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BOUNDARY VALUE CONTROLLABILITY
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FOR THE WAVE AND HEAT EQUATION
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Abstract

In this paper, we study controllability and observability problems for the wave and
heat equation in a spherical region in Rn, where the control enters in the mixed
boundary condition. In the main result, we show that all "finite energy" initial
states (i.e. (wo,vo) € H1^) x £2(H)) can be steered to zero at time T, using a
control / 6 L2(dO x [0, T]), provided T > 2. On this basis, we use the duality
principle to investigate initial observability for the wave equation. Applying the
Fourier transform technique, we obtain controllability and observability results
for the heat equation.

I. Introduction

In this paper, we consider the controllability problem for the wave equation
wtt — Aw = 0, t > 0, x € fi, where fi is a spherical region in R". The control
force enters in the boundary condition dw/dv + aw = f, where a > 0 is fixed.
In our main result we show that all initial states (u;o,^o) £ i/^fi) x L2(fi)
can be steered to the zero state at time T > 2 using the control / . On this
basis, we investigate the initial state observability problem for the wave equation.
Furthermore, we study observability problems for the heat equation wt-Aw = 0,
t > 0, x € fi with the mixed boundary condition.

In many physical processes, control is applied at the boundary of the spatial
region, in which the process evolves. The wave equation plays an important role
in the study of structural vibrations, tubular catalytic reactions, etc. Boundary
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462 K.-D. Werner [2]

controllability and (final state) observability of the parabolic equation wt — Aw =
0 has applications in heat transfer and diffusion processes.

Following the steps of [9], we can weaken the assumption (WQ, VO) G H2(Q) X
H1 (fi), which was imposed on the initial conditions in [10, p. 81]. More precisely,
we can show that finite energy initial states, i.e. (WO,VQ) €E #x(fi) x L2(fi)
can be steered to the zero state with a control / € L2(dQ x [0, T]) appearing
in the mixed boundary condition, provided T > 2. However, we obtain this
stronger result only for the case in which the region fi is the interior of the unit
sphere in Rn (n > 2). This is in contrast to the weaker controllability result
obtained in [15], where the specific geometry of fi does not need to be prescribed.
Further results concerning boundary controllability for the wave equation subject
to various boundary conditions in other regions can be found in [4], [16]. For
the case involving only one space dimension, complete results on these topics are
available. For details, see [17], [18], [22] and the references cited therein.

In the case of the heat equation wt — Aw = 0, our first aim is to investigate
observability problems. On this basis, a duality theorem proved in [4] can then
be used to obtain the controllability result, where the control / again enters
in the mixed boundary condition. In [2], [3], [14], [19], [21], results concerning
various observability problems for the heat equation in one space dimension or
higher dimensions are established. For more details concerning controllability
results see [6], [7].

This paper is organized as follows. In Section 2, we describe the abstract linear
systems and specify the boundary control problem for the wave equation. A brief
summary of preparatory results is also given. The underlying results, which lead
to the definition of certain weak solutions of the wave equation established by
the technique of transposition, are described in detail. On this basis, we proceed
in Section 3 with the proof of our main result via solving an equivalent moment
problem. We shall, however, indicate only the important steps in the proof,
because the procedure is similar to that given in [9]. With the aid of this main
result, initial state observability for the wave equation is obtained in Section 4,
applying a duality theorem. Finally, in Section 5, we shall deal with the heat
equation again subject to the mixed boundary condition. Hereby we use the fact
that the boundary control problem of the heat equation is closely linked to the
corresponding boundary control problem for the wave equation.

2. Preparatory results

Let X, Y, Z be Banach spaces. Consider the abstract linear system

X D D{C) -2* Y
F i (2.1)

Z
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[3j Controllability and observability 463

where the 'observation' operator C: X —» Y is linear with dense domain D(C)
and F is linear and bounded. The system

^*Y (2.2)

is a specialisation of (2.1) obtained by taking F to be the identity operator on
X. Together with (2.1) and (2.2) we consider the dual systems

X ' ?— D{C*) C Y*
F- T (2-3)

Z*

or when F is the identity on X

X* £ - D(C*) C V , (2.4)

obtained by letting X*,Y* and Z* denote the conjugate spaces of X, Y and Z
respectively. C* and F* are taken to be the adjoint operators for C and F.

