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Abstract

HOLCF is the definitional extension of Church’s Higher-Order Logic with Scott’s Logic

for Computable Functions that has been implemented in the theorem prover Isabelle. This

results in a flexible setup for reasoning about functional programs. HOLCF supports standard

domain theory (in particular fixpoint reasoning and recursive domain equations), but also

coinductive arguments about lazy datatypes. This paper describes in detail how domain theory

is embedded in HOL, and presents applications from functional programming, concurrency

and denotational semantics.

1 Introduction

HOLCF is a logic for reasoning about functional programs. It provides arbitrary

forms of recursion (via a fixpoint operator) and a package for defining datatypes. The

latter caters for infinite objects, induction and coinduction. HOLCF is a synthesis

of two logical systems, HOL and LCF, combining the best of both worlds. Before

we go into technicalities (of which there is no shortage), we sketch the historical and

logical roots of HOLCF.

The development of tactic-based interactive theorem provers started with LCF

(Gordon et al., 1979; Paulson, 1987), a system to support reasoning in Scott’s Logic

for Computable Functions. Aart from its many technical innovations, it was the

first theorem prover to take the notion of partial computable functions seriously.

Unfortunately, this commitment does not come cheap, as the users of LCF were to

discover over time. Every type in LCF is a domain and every function is continuous.

This reflects the denotational semantics view of programming, but rules out or at

least complicates many other specification and verification tasks. A typical example

is that in LCF every function is potentially partial, which complicates reasoning

about total functions.

Partly as a result of his LCF experience, Gordon developed the HOL system (Gor-

don and Melham, 1993), where all functions are total. This goes a long way and has

made HOL very popular, but breaks down as soon as truly partial functions, e.g.

a programming language interpreter, enter the scene. A typical way out is to use a

relation instead of a function, but this is neither natural nor simple. There is also

the grey area of total functions whose totality is not easy to establish. The standard
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HOL system only supports primitive recursive function definitions and it took a

long while before more sophisticated definition mechanisms became available (Slind,

1996). In contrast, LCF allows arbitrary recursive function definitions.

Therefore, it is natural to aim for a synthesis of HOL and LCF which allows

both partial and total functions. This paper describes HOLCF, an extension of

HOL with the notions of LCF, first designed by Regensburger (Regensburger, 1994;

Regensburger, 1995) and further developed by the authors of this paper. HOLCF is

based on Nipkow and Paulson’s implementation of HOL within the generic Isabelle

system (Paulson, 1994).

One of the key features of HOLCF is that it is a definitional extension of

HOL with domain theory: instead of axiomatizing/hardwiring domain theory (as

in LCF), its semantics is defined by means of conservative extensions mechanisms

and the usual axioms are derived as theorems. Thus a large part of the paper is

concerned with formalizing the semantics of domain theory in HOL and deriving the

standard axiomatization. The flexibility of this approach enables us to compensate

for incompletenesses of LCF by resorting to (fully formal) semantic arguments. The

only exception to the definition principle is our datatype package, which asserts

three axioms (while still being conservative!).

Despite the title of this paper, HOLCF is more than the sum of its parts.

HOLCF supports not just two separate worlds – HOL’s set theoretic one of total

functions and LCF’s domain theoretic one of continuous functions – but also the

transition between them. This means that the LCF part is not a carbon copy of

the original LCF but offers additional concepts designed to ease the transition to

and from HOL. Although HOLCF cannot overcome the complications introduced

by domains and partial functions, it can delay the point where they rear their ugly

head. The underlying philosophy is to express as much as possible in the HOL basis

and as much as necessary in the LCF extension (see Agerholm (1994b) for a similar

philosopy).

The paper is structured as follows. After a brief introduction of Isabelle/HOL

(section 2) we describe the overall structure of HOLCF (section 3). The core of the

paper (section 4) is a detailed presentation of the definition of the basic concepts

of domain theory in HOL. This is followed by a user-oriented description of the

package for the definition of recursive datatypes (section 5). Finally (section 6), we

present a number of applications: functional programming with lazy lists, a model

for Input/Output Automata, and the denotational semantics of a simple imperative

language.

The paper assumes that the reader is familiar with notions from domain theory

(see, for example, Winskel (1993)).

1.1 Related work

HOLCF in its current state shows several significant improvements on the initial

version by Regensburger (1994, 1995), which are all documented in this paper.

The first improvement concerns the frequent applicability conditions attached to

proof rules in domain theory: properties like being a CPO, a continuous function
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or an admissible predicate. HOLCF solves this problem by coding as much as

possible into the type which can then be handled automatically by type checking:

partial orders are introduced as type classes and continuous functions constitute an

independent type. Here we have achieved some significant improvements. Axiomatic

type classes due to Wenzel (1997) have replaced ordinary type classes. Their key

advantage is that Isabelle checks the proposition that some type is a member of

some axiomatic type class by insisting that the type satisfies the axioms of the type

class; Regensburger did not have this device at his disposal and this left a potential

source of unsoundness. Axiomatic type classes also replace Regensburger’s complex

semantic account of type classes by Wenzel’s purely syntactic account. We have

also added several new classes (for example cpos), thus making the class hierarchy

more expressive. The automatic admissibility check has been enhanced significantly.

The second improvement concerns a new datatype package which solves recursive

domain equations automatically, handling also infinite and even mutually recursive

datatypes. Regensburger (1994) merely laid the logical foundation for such a package

by providing an extra-logical argument that allows to construct datatypes in a

conservative way. The third improvement concerns the methodological treatment

of HOLCF. As mentioned above, HOLCF’s philosophy is to stay in HOL as long

as possible before moving to its more powerful, but also more complicated LCF

extension. Such an approach is only possible due to the new interface between HOL

and HOLCF. The importance of this interface has emerged during some major case

studies, which are sketched in this paper as well.

Closely related to our work are the approaches by Agerholm (1994b) and Bartels

et al. (1996), who extend Gordon’s HOL and PVS, respectively, by notions of

domain theory. However, there are significant differences. Neither system provides

a datatype package and they deal differently with the large number of applicability

conditions. Agerholm encodes partial orders as a pair of a carrier set and a relation

and tries to cope with the applicability conditions by specialized proof tactics. This

turned out to be distinctly more complex than our elegant solution using type

classes. Furthermore, our admissibility test is stronger, as it employs a larger set

of inference rules. The PVS approach employs predicate subtyping, type judgments,

and theory parameterizations instead. As the authors admit, this has shortcomings

as well, because the first is not powerful enough, the second does not allow for free

variables, and the last results in cumbersome theory dependencies. Last but not least,

the PVS version does not provide tactics for proving admissibility automatically.

There is also work on extending type theory with partial functions that employs

notions of domain theory (Constable and Smith, 1987; Audebaud, 1991; Crary,

1998). This work is still largely concerned with overcoming theoretical problems

arising from the use of type theory. On the other hand, the problems with formalizing

and automating continuity mentioned above point out deficiencies in the type systems

of both PVS and Isabelle/HOL: the former’s lack of polymorphism, and the latter’s

lack of subtyping. There are type theories without these deficiencies, e.g. Nuprl

(Constable et al., 1986).
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2 Isabelle/HOL

Isabelle/HOL (Nipkow, 1998a) is the instantiation of the generic interactive theorem

prover Isabelle (Paulson, 1994) with Church’s formulation of Higher-Order Logic

and is very close to Gordon’s HOL system (Gordon and Melham, 1993). In this

paper, HOL is short for Isabelle/HOL. This section introduces just enough of HOL

to make the paper self-contained. Below you find a short introduction to HOL’s

surface syntax:

Formulae The syntax is standard, except that there are two implications (−→ and

=⇒), two universal quantifiers (∀ and
∧

), and two equalities (= and ≡ ) which

stem from the object and meta-logic, respectively. The distinction can be ignored

while reading this paper. The notation [[A1; . . . ;An ]] =⇒ A is short for the nested

implication A1 =⇒ . . . =⇒ An =⇒ A.

Types follow the syntax for ML-types, except that the function arrow is ⇒.

Theories introduce constants with the keyword consts, non-recursive definitions

with defs, primitive recursive definitions with primrec, new axioms with rules,

and syntactic shorthands (macros) with translations. Further constructs are

explained as we encounter them.

2.1 Axiomatic type classes

Axiomatic type classes were first suggested by Nipkow (1993), and were turned into

an integral feature of Isabelle by Wenzel (1997). As the name indicates, axiomatic

type classes can be viewed (as a first approximation) as an extension of Haskell-style

type classes (Hudak et al., 1992) by axioms. In a nutshell, an axiomatic type class

can be viewed as a set of types satisfying certain axioms. Below we give an informal

introduction. For a thorough treatment see the paper by Wenzel.

Type classes classify types just as types classify values. Given a type τ and a class

C , the notation τ::C means that τ is of class C . Classes are partially ordered. The

class of all HOL-types is called term; it is the greatest element in the class hierarchy.

