(q, t~1) is uniquely determined by (iii) or (iv), and

Q/\/u(q7 til):P)\/u(qa til)' u

6. Eisenstein series

6.1 We return to the setting of §1; that is, we assume that X is a smooth elliptic curve over
F;, Hx is its Hall algebra, and U} C Hyx is the spherical subalgebra introduced in §1.4. Recall
that Hx and U} are Z-graded in the following way:

Hx = @ Hx|r, d], @de
(r.d)

The Eisenstein series that we will need to consider are certain elements of a completion of
the Hall algebra, which we now define in detail. Let Hx[r,d] stand for the space of all
functions f:Z(X),4— C on the set of coherent sheaves of rank r and degree d, and put

Hy = ®(r,d) Hy [r, d]. By [BS05, Proposition 2.2], the space Hy is still a bialgebra. Recall from
§ 1.3 that, as a vector space,

@ H wlar) e ®H(( ))[an]

AL,..,Qn

where the sum ranges over all tuples (aq, ..., ay) of elements in Z™ that satisfy p(ay) <---<
p(ay,) and > a; = (r, d). Then we have

Hy[r,d= [] BY“V0)e - oBE) ).

1SS PRITRIe 27)

In a similar fashion, we define the subalgebra [AJ'} of Hx by IAJ'} =D.a Uty [r, d] where

H Ugg(al))[al] Q- ® Ug?(a"))[an].

AL5..Qn
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For instance, for any (r, d) the element

1(r,d): Z 1r

F=(r,d)

is a function with infinite support that belongs to ﬁ; [r, d], since it may be written as the infinite
sum (see [BS05, (4.4)])
10=15+ ST pXislenenlyss g (6.1)
pler)<--<piom)
ar++ap=(r,d)

6.2 Consider the generating series
Eo(z)=1+ Z 1(0’d)v*dzd
d>1
and, for r > 1,
E.(z)= Z 1(r7d)v(r*1)dzd.
deZ

These take values in the space ﬁ}[[z, 271]] of Laurent series that extend infinitely in both
directions. We will be interested in products

E . r(z1,.00,2) =B (21) - By (2) € U}[[zlﬂ, e
where 71, ..., 1, are non-negative integers. The value of such a series at a coherent sheaf of rank
r =Y r; and degree d is equal to the infinite sum
ETl,---J‘n (f) _ ,Uf(r+1)d Z U2 ST deg(]—'i)z(lieg(]ﬁ) . deg(]-—n/]-—n_l)7 (62)
FICCFn=F

where rk(F;/F;—1) =r; for all i. The following fundamental result is due to Harder.

THEOREM 6.1 [Har74]. The series E,, ;. (21, ..., 2,) converges in the region |zj| < - - - < |z
to a rational function in U}(zl, ..., zn) with at most simple poles along the hyperplanes

zifzj € {1, ..., v*"} wherer= Zri.

In other words, for each F the series (6.2) is the expansion in the region |z < -- <
|zn| of some rational function in the variables zi,..., z,. When r; =---=1r, =1, the series
Eq . .1(z1,...,2,) is the Eisenstein series attached to the cusp form of rank one corresponding
to the trivial character Pic(X) — C* taken n times; see [Kap97, §2.4] for details. For other
values of r, ..., 7y, the series B, . (21,..., 2,) is the Eisenstein series attached to the trivial
character of the parabolic subgroup GL,, (kx) x - -+ x GL,, (kx) of GL,(kx), where kx is the
function field of X and r=>_ r;.

The Eisenstein series behave well with respect to the coproduct.

PROPOSITION 6.2. For non-negative integers ri, ..., Tn,

AE;, (21,05 20))
= Z Esl,...,sn (Z].u sy Zn) @ Erl—sl,...,rn—sn (,028121’ ) U2snzn)-

0<s;<r;
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In particular, we have
T

A(E(2)) = Ey(2) @ Ero(07°2).

5=0
Proof. This result is a consequence of the fact that [AJ} is a bialgebra and that, by [BS05, (4.5)],

Alga)= > o010 00 @ 1,4 =
r1+reo=r
di+da=d
One of the properties of Eisenstein series most crucial for us is the fact that they are
eigenvectors for the adjoint action of the element T(g 1) =" X(]Fl)loz and, more generally, of
the elements T\ ) for d > 1. These are the so-called Hecke operators in the theory of automorphic
forms on function fields. Let
(1—0z)(1—72)
(1—2)(1—v2z)

((z) =
be the zeta function of X.

THEOREM 6.3. For any r > 0, the following hold:

,U72r _
[Ty Br(2)] = v X (F) 27 Bu(2), (63)
r—1
Eo(zl)Er(ZQ) = H C(U_zizl) . Er,«(ZQ)EO(Zl). (6.4)
i=0 =2

In particular, we have
z
E()(Zl)El (ZQ) = C(Z;) El(ZQ)EO(Zl).

Proof. Both statements are well known (perhaps in a different form) in the theory of automorphic
forms. For the reader’s convenience, we have included in Appendix C a proof in the spirit of Hall
algebras. O

We finish with the so-called functional equation for rank-one Fisenstein series.

THEOREM 6.4 (Harder [Har74]). The rational function E; _ 1(z1,..., z,) Is symmetric in the
variables z1, ..., zy.

Remarks. Strictly speaking, the Eisenstein series most often considered in the theory of
automorphic forms are given by expressions like (6.2) in which, additionally, each factor F;/F;_;
is required to be a vector bundle. In other words, if one sets

= X v and B = 3 1
V=(r,d) deZ
where V runs over the set of vector bundles, the corresponding product would be

EC (21,0, 20) = BN (21) - - EXSC(2n).

T1,--3Tn

The two series, when restricted to vector bundles, are related by a global rational factor, the
so-called L-factor. Indeed, there is an obvious factorization

E,(z) = EV*(2)Eo(v¥ 2).
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Therefore, by Theorem 6.3 we have, upon restricting to the set of vector bundles,
Erl"“"r” (Zl’ T Zn) = L'rl,...,'r’n (zly N Zn)EZf?»--,Tn (217 Cee Zn)v
where
ri—1
AW
L"‘lv---ﬂ”n (Zl, ceey Zn) = H H C(,UQ(T‘Z k‘);) ]
i<j k=0 J

Ezample. To conclude this section, we present the series Eji(z1,22) as an example. For
simplicity, we will compute only the degree-zero component

d
z
Ei1(21, 22)0 = Z (1) 1,a)1,-a)

z
dez N2

and, then, only the values of Eq (21, 22)0 on vector bundles. So, let F be a vector bundle of
degree zero and rank two. Because any rank-one subsheaf of F is a line bundle and any non-zero
map from a line bundle to F is injective, we have

d
E11(21, 2)(F) = Z <Z1> 02 Z # Hom(L_4, F) — 1.

29 v=2 -1
L_4€Pic™4(X)

deZ
If F is a stable bundle, then
F2¢ ifd>0
Hom(L_q, F) =4 1 ’
{0} ifd<o.