With this notation, we give a general definition of observability and control-
lability problems.

DEFINITION 2 . 1 . The system (2.1) is (continuously) F-observable if there is
a constant K > 0 such that

\\Fx\\z<K\\Cx\\Y, X€D{C).

The system (2.2) is observable (i.e. initial state observable), if

\\x\\x<K\\Cx\\Y, X€D(C).

DEFINITION 2.2. Let R(A) denote the range of the operator A. Then system
(2.3) is F*-controllable, if

R(F*) C R{C*)

and the system (2.4) is (exactly) controllable, if

X* C R{C*).

We now state a theorem relating observability and controllability.

THEOREM 2.3 . (a) System (2.1) is F-observable if and only if system (2.3)
is F* -controllable.

(b) System (2.2) is observable if and only if system (2.4) is (exactly) control-
lable.

PROOF. For part (a) see [4, Theorem 2.3] and for (b) see [4, Theorem 2.1].
We now pose the boundary control problem for the wave equation. Consider

the initial boundary value problem consisting of the equation

d2w A d2w

T P - ' E ^ ^ 0 ' x€Q,t>0, (2.5)
a i fc=i a%K
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where fi = { i e Rn, | | i | | e < 1} and an = F = {x e Rn, ||z||e = 1}, II • He denotes
the Euclidean norm.

The boundary condition is given by

-^-{x,t)+aw{x,t) = f(x,t), x€T, t > 0, a > 0 fixed, (2.6)

where v denotes the unit outward normal vector to F and

feL2(Tx[0,T}) (2.7)

for some T > 0. The initial conditions are

w(x,0) = wo(x)GH1(Q), ^-(x,0) = vo(x)eL2(Q), (2.8)
at

where H1(Q) denotes the Sobolev space of order 1. The Sobolev spaces Hr{fl),
HS(T) of real orders r, s are defined as in [11].

Our control problem is defined as follows. Let T be prescribed and (wo,i>o)
be an initial state as specified in (2.8). Then, find a control / satisfying (2.7) so
that the solution of (2.5), (2.6) and (2.8) also satisfies

w(x,T) = wT(x) G Hl(Q), ^(x,T) = «rW € L2(Q).

Because of the time reversibility of (2.5), there is no loss of generality in assuming
that

wT = vT= 0. (2.9)

The main result of this paper is now summarized in

THEOREM 2.4. If T > 2, the control problem is solvable with a control
fEL2(Tx [0,T]) such that

where K is a positive constant independent of WQ and VQ. IfT<2, the control
problem is not solvable in general.

The proof of this theorem is given in Section 3.
Let the space V defined by

V = {weH2{Q): dw/dis+aw\T =0, a > 0 fixed}.

First, we note from the trace theorem [11, Chap. 1, §3.3] that w, dw/dv are
defined on F and are elements of the interpolation space H3^(T), Hl/2{T) re-
spectively. Furthermore, the map

w —* (w\ r,dw/dv\ r)
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is a linear, continuous and surjective map of H2(Q) onto H3/2{T) x H1/2(T).
Thus, V is a closed subspace of H2 (fi) and hence a Hilbert space with the inner
product from H2(Q).

Next, we show that V is dense in H1 (Q), which is needed for Theorem 2.5. Let
/ € H1(Q). It is sufficient to show that / ± V implies / = 0. Since the Laplace
operator —A is coercive on H1(Q), one can equip //^(fi) with an equivalent
scalar product defined by

(u,/)i = / VuVfdx + Ko / ufdx+ / aufds,
Jn Jn Jr

where KQ denotes the coercivity constant. Let u GV, f L V. Application of
Green's formula yields

0 = («,/)!= f f{-A + K0)udx+ f (au + du/du)fds
Jn Jr

= / / ( -A + K0)udx, since uGV.
Jn

In [23, p. 339] it is shown that the boundary value problem

—Au + KQU = g, au + du/du\ r = 0, a > 0 fixed,

has a unique solution u e H2(Cl) for every g € L2(Q). Hence,

0 = («,/i)= I f(-A + K0)udx= f gfdx, V?€L2(n).
Jn Jn

Thus, / = 0, and the claim is proved.
In order to define a weak solution of (2.5), (2.6), (2.8) we need the following

theorem, whose proof can be found in [11, Chap. IV].