In the simplest case, type classes merely provide an overloading mechanism. For

example, in domain theory the symbol v represents different orderings on different

domains. For this purpose, we write

axclass sq ord < term ‘square ordering’

which introduces a new subclass sq ord of term (without any axioms). We can now

use sq ord to constrain type variables to range only over types of this class. Thus,

we can declare

consts v :: α::sq ord ⇒ α ⇒ bool (infix)

which introduces the polymorphic predicate v and restricts its argument types to

those of class sq ord. The type checker will reject any term sv t unless s and t are

both of some type τ such that τ::sq ord holds.

Note that, in contrast to Haskell, where the declaration of a type class comprises

the declaration of its methods (i.e. functions), the declaration of v is separate from
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the declaration of class sq ord. The reason is that membership of a type in an

axiomatic class does not depend upon the existence of certain functions, but on

the provability of certain axioms. Therefore we now turn to an example of a class

involving axioms, the class of partially ordered types, which plays a crucial role in

this paper. Their definition consists of a class po, a subclass of sq ord, which imposes

the usual axioms for a partial order:

axclass po < sq ord

xvx
[[ xvy; yvx ]] =⇒ x = y

[[ xvy; yvz ]] =⇒ xvz
Starting from these axioms, we may derive further theorems about v which hold in

any type of class po. In general, a type class declaration is of the form

axclass C < S1, ..., Sn
axiom1

...

axiomk

Just like in Haskell, there is an instance declaration which tells Isabelle that some

type is of a certain class. In Haskell, this comes with the opportunity to define the

methods of the class. In Isabelle, this comes with the obligation to prove that the

axioms of the class hold in that type. As an example, let us show that the set of

functions from an arbitrary type into a partial order is again a partial order. For a

start, we need to make v available on functions. We simply write

instance ⇒ :: (term,sq ord)sq ord

which claims a certain ‘functionality’ for the type constructor ⇒, namely that σ ⇒ τ

is of class sq ord provided σ is of class term (any HOL type is) and τ is of class

sq ord. (The ‘functionality’ of an n-ary type constructor is given as (C1, . . . , Cn)C for

suitable classes Ci and C .) Because the result class sq ord has no axioms, there is

nothing to prove. Thus, any type can be declared to be a member of a class without

axioms. Such classes only serve to overload function symbols.

Now we can define the meaning of v on functions as the pointwise extension of

v on the range type of the function:

defs f v g ≡ ∀x. f x v g x

Given this definition, it is easy to derive the above axioms for po as theorems about

pointwise ordered functions; call those theorems refl less fun, antisym less fun,

and trans less fun. Now we can convince Isabelle that the pointwise extension of

a partial order is again a partial order by declaring

instance ⇒ :: (term,po)po (refl less fun,antisym less fun,trans less fun)

From this point onwards all axioms and theorems involving the generic v can be

used for functions whose range type is of class po because the type checker now

knows that the function space itself is of class po.

Note that the definition of v is separate from the instance declaration. In fact,

it must precede the instance declaration because in order to derive the necessary
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theorems for the instance declaration the definition needs to have been made already.

Note further that the definition of v above is nontrivial because it involves primitive

recursion on types: v appears on both sides of the definitional equality, but its type

on the right-hand side is strictly smaller than its type on the left-hand side. Note

finally that it is quite legal to define v again, for example on some base type. As

long as the multiple definitions do not overlap, Isabelle will accept them and keep

them apart via their types. This is the reason why overloading works.

In the sequel we usually omit the presentation of the theorems needed for an

instance declaration and write (. . .).

An interesting refinement of the above method for introducing axiomatic type

classes is due to Slotosch (1997b, 1997a). He uses an additional constant to enforce

that sv t is well-typed only if the type of s and t is of class po.

2.2 Defining types

The logic HOL is strongly typed. In order to avoid inconsistencies, every type has

to be non-empty. There are three ways to define new types:

1. types, for example types tr = bool lift. This introduces an abbreviation for

the user’s convenience.

2. datatype, for example datatype α lift = Undef | Def α. This defines a free

datatype together with theorems for induction etc. on the new type.

3. typedef is used to introduce types that are isomorphic to a non-empty subset

of an existing type.

The most general way is the third one. Since we used it for the introduction of

several types in HOLCF, we explain it here by an example:

typedef pnat = {p::nat. 0<p} (PosNE)

In this example we define the type of positive natural numbers (pnat) to be (iso-

morphic to) the set of elements p of type nat (written p::nat) that fulfil the predicate

0<p. The witness that the new type is non-empty, the theorem ∃x. x:{p::nat. 0<p}
called PosNE is proved over natural numbers before the type pnat can be defined in

this way. The typedef construct introduces the type only if the representing subset

can be proved to be non-empty. HOL has no ‘real’ subtyping, but subtypes may

be introduced with coercion functions abs and rep. The typedef construct in the

example automatically defines the subset of the representing values (called pnat, too)

and the coercion functions:

consts pnat :: nat set

Abs pnat :: nat ⇒ pnat

Rep pnat :: pnat ⇒ nat

defs pnat ≡ {p . 0<p} definition of representing subset

rules Rep pnat x∈ pnat
y∈ pnat =⇒ Rep pnat(Abs pnat y) = y

Abs pnat(Rep pnat x) = x

These coercion functions can be used to define functions on the subtype, for example

plus pnat = λx y. Abs pnat (Rep pnat x + Rep pnat y).
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2.3 Proof procedures

Isabelle provides a ‘simplifier’ and a ‘classical reasoner’. The simplifier performs con-

ditional and unconditional rewriting and uses contextual information. The classical

reasoner provides automation for logical formulas by doing some tableau search for

proofs. See Paulson (1994, 1997) for more details.

We only sketch the most important feature for HOLCF: simplification sets. A

simplification set is a collection of (conditional) rewriting rules applicable by the

simplification tactics. Every theory has a default simplification set, to which new

theorems can be added as appropriate.

3 Structure of HOLCF

Isabelle theories are named and hierarchically structured (via the + operation on

theories). The theory structure of HOLCF is shown in figure 1. The contents of each

theory is summarized below.

Porder Partial orders (§2.1).

Pcpo Various classes of cpos (§4.1.2 and §4.1.3).

Fun Function spaces as cpos (§4.2.1).

Cont Continuous function spaces as cpos (§4.2.2).

Cfun The (sub)type of continuous functions (§4.2.2).

Discrete Discrete cpos (§4.3.1).

Ssum Strict sums (§4.3.5).

Sprod Strict products (§4.3.6).

Cprod Cartesian products (§4.3.6).

Up Lifting for cpos (§4.3.7).

Fix The fixpoint operator (§4.2.4).

Lift Lifting arbitrary HOL types to (flat) domains (§4.3.2).

One Domain with a single defined element (§4.3.3).

Tr Domain of truth values (§4.3.4).

A secondary structuring principle is the hierarchy of orders (partial orders, cpos,

pcpos, etc.). These orders are represented as type classes and influence the exact

theory structure: declaring a type to be an instance of a type class requires theorems

about that type and requires the type to be an instance of all superclasses. For

example, for continuous functions we have the following theory structure:

Cfun1 = Cont + definition of → and v , proofs for po

Cfun2 = Cfun1 + declaration of → as instance of po, proofs for cpo and pcpo

Cfun3 = Cfun2 + declaration of → as instance of cpo and pcpo

The fine structure of individual theories is ignored in figure 1.1

1 The full structure can be found at www.in.tum.de/~isabelle/library/HOLCF/.
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Discrete

Ssum SProd CProd Lift Up Fix

Pcpo

Fun

Cont

Cfun

Porder

TrOne

Fig. 1. Theory structure of HOLCF.

4 Domain theory

4.1 Partially ordered sets

Probably the most unique aspect of our work is the use of axiomatic type classes

to define the order-theoretic basis of domain theory. In section 2.1 we have already

introduced the predicate v and the class po of partial orders. We now continue to

develop the class hierarchy.

4.1.1 Chains and upper bounds

Domain theory is based on complete partial orders, a refinement of orders where

certain sets must have least upper bounds. HOLCF is based on the popular notion

of ω-chains, which are formalized as certain functions from nat into a partial order:

consts chain :: (nat ⇒ α::po) ⇒ bool

defs chain Y ≡ ∀i. Y i v Y (Suc i)

Upper bounds and least upper bounds are formalized as expected:

consts <|, �| :: (α::po)set ⇒ α ⇒ bool (infixl)

lub :: (α::po)set ⇒ α

defs S <| x ≡ ∀y∈ S. yvx
S �| x ≡ S <| x ∧ (∀u. S <| u −→ xvu)
lub S ≡ εx. S �| x
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This is pretty much unchanged from Regensburger’s original treatment. The main

point to note is that because least upper bounds may not exist, the functional

notation lub S, though more convenient, is weaker than the relational S �| x, which

also asserts the existence of a least upper bound, namely x.