Hence

d

v=2—1 29

d>0
_an(l+o?)#X(F) (6.5)
(20 —v7221) (0229 — 21) '
If F=Ly® L] is a direct sum of two distinct line bundles of degree zero, then
F2d if d >0,
F if d= dL_ ‘
Hom(L_y, F) = ;i 0 and L_4 € {Lo, Ly},
{0} if d=0 and ﬁfd Q {Eo, ﬁf)},
{0} ifd<0.
Hence we get
1+ v ) #X(F
Ei (21, 2)(F) = Azl + o) #X(E) +2. (6.6)

(22 —v7221)(v 229 — 21)
From (6.5) and (6.6) we deduce that the semistable component of Eq (21, 22)0 is equal to
a2 v O#XE) [(Teo o) e

29 — v 221)(v 222 — z1) | [2] 2 (1,0)°

Finally, to compute the unstable component of Eq (21, 22)0 we use the coproduct. Observe that
since Ext(L_g4, L4) = {0}, the component of bidegree (1, —d), (1,d) of A(1z_,er,) is equal to

E11(21, 22)(0) = (

v, @1,
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and no other term can contribute to 1, , ® 1.,. Hence
E11(21, 22)(L_g ® Lg) = v 2 A(Ey 1 (21, 22))(L_g, La).
By Proposition 6.2 and Theorem 6.3 we have
A11(E11(21, 22)) = Eo(21)E1(22) @ E1(21)Eo(v?22) + E1(21)Eo(22) ® Eo(v?21)E1(22)

= <Zl) E1(22)Eo(21) ® E1(21)Eo(v*22)
22

+ g(z’z)Eﬂzl)Eo(zQ) @ B (22)Eo(v221),
zZ1

from which we eventually obtain

E11(21, 22)(L_a® Lqg) = v 2 [C <2) Az + <<Z> Zldzg] '

6.3 So far, we have considered the Eisenstein series E, ., (z1,...,2,) only for a fized
elliptic curve X. Recall from §1.5 that there exists an algebra 8§ defined over the ring
R = C[o*/2,5%1/2] whose specialization for any X is isomorphic to Uj. Using the
formulas (1.3) and (6.1), we see that the generating series E,(z) and hence the Eisenstein series

E, . r.(21,...,2,) can naturally be lifted to elements
S+ _ <+
RE.(2) € Erllz, 2] and REs . .. (21,...,2,) € Exllzi, ..., 221
PROPOSITION 6.5. The series RE,, ;. (21,...,2,) converges in the region |z1| < -+ < |z
. . .ot . .
to a rational function in Eg(z1,...,2,) with at most simple poles along the hyperplanes
zi/zj € {1,v%, ..., 0¥}, where r =" ;.
Proof. The coefficient of RE;, __;, (21, . . ., 2,) on any basis element of £f; is given by a Laurent
series of the form
21 dl z 1 dn
n—
P(zh feey zn) Z Ady,....dn (2’2) e < Zn ) )
dlv--wdn?O
where P(z1,...,2,) € R[zlﬂ, ...,z and ag, ..d, € R. By Harder’s theorem, the specializa-

tion for any elliptic curve X of the expression

" dy dn
- <1 Zn—1
(l | | I(Zi—’u 2lzj)).p(zl,...,zn)d E ] O‘dl,-..,dn<zz> ( - >
15:-+50n

=1 i

is a Laurent polynomial (of fixed degree). This is equivalent to the vanishing of certain R-linear
combinations of the g, . q4,. Of course, if such a linear combination vanishes when evaluated at
all (i.e. infinitely many) elliptic curves X, then it must already vanish in R. So we are done. O

6.4 Motivated by the analogy between the Hecke operator T{g ) and Macdonald’s operator
(see §5.1 and, in particular, the remark in that section), we introduce for every partition
A= (A1, ..., An) the following specialization of Eisenstein series:

E)\(z) = rEx,,.. )\, (2, Ulz, cey 0"_12).
By Proposition 6.5, the line (2, 0z, ...,0" 12) is not contained in the pole locus of the rational

function rEy, . A, (21, ..., 2n), and hence E)(2) belongs to 2;(2) More generally, for any pair
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of partitions p C A we put
2 2 2 n—1
Ey/u(2) = REX 1, —pn (07 2,07 202, 0Hna™ T 2).

Observe that, by Theorem 6.3, the series E(z) are eigenvectors for the adjoint action of the Hecke
operator T{g ), whose eigenvalues (3, are (up to a global factor) the same as those of the
Macdonald polynomials; specifically, we have

Br=2""tei(0,7) Z

)

U_2Ai - 1 1—i -1 Cl (O', E)
——5 0 =z 0/,
v74—1 1—-0

where ¢i(0,7) = (¢1/2 — 07 1/2)(7Y/2 —=51/2) and «, is given by formula (5.1). Note that
—\—1 ..

we have in mind the map @gg(”") to identify U;r( 28} with SHY . Hence the relevant

specialization between variables in the Hall algebra and those in the Cherednik algebra or

Macdonald polynomials is
oc—qt, (o) l=0v?—tL (6.7)
It would seem natural to define, more generally, the specialization
E|(2)=rEy, 1,(2,0%, ..., o™ 12)
for any sequence of non-negative integers [y, ..., [l,. However, there is the following vanishing

result.

LEMMA 6.6. Ifl=(ly,...,ly) is not dominant, i.e. if lj, > ly_1 for some k, then E;(z) = 0.

Proof. One can check that the L-factor Lj, ;. (21,...,%2,) vanishes on the line
(2,02,...,0" 12) whenever [ is not dominant. Hence Lemma 6.6 would follow from the fact
that the unnormalized Eisenstein series E;’fcln(zl, ..., 2n) is regular on that line. Instead of
appealing to this fact, we provide a direct proof. To make the notation less cumbersome, we
shall drop the subscript R throughout the proof. By Proposition 6.2 we have

A1) (Er(2) =E1(2) @ E1(v*2) ® - - @ By (v*"V2),

and, more generally, given integers e € {0,1} such that €, =---=¢;,. =1 while ¢, =0 if
k& {ii,..., i}, we have
Ay e)(BEr(2)) =B (2) ® - -+ ® Eek(v%kz) @ @E, (v*5"2) (6.8)
where s =#{l:14 <k}. Now take I=(l1,...,l,) €N" and set | =>1;. We can compute
Aq,..1)(Ey(2)) using (6.8); it is equal to a sum, indexed by the set of maps ¢:{1,...,I} —
{1,...,n}, of terms
ap =Dty (B (2) - Ay (B (07712)) - A, e (B, (077 '2))

where €f € {0, 1} is defined by

‘ 1 if (i) =k.