THEOREM 2.5. Let Ti > 0 and suppose <p0 e V, <pi e H1^), h €
L2([0,Ti],H1(Q)). Then there exists a unique function <p such that

<p(-,t) is continuous from [0, T\] into V and<p(-,0) = <po, (2-10)

df/dt(-,t) is continuous from [0,Ti] into H1^) and d<p/dt{-,0) = <pu (2.11)

d2<p/dt2 and A<p lie in L2(0,Ti; V) and satisfy in L2(0,Ti; V")

d2<p/dt2 -A<p = h. (2.12)

For the following it is important that one can identify the dual V of V (with
respect to H1(Q)) with L2(Cl). In order to show this, we need the next two
lemmas.

As usual, by a region in Rn, we mean an open connected (nonempty) bounded
set of points.
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LEMMA 2.6. Let fi be a region in R" and suppose that dQ = T eC2. Then
there is a constant C > 0 such that any function f € V satisfies the inequality

(2.13)

PROOF. Suppose that / e V and let F denote A/ . Then f{x) satisfies
Poisson's equation

A/ = F (2.14)

almost everywhere in fi. Moreover, by the definition of V, df/di> + af\ an = 0.
Multiplying A / = F by an arbitrary function v € H1 (fi) and applying Green's
formula, we obtain

/ vAfdx = [ vFdx = - ( I VvVfdx + / avfds ) .
Jn Jn vn Jr )

Hence, / is a generalized solution (cf. [13, p. 193]) of the mixed boundary value
problem for equation (2.14). The inequality (2.13) follows then from Theorem 4
of [13, p. 217] (see footnote on that page).

LEMMA 2 . 7 . Let fi C R" be a bounded region of class C1 and T be the bound-
ary with positive (n — 1)-dimensional Lebesgue measure. Let o~(s), defined on T,
be a measurable bounded function with a(s) > 0. Then, the norms \\f\\i{i(n)

are equivalent.

PROOF. Theorem 28.5 of [20].
Let /^(fi) be equipped with the scalar product

if, 9)i = I VfVgdx+ f afgds.
Jn Jr

The dual V of V with respect to H1(Q) in the norm | • |j is defined as follows.
Let w e /^(fi) and define a continuous linear functional on H1(Q) by

lw{u) = (u,w)u u€H\n). (2.15)

For u GV C H2 (fi) we have with a positive constant c

\\u\\v = |

and hence
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showing that lw is also a continuous linear functional on V. Since V is a Hilbert
space, there exists a unique v(w) € V such that

lw{u) = {u,v{w))v, ueV. (2.16)

We define

\\w\\v. = \\v{w)\\v,

and V itself to be the completion of /f1(f2) with respect to this norm. Now,

\\w\\v = ||*>(K>)IIV = sup |(u,u(u;))v|/||u||v.

Since

(u, v(w))v — (u, w)i — I Vu -Vwdx+ I auwds,
Jn Jr

(by (2.15) a n d (2.16)) i n t e g r a t i o n b y p a r t s t o g e t h e r w i t h u&V l eads t o

(u,v(w))v = - / ( A u ) w d x .
./n

Thus,

\\w\\v — sup I / (Au)wdx\ / \\u\\v
In 1/

< sup / |AU|2dx N U W N I ^
 (2-17)