4.1.2 Complete partial orders (cpos)

Complete partial orders are defined as a subclass cpo of po:

axclass cpo < po

chain Y =⇒ ∃x. range Y �| x

The axiom says that all ω-chains must have least upper bounds. The HOL constant

range :: (α⇒β) ⇒ β set returns the set of all possible results of a function:

defs range f ≡ {y. ∃n. y = f n}

4.1.3 Pointed cpos (pcpos)

Some constructions of domain theory only require cpos, but many need in addition

a least element, commonly denoted by ⊥. Thus we introduce the class of pointed

complete partial orders:

axclass pcpo < cpo

∃x. ∀y. xvy

and give a name to the least element using Hilbert’s description operator

consts ⊥ :: α::pcpo

defs ⊥ ≡ εx. ∀y. xvy

The use of the ε-operator, which was suggested to us by Wenzel, may look a bit

roundabout. Why did we not introduce ⊥ before we declared pcpo and state the

axiom as ⊥vy? The subtle reason is that if we declare ⊥ first, it cannot have type

α::pcpo because pcpo is not known yet. Declaring it to be of some known type

like α::cpo causes no logical problems (Wenzel, 1997), but looks a bit odd and can

confuse inexperienced users: it allows well-typed but meaningless terms (we cannot

prove anything interesting about them) involving ⊥::τ where τ is not of class pcpo.

Note that in LCF every type is a pcpo. Regensburger’s HOLCF follows this lead

and does not introduce a separate class of cpos. This makes things more uniform and

simpler for the novice. The main drawback is that when turning a HOL type into a

domain, one has no choice but to make it a pcpo, thus introducing a fictitious ⊥-

element. This in turn complicates reasoning about the type. Therefore HOLCF now

follows Winskel (1993) in distinguishing the intermediate class cpo. See section 4.3.1

for an application.
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4.1.4 Flat and chain-finite cpos

Monotonicity of functions ensures the existence of a least fixpoint and continuity

allows to calculate it as the limit of the Kleene chains. Due to the combination of

HOL and LCF functions, continuity does not come for free and has to be proved

sometimes. Often, it is non-trivial to prove that a given function has these properties,

but there are special subclasses of domains where monotonicity and continuity are

guaranteed automatically. These important subclasses are the flat pcpos and the

chain-finite cpos:

axclass flat < pcpo

xvy =⇒ x = ⊥ ∨ x = y

axclass chfin < cpo

chain Y =⇒ ∃n. max in chain n Y

where max in chain is defined as:

consts max in chain :: nat ⇒ (nat ⇒ α::po) ⇒ bool

defs max in chain i C ≡ ∀j. i6j −→ C i = C j.

In an earlier version of HOLCF, both flat and chfin were modelled as predicates

taking a dummy argument that merely carries the type

flat (x::α) ≡ ∀x::α y. xvy −→ x = ⊥ ∨ x = y,

and the well-known fact that any flat pcpo is chain-finite was given as

flat x =⇒ chfin x

Lifting the latter implication to the class level is interesting because it goes beyond

Haskell’s type system. We prove that flat is a subclass of chfin by proving that the

axiom for chfin holds in all flat pcpos:

chain (Y::nat⇒α::flat) −→ ∃n. max in chain n Y

Calling this lemma flat subclass chfin, we can convince Isabelle of the subclass

relationship flat < chfin using an extended instance declaration:

instance flat < chfin (flat subclass chfin)

As a result we have the subclass hierarchy depicted in figure 2. The key advantage

of turning flat and chfin from predicates into type classes is that the subclass

hierarchy is automatically taken into account during deductions (via unification).

Typical applications of these type classes include the fact that any strict function

from a flat pcpo is monotone

f (⊥::α::flat) = ⊥ =⇒ monofun f

and that any monotone function from a chain-finite cpo is continuous:

monofun (f::(α::chfin)⇒β) =⇒ cont f.

Further applications follow in the section on admissibility (section refsec:fpi-adm).
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sq ord

↓
po

↓
cpo

↙ ↘
chfin pcpo

↘ ↙
flat

Fig. 2. Subclass structure of HOLCF.

4.2 Function spaces

Having defined abstract notions of partially ordered sets, we now need to populate

these classes. We begin with the most important construction, the function spaces.

4.2.1 Full function spaces

It is easy to show that the type of all functions into a pcpo is again a pcpo. The

first steps, culminating in the instance declaration ⇒ :: (term,po)po are explained

in section 2.1. In the same fashion we prove

instance ⇒ :: (term, cpo) cpo (. . .)

instance ⇒ :: (term,pcpo)pcpo (. . .)

4.2.2 Continuous functions

On top of the full function space domain we define a predicate cont to characterize

continuous functions:

consts cont :: (α::cpo ⇒ β::cpo) ⇒ bool

defs cont f ≡ ∀Y. chain Y −→ f‘‘range Y �| f (lub(range Y))

where f‘‘A ≡ {y. ∃x∈ A. y = f x}. Continuity can alternatively be characterized

using the following two predicates

defs monofun f ≡ ∀x y. x v y −→ f x v f y

contlub f ≡ ∀Y. chain Y −→ f (lub(range Y)) = lub(f‘‘range Y)

The following theorem expresses the equivalence between the two notions:

cont f = (monofun f ∧ contlub f)

As one of HOLCF’s main features we now define a new type of continuous functions:

typedef (α → β) = {f. cont f} (. . .)

Thus, the continuous function space constructor is→. As explained in section 2.2, this

type definition introduces the following abstraction and representation functions:
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Table 1. Function spaces in HOLCF

Space Name Abstraction Application β-reduction

full ⇒ λx. t f t (λx. t) u = t[u/x]

continuous → Λx. t f‘t cont t =⇒ (Λx. t)‘u = t[u/x]

consts Abs CFun :: (α ⇒ β) ⇒ (α → β)

Rep CFun :: (α → β) ⇒ (α ⇒ β)

These two constants represent abstraction and application for type →. To increase

readability, we add a bit of syntax exmphasizing this fact:

Λx. t stands for Abs Cfun (λx. t) and c‘x stands for Rep Cfun c x.

Starting with the axiom f∈ {f. cont f} =⇒ Rep CFun (Abs CFun f) = f generated

by the definition of →, we immediately derive β-reduction of continuous functions:

cont f =⇒ (Λx. f x)‘u = f u β-reduction

Cpos and pcpos are closed under →:

instance → :: (cpo, cpo) cpo (. . .)

instance → :: (cpo,pcpo)pcpo (. . .)

For the proofs of the necessary witnesses see Regensburger (1994).

Of course, for continuous functions we also have the identity and composition

operators, defined as ID ≡ (Λx. x) and f oo g ≡ (Λx. f‘(g‘x)).

4.2.3 Reasoning about continuity

Thus, we have two function spaces in HOLCF, denoted by ⇒ and → (see Table 1).

Terms of the continuous function space (Λ-abstractions and ‘-applications) con-

stitute the so-called LCF sublanguage of HOLCF. The idea is to capture continuity

implicitly by the type system as much as possible. Indeed, terms of the LCF sublan-

guage are automatically recognized to be continuous by the type checker. However,

continuity cannot always be handled implicitly: the β-reduction rule in this frame-

work generates an explicit proof obligation for continuity, as shown above. Therefore

there is a special continuity tactic in HOLCF that discharges those proof obliga-

tions. This tactic reduces the continuity of an LCF term to the continuity of its

basic components by structural rules that syntactically follow Λ-abstractions and

‘-applications. All possible basic components – constant functions, the identity, the

conditional, and the composition operation – have been proved to be continuous

once and for all. Thus, continuity of a term of the LCF sublanguage can always

be determined automatically, either implicitly by type checking or explicitly by the

continuity tactic.
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4.2.4 Fixpoint induction and admissibility

One of the most interesting parts of domain theory are the fixpoint operator and

the fixpoint induction rule. The fixpoint operator fix is defined as

consts fix :: (α::pcpo → α) → α

defs fix ≡ (Λf. lub(range(λi. iterate i f ⊥)))
where iterate :: nat ⇒ (α → α) ⇒ α ⇒ α is defined by primitive recursion such

that iterate i f denotes fi. It is proved that fix is indeed continuous, as the

definition using the type constructor → suggests. As an important result we get the

following characteristic property of the fixpoint operator:

fix‘f = f‘(fix‘f)

Note that the usual continuity assumption for this theorem is not explicitly needed in

our setting, as it is already built into the type constructor → used for any argument

f of fix. This considerably facilitates reasoning about fixpoint equalities.