In other words, the map ¢ describes the way the coproducts (6.8) of the E;, (c¥712) have been
distributed among the | components of the tensor product. We claim that if [ is not dominant,
then each term ay vanishes. Indeed, suppose that [y > [;_1 for some k; then a4 is divisible by a
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term of the form
A(eh---,En)(Elk—l(Uk_2z)) ' A(fﬁ,-uﬁh)(Elk (Uk_lz))
= Eel(ak’_zz)Ee/1 (" 12) @ @B, (v o )E , (v¥nok1z). (6.9)
If ¢; =1, then ¢; = 0, and vice versa. Because s; = s} =0 while
Sp € {lk_l, le_1— 1} and S/n € {lk, Iy — 1}

it is easy to see that there exists an index j for which €; =0, 6 =1 and s; = 8 . But then the
jth component of (6.9) is equal to

Eo(v%%5 0822 B (0% 6% 12) = C(o HE (0¥ 0" 1 2) By (v®% 0 22) = 0

since ((07') =0. Hence ag =0 as claimed and A 1)(Ey(z)) =0. It remains to show that
the map

Ag.y: 0 nd— [ OfLdle - o014
d1++dr:d

is injective, but this follows from the fact that U+ is equipped with a non-degenerate Hopf
pairing and that it is generated by elements of degree zero and one; see [BS05, Corollary 6.1]. O

PROPOSITION 6.7. For any partition A we have

= E,.(2) ®Ey/,(2). (6.10)

HCA

More generally, for any skew partition A / 1 we have

AEyu(2)= Y. Eypu(z) @By (2). (6.11)
nCrCA

Proof. We prove the first statement. From Proposition 6.2 it follows that
A(EA(Zv sy Oﬂ_lz)) = Z RESL..-,Sn(Zv ) Oﬂ_lz)

0<siSh
® REX —s1,... An—sn (v*%1z, ..., UQS"Jn_l,Z). (6.12)
By Lemma 6.6 we have
REs;..s. (2,02, ...,0" 12)=0
if (s1,...,5sy) is not a partition. Therefore the right-hand side of (6.12) reduces to (6.10). The
proof of the second statement is similar. O

7. Geometric construction of Macdonald polynomials

In this section, we make explicit the link between Macdonald polynomials Py(g,t~!) and the
Eisenstein series Ey(z2).

7.1 For any skew partition A/u, we denote by Eg\o) the restriction of E,/,(z) to the set of
semistable vector bundles of degree zero. Notice that, by homogeneity, this is independent of z;
it is therefore an element of the subalgebra 8;’(0) of the universal Hall algebra Sf; generated

by elements u,.q) for r > 0. See §1.5 for details. By Proposition 1.3, this last subalgebra is
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canonically identified with the algebra of symmetric functions AZZ_ v2)° Explicitly, the isomorphism
is given by i, ) = pr/7. For instance, from the example in §6.2 we see that

l4v ) e—vH1 -0
SRS ?0—1252)(01)_2)(— 1) )<p22+pzl>+p1
_ (1+U_2)(1—0)P3+( -1 +0)p]
ov=?2—1 2 ov=?2 -1 2"

Let w stand for the standard involution on symmetric functions, defined by w(p,) = (—=1)""!p,.

7.2 We are now ready to state the second main theorem of this paper.
THEOREM 7.1. For any partition A\ we have
0 _

Eg\) =wPy (07t v?),
and for any skew partition \/u we have

0 -1 ,2

Eg\/)M:CUP)\//“I(O' , U )
The rest of this section is devoted to the proof of this theorem. We will use the characterization

of the polynomials Py /M(afl, v?) given in Proposition 5.1. It is clear from the definitions
that w(E(;,))/ ;) is of degree |A/p|. Property (ii) of Proposition 5.1 was shown for w(E(;f)/ ;) in

Proposition 6.7. Thus it only remains to check that the coefficient of m, in w(E E )/ ;) for r = | A/ |

is given by properties (iii) and (iv) of Proposition 5.1.

),

To do this, we introduce the following family of elements in 81—2

—2X; _
ZZ H i— U(A;,0) ZZ H )(1_10_)\ )p/\.

A7 % A7

Alternatively, these elements can be defined through the formula

—2r
r_ v —1 br
1+ E grS —exp(g (1—JT)(1—U’")7“S>'

r>0 r>1

Recall that 8} is equipped with a non-degenerate Hopf scalar product, which, by [BSO05,
Lemma 4.10], satisfies

[r]*#X (Frr)

<T(r,0)) T(s,0)>G = 57‘,5 T(UﬁQT — 1) . (71)

This scalar product lifts to a non-degenerate scalar product on 5; such that

r
=9, , 7.2
{(r,0), U(s,0))G = Or,s A= o) (1= o) (1 =57 (7.2)
which, after identification with A, ,2), reads
1-0")(1—-7"

(PrsPs)c = 5T,ST( ’U2>T(— 1 ) . (7.3)

From [Mac95, ch. VI.2] we deduce that g, is dual to m, with respect to the basis {m)}; that is,

<gr’mr>G: 1,
(gr,max)g=0 if |[\|=r and XA < (r).
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Therefore the proof of Theorem 7.1 will be complete once we have shown that

(g, w(BY) ))a =0 (7.4)
if \/p is not a horizontal strip while
(gr, (B, ))a = Yasula, v) (75)

if A/p is a horizontal strip. As we will see, verifying these equations essentially amounts to
establishing certain relations between the factors vy /,(q, v?) and the L-factors appearing in the
FEisenstein series.

Observe that since g, is itself semistable of degree zero (i.e. g, € 8;’(0)) and the subalgebras

8;2’(“ ) are all mutually orthogonal, we may as well replace EE\Q)/u, by Ey/ ! (z) in equations (7.4)

and (7.5). Note also that w is an orthogonal involution for ().

7.3 The basic idea is to find a factorization of g, and use the Hopf property of the scalar product
(,)c to reduce (7.4) and (7.5) to a lower rank. For simplicity we shall drop the index G from
the scalar product notation. Of course, since g, is dual to m, and m, is primitive, factoring g,
directly within S;’(O) is not feasible. However, this becomes possible as soon as we step out of

the subalgebra SE(O). More precisely, let us put g7(~1) = [u(0,1), 9r] and wgﬁl) = [u(0,1)> WYr]-
LEMMA 7.2. For any r > 1 we have
1 _
Wg7(~+)1 = ”[U(l,O), wgﬁl)] + (v t— U)wgru(m)-

Proof. An essentially direct computation, based on the relation [u(, 1y, t(,0)] = U(s4s,1) for any s
and t, yields

T

wg = (—1)7 3" v (1 — v 2) (= 1) wgr_sugan. (7.6)
s=1
The recursion formula in the lemma is an easy consequence of (7.6). 0

LEMMA 7.3. For any skew partition \/u we have

1 / / .
(wgD, Ey i (2)) = — (Z(U% — ) 1z> (Wgr, By (2)).