< sup /^||u||v||w||L2(n)/||u||v = K\\w\\L2{n)
o^tuev

for some fixed positive constant K. By Lemma 2.6,

—Au = w

has a unique solution u e V with \\ii\\v < ^||^IU2(n)- Equation (2.17) with
u = u gives

so that

Therefore, the L2(U) and V norms of w e i/x(n) are equivalent. Since V is the
completion of H1 (fi) with respect to the V norm, it is then also the completion
of /fx(n) with respect to the L2(f2) norm, which is L2(Q). Topologically, V
and L2(Q) are the same space, and the norms are equivalent. This completes
the proof.
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Using Theorem 2.5, together with the technique of transposition and Green's
formula as done in [11, p. 319] and in [1], we obtain

THEOREM 2.8. Let(w0,v0)GH1{Ci)xL2{n)andfeL2{rx[0,T1}). Then
for each solution of (2.12), as described in Theorem 2.5, together with

there exists a unique function w G L2(Q x [0,Ti]) such that the following relation
is valid:

I w ( -~Y - An<#) dxdt = whdxdt
Jf2x[0,T,] \ ° t ) ynx[0,Ti]

= j (vo(x)<j>(x,0)-wo(x)^(x,0)\ dx

+ f f{x,t)<f>(x,t)dsdt.
•/rx[o,Ti]

(2.18)

We use (2.18) as the definition of weak solutions of (2.5).
REMARK 2.9. The identification of V with L2(fi) together with (2.12) shows

that the left-hand side of (2.18) is defined for w e L2{Q x [0,7^]).
Because we can reverse the direction of time in the wave equation, the replace-

ment of the initial conditions stated in Theorem 2.5 by the terminal conditions
in Theorem 2.8 causes no problem. Since w(-,T) and dw/dt(-,T) are not very
well defined by Theorem 2.8, as required for our control problem, we replace
condition (2.9) as follows. Let 7\ > T, and extend / from [0,T] to [0,^] by
setting

f(x,t) = 0, xeT, te{T,Ti]. (2.19)

Then (2.9) is replaced by

w{x,t) = 0, ( z . O E n x p r . T i ] . (2.20)

Then (2.9) and (2.20) are equivalent for classical solutions of (2.5), (2.6), (2.8).

3. Proof of Theorem 2.4

Following the arguments of [9], we can transform the controllability problem
(2.5), (2.6), (2.9) into a sequence of equivalent moment problems. For the sake
of convenience, let us give a sketch of the procedure.

Denote by XKI = w2
Kl, K = 0 , 1 , . . . , I = 1,2,... the eigenvalues, and by

Unmi € L2 (fi) the orthonormalized eigenfunctions of

AU + \U = 0
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with the boundary condition

— + aU\ r = 0, a > 0 fixed.

Here m, m = 1,2,..., h{K,p) = {2K + p)(K + p- l)\/{p\K\), denotes the
multiplicity of each eigenvalue. We remark that the eigenvalues are positive
numbers. For each K, these numbers are defined by \m = w^,, where
satisfies

(a - p/2)JK+p/2(uKi) + UKIJ'K+PV&KI) = °. / = 1,2,..., p = n - 2.

Here Ju is the Bessel function of the first kind with order v. Furthermore,
WKI < w/f2 <• • •—• oo and WK, —* oo as K —» oo for each / = 1,2, The
corresponding normalized eigenfunctions are a triply indexed sequence given by

UKmi(x) = UKml(r,G,$) = RKi(r)YKm(e,$),

m = 1,2,..., h{K, p) = (2K + p)(K + p- 1)1/(p\K\).

Here 0, $ are hyperspherical coordinates, r € [0,1] is the radial coordinate,
6 = {$: 0 < Oj < 7T, j = 1, . . . , p} is the coordinate of latitude and $ G [0, 2TT) is
the coordinate of longitude. The sequence {yjfm(0, $)}, m = 1,2,..., h(K,p)
is then an orthonormal basis in L2(r) for the surface harmonics of degree K.
The functions RKI^) are defined by (see e.g. [5]):

p M _ v^/qrP/ JK+v/2(uKir) . .

For each if, the functions are orthonormal (with weight function r""1) in
L2(0,1). We now state a result which is needed for the proof of Theorem 2.4.