Fixpoint induction. The fixpoint induction rule has been derived as usual:

[[adm P; P ⊥; ∧x. P x =⇒ P (f‘x) ]] =⇒ P (fix‘f)

As known from the literature (e.g. Paulson (1987)), this rule includes the admissibility

of P as an assumption. A predicate P is admissible iff it holds for the least upper

bound of every chain satisfying P.

consts adm :: (α::cpo ⇒ bool) ⇒ bool

defs adm P ≡ ∀Y. chain Y −→ (∀i. P (Y i)) −→ P (lub(range Y))

In practice, it is of vital importance that admissibility proof obligations are dis-

charged automatically. For this reason, an admissibility check has been implemented

in HOLCF.

Admissibility check. From the literature (e.g. Paulson (1987)) a number of theorems

are known that determine the admissibility of a predicate simply by exploiting its

syntactic structure. Two of them are shown here:

[[adm P; adm Q ]] =⇒ adm (λx. P x ∨ Q x)

[[cont u; cont v ]] =⇒ adm (λx. u xvv x)

All these structural rules are known to HOLCF’s simplifier. Thus, in a lot of

cases Isabelle reduces the admissibility obligation for a predicate P to continuity

obligations for the functions occurring in P. These continuity obligations are likewise

automatically discharged by the simplifier according to section 4.2.2, at least if we

stay in the LCF sublanguage (i.e. in the continuous function space). For extensions

of the continuity tactic to mixed HOL and LCF terms, see section 4.3.2.

If this syntactic check fails, there is another arrow in our quiver: the substitution

theorem

[[cont t; adm P ]] =⇒ adm (λx. P (t x))

Unfortunately, it produces a great number of higher-order unifiers when applied

without explicit instantiation. In practice, however, it is only used in combination

with the fact that every predicate with a chain-finite argument type is admissible:
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adm (λx::α::chfin. P x)

Therefore, by combining these two rules, we get the rule

cont t −→ adm (λx. P ((t x)::α::chfin))

which has been implemented as a proof procedure that enumerates all such chain-

finite subterms (t x) and checks if they are continuous in x. The proof procedure is

automatically used if the standard admissibility check fails. The example f‘x 6= TT,

where f is continuous and TT a value from a flat domain (here: the truth values

defined in section 4.3.4), may serve to illustrate the power of this test, as it is not

covered by the structural rules described above. See the end of section 6.3 for a

further example.

The resulting admissibility test demonstrates the advantage of higher-order logic:

Whereas in LCF the admissibility check was implemented as a hardwired and

incomplete oracle, our test performs a real proof and, in addition, if it fails there is

at least the possibility to prove admissibility manually by its semantic definition.

Weak admissibility. In HOLCF there is also a weaker version of admissibility with

the same type as adm, called admw that is more closely related to the notion of Kleene

chains.

defs admw P ≡ ∀f. (∀n. P (iterate n f ⊥)) −→
P (lub(range(λi. iterate i f ⊥)))

It is easily shown that adm P implies admw P. As before for adm P, it is possible to

derive a corresponding fixpoint induction rule.

[[admw P; ∀n. P (iterate n f ⊥) ]] =⇒ P (fix‘f)

In rare cases this rule is helpful, as it requires only the weaker assumption admw P.

This may be the case if adm P cannot be shown automatically using the admissibility

test described above.

4.3 Other domain constructions

Once we are equipped with function spaces on pcpos, we can define other general

domain constructions together with the typical functions acting on them. This

subsection presents the most important basic domains provided in HOLCF. They

are useful in their own right and also serve as the building blocks for composite

datatypes. For example, the one-element type, the strict sum, non-strict and strict

products, and lifting of domains are heavily used by the datatype package for

user-defined recursive domains (see section 5).

All domains presented in this subsection are introduced definitionally, for example

via a datatype or a typedef. For reasons of space we rarely present the full

construction but only the functions offered and a few key properties. For details see

the literature (Regensburger, 1994; Paulson, 1987).
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4.3.1 Discrete cpos

A discrete cpo is one where the ordering is the identity. The raison d’être of discrete

cpos is to provide a simple means of turning arbitrary types into cpos. The type

constructor

datatype (α)discr = Discr α

turns any HOL type τ into the discrete cpo (τ)discr by defining

defs (x::(α::term)discr) v y ≡ x = y

and declaring

instance discr :: (term)cpo (. . .)

where the theorems (. . .) are trivial to prove.

The advantage of the extra type constructor discr is that one does not need to

turn each individual type by hand into a discrete cpo (as done for discr) but one

simply wraps the type up in discr. To unwrap the wrapped up values there is a

function undiscr :: (α::term)discr ⇒ α with the property undiscr(Discr x) = x.

For an application of discrete cpos see section 6.3.

4.3.2 Lifting of HOL types

It is often useful to turn HOL types not only into cpos (using discr), but directly

into pcpos. This is done with the type constructor lift that lifts HOL types to flat

domains by defining

datatype α lift = Undef | Def α

defs (x::(α::term lift)) v y ≡ (x = Undef ∨ x = y)

and declaring a series of instance declarations (the result type class ranging from po

to pcpo), culminating in

instance lift :: (term)flat (. . .)

In particular, it is proved that Undef plays the role of the least element. Accordingly,

from now on ⊥ is used in favour of Undef. Moreover, every theorem generated for

lift by the datatype package of HOL is reformulated with ⊥ instead of Undef, so

that Undef is completely hidden from the user.

In order to stay in HOL as long as possible before switching to the LCF extension,

we introduce the functionals flift1 and flift2.

consts flift1 :: (α ⇒ β::pcpo) ⇒ α lift → β

flift2 :: (α ⇒ β ) ⇒ α lift → β lift

The former lifts the argument type of a HOL function and expects the range type

to be a pcpo, while the latter lifts both argument and range types. Basically, they

extend HOL functions in a strict way:
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consts flift1C :: (α ⇒ β::pcpo) ⇒ α lift ⇒ β

flift2C :: (α ⇒ β) ⇒ α lift ⇒ β lift

defs flift1 f ≡ Λx. flift1C f x

flift1C f ≡ λx. case x of ⊥ ⇒ ⊥ | Def y ⇒ f y

flift2 f ≡ Λx. flift2C f x

flift2C f ≡ λx. case x of ⊥ ⇒ ⊥ | Def y ⇒ Def (f y)

Two continuity theorems have been proved about flift1C and flift2C:

[[
∧
y. cont (λx. (f x) y); cont g ]] =⇒ cont (λx. flift1C (f x) (g x))

cont g =⇒ cont (λx. flift2C f (g x))

These lemmas are sufficient for proving every continuity obligation about a mixed

HOL/LCF term that obeys a certain methodology, namely: At the inner level of

the term there may be pure HOL terms, which are lifted to LCF by the ‘one-way’

interface functions Def, flift1 and flift2, while at the outer level there are terms

of the LCF sublanguage only.

We sketch the proof idea for this completeness result here; see Müeller (1998b) for

a formal inductive argument over the structure of terms. Consider a continuity proof

obligation for a lifted HOL term. It is immediately clear that the only continuity

obligation that might not be captured by the two lemmas above could concern the

first argument of flift2C. However, due to the ‘one-way’ interface methodology, it

should be a pure HOL term. Thus, a continuity obligation is not even expressible.

Therefore, by adding these two lemmas to the continuity lemmas described in

section 4.2.2, the simplifier is now able to discharge every continuity obligation

of mixed HOL and LCF terms automatically, provided that the methodology is

observed. The result is a well-defined interface between HOL and its LCF extension

which allows to integrate HOL terms without the drawback of manual continuity

proofs. In several case studies this methodology turned out to be of great practical

value (see Müeller (1998b) for details).

A major application of the lift theory are argument types of recursive domain

constructions. See section 6.1 for the example of lazy lists. Another nice example

for the use of type lifting are the operations on truth values and the one-element

domain, which will be introduced next.

4.3.3 A one-element domain

The type one is a domain with one single defined element (ONE) and the bottom

element. It is used for constants in the domain package (see section 5). The example

also shows how lifting of types works:

types one = unit lift

consts ONE :: one

defs ONE ≡ Def ()

The type unit is defined in HOL and contains the single element ().

4.3.4 Truth values

The truth values TT, FF, ⊥ are defined by lifting the boolean values True and False.
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types tr = bool lift

defs TT ≡ Def True

FF ≡ Def False

The continuous conditional expression, written If then else , is obtained by

lifting HOL’s if then else in the first argument:

If b then e1 else e2 ≡ flift1 (λb. if b then e1 else e2)‘b

Then, the logical connectives are defined as follows:

defs neg ≡ flift2 Not

andalso ≡ (Λx y. If x then y else FF)

orelse ≡ (Λx y. If x then TT else y)

4.3.5 Strict sum

The strict sum of two pcpos, written α ⊕ β, behaves like the disjoint union but

identifies the two ⊥-elements. Its encoding is a variation of the usual encoding of

disjoint unions in HOL (Gordon and Melham, 1993; Paulson, 1994), modified to

take ⊥ into account (Regensburger, 1994). It takes a certain amount of work to

show that the strict sum of two pcpos is again a pcpo:

instance ⊕ :: (pcpo,pcpo)pcpo (...)