(2

Proof. Because () is a Hopf pairing, we have

<wg7(~1)7 EA’/M’(Z» = <U(0,1) "WGr — Wyr - U0,1), E/\’/u’ (2))
= (u(0,1) @ Wgr, Ao (Exnypw(2))) — (Wor @ w1y, Aro(Exw(2)))-
Using Proposition 6.2, the coproducts are computed to be

Aor(Byyw(2) = EO(UQ’/lz) . EO(UQ"I"U"_lz) @ By (2)
_ <1 n Z v2u§_10i_1zﬂ(071) +.. > ® By ()

and

AT,O(E/\’/;M(Z)) = E,\//”/(z) ® E()(UQ/\IIZ) - EO(UQ,\;LUnqz)

=Ey/ . (2)® (1 + Z szgflgiqza(m) 4. .),
i
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where @ 1) =v(l —0)(1 —=7)u,). The result then follows from the scalar product
(u(0,1), G(0,1)) = v/ (1 —v?). o

7.4 We now proceed with proving (7. 4) and (7.5), arguing by induction on |A/p|. Assume first
that [A/u| = 1. This means that \; = p; for all but one value of 7, say j, for which X} = + 1.
Then, on the one hand,

Pyyu(o™0%) =4y my = H

1<j

(1 — 2= 15) gi=i+ 1) (1 — 2= # = 1) ij—1)

(1-— U2(H§*M;~)O-i—j)(1 _ UQ(uQ*ugfl)Uz’—j)

s may,

while on the other hand,
Ey /()= Eo(v2“3 z) - EO(UZMQ-_lUj—2z)E1(U2u}aj—1z) e Eo(vw;‘a”_lz).
So, by Theorem 6.3, we get

E)\//u HC 2(pi—Hj) i ) Eq (v 20 =1 )(0)
1<j
- H C(W2WH) gi=d) .
i<j

It remains to notice that
(1 — 2= Hy) gimitly (] — 2= 1) imj=1y
(1— 02(%—#;)0.2;]')(1 _ ,UQ(#Q_.“;-_DO-@?]')
so that the i-factor and the L-factors do indeed coincide:
w}\/u , HC 2(pi—Hj) i— J)

1<j

= (02 HimH) i)

Next, assume that equations (7.4) and (7.5) hold true for all skew partitions v/n for which
lv/n| <r, and let \/p be a skew partition of size r. Combining Lemmas 7.2 and 7.3 gives

1 C o i
T2 <Z(02“ — 0o 1z> (wgr, By (2))

= of (w0 @ wg', Arro1 (B (2))) = (wgty @ w0y Aro11 (B (2)))}
+ (’U_l — U) <wg7«71 & U(1,1)> Arfl,l(E)\’/,u’(Z)»- (77)

Let us first consider the case of a vertical strip X' /i (so that A/p is a horizontal strip). In this
case,

E,\//M/(z) =E, (v2“/1z) B, (112“;10”_12)
for some ¢; € {0,1}. Let I (respectively, J) be the set of k€ {1,...,n} for which € =0
(respectively, €, =1). Then

Ey /(2 H C(v uru})o_i—j) ) H El(v2“30j_lz) ) H Eo(v¥io"12).

1<j jeJ el
iel,jed

As above, the y-factor and the L-factor coincide,

zﬁ/\/u 7 H C )

1<j
iel,jed
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and therefore (7.5) reduces to the simple relation
(wgr, El(v2“3'1 o171z El(vzug'rajr_lz)> =1.

We claim that, in fact, (wg,, E1(a1) - - Eq1(a,)) =1 for any a1, ..., a,. Upon expanding (7.7)
one finds that it is equivalent to the following strange identity, which is proved in Appendix D.

LEMMA 7.4. For any r > 1, the following identity holds over the field of rational functions
K'oaq,...,a):

Yo [ (Ie(E) - Te(3) - ().

j=1 "5 Nz I#j 1]
+ Z(Hg<‘;‘j>>aj. (7.8)
J=1 Nij

Next, let us assume that A/’ has exactly one part of length two and r — 2 parts of length
one. Arguing as above and cancelling the L-factor, we see that (7.4) is equivalent to

. / .
(war, El(v2“31 o T1z) By (v R 12) El(vzuﬂf—l olr=1712)) = 0.

Again, we claim that in fact (wg,, E1(a1) - Eo(ag) - Eq1(ay—1)) =0 for any aq,...,qp—1.
This can be checked directly by using (7.7).

In all of the remaining cases, X'/’ has at least two parts of length at least two, i.e. A; > ul + 1
for more than one value of 7. But then no sub-skew-partition of size r — 1 of A’ /' can be vertical.
By the induction hypothesis, this implies that all terms on the right-hand side vanish and thus
(wgr, By (2)) =0 as desired. Theorem 7.1 is therefore proved.

Remarks.

(i) A factorization similar to (7.6), involving rank-one difference operators in the context of
Pieri rules for skew Macdonald polynomials, appears in [BGHT99]. We thank Mark Haiman
for bringing this to our attention.

(ii) In addition to Macdonald’s operator Ay, one can define an operator V, acting on symmetric
polynomials in A 4 (see [BGHT99]), which has distinct eigenvalues and whose eigenvectors
are the Macdonald polynomials. Specifically, V is defined by

V(Pr(g, t71)) = "N g Py (¢, t71).

Our conventions, taken from [Mac95], differ slightly from those in [BGHT99]. In our
framework, this operator V is simply given by the action of the element Ay = ((1) %) € SLe(Z)
by automorphism on the Hall algebra, which is none other than the tensor product with a
line bundle O(x) over X of degree one. Thus we have

p(A2)(Ex(2)) = O(z) @ Ex(2) = v "N g " VE, ().

(iii) In [Lau90], Laumon defined and studied a ‘geometric lift’ of Eisenstein series to certain
perverse sheaves (or, more precisely, constructible complexes) on the stacks Coh™?(X),
called Eisenstein sheaves. The Eisenstein series themselves are recovered from the Eisenstein
sheaves via the faisceaux-function correspondence. In the special case of an elliptic curve,
simple Eisenstein sheaves are determined in [Sch05]. The construction of the (non-simple)
Eisenstein sheaves relevant to Macdonald polynomials can easily be translated from
Theorem 3.1. Let us denote by (Q,),q the trivial rank-one constructible sheaf on Coh™¥(X),
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and let us consider the following formal series whose coefficients are semisimple constructible
complexes:
Ev(0'2) = @, ral(r — 1)d](1d)=",
deZ

where [n] is the standard shift of complexes and (m) denotes the Tate twist by the Frobenius
eigenvalue o in H'(X,Q,). Note that a choice of one Frobenius eigenvalue o is involved
here, but choosing the other eigenvalue @ would, of course, give a similar result. Using the
induction functor of [Lau90], we may form the product

Ex(2) = Ex, (2) x Ey,(02) % - - - x By, (017 12).

This is still a series with coefficients in semisimple constructible complexes; these will usually
be of infinite rank. Upon restricting to the open substack parametrizing semistable sheaves

of zero slope, we finally obtain a semisimple constructible complex E&O). Using [Sch05,
Proposition 6.1], one can show that the Frobenius eigenvalues of Ey(z) and EE\O) all belong
to vZo”. Hence the Frobenius trace TY(E&O)) is a Laurent series in v and o. Recall that we

(0)

have fixed an isomorphism C ~ @p. By Harder’s theorem, the series Tr(E)"”) converges (in
a suitable domain) to Eg\o) and hence, by Theorem 3.1, we have Tr(]Eg\O)) =wPy (o7, v?).

(iv) Pick a Fj-rational closed point x € X (F;). Let i: D, — X be the embedding of the formal
neighborhood of x in X. Given an étale coordinate at =, we get an isomorphism D, ~
Spec(F;((w))) where w is a formal variable. Thus the set of isomorphism classes of torsion
sheaves on D, is equal to the set of conjugacy classes of nilpotent matrices. Invariant
functions on the nilpotent cone N, where d > 1, are canonically identified with elements of
the ring A?;,UQ) of symmetric functions. The restriction of coherent sheaves on X to D, yields

amap Z(X)pq— Hd/gd Ny . This factors to an algebra isomorphism A?; v2) = Ug?o). The
Fourier—Mukai transform yields an algebra isomorphism F'M : Ug?) — Ug(oo). The composed
map Ug?) — A?; v2) coincides with the isomorphism in Proposition 1.3.