LEMMA 3.1 . IfvoGH1^), then the inequality

K,m,l

is satisfied, where

VKml = /
Jn

PROOF. Lemma 3.2 of [10].
Let w be a solution of (2.5), (2.6), (2.8) as defined in Theorem 2.8. The initial

data have an expansion in L2(Q):

where
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Let Ti > T, g = g{t) e C°°[0,oo) have support in [T,Ti] (cf. Remark 2.9);
define a function gKmi € C°°{U x [0,oo)) by

gKmi(x, t) = g{t)UKmi(x). (3.3)

Then, the solution of d2(j)/dt'i — An(j> — gKmh d<f>/di> + cr<t>\ r = 0, with zero

terminal condition

is given by

<j>(x, t) = 4>Kmi(x, t) = (ax co

cti= (l/uJin)sm(u>KiT)g{T)dT, a 2 = - I cos(uKIT)g(r) dr.
JT JT

Hence, <j> G C°°(n x [0,Ti]) satisfies the hypotheses of Theorem 2.8. Thus the
solution w(x, t) must satisfy (2.18) for such a <j>{x, t). Now, by substituting <f>(x, t)
and d<j>/dt(x,t) together with the expansions of w0, vo into (2.18), we obtain

f{x,t)cos{uKlt)UKmi(x)dsdt

( f f{x, t){l/uKl) sm(<jKlt)UKml{x) ds dt - wKml

/ ]

w{x,t)gKml{x,t)dxdt.
]

JJ

If we expand / (x , t) in terms of hyperspherical harmonics:

oo HK,p)

K=0 m= l

and use the orthonormality property of the sequence {Yum} in L2(T), it is clear
that the right hand side of (3.4) is zero, and hence (2.20) is satisfied if and only
if the function fjim £ L2[0, T] solves the infinite collection of moment problems:

rT
fKm{t)£Xp{i<dKlt)dt — {—VKmi + i^KlWKml)/RKI{X)I (3-6)

^0
rT

fKm{t) exp(-iWKlt) dt = {-VKmi ~ iUKlWKml)/RKM), (3.7)

= 0,l,..., 1 = 1,2,..., m = 1,2,...,h{k,p).

The solvability of such a moment problem depends on the value of T and the
properties of the nonnegative numbers uKi.

The proof of the following lemma can be found in [8].
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LEMMA 3.2 . For fixed p > 2, a > 0, and K = 0 , 1 , . . . , it is true that

W/f.l+l - WK,J > IT

\im{uK,i+i -WK,I) = "••
I—«oo

This lemma implies that for each K = 0 , 1 , . . . , the sequence {wm} has an
asymptotic gap TT and density

D = lim il/uKi) = 1/T-
I-»oo

In [12, p. 3] it is shown that the functions exp(iwmt), exp(—wait), I =
1,2,..., are linearly dependent in L2[0, T] if T < 2irD. Thus, for

S = {exp(iuKit),exp{-iwitit), i = 1,2,... }

there does not exist a biorthogonal set in L2[0,T] if T < 2TTD. Since D — 1/TT

in our case, this implies the statement of

LEMMA 3.3. IfT < 2, the moment problem (3.6), (3.7) has in general no
solution.

Using Lemmas 6.3 and 6.4 of [9], we can prove the following theorem.

THEOREM 3.4. IfT > 2 and

vKml\
2 = a2<oo, (3.8)

K,m,l

J2 \^KlWKml\2 = b2 < OO (3.9)
K,m,l

then the moment problem has a solution f{x,t) e L2(r x [0,T]) which satisfies

where the positive constant K\ is independent of the coefficients

PROOF. Let the functions //fm € L2[0,T] be the solutions of the moment
problems (3.6), (3.7) which exist for T > 2 by Lemmas 6.3 and 6.4 of [9]. For
each K, m it follows from (3.6), (3.7) and Lemma 6.3 [9] that

\\fKm\\hl0,T] < 2K, JT(l/\RKl(l)\2)(\VKml\2 + ^KiWKml?),
1=1

where the constant K\ is determined by the positive number T — 2 as well as
the uniform lower bound 7r of the asymptotic gap w/f,i+i — ^K,I- Recalling
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the definitions of f(x,t) and UKmi{z), one sees that the orthonormality of the
hyperspherical harmonics y/fm(©,$) implies that