There are two injections and a functional for case distinctions:

consts sinl :: α → α⊕β
sinr :: β → α⊕β
sscase :: (α→γ) → (β→γ) → α⊕β → γ

On non-⊥ elements they behave like the disjoint union in HOL, e.g. the injections

are injective and

x 6= ⊥ =⇒ sscase‘f‘g‘(sinl‘x) = f‘x

x 6= ⊥ =⇒ sscase‘f‘g‘(sinr‘x) = g‘x

All three functions are strict: sinl‘⊥ = ⊥, sinr‘⊥ = ⊥ and sscase‘f‘g‘⊥ = ⊥.

4.3.6 Products

The strict product of two pcpos (construction omitted), written α ⊗ β, is again a

pcpo:

instance ⊗ :: (pcpo,pcpo)pcpo (...)

The basic constructors and destructors for strict products are

consts spair :: α → β → α⊗β
sfst :: α⊗β → α

ssnd :: α⊗β → β

ssplit :: (α→β→γ) → α⊗β → γ

translations (|x, y|) ≡ spair‘x‘y
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which satisfy, among others, the following important properties:

sfst‘⊥ = ⊥ y 6= ⊥ =⇒ sfst‘(|x,y|) = x

ssnd‘⊥ = ⊥ x 6= ⊥ =⇒ ssnd‘(|x,y|) = y

ssplit‘f‘⊥ = ⊥
[[x 6= ⊥; y 6= ⊥]] =⇒ ssplit‘f‘(|x,y|) = f‘x‘y

For some purposes we need also non-strict products. They are obtained from

the ordinary HOL products by adding the componentwise ordering and defining

continuous constructors and destructors. For example, the constructor is <x,y>,

which is distinct from ⊥ unless both x and y are ⊥, in contrast to (|x,y|).

4.3.7 Lifting of domains

With the above strict constructions, one can only build strict datatypes. For the

representation of lazy datatypes (e.g. streams) we provide a lifting type constructor u

that adds a new ⊥-element. The representation of this type is a sum of the unit type

and the argument type: typedef α u = {x::(unit + α). True}. The constructor u

turns any cpo into a pcpo, the proof of which takes a bit of work.

We provide a lazy lifting function up :: α → (α)u for lifting elements into the

type, and functional fup of type (α → γ) → (α)u → γ for lifting functions. Their

characteristic properties are

up‘⊥ 6= ⊥ (up‘x v up‘y) = (xvy) fup‘f‘⊥ = ⊥ fup‘f‘(up‘x) = f‘x

The difference between this lifting and the lifting of HOL types in §4.3.2 is that

it preserves the structure of the underlying domain, whereas the lift construction

builds a flat domain. Structure preservation is essential, for example, for the prefix-

ordering on the domain of streams (see section 6.1).

5 Datatype package

As recursive datatypes are used ubiquitously in (functional) programming itself as

well as in reasoning about functional programs, the HOLCF system provides a

package (Oheimb, 1995) for their convenient definition and application.

The package, invoked with the keyword domain2, can handle mutually recursive

definitions of free datatypes, even infinite ones (with non-strict constructors). It de-

termines and proves the characteristic properties of each datatype defined, including

strictness, definedness, distinctness and injectivity of the constructors, as well as

induction and coinduction principles.

Our package resembles the gen struct axm command of LCF (Paulson, 1987),

except that it handles also mutual recursion. Furthermore, while gen struct axm

simply asserts most characteristic properties of the datatypes as axioms, we construct

all user-relevant entities by definitions and prove their properties from a minimal

set of axioms. A general category-theoretic argument (Regensburger, 1994) confirms

2 its counterpart for plain HOL types is invoked by datatype.
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the consistency of these axioms, from which we can conclude that our datatype

construction is conservative.

Agerholm (1994b) takes a rather different approach. He formalizes recursive

domains using the type definition package of HOL and providing them with a

cpo structure manually. This enables reuse of HOL types and their properties, but

the construction is non-automatic and therefore tedious, and it does not handle

mutually recursive types or infinite elements. He also gives an ad-hoc formalization

of lazy lists. On the other hand, he has formalized (Agerholm, 1994a) the inverse

limit construction for solving general recursive domain equations in ZF. It is not

clear whether this approach is useful in practice in particular since he used the logic

HOL-ST, an unusual mixture of HOL and set theory.

The use of our package is similar to ML datatype declarations, except that also

destructors and discriminators are defined and indirect recursion is not allowed. As a

general formal description of the input format and the corresponding output of the

package would be rather lengthy and a bit cumbersome, we explain the application

of the package by typical examples.

5.1 Free datatypes

Like in functional programming languages, free datatypes are defined via their

constructors. Here we define the well-known datatype of (polymorphic) lazy lists,

i.e. possibly infinite sequences over elements of any pcpo type α. We have chosen

this example because, while being non-trivial, it should be easy to understand and

will be used extensively in section 6.

domain α llist = nil | # (hd::α) (lazy tl::α llist) (cinfixr)

The empty list is denoted by nil, while the ‘cons’ constructor is given by the

right-associative infix symbol3 #, with selector functions hd and tl. Appropriate

discriminator functions, here is nil and is #, are derived automatically.

As, by definition, the binary constructor is strict in its first argument and lazy in

the second, elements of type α llist come in three flavors:

• finite total sequences: a1#...#an#nil

• finite partial sequences: a1#...#an#⊥
• infinite sequences: a1#a2#a3#...

5.1.1 Syntax

The datatype package generates the following entities as syntactic representation of

datatypes:

• the type(s) with their arities, in our example

types llist 1

instance4 llist :: (pcpo)pcpo (...)

3 For simplicity, we have chosen the same symbol as used for the HOL datatype list.
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• the isomorphism pair between the folded (abstract) and unfolded (representing)

version of the type

consts llist abs :: one ⊕ (α ⊗ (α llist)u) → α llist

llist rep :: α llist → one ⊕ (α ⊗ (α llist)u)

• the case, copy, and take auxiliary functionals, which are described below

consts llist case :: τ → (α → α llist → τ) → α llist → τ

llist copy ::(α llist → α llist) → α llist → α llist

llist take :: nat ⇒ α llist → α llist

• predicates for finiteness and the characterization of bisimulations

consts llist finite :: α llist ⇒ bool

llist bisim ::(α llist ⇒ α llist ⇒ bool) ⇒ bool

• and the constructors, discriminators and selectors of the datatype.

consts nil :: α llist

op # :: α → α llist → α llist

is nil :: α llist → tr

is # :: α llist → tr

hd :: α llist → α

tl :: α llist → α llist

Additionally, macros allowing to formulate case distinctions on the datatype

in a pleasant way are produced:

translations case l of nil ⇒ v | x#xs ⇒ w == llist case‘v‘(Λx xs. w)‘l

Analogous types and constants are generated for other datatype definitions.

5.1.2 Semantics

Let us now reveal the details of how the above types and constants are defined. All

definitions of this section are interna for the user of the package, he or she does not

have to understand them.

The (abs, rep) pair is required to be an isomorphism between the (abstract) left

and (representing) right hand side of the defining equation.

rules abs iso llist rep‘(llist abs‘x) = x

rep iso llist abs‘(llist rep‘x) = x

Together with the axiom reach given below, this yields an elegant characterization

of the datatype as the least solution of its defining equation. The soundness of

this construction, i.e. the existence and uniqueness of the semantic model, has been

proved externally to HOLCF by category-theoretic means.

All other functions are based solely on the abs and rep functions and the functions

4 To be exact, the instance declaration is replaced by an arities declaration, which is not described in
this paper.
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defined for the general domain constructions described in section 4.3. That is, one-

element domains are used for dummy arguments of constant constructors, the truth

values serve as results of the discriminators, the disjoint sum represents the case

distinction between different constructors, the non-strict product handles mutually

recursive datatypes, and lifted domains are employed in non-strict constructors.