The involution w in Theorem 7.1 can be removed as follows. We shall give another
isomorphism Ug?o) o~ A?; ) which takes the Laurent series F'M (Eg\o)) to Py (07!, v?). Let

——0,d
X be the dth symmetric power of E, and let Coh = (X) be the stacks of flags
Mag— Mgy — - My,

where each M, is a coherent (torsion) sheaf on X of length i. Consider the Cartesian square

X1 —"> coh"(x)

lrd iﬂd
x(@) — 2> Coh%(X)

in which 7y is the Springer map, r4 is the ramified finite cover (z1, 9, ... x4) — 1 + T2 +
-+ x4, and ¢4 takes a divisor D to the sheaf Op. According to Laumon, the complex
F = R(74)+(Q,) is the intermediate extension of its restriction F|y, to the dense open
subset Uy = ¢(g) (X)), We have v F = (r4)«(Q,) by base change. Thus the symmetric
group &y acts on F|y,. For each irreducible character ¢ of &y, let Fy, be the intermediate
extension of the constructible sheaf Homg, (¢, F|vy,). Each Fj is a simple constructible
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complex on Coh”?(X). The representation ring of &; is canonically identified with a subring

of Aé; V2)° We claim that there is an unique isomorphism Uggo) ~ A?; ) taking Tr(F},) to

the symmetric function associated to ¢. This is the map we want.
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Appendix A. Proof of Proposition 3.2
A.1 We begin the proof of Proposition 3.2 with a sequence of lemmas.
LEMMA A.1. We have
S[Xl,zm]sz (1—¢q)SX Y1 5. (A1)
i
Proof. Using equations (2.8) and (2.9) in Lemma 2.1, we get
S VX1 =SX, (Z Y> S+qt' T "SX1 Y18 + (£ - 1)SY1X, S
i

1>2
+ (2= )SYIX1S + -+ (" —t"2)SY X, S
=5X, <Z Y> S+ gt TSX Y18 + gt Tt - 1)SX 1Y, S

122

=SX; <Z Y,-X1>S+ (g —1)SX,Y;S. o

LEMMA A.2. For any indices 2 < jo < j3 < --- < j; < n we have
SY1Yj, -+ Vi X1 = gt " SX 1Y, - Y, (A.2)

Proof. By (2.8) in Lemma 2.1, we have SY; X = ¢t!""SX;Y7. By (2.9) we have

Y, X1 =X1Y, + (t1/2 _ t_1/2>TJ;£1 o Tl—l . T];£1Y1X1~

Multiplying the above equation by Yj, - - - Y}, and using the fact that [T}, Y] =0 if h >k —1,
we deduce that
Y}2Y3’3 T leXl = Yj3 e szXlYJé
+ (t1/2 _ t_1/2)T]g11 c Tfl . Tjgllylyjs Y X
Now, multiplying by Y7 and using the relation
lel—l o YJ;I =T Tj1Y;
yields
YiYj, - Y5 X1 = 1Y - - V5 X0 Y,
+ (t1/2 _ fl/?)Tjgil . T2_1T1 Ty V1Y, - Y5 X,
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from which it follows that

SVIYj, -+ V3 Xa = SViYjy - V3 XaYj, + (1= 7)) SY1Y), -+ V5 Xa
and thus that

tSY1Y,, - Y; X1 =5SNY;, - - - Y, XqY,.
By the same argument,
tSY1Yj, - - Y5 X0 Y, = SY1Y, - - Y5, X0V, Y,
and continuing in this manner we finally arrive at
SY1Yj, - Y, X1 =SV X1Y5, - Yy = gt TS XY, - - - Y,

as asserted. O

LEMMA A.3. For any indices 1 < j1 < jo - - < j; < n we have
SV, - Yy Xa = SX1Yy, Y,

l

l
+ ) (- YRS XY, Y Y (A.3)
u=1
Here, T means that the term x is omitted from the product.
Proof. First of all, again by (2.9) in Lemma 2.1, we have
VX1 = X0V + (12 — 7285 X,
for all j > 1, where we have set
-1 -1
ﬂj:Tj,l"'Tl—l"'Tj,l-
Define elements
A(jl, Ce . ,jl) = Slfjl e Y}le and B(jg, e ,jl) = SY11/J'2 e }/lel-
Using the same arguments as in the previous lemma, we obtain that
A(jl) L 7.jl) = A(j27 <. 7jl)}/jl + (t1/2 - t_1/2)818j1Y1}/]'2 T }/lel
= A(ja, -, 1) Y5 + (2 =722 B (G ).
By Lemma A.2,
B(j27 s 7jl) = qtl_nSXIYIY}Q T Y}u
and therefore
A, 1) = Az, - )Yy + (L=t HE TS XY, - Y,
= (A(3, -, 1) Y3 + (1 =t R28 X0 V1Y), - - Y))Y;
gl IS XY, - Y,
= SX1}/J-1 e }/jl + Z q(l _ t*l)tlfn+]uquX1Y'jl . }/ju e )/jl’
u=1
which is what we wanted to prove. O
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LEMMA A.4. The following holds:
sha, ¥ oveew]-a-0 X0 s, (A4)
J1<-<Jy 1<jo<--<g;
Proof. Using the previous two lemmas, we compute

Z SY}l"'szxlz Z SY11/32"‘1/]'1X1+ Z SYj "’szXl

J1<-<ji 1<ga <<y 1< <-<gy
= Y @' TSXIWY, - Y+ Y SXiY, Y,
1<jo <<y 1<j1 <<y
l
by S ey, 7o)
1<ji<<ji “u=1
= > ¢"SXIY, Y+ Y SXiY, Y
q 11145, Ji 115 Ji
1<ga <<y 1< <<y

+ Z qtlin(l — til)akl,“.,kl,lleYlYkl cee Ykkl?
I<ki<--<kj_1

where
Okyodiyy = {(t+---+ t(klfl)*l) + (t(k1+1)*2 S t(k2*1)*2)
4o (D=l
-1
=
Hence,
D SV VpXo= o 3 @ TTSXIY Vi ) SXaY
J1<--<ji 1<g2 <<y 1<g1<<y
+ Yoo @ = D)SXi Y, - Vi,
1<k1<"'<k‘l_1
=q Y q@TSXIYj, Y+ Y SXiY Y,
1<go <<y 1<gi<<g;
from which the assertion follows. O

We are finally ready to give the proof of Proposition 3.2. We will argue by induction, with
Lemma A.1 being the [ =1 base case. So fix [ € N and assume that Proposition 3.2 has been
proved for all I’ < [. It is necessary to distinguish two cases.