K=o m=1
L*(rx[o,T])

oo_ h(K,p)

i: E ll/*«(Olli.[o.n
=0 tn=l

oo k(K,p) oo

K=Q m=l 1=1

= E ""ml-
K,m,l

Now, we need to show that

E """I < Kl E d ^ - ' l 2 + \0>K*»Kml\2) = Kltf + b2).
K,m,l K,m,l

Thus, it is sufficient to show that there exists a positive number K\ such that,
for all K, I,

2K1\RKi(l)\-2 < Kx. (3.11)

For this, we recall that \RKI(1)\2 = ^KIWKI - (K + a)(K + p- a)}'1. Thus,

> 2(1 + a2l"hrl > 2(1 + a

since UJKI < UKI < ••• —• oo (see [8, Theorem 1.1]). Using the fact that
U>KI —• oo as K —• oo for I = 1,2,... and UJKI > 0 for all values K, I, we
conclude that there exists a constant // such that

0 < / i = min{o;ifi, if = 0,1, . . .} .

Therefore,

+ ^ =C,

which proves the inequality (3.11). Thus, the series (3.5) converges in
L2(F x [0,T]) and represents a solution of the moment problem (3.6), (3.7).
This completes the proof.

We are now in a position to prove our main theorem.
PROOF OF THEOREM 2.4. Lemma 3.1 shows that if w0 € ^(Q), then the

inequality (3.9) is satisfied. Of course, condition (3.8) indicates that v0 € L2(Q).
Theorem 3.4 now shows that there exists an / e L2(T x [0,T]) which solves the
moment problem (3.6), (3.7) provided T > 2. In the derivation of the moment
problem we see that this is equivalent to the controllability condition.
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The proof is complete.
The next lemma indicates that one can not, in general, obtain more informa-

tion from Theorem 2.4 by using inequalities (3.8) 'and (3.9).

LEMMA 3.5. If the inequalities (3.8) and (3.9) are satisfied, then {WO,VQ) as
given in (3.2) is an element of # x (n ) x L2{U).

PROOF. Clearly, (3.8) is equivalent to v0 € L2{Q). (3.9) implies that w0

given by (3.2) lies in the domain of the positive definite operator (-A)1/2 in
L2(Q). Since V has been identified with L2(fi), the operator - A defines an
isomorphism of V onto L2(Q), i.e. given u 6 V there is exactly one w € L2(Q)
such that w = — Ait and vice versa. Moreover, there are constants LQ,L\ > 0
such that

The domain of (—A)1/2 is the interpolation space

[V,L2(n)}1/2 C [H2(Q),L2(fl)]1/2 = H'iQ).

Hence, (3.9) implies WQ lies in the domain of (—A)1/2 which in turn is contained
in tfHn).

The proof is complete.

4. Initial state observability for the wave equation

In this section, we apply our main theorem to establish the initial state ob-
servability result for the wave equation subject to the mixed boundary condition.

Consider the initial boundary value problem, which consists of (2.5) with fi
and F defined as before:

dw/dv{x, t) + aw(x, t) = 0, x € T, t > 0, a > 0 fixed (4.1)

w{x, 0) = wo{x) 6 V, dw/dt(x, 0) = vo(x) € L2(Q). (4.2)

This problem is known [11, Chapter IV] to have a unique solution w(x,t) with
the properties

w € C([0, T]; H1 (fi)), dw/dt 6 C([0, T], L2(fi)).

The observing operator H: Hl{Q) x L2{d) — ^ " 1 / 2 ( r ) is defined by

H(w(;t),dw/dt(;t))=dw/dt(;t).

Again, the trace theorem shows that H is a bounded linear operator. The
corresponding observation operator

C: D(C) C Hl(O) x L2(Q) -• L2{T x [0,T])
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is given by
C(WO, «o) = H(W(; •), dw/dt(; •)) = dw/dt(; •). (4.3)

Using regularity results (e.g. Theorem 2.5) for solutions of (2.5), (4.1), (4.2)
together with the trace theorem it follows that V x //^(fi) c D(C).