The case functional applies one of its argument functions, depending on case

analysis, to a datatype element. With this auxiliary functional and the basic domain

constructions just mentioned, the definition of the constructors, discriminators, and

selectors is rather straightforward.

defs llist case ≡ Λc f z. case llist rep‘z of sinl‘x ⇒ (Λdummy. c)

| sinr‘y ⇒ ssplit‘(Λx xs. f‘x‘(fup‘ID‘xs))‘y

nil ≡ llist abs‘(sinl‘ONE)

op # ≡ Λx xs. llist abs‘(sinr‘(|x,up‘xs|))

is nil ≡ Λz. case z of nil ⇒ TT | x#xs ⇒ FF

is # ≡ Λz. case z of nil ⇒ FF | x#xs ⇒ TT

hd ≡ Λz. case z of nil ⇒ ⊥ | x#xs ⇒ x

tl ≡ Λz. case z of nil ⇒ ⊥ | x#xs ⇒ xs

The copy functional copies a datatype element, except that it applies its argument

function to each (just one here) occurence of recursion. The take functional denotes

the n-times repeated application of the copy functional to the completely undefined

function, yielding finite approximations of a datatype element up to depth n.

defs llist copy ≡ Λf z. case z of nil ⇒ nil | x#xs ⇒ x#(f‘xs)

llist take ≡ λn. iterate n llist copy ⊥
The least fixpoint of the copy functional can be understood as the limit of the

take functional for increasing n, for which fix‘llist copy v ID holds. The axiom

reach requires this fixpoint to be already as strongly defined as the identity on the

datatype. In this way, the initial (i.e. least) solution of the defining domain equation

is described.

rules reach fix‘llist copy‘x = x

A datatype element is finite iff it can be reached by some finite approxima-

tion. Bisimulations on the datatype are characterized as binary relations describing

identical behavior of a pair of elements.

defs llist finite ≡ λx. ∃n. llist take n‘x = x

llist bisim ≡ λR. ∀x x’. R x x’ −→ x = ⊥ ∧ x’ = ⊥ ∨
x = nil ∧ x’ = nil ∨

(∃y ys ys’. y 6= ⊥ ∧ R ys ys’ ∧ x = y#ys ∧ x’ = y#ys’)

5.1.3 Theorems

Based solely on the two isomorphism axioms given above, the characteristic prop-

erties of the case, copy, and take functionals are proved for internal use. Together

with these properties (not shown here), the package proves a bunch of theorems ex-

hibiting the properties of the user-relevant functions. They include the characteristic

properties typically needed in proofs on the datatype:
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• exhaustion and case distinction

x = ⊥ ∨ x = nil ∨ (∃y ys. x = y#ys ∧ y 6= ⊥)
[[x = ⊥ =⇒ P; x = nil =⇒ P;

∧
y ys. [[x = y#ys; y 6= ⊥]] =⇒ P ]] =⇒ P

• strictness and definedness properties, together with the characteristic equations

for selectors and discriminators,

⊥#xs = ⊥, nil 6= ⊥, x 6= ⊥ =⇒ x#xs 6= ⊥
hd‘ ⊥ = ⊥, tl‘ ⊥ = ⊥
hd‘ nil = ⊥, hd‘(x#xs) = x

tl‘ nil = ⊥, x 6= ⊥ =⇒ tl‘(x#xs) = xs

is nil‘ ⊥ = ⊥, is # ‘ ⊥ = ⊥
x 6= ⊥ =⇒ is nil‘ x 6= ⊥, x 6= ⊥ =⇒ is # ‘ x 6= ⊥

is nil‘ nil = TT, x 6= ⊥ =⇒ is nil‘(x#xs) = FF

is # ‘ nil = FF, x 6= ⊥ =⇒ is # ‘(x#xs) = TT

• and the distinctness and injectivity of the constructors

¬ nil v x#xs, x 6= ⊥ =⇒ ¬ x#xs v nil

nil 6= x#xs, x#xs 6= nil

[[x#xs v y#ys; x 6= ⊥; y 6= ⊥]] =⇒ x v y ∧ xs v ys

[[x#xs = y#ys; x 6= ⊥; y 6= ⊥]] =⇒ x = y ∧ xs = ys

In addition, exploiting the reach axiom, the package proves the (structural) in-

duction and coinduction principles of the new datatype. This process takes some

intermediate steps, e.g. an induction rule for finite elements, which may be useful for

special applications. Here, as the llist datatype is infinite in general, just a trivial

‘finiteness’ theorem is generated. For the same reason, the full induction rule requires

an admissibility condition here.

take lemma (
∧
n. llist take n‘xs = llist take n‘ys) =⇒ xs = ys

finite ¬ llist finite xs ∨ llist finite xs

finite ind [[P ⊥; P nil;∧
y ys. [[y 6= ⊥; P ys ]] =⇒ P (y#ys) ]] =⇒ P (llist take n‘xs)

ind [[adm P; P ⊥; P nil;∧
y ys. [[y 6= ⊥; P ys ]] =⇒ P (y#ys) ]] =⇒ P xs

The induction rule is useful particularly in cases where the admissibility of P can

be proven automatically. If this is not the case, then our experience suggests not to

attempt to prove admissibility directly, as this often becomes the hardest part of the

entire proof. If possible, one should instead resort to other proof principles that do

not need admissibility. These are essentially the take lemma (as given above) and

the coinduction principle:

coind [[llist bisim R; R x y ]] =⇒ x = y

Examples demonstrating the typical use of the take lemma, the induction, and the

coinduction principles are given in section 6.1.
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5.2 Mutual recursion

As an example of mutual recursion, we formalize the datatype of first-order terms

with constructors for variables and function applications:

domain term = Var name | App name terms

and terms = Nil | Cons term terms

Ideally one would write something like App name (term list), but since the pack-

age does not cater for indirect recursion, we have simulated this with mutual

recursion, which is always possible. Note that this appears to be the first natu-

ral formalization of terms in domain theory: previous constructions (Paulson, 1985;

Agerholm, 1995) were restricted to constants and binary functions in order to bypass

the problem of mutual or indirect recursion.

The entities produced by the package are the same as those for non-mutually

recursive datatypes, with some differences reflecting the recursion between terms

and term lists. For example, the copy functional is constructed as a pair here:

term terms copy ≡ Λf. <term copy‘f, terms copy‘f>

Also some of the proof rules, like induction and coinduction, can only be given

simultaneously for all concerned types:

coind [[term terms bisim R; (fst R) x1 x1’; (snd R) x2 x2’ ]]

=⇒ x1 = x1’ ∧ x2 = x2’

ind [[ P1 ⊥;∧
n . n 6= ⊥ =⇒ P1 (Var‘n);∧
n t. [[n 6= ⊥; t 6= ⊥; P2 t ]] =⇒ P1 (App‘n‘t);

P2 ⊥;
P2 Nil;∧

t s. [[t 6= ⊥; s 6= ⊥; P1 t; P2 s ]] =⇒ P2 (Cons‘t‘s) ]]

=⇒ P1 x1 ∧ P2 x2

6 Applications

In this section we sketch how HOLCF has been used for non-trivial applications. In

section 6.1 we give functional programming examples by defining functions on lazy

lists and explaining proof support for them. In section 6.2 this theory of sequences is

used to reason about a model of reactive, distributed systems, namely I/O automata

(Lynch and Tuttle, 1989). The last subsection section 6.3 presents a denotational

semantics for a simple imperative, sequential programming language.

6.1 Functional programming with lazy lists

Typical recursive functions on the lazy list datatype defined in section 5 include

consts map :: (α → β ) → α llist → β llist

filter :: (α → tr) → α llist → α llist

iter :: (α → α ) → α → α llist

which are defined by fixpoint constructions like
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defs map ≡ fix‘(Λh f l. case l of nil ⇒ nil | x#xs ⇒ f‘x#h‘f‘xs)

In the sequel, we derive some well-known properties of these functions to demon-

strate the application of the most important proof principles.

We can obtain the (recursive) equations characterizing these functions from their

fixpoint definitions in a rather generic way using a tactic which essentially needs

the fixpoint theorem and the continuity of the body of the fixpoint. In the case of

map the latter is trivially fulfilled because the function f and the case distinction are

continuous by their definition using the type constructor →.

map‘f‘ ⊥ = ⊥
map‘f‘ nil = nil

x 6= ⊥ =⇒ map‘f‘(x#xs) = f‘x#map‘f‘xs

filter‘P‘ ⊥ = ⊥
filter‘P‘ nil = nil

x 6= ⊥ =⇒ filter‘P‘(x#xs) = If P‘x then x#filter‘P‘xs else filter‘P‘xs

iter‘f‘x = x#iter‘f‘(f‘x))

iter‘f‘⊥ = ⊥

6.1.1 A connection between map and filter

As our first example proof, consider the (kind of) commutation of filter and map

as functions over lazy lists:

P‘⊥ = ⊥ =⇒ filter‘P oo map‘f = map‘f oo filter‘(P oo f)

The strictness premise is necessary because # is strict in its first argument.