Case 1. Let us assume that | < n. We will use the formula

Svi= (St S - (S S

i i i i<j
+"'+(_1)l<zyi‘ Z }/}1"'YJ'11>
( J1<<ji—1
+ DT Y Y Y
J1<+<gi
222
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According to the above, we have

S[XMZW]S:S[Xl,ZYi}S-ZYil—l +ZYi‘S[X1,ZYil_1]S
- S[Xh 2 Y, YJQ}S-ZYZ‘Q— > ViV -S[XI,ZY;—Q}S
J1<j2 i j1<j2 P

+"'+(_1)lS[X17 Z YJlYJll]SZYl

J1<--<ji—1
S 191---1@”-5[)(1,248
J1<-<Ji—1 %
s, D ven s (4.5)
7J1<-<J1

By the induction hypothesis and Lemma A .4,

[Xl, Z Ym] (1—¢™)SY{X.8S,

s, Y veewls-a-g ¥ sxnv,ws

J1<-<Js 1<ja<--<Js

for all m <1 and all s. Substituting these into (A.5), we deduce that
[Xl,ZYl] (1—4q) leylzw 'S+ (1-gHS ) VxS

—(1=g)8X1Y1 Y Y, Y YIRS — (1478 Y ¥, Y, XN S

1<j2 i J1<j2

1<g2<+<ji—1

+(-D'1-g)s Y Y-V XS
J1<<ji—1

+ (DT - )SXaYE Y VS, (A.6)

1<jo<--<g;

This is where we use Lemma A.4 again, in the form

S D0 Y VaXi=SXi 3 Ve Yi o+ (@-DSXY Y Vi Y,

J1<<Jt J1<--<jt 1<jo<---<Jt

to obtain the following expression for the bracket S[X1,"; Y}]S
S [Xl, > Y,.l] S
=(1 q)SXl{leYl v ) Y)Y Vi Y LY, Zyl -

7 1<j2 % 1<j2<yJ3

223

https://doi.org/10.1112/50010437X10004872 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X10004872

O. SCHIFFMANN AND E. VASSEROT

+"'+(_1)lY1 Z Yj,_ 1ZY+ H_llY Z }/32YJL}

1<jo<-<g1-1 1<jo<--<;
+ (11— HSX Y VS + (1- ¢ (g - 1)8X1Y(S
)

—(1=¢")SX V2 Y, Y, - (1= ¢ ) (g - D)SX Y Y ,S

J1<d2 1<y
+oot (DA -SXaYs > Y, Y8
J1<<Ji—1
+ (-D'(1=g)g—1SX1Y7 Y Vi ---Y5,S.
J2<<ji-1

After collecting terms, we get

S[Xl,ZYil}S
=SX1V{S{1-q)+ (1 -+ (1 -d"")a—1)}
+SXY DY YLS{g- D+ (1" - (1-¢" D) g-1) - (1-¢"?)}

1<j2
+SX1Y)? Y VRYpS{l-) (@ P -1 - (¢ =g -1) - (¢ - 1)}
1<j2<3s
ok SXYY Y Vi Y S{-DN(( -+ (-1 - (- 1) = (g 1)}
1<ja<<gi—1
+SX1V1 Y Y,V S{(L—g) (=) (0= 1) + (=D + (1))}
1<ja <<
-2
+ YD SXYT Y Y Y {(L— ) (D) + (-1 ))
i>1 m=1 1<jp < <jim

Ju#d

=(1-¢)5x,Y{S.

This concludes the proof of Proposition 3.2 in the first case.

Case 2. Let us deal with the situation where [ > n. The method is very similar to that used in
the proof of Case 1 above. This time we use the following identity:

ZYZ Zyz 1 Zy Zyz 2N VYt ()P Y Y,
7

J1<jz2

Based on the above decomposition, we write

S[Xl,ZYJ}S_S[XI,ZE]S.ZW—1+ZE_S[XI’ZY;_I]S
_ S|:X1, Z 1/]11/32:|S Zyl 2 _ Z Y}, Yj, 'S|:X1,Z)/il2:|5’

J1<j2 J1<j2 i
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+o (D)X Y - Y)S Z Yil_”
7

+ (=" YnS[Xl, > Yj”] S. (A7)

By the induction hypothesis and Lemma A.4, this simplifies to

S[XI,ZYil]S

=(1-¢)SX1V1 ) V'S4 (1-¢"HS> vixyv{™'s

7

(A
—(1=)SX1 > _ Vp¥i > V25— (1-¢"H)S > VY, XiY{ %S
1<j2 % J1<j2

o (=) <(1 —Q)SX1 Y1 Yy ) YIS+ (1-q7)SY Ynlell_nS>

— {(1 —)SX1 V1 ) VIS4 (1-47N8X ) vy ls

K3 K3

+(1-¢YH(g- 1)5X1st}

~{u-asn s R s - sn ¥ vvys
1<j2 1 j1<j2
S VRS SRR ]
1<j2

+o (—1)"—1{(1 —q)SX1Y---Y, Z VIS 4 (1 - ¢"™SXyy; - Y, Y s

+(1=¢""™M(g—-1)SX Yy --- Yan”“S}.

Upon gathering terms, we obtain

s[xl, ZYJ]S
=SXS{(1-) + (1 —¢™ )+ (@@= -q")}
+8X1 ) VYISl - )+ (1=¢"H) = (1-¢"*) ~ (¢~ D1 -¢"?)}

1<g2
o XYy VY TS () (L ) - (1= T + (1= g )
+ (=D -4}
228K Y Ve Y TS g - D+ (<)M e - )}

i>1 m=1 1<jo<-<jm-1
Ju#i

=1-¢)sx,v!s

as desired. This concludes the proof of Case 2 as well as that of Proposition 3.2.
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Appendix B. Proof of Proposition 3.3

We start by giving a closed expression for the commutator S[3; Vi, X1¥;71]S.

LEMMA B.1. For any | > 1 we have
S [Z Y;, X{Yl_l} S=@""1—1)S{gXIX, + @XI72X2 4. 4 ¢'xL)S

+¢'sxs —sxls. (B.1)
Proof. First of all, by (2.10) we have
VX Y =qTy - T oTy  Tog - Ti Xy
=qT} - -- Tn72Tn71XnTn7711 - Tfl’
from which it follows that
VXY =Ty - T o T XATY T (B.2)

and hence that SYlX{Yl_lS =¢'SX.S. Now we compute

S[Z Y;, X{Y;l] S=SYiX{Y; 'S — SX{S+ " SV, X{yy ]S

m=2
n
=¢'SX) S - SX{S+ Y SV, X{¥;']S.
m=2
The lemma will therefore be proved once we have shown that
SV, X1V7YS = (1 -t D)t 18X X, + X2 X2 -+ ¢ X1} S. (B.3)
For this, we need a preparatory result.
SUBLEMMA B.2. For any m, the following identity holds:
Tttt T T T TR T e Ty
=17 T T Tt - TnoTo 1Tz - Th. (B.4)

Proof of sublemma. We argue by induction. The relation can easily be checked directly for m = 2.
Fix m and assume that (B.4) holds for m — 1. We have
Tr;£1 . T2_1T1_1T2_1 ce T7;£1T1 . Tn—2T371Tn—2 STy
= Tn;£1 e Tfnglel cen TT;LTl e TanTg_lTn72 Ty
=717ttty T T 0T Ty - T

