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Abstract

Let F be a family of meromorphic functions defined in D, all of whose zeros have multiplicity at least
k + 1. Let a and b be distinct finite complex numbers, and let k be a positive integer. If, for each pair of
functions f and g in F , f (k) and g(k) share the set S = {a, b}, then F is normal in D. The condition that
the zeros of functions in F have multiplicity at least k + 1 cannot be weakened.
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1. Introduction

A family F of functions meromorphic in the plane domain D is said to be normal in D
if each sequence { fn} ⊂ F has a subsequence { fn j } that converges spherically locally
uniformly in D to a meromorphic function or∞ (see [10, 15, 18]).

Let f and g be meromorphic functions on D, a ∈ C ∪ {∞}, and let S be a set of
complex numbers. If f (z)= a if and only if g(z)= a, we say that f and g share a in
D; if f (z) ∈ S if and only if g(z) ∈ S, we say that f and g share S in D.

In [13], Montel proved the following well-known normality criterion.

THEOREM A. Let F be a family of meromorphic functions defined in D, and let a, b
and c be three distinct values in the extended complex plane. If, for each function
f ∈ F , f 6= a, b, c, then F is normal in D.

In [16], Sun extended Theorem A as follows.

THEOREM B. Let F be a family of meromorphic functions defined in D; and let a, b
and c be three distinct values in the extended complex plane. If each pair of functions
f and g in F share a, b and c in D, then F is normal in D.

In [4], Fang and Hong extended Theorem B further.
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THEOREM C. Let F be a family of meromorphic functions defined in D; and let a, b
and c be three distinct values in the extended complex plane. If each pair of functions
f and g in F share the set S = {a, b, c} in D, then F is normal in D.

In this paper, we prove the following theorem.

THEOREM 1.1. Let F be a family of meromorphic functions defined in D, all of whose
zeros have multiplicity at least k + 1, where k is a positive integer. Let a and b be
distinct (finite) complex numbers. If, for each pair of functions f and g in F , f (k) and
g(k) share the set S = {a, b}, then F is normal in D.

EXAMPLE 1.2. Let k be a positive integer. Let D = {z : |z|< 1} and F = { fn},

where fn(z)= nzk, n = 1, 2, 3, . . . . Then each function in F has a single zero of
multiplicity k. Clearly, for each pair of functions fm , fn in F , f (k)m and f (k)n share the
set S = {1/2, 1/3} in D. But F clearly fails to be normal on any neighbourhood of
0. This shows that the condition in Theorem 1.1 that the zeros of functions in F have
multiplicity at