The proof of this property is by structural induction on the list involved. So,

after stating the goal and exploiting the extensionality of continuous functions to

obtain an explicit argument x to induct over, we apply the induction rule, llist.ind,

instantiated to this x. We now have to prove the four subgoals

1. P‘⊥ = ⊥ =⇒ adm (λu. filter‘P‘(map‘f‘u) = map‘f‘(filter‘(P oo f)‘u))

2. P‘⊥ = ⊥ =⇒ filter‘P‘(map‘f‘⊥) = map‘f‘(filter‘(P oo f)‘⊥)
3. P‘⊥ = ⊥ =⇒ filter‘P‘(map‘f‘nil) = map‘f‘(filter‘(P oo f)‘nil)

4. [[P‘⊥ = ⊥; a 6= ⊥; filter‘P‘(map‘f‘l) = map‘f‘(filter‘(P oo f)‘l) ]]

=⇒ filter‘P‘(map‘f‘(a#l)) = map‘f‘(filter‘(P oo f)‘(a#l))

where the first three are proved automatically by the simplifier. This involves

the admissibility check described in section 4.2.4 and simplifications using the

characteristic equations of map and filter. By further rewriting with these equations,

the fourth subgoal becomes:

[[P‘⊥ = ⊥; a 6= ⊥; filter‘P‘(map‘f‘l) = map‘f‘(filter‘(P oo f)‘l) ]] =⇒
(case f‘a#map‘f‘l of nil ⇒ nil

| x#xs ⇒ If P‘x then x#filter‘P‘xs else filter‘P‘xs) =

map‘f‘(If P‘(f‘a) then a#filter‘(P oo f)‘l else filter‘(P oo f)‘l)

Now we discriminate on f‘a = ⊥ and solve the trivial case by simplification. With

the new premise f‘a 6= ⊥, and equipped with a case splitting tool for the condition

of the If construct, the simplifier is able to finish the rest of the proof.

Within Isabelle/HOLCF, this is an easy six-lines proof where the only non-

automatic steps are induction and case splitting.
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6.1.2 A connection between map and iter

Our second example involves the equality of the infinite list generated by iter‘f out

of the seed f‘x and the result of mapping f over the list iter‘f‘x, both of which

produce the lazy list f‘x#f‘(f‘x)#f‘(f‘(f‘x))#.... With the assumption that f is

strict, the equation should hold for any x.

f‘⊥ = ⊥ =⇒ iter‘f‘(f‘x) = map‘f‘(iter‘f‘x)

We conduct the proof first by coinduction, i.e. with the rule llist.coind. Thus we

have to give a suitable bisimulation, where here it turns out that the canonical choice

R = λm n. ∃z. m = iter‘f‘(f‘z) ∧ n = map‘f‘(iter‘f‘z) suffices. The main effort

of the proof is to show that this is indeed a bisimulation:

After unfolding the definition of llist bisim and after some simple predicate-

calculus steps, we have to discriminate on z = ⊥ and f‘z = ⊥. The remainder of the

proof is straightforward but tedious, applying strictness properties and involving

about eleven unfolding, simplifying, and pure predicate-calculus steps.

An alternative proof that turns out to be much shorter is to apply the take lemma

for lazy lists, which gives the subgoal

llist take n‘(iter‘f‘(f‘x)) = llist take n‘(map‘f‘(iter‘f‘x))

In order to prove this formula by induction on n, we have to strengthen it by

∀-quantification over x. The base case is trivial, because llist take 0‘x = ⊥. Then

we unfold both occurrences of iter in the inductive step, and obtain

[[f‘⊥ = ⊥; ∀x. llist take n‘(iter‘f‘(f‘x)) = llist take n‘(map‘f‘(iter‘f‘x)) ]]

=⇒ llist take (Suc n)‘(f‘x#iter‘f‘(f‘(f‘x))) =

llist take (Suc n)‘(map‘f‘(x#iter‘f‘(f‘x)))

As above, we discriminate on x = ⊥ in order to distribute map over #. Then the

simplifier solves the subgoal applying strictness and the induction hypothesis.

6.2 Theory of I/O automata with lifted lazy lists

In this subsection we briefly describe a model of I/O automata in a mixed HOL

and HOLCF formalization. For this model we construct an instance of the lazy

lists datatype introduced in 5.1 that provides a good integration of pure HOL terms

into HOLCF. See (Devillers et al., 1997) for a detailed analysis of these lists in

comparison to alternative formalizations.

6.2.1 Lazy lists with lifted elements

The definition of α llist requires the element type α to be in type class pcpo.

However, for our application it is more convenient to handle the elements in a total

fashion, i.e. as types of class term. Therefore we define a new type of lazy lists that

allows elements to be of any HOL type using the constructor lift:

types α Llist = (α::term lift) llist
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Furthermore, a new ‘cons’-operator 5 for HOL elements is introduced:

consts ## :: α::term ⇒ α Llist → α Llist (infix)

defs s ## a ≡ Def a # s

Operations on Llist profit from this integration of HOL and HOLCF types. For

example, it is now possible to define filtering with a total predicate P::α ⇒ bool as

follows:

consts Filter :: (α::term ⇒ bool) ⇒ α Llist → α Llist

defs Filter P ≡ filter‘(flift2 P)

The equalities for Filter follow from those for filter and from the equation

If Def b then A else B = if b then A else B:

Filter P‘⊥ = ⊥
Filter P‘nil = nil

Filter P‘(x##xs) = if P x then x##(Filter P‘xs) else Filter P‘xs

The map operation is modified analogously:

consts Map :: (α::term ⇒ β::term) ⇒ α Llist → β Llist

defs Map f ≡ map‘(flift2 f)

These examples demonstrate the general advantages of lazy lists whose argument

types are lifted (flat) domains:

• Elements of lazy lists that do not need support for infinity or undefinedness

can be handled in the simpler logic HOL (e.g. see the total predicate P) and

lifted to domains as late as possible. Theories and libraries about arbitrary

HOL types can be reused.

• Not only elements of lazy lists but also the operations on the lazy lists them-

selves profit from pushing as much as possible into HOL. For example, the

last equation for Filter uses the two-valued operator if then else instead

of its three-valued counterpart If then else. In general, reasoning about lazy

lists is much more efficient using the built-in tableaux calculus and the sim-

plifier which are tailored for two-valued logic. An analogous calculus for a

three-valued logic would require a completely new and different design.

• The Def tag in the definition of ## ensures that all elements are defined.

Therefore the nasty precondition x 6= ⊥ for filter is no longer needed for

Filter. In general, this saves a lot of ⊥ case distinctions.

6.2.2 I/O automata

I/O-Automata (Lynch and Tuttle, 1989) are a model for reactive, distributed sys-

tems. Significant parts of the theory of these automata has been formalized in

Isabelle/HOLCF (Nipkow and Slind, 1995; Müller and Nipkow, 1997; Müller,

1998a; Müller, 1998b). In the sequel we present only a small fragment of this for-

malization, focusing on the communication histories of I/O-automata which are

5 As before for #, the symbol ## does not reflect the actual code.
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described by lazy lists of type Llist. From now on α and σ describe types of class

term.

An action signature models different types of actions and is described by the type

types α signature = α set * α set * α set

where the first, second and third component may be extracted with the selectors

inputs, outputs and internals. Furthermore, the externally visible interface of an

action signature is denoted by

defs externals S ≡ inputs S ∪ outputs S

The three components of an action signature have to be disjoint.

An I/O automaton is a triple of an action signature, a set of start states, and a

set of transition triples, described by the type

types (α,σ)ioa = α signature * σ set * (σ * α * σ)set

The members of this triple are extracted by sig of, starts of and trans of. Isabelle’s

syntax mechanism is used to abbreviate externals o sig of to ext and to write

s -a-A−→ t for a step (s,a,t)∈ trans of A.

The set of states reachable by an I/O automaton A is defined inductively as the

least set of states satisfying the following two rules:

s∈ starts of A =⇒ s∈ reachable A

[[s∈ reachable A; s -a-A−→ t ]] =⇒ t∈ reachable A

6.2.3 Behaviours of I/O automata

In the sequel we focus on notions to describe the behaviour of I/O automata

over time, namely executions and traces. A finite or infinite alternating sequence of

states and actions representing steps of an I/O automaton A is called an execution

fragment of A. An execution is an execution fragment beginning with a start state.

Traces are the subsequences of executions consisting of their external actions only,

and therefore describe the visible behaviour of an automaton.

Executions are modeled by a pair of a start state and a lazy list of action/state

pairs, lifted to a flat domain:

types (α,σ)execution = σ * (α * σ)Llist

A predicate identifies those lists that represent an execution fragment:

consts is exec frag :: (α,σ)ioa ⇒ (α,σ)execution ⇒ bool

defs is exec frag A ex ≡ is exec fragC A‘ (snd ex) (fst ex) 6= FF

It is realized by a continuous function

consts is exec fragC :: (α,σ)ioa ⇒ (α * σ)Llist ⇒ σ → tr

which ‘runs down’ the lazy list checking if all of its transitions are steps of A.

The predicate is exec frag is true if is exec fragC terminates and returns TT (for

finite executions) or if it does not terminate (for infinite executions). We define the

operation is exec fragC as a fixpoint; the following rewrite rules have been derived

from the definition automatically:
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is exec fragC A‘⊥ s = ⊥
is exec fragC A‘nil s = TT

is exec fragC A‘((a,t)##ex) s = Def s-a-A−→t andalso is exec fragC A‘ex t

Using the lemmas x 6= ⊥ =⇒ (x andalso y 6= FF) = (x 6= FF ∧ y 6= FF) and

(Def x 6= FF) = x we obtain the corresponding rules for is exec frag:

is exec frag A (s,⊥)
is exec frag A (s,nil)

is exec frag A (s,(a,t)##ex) = s-a-A−→t ∧ is exec frag A (t,ex)

Analogous to the Filter example in the previous section this shows how to handle

as much as possible with two-valued logic in recursive operations (∧ instead of

andalso).