=N T T T T Ty Ty o T (T - - )T

Using the induction hypothesis applied to the set of indices 2, 3, ..., n rather than 1,2,...,n,
we may simplify the expression enclosed in parentheses to get

Tttt T T Ty T T e Ty
= Tl_l(T2_1 .. T;£2Tme+1 - Tn_zTﬁ,lTn_a Ty,

which proves (B.4) for the integer m. This finishes the induction step and hence the proof of the
sublemma. O
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We may now prove Lemma B.1. Once again, we argue by induction. Fix m and set
u; = Yy, X1Y77H We compute uy directly, using (2.9) and (B.4), as follows:

wy = X1 Y Y 4 (12 VT T2 1Tl Iyt ol Xyt
= XY, YL+ q(t1/? —t—1/2) £ Lerhm e TR XY

= XY, Y7 4 g =Yyt -Tﬁ_l-.-Tle
= X Y Y g =y T T X T T

We will now prove the following formula by induction on I:
w = XYW, (V2 Y T T T e T T (B.5)

where

e =qX, X AXEXIE XL

The [ =1 case was proved above. Let us assume that formula (B.5) holds for a certain integer (.

We have
w1 = Xy + q(tY? — =Yyt T—1 oI - T 1 X, TY - Ty Xyt
= Xju + ¢ YT T, T X, T T
X Ty Ty XD -1t
= Xy + ¢V T Ty XS T T (B.6)

and (B.5) for the integer [ + 1 follows from this by the induction hypothesis.

Equation (B.3) is obtained from multiplying (B.5) by S on both sides. Lemma B.1 is now
proved. O

We can now proceed with the proof of Proposition 3.3. Let us form the generating series for
S[>, Vi, X1y 1S, By Lemma B.1, we find

Xiu —1 dis1 ¢ X;u' - Xqu 1 qXnu
§j5§ Y, XTIy sur = 54 - 2L el )&z g1 42t
[ ! ] ! { X T STy o

r>1

—Xiu+ t"_qunu

- 5(1 —X1u)(1 — qXpu)

On the other hand, we have
(tr/2 _ t—r/Q)(t—r/2 _ qrtr/Z)

exp (Z , Z X;“uT)

r>1
DS (1) T XI) x5 47/7) 5 X0
T DS o (1) S X ) exp(S o (6717/7) 55 X )
I O X 1))
L xp (o (77 1) X ) exB( o (4787 /7) X )

ﬁ (1 -t Xu)(1 — qtX; u)

(1 —qXiu)(1 — Xu)
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Hence we are reduced to proving the following relation:

n

ST -+ Xau)(1 - taX;u)S = S ﬁa X1 - s+ LTt

i=1 i=1 1_q
n n—1

x {(Xlu—tnqu uw) [] - Xiw) T]( 1—quu)}S. (B.7)
2 =1

Of course, owing to homogeneity, we may drop the dummy variable u from this formula. A brute
force approach based on the equalities

1
SXlS - WS(X:[ + XQ)S - tSXQS,

SX28 = S(X?+ X3+ (1-tH)X1X,)S,

1+t
1
allows one to check (B.7) directly for n = 2. We will now prove (B.7) by induction on n. So fix n

and assume that (B.7) holds for the integer n — 1, with n — 1 > 2. For any subset {i1,...,4,} of
{1,...,n}, we denote by S;, ;. the partial symmetrizer with respect to the indices {31, ..., }.

Using the relation
Slg(Xl — tn_qun)(l — X2)512 = tSlQ(XQ — tn_2an)(1 — t_le)Slg,

we get

(1—t)(1 - tq) ) TT0 - 0 TT - o,
s e [la- % [la -}

_ (=t —tq)
1—gq

n n—1
tS{(l—le)(l—thl)(Xg—tn 2 H H 1—qu)}S
3 "

1—t . =

:WtS{(l—le)(l—t‘1X1)<H(1—t_1X (1 —tgX;) — JJ(1 = Xi)( 1—qX)>}S

i=2 =2

Next, we use the formulas

=

S(1—¢Xy) ] = tgXi)S =t 'S T](1 - taXi)S + (1 — ¢ ST (1 - tgX,)S,
=2

= =1 1=2
S(1—t1Xy) ﬁ tlsﬂl— S + 1—t1)Sﬁ(1—X,-)S
=2 =2

to simplify (B.7) to the following relation:

(-t 8 {f[1—t—1X )1 —tgX;) ﬁ1— )(l—qX)}S
i=1 =1

=1 -t (t—-1) (H(1 —t ' X)S [J( - taxi)S - ] - exi)S (1 - Xi)S>. (B.8)

i=1 =2 i=1 =2
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As usual, let
A A
ma(z1, ..., 28) = Z zazl) e Zafk:)
SN
stand for the monomial symmetric function. The computation of the (t!/2)-symmetrization of a

monomial symmetric function m(;r) is an easy exercise which we leave to the reader.

SUBLEMMA B.3. For any 1 <r <n we have

T
Sm(lr)(Xg, R Xn)S = tiT%Sm(lr)(Xl, cee Xn)S

n

"l

We take the convention that [";ﬂ:r =0 if r =n and drop the index ¢ for simplicity. Using
Sublemma B.3, we can now write down closed and symmetric expressions for all terms involved

n (B.8):

[Ta-t'X)=> (-1t "mar)(Xa, ..., Xn),

=1 r=0
H(l - qXZ) = Z(_l)rqrm(lT)(X27 BRI XTL):
i=1 r=0

n—1|
r

SH<1—XZ»)S:Z(—1)%T[ ] Sman (X1, ..., Xn)S,

i=2 r=0 n
r

"]
n n r
ST —taX)S => (~1)"q" =———=—Sman(X1,..., Xp)S.
i=2 r=0 n
,

This allows us to write

n—1]
- —1 . r - r u+k |:u + k:| u—r—=k
[Ta -t X)s [ —tax)S=> (=14 > I
i=1 i=2 rk u=0 n
u+k
X Sm(ITQk)(Xl, ceey Xn)S
and
n—1|
= = r - r —u—k LY +k r—u-+k
[[a-aex)sT[a-x)s=> (-1)7| > L) e
i=1 i=2 rk u=0 n
u+k
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Hence
[Ta—e'x)s [ —tex)s =1 —aXi)S [[(1 — Xi)S
=1 =2 =1 =2
n— 1]
! k
_ Z(_l)r Z <Z>u+{ utkpu—r—k _ y—u—k 7“ u—Hc}Sm 1r2k)(X]_, L Xn)S
rk u=0
U+ k]

while, of course,

{ﬁ 1—t71X)(1 - tgXy) _ﬁ(l_Xi)(l —qu')}S

1=1

=> (-1 Z < )(t% T 1) Mgy (X0, - Xn).
ok

u=0

(B.10)

Let A denote the right-hand side of (B.9) multiplied by (1 —¢~")(¢t — 1), and let B stand for
the right-hand side of (B.10) multiplied by (=" — t!="). Equation (B.8) says simply that A = B.
To show this, we check that the term qu+km(1r2k)(X1, ..., Xp) appears in A and in B with the

same coefficient. In B this coefficient is clearly equal to

1y () = e o)

whereas, as far as A is concerned, it is equal to

(1 —¢™)(t —1)(=1)" <T> tu—r—km _ tu—r—km

u n | n a
u+ k r—u-+k
tr—i—k—n—u _ tu—n—‘rk‘)

=(1— ")t~ 1)(—1)’"<Z> t“"k< =
— - e - ()

u

== o - (),

u

as desired. Thus equation (B.8) and Proposition 3.3 are (finally!) proved.