In order to study the observability problem (2.5), (4.1), (4.2) via (4.3), we
consider the dual control system:

| | * S n , < > 0 , (4.4)

with terminal conditions

z(x, t) = dz/dt(x, T) = 0 (4.5)

and the boundary condition

dz/dv{x, t) + az(x, t) = f(x, t), x G T, t > 0, a > 0 fixed. (4.6)

By using the divergence theorem together with the assumption that WQ € V,
it can be deduced from

dw fd2z .
[

that the following relationship holds:

dx

'rx[o,T]

Thus,

= f ^•(x,t)(f(x,t)-az(x,t))dsdt
^rx[o,r] cft

+ / az(x,t)-^-{x,t)dsdt+ / az{x,0)w{x,0)ds.
Jrx[o,T\ ot Jr

f f{x,t)^{x,t)dsdt

— / crz(x, 0)wo(x)ds.
JT

In particular, (4.7) holds when {w(x,0),dw/dt(x,0)) = (wo,vo) € V x
so that dw/dt e H1'2^ x [0,T]) C L2{T x [0,T]), and for control functions
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/ e L2(r x [0,T]), which steers the state (z(-,0),dz/dt{;0)) e H^Q) x L2(f2)
to zero at time T.

Define X = {(w,v): (w,v) e H1^) xL2(fi)}. Note that X is a Hilbert space
with the inner product

Let the associated norm be denoted by || • ||x- Lemma 2.7 shows that this norm
is equivalent to the usual norm in i /^Q) x L2(fi). Equation (4.7) shows that

C: D(C) C H^tt) x L2(fi) -> L2(T x [0,T]) = Y

has an adjoint operator

C": D{C) C L2{T x [0,T]) -• X* = X = H^Q) x L2{Q),

where

The right-hand side is the initial state to be steered to zero at time T when the
control / is used in (4.4)-(4.6). The domain of C* consists of those / for which

{z(;0),dz/dt{;0))eX.

From Theorem 2.4, we have the following controllability result for the system
(4.4)-(4.6): If T > 2, each initial state with

(i.e. each initial state in X) can be steered to zero at the time T by use of a
control / e L2{T x [0,T]). This means that C* maps from D{C) onto X.
Application of Theorem 2.3 part (b) with X and Y as indicated above yields

for each {wo,vQ) € D(C) and T > 2. Thus the system given by (4.3) is observ-
able.

5. Observability and controllability of the heat equation

In this section, we consider some observability problems for the heat equation.
Our aim is to deduce the controllability result by using Theorem 2.3.

Let fi and T be defined as in Section 2. Consider the parabolic equation

dw
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with the initial condition

w{x,0) = wo{x)€L2(Q) (5.2)

and the boundary condition

dw/du(x, t) + aw{x, t) = 0, x € T, t > 0, a > 0 fixed. (5.3)

It is well known (see [13, Chapter VI, §2, Theorems i and 3j) that the unique
solution w of (5.1)-(5.3) is an element in L2(0,T;H1(Q)). Introducing the ob-
serving operator

H: H^Q) - L2{T), Hw(-,t) = t»(-,0Uer

the observation operator C is denned by
2[0,T}) (5.4)

for some fixed r > 0.
In conjunction with (5.1)-(5.3), we consider the controlled parabolic process:

dz/dt - Anz = 0, x e 0, t > 0, (5.5)

z(x, 0) = 0 (5.6)

dz/dv(x, t) + <rz(x, t) = f(x, t), x € T, t > 0, a > 0 fixed, (5.7)

where / e L2(T x [0, r]). Using the divergence theorem, we obtain

0 = / w(x,r - t){dz/dt - Anz)dxdt
Jnx[o,T]

= / wo(x)z(x,T)dx — / w(x,r — t)f(x,t)dsdt.
Jn JTX[O,T]

Substituting u = r — t and replacing u by t, we get

/ wo(x)z(x,r)dx = I w{x,t)f[x,T - t)dsdt
Jn JTX[O,T]

w{x,t)h(x,t)dsdt.
/rx[0,r]

Since w € L2([0,T];H1(Q)) it follows from the trace theorem that

w | r eL 2 ( rx [0 , r ] ) .