Finally, executions and traces are defined as follows:

defs executions A ≡ {ex. (fst ex)∈ starts of A ∧ is exec frag A ex}
traces A ≡ {Filter (λa. a∈ ext A) ‘ (Map fst ex).

∃s. (s,ex)∈ executions A }

6.2.4 Refinement of I/O automata

An I/O automaton C implements another automaton A iff traces C ⊆ traces A.

Such implementation relations are shown by the use of refinement mappings. In this

paper we only consider weak refinement mappings. Such a mapping f is a function

from the states of the concrete automaton C to the states of the abstract automaton

A that has to fulfil two requirements: First, start states of C have to be mapped to

start states of A. Second, for every reachable step s -a-C−→ t of C the corresponding

step (f s) -a-A−→ (f t) of A has to exist if a is an external action, otherwise A has

to stutter, i.e. f s = f t.

defs is weak ref map f C A ≡ (∀s∈ starts of C. f s∈ starts of A) ∧
(∀s t a. s∈ reachable C ∧ s -a-C−→ t −→

if a∈ ext A then (f s) -a-A−→ (f t) else f s = f t)

The correctness of weak refinement mappings is established by the following theorem

which has been proved in HOLCF:

[[is weak ref map f C A; ext C = ext A ]] =⇒ traces C ⊆ traces A

Note the following important methodological point here: This theorem has been

proved making heavy use of HOLCF because it involves recursively defined lazy lists.

However, the predicate is weak ref map is completely defined in the simpler logic

HOL. Therefore refinement proofs in applications can be done in HOL, whereas the

more powerful but also more complicated domain theory is utilized for the meta

theory of I/O automata only. This is a remarkable advantage of the decision to use

lazy lists with lifted elements.
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6.3 Denotational semantics

Historically, the main motivation for developing domain theory and hence LCF

was to provide a formal foundation for denotational semantics. We conclude our

list of applications by returning to those historic roots. Below we give a deno-

tational semantics of IMP, a simple imperative programming language with while

loops (Winskel, 1993). For a full coverage of operational, denotational and axiomatic

semantics of IMP in Isabelle (see Nipkow (1996, 1998b).

IMP is based on two types which are not further specified: (storage) locations loc

and values val. On top of these we define

types state = loc ⇒ val

aexp = state ⇒ val

bexp = state ⇒ bool

The type state is the usual mapping from locations to values. The types aexp

and bexp formalize arithmetic and boolean expressions. Note that we have taken a

semantic short-cut here: rather than defining the syntax of expressions, we work

directly in terms of their semantics. Bypassing syntax in favour of semantics means

that concrete expressions look a bit unusual. For example, x+ 1 becomes λs.s(x)+1.

It is routine to modify the parser and pretty printer to translate between the two

forms automatically. We ignore these syntactic issues and focus on the semantic side

of things.

The abstract syntax of commands, i.e. statements, of IMP is defined as a HOL

datatype. The constructors represent assignment, sequential composition, condi-

tional, and while loop:

datatype com = Skip

| Assign loc aexp

| Seq com com

| Cond bexp com com

| While bexp com

The denotational semantics of a command is a partial function from states to

states. For while loops, it is defined as a least fixpoint. Thus we would like it to

be of type state → (state)lift, but this does not quite work: the domain of the

function, i.e. state, is not a cpo, and hence state → (state)lift is not a pcpo,

which means that fix is inapplicable. Of course we could define state as loc → val,

but this is hardly natural because state represents the machine store, which is a

total function. Therefore we explicitly turn state into a discrete cpo. This leads to

the following function D that maps syntax to semantics and is defined by primitive

recursion (a hallmark of denotational semantics):

consts D :: com ⇒ (state)discr → (state)lift

primrec

D(Skip) = (Λs. Def(undiscr s))

D(Assign x a) = (Λs. Def((undiscr s)[a(undiscr s)/x]))

D(Seq c1 c2) = (dlift(D c2) oo (D c1))

D(Cond b c1 c2) = (Λs. if b(undiscr s) then (D c1)‘s else (D c2)‘s)

D(While b c) = fix‘(Λw s. if b(undiscr s) then (dlift w)‘((D c)‘s)

else Def(undiscr s))
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Note that [ / ] is the pointwise update of functions. The auxiliary functional

dlift :: ((α::term)discr → β::pcpo) ⇒ ((α)lift → β) lifts a function from a dis-

crete cpo to one from a lifted cpo:

defs dlift f ≡ Λx. case x of Undef ⇒ ⊥ | Def(y) ⇒ f‘(Discr y)

Thanks to the infrastructure for type lift, dlift f is automatically shown to be

continuous for every f.

The above definition of D is pretty much what the textbook says, except that the

explicit bijection undiscr spoils the view a little. An early version of D (Nipkow, 1996)

had the type com ⇒ (state)lift → (state)lift. At the time this was necessary

because HOLCF was based only on class pcpo and discrete cpos were not available.

This meant that the definition actually looked simpler, e.g. (D c2) oo (D c1) instead

of dlift(D c2) oo (D c1). However, this complicated some proofs considerably and

we abandoned this design.

Let us now examine the proof of a typical theorem about IMP, namely the

soundness of Hoare’s proof rule for while loops:

{A} c {A}
{A} while b do c {A ∧ ¬b}

We model assertions just like boolean expressions:

types assn = state ⇒ bool

The validity of a Hoare-triple {A} c {B}, where A and B are assertions and c a

command, is defined in HOLCF by a constant hoare valid of the obvious type

assn ⇒ com ⇒ assn ⇒ bool. We use Isabelle’s flexible syntax facilities to write

|= {A} c {B} instead of hoare valid A c B. The definition itself is classical:

defs |= {A} c {B} ≡ ∀s t. A s ∧ (D c)‘(Discr s) = Def t −→ B t

Soundness of the while rule now becomes:

|= {A} c {A} =⇒ |= {A} While b c {λs. A s ∧ ¬b s}
where λs. A s ∧ ¬b s is the functional encoding of A∧¬b. Unfolding the definitions

of |= and D means we have to prove:

∀s t. A s ∧ D c‘(Discr s) = Def t −→ A t

=⇒ ∀s t. A s ∧ fix‘(Λw s. if b (undiscr s) then dlift w‘(D c‘s)

else Def (undiscr s))‘(Discr s) = Def t

−→ A t ∧ ¬b t

The conclusion is proved by fixpoint induction (see §4.2.4), which leaves us with

three subgoals. We examine them one by one.

Admissibility is proved automatically:

adm(λu. ∀s t. A s ∧ u‘(Discr s) = Def t −→ A t ∧ ¬b t)

It should be noted that this relies on the fact that u‘(Discr s), the only occurrence

of u, is of type state lift, which is flat and hence chain-finite. This is one of the

not-so-rare examples that require the extended admissibility test described at the

end of section4.2.4.

The base case
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∀s t. A s ∧ ⊥‘(Discr s) = Def t −→ A t ∧ ¬b t

is proved by simplification because ⊥ = Def t is a contradiction. In the induction

step we have to prove

∀s t. A s ∧ (if b s then dlift x‘(D c‘(Discr s)) else Def s) = Def t

−→ A t ∧ ¬b t

from the induction hypothesis

∀s t. A s ∧ x‘(Discr s) = Def t −→ A t ∧ ¬b t

Simplification combined with case distinction and predicate calculus reasoning solves

the induction step.

7 Conclusion

HOLCF started life with Regensburger’s PhD and has been enhanced ever since. By

now it comprises about 1000 lines of theories and 9000 lines of proofs. Apart from

conducting the proofs themselves, the main challenges were: getting the structure

right, hiding as much of domain theory as possible, and facilitating the transition

between HOL and HOLCF. Hiding domain theory traditionally means automating

trivial or awkward proof steps that arise from domain theory, e.g. ⊥-cases and

admissibility requirements. In the case of HOLCF, it additionally means hiding

the encoding of domain theory in HOL, in particular explicit continuity checks

(section 4.2.3). The transition between HOL and HOLCF (section 4.3.2) is crucial

for larger developments that are conducted both in HOL and in HOLCF.

We have successfully met those challenges and HOLCF has become a logic for

domain theory that is more expressive than LCF and suitable for large applica-

tions (Müller, 1998b). In fact, most of the facilities that go beyond LCF, e.g. the

extended admissibility check (section 4.2.4), were prompted by applications. HOLCF

is now in a stable state and provides an excellent platform for formal developments

involving partial functions or infinite objects.
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