Appendix C. Proof of Theorem 6.3
C.1 We begin with (6.3). Since
E,(22) = E'(2)Eo(v*"2z) and [Eg(z1), Eo(v¥2)] =0,

the relation (6.3) is equivalent to

U_QT -1 _ vec
[T(0,1), Ex*(2)] :U#X(Fl)ﬁz "EY(2).
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We prove (C.1) by showing that for any x € X (IF;),

v ="
vec] __ vec
I:]‘Oz’ T,d] - ’U72 _ 1 17”,d+17
where O, is the structure sheaf at x. Indeed, we have
Z,edc : 101 = /Uir Z 1F@Oz7

F vector bundle
F=(r.d)

whereas, since every non-zero map to O, is onto,

v - Hom(Gg, O,) — 1
1o, - rfj = { Z i v—(2 = ) 1g + Z # Hom(F, Om)lf@oz}.

g vector bundle F vector bundle

G=(r,d+1) F=(r,d)
We conclude by using dim Hom(G, O,) = dim Hom(F, O,) =r.

C.2 We now turn to the proof of (6.4). We begin with a lemma.

LeEmMMA C.1. For any d > 1 and any r, the series E,.(z) is an eigenvector for the adjoint action
of 720 d)-

Proof. We will first show that for any vector bundle V of rank r, the commutator [T(O,d)» 1y] is
supported on the set of vector bundles. To see this, let F be a coherent sheaf of rank r, and write
F =vr @ 7r where vr is a vector bundle and 7 is a torsion sheaf. Let us assume that 7 #0
and compute

(Tio.y1v, 170 = (Tio.9y1v, v"71,, 1, )6
=P A (T g) - A(Ly), L, @ 17, )6 (C.2)

Since A(T(g,q)) = T(0,0) ® 1 +1® T4y, V and F are both of rank r and no subsheaf of V is
torsion, we may simplify (C.2) to

<T(0,d)1V7 1}') = ’U<Vf’Tf> (T(07d)1v R1+1y® T(O,d)» 1,,® 17-]_.>G. (03)
This is non-zero only if deg(7x) € {0, d}. A very similar computation shows that
(WWT.a), 17) = v (1T (o 4y @ 1 + 1y @ T(g.0), Loy @ 1ry)a, (C.4)

which is also non-zero only if deg(7r) € {0, d}. Furthermore, if deg(7r) =d (i.e. if F is not a
vector bundle), then (C.3) and (C.4) actually coincide, so that ([T(g,q), 1v], 15)c = 0. This proves
that [T{,q4), 1v] is indeed supported on the set of vector bundles.

To finish the proof of Lemma C.1, we need to show that the scalar product

(T, 1) 1r)e = To.a 1y, 17r)a
is independent of the particular choice of a vector bundle F of rank r and degree d + [ and that,
furthermore, this value is itself independent of [. The proof of this is essentially the same as for
the d =1 case above (see §C.1). It suffices to notice that the number Surj(G, T) of surjective
maps from a vector bundle F of rank r to a torsion sheaf 7 is independent of the choice (and
degree) of F. This last statement is clear when 7 is stable and, in general form, can be proved
by induction using the formula

# Hom(F,T) = Z #Surj(F, T). O
TCT
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From Lemma C.1 and the formula

Eo(2) = exp (Z T&r) z)

r

we deduce that there exists a series S, (z1/22) € C[[z1/22]] such that
Eo(21)E,(22) = S, (2>Er(zg)Eo(z1). (C.5)
Let us first determine Sy(z1/22). Relation (C.5) for r =1 is equivalent to
Eo(z1)E]*(22) = S1 < 2>EV6C(ZQ)E0(21> (C.6)

Thus, in order to compute S1(21/22), it is enough to consider the restriction of Ey(z1)Eq1(22) to
line bundles of degree zero, say. If £ is such a line bundle, then for any d > 0 we have

3 # Hom(L_g, £) — 1

v=2 -1

Lio,a) - La,—a) (L) = v*
L_4€Pic™4(X)

—2d 1

_ Ud#X(Fl)vi_l,

from which we get

Eg (Zl)El 22 = 1+Zvd< ) 1(0d) (1,— )(,C)

d>0
#X( ) <21>d —2d _
] g 22 (v 1)
A #X (F1)

2 (1= (21/22))(1 — v=2(21/22))

<)

This shows that Si(z1/22) = ((21/22). Finally, to determine S,(z1/22), observe that by the
coproduct formulas in Proposition 6.2,

S, < )Al A(Er(22)Eo(21)) = Ar,. 1 (Eo(21)Er(22))
)

= EO( 1)E1(22) ® Eg(21)E1(v*22) ® - - - @ Eo(21) E1 (v* "V 2p)

- H C( >E1(Z2)E0(21) ® - ® B (07 29)Eo(21)

— H C(Umj;) AL._J(ET(ZQ)E()(Zl)).
i=0
It follows that
Sy (z1/22) = H C(v™%21/2),

as desired. So Theorem 6.3 is proved.
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Appendix D. Proof of Lemma 7.4

Let us denote by F(ayq, ..., o) the right-hand side of (7.8). Each {(«a;/c;) is a rational function
of degree zero and leading coefficient one in both «; and ;. From this and the expression (7.8)
we see that F'(aq, ..., a,) is a rational function of degree one in each of the variables o, . . ., a;
whose leading coefficient in any of these variables is also equal to one. Next, since ((z) has a
simple pole at z=1 and at z=v?, the function F(a,..., ) has at most simple poles, and
these are located along the hyperplanes o; = a; and o; = ’U2Oéj. We claim that the residues on
each of these hyperplanes vanish, so that F'(aq, ..., a;,) is a polynomial in ay, . .., a;,.
In fact, the residues along hyperplanes a; = a; vanish because F'(a, ..., o) is symmetric
in a1, ..., a; as for the hyperplanes a; = v2aj, we compute
Resy2q; o, (a1, .. ar)
1 o o
=—— [H C(a) : Resvgaj_aig“(C;) . <Z o + 7)204]')
14 J J I#£i
I#j I#]
2
vy Q;
() e (2) (S
1#1 1#1
I#j I#5
2
v, 1%
+ H C( j> . Resvzajai§<z)v2aj.
, aq @j
l#1
I#j

Using the relation

we can simplify this to

2
oy o Vi — o
Resy2,—a, F (“1""’“7"):114(%) 'Resvgaj—wC(a;)'{ VT ‘“2%}

I
1]
=0,
as desired. Upon combining all the information we have on the function F(a, ..., o), we see
that necessarily F(a1, ..., ) =ai + -+ a+ 7+ u for some u € K'. It remains to observe that
(for instance) we have F'(1,...,1) =r. So we are done.
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