Let X = L2(Cl), Y = L2{T x [0,r]), and defining C by (5.4), the dual operator
C* is

C: h(x, t) = f{x, T-t)eL2(Tx [0, r]) -» z{; T) G L2{Q).

This means that C* takes h(x,t) into the final state Z(-,T) when the control /
is used in (5.5)-(5.7).
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Let -XK <0,K = l,2,..., denote the eigenvalues of the Laplace operator
subject to the mixed boundary condition. Let the orthonormalized eigenfunc-
tions in L2(Q) be denoted by <j>K,h if = 1,2,..., i = 1,2,...,THK, where VHK is
the multiplicity of the eigenvalue —XK- Then,

In [15], it is shown that the solution gK,i{x,t) of the moment problem for
the parabolic control problem (5.5)-(5.7) can be constructed from the solution
9K,I(X> 0 °ftne corresponding moment problem for the hyperbolic control prob-
lem (4.4)-(4.6) by Fourier transformation. There it is shown that the functions
9x,i{x,t), x 6 F, K = 1,2, . . . , / = 1, ...,m/f form a biorthogonal set with
respect to the functions

<}>K,(x)eM-*Kt) in£2(rx[0,r]),

that is
SK\= f <f>ij(x)exp{-*Kt)gKAx,t)dsdt. (5.8)

Jrx[o,T]
Recall inequality (6.17) of [15]:

IISK,(|lla{rx(0,Tl) < <?(r)M(r) exp(MA)/2), (5.9)

where C(T) is a constant depending on r, M = const. > 0, n = Lebesgue
measure. It follows from (5.8) together with the Cauchy-Schwarz inequality that

1 < llffK,i|U2(rx[o,T]) • \\4>K,I{X)exp{-XKt)\\L2{rxio,T])-

Hence, using inequality (5.9), we obtain for each K = 1,2,..., / = 1,2,..., m«-,

K(T)\\<J>KI1(X)exp(-AK<)||L'(rx[o,r]) > || exp(-MAj/2)«A/f,i(x)ll^(n), (5.10)

since 4>K,I is chosen to be orthonormal in L2(Q) and K (r) is a constant depending
only on r.

From inequality (5.10), we can easily establish the observability results. More
precisely, inequality (5.10) means that if we define F: X —> X by

F = exp[-M(-A)1/2]

then we have F-observability, that is

K\\Cwo\\Y > \\Fwo\\x, w0 € D(Q C X.

Note that (—A)1/2 is well defined, since —A is a positive-definite self-adjoint
operator. Replacing F by F = exp(rA), final state observability for the system
(5.1)-(5.3) holds if K is replaced by some K > 0. This is due to the fact that
exp[-M(-A)1/2] and exp(rA) are positive-definite self-adjoint operators with
eigenvalues exp(-MAJ/2) and exp(-rA/c) respectively, where

l im XK —* oo.
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Thus, this final state observability result agrees with those obtained in [6], [7],
[14], [19] and [21].

From Theorem 2.3, part (a), we see that the range of the operator C* includes
the range of F* (or of F"), that is

JR(exp[-M(-A)1/2]) = R{F*) C R{C*). (5.11)

This inclusion means that the set of final states Z{\T), which may be reached
fromz(-,0) = 0 by means of a control / e L2(rx[0,r]), includes states A defined
by:

{ oo rrik \

r—K r—\ I
K=l 1=1 )

where
oo mk

fc=l 1=1

In view of the estimate (5.9), (5.12) can be replaced by

E f>K,i|2exp[2MA}/2] < oo- (5-13)
fc=i J=I

An interpretation of the condition (5.13) can be found in [6]. Furthermore,
it follows from Corollary 3.2 and Theorem 3.3 of [6] that this condition is, in a
certain sense, necessary and sufficient for the validity of (5.11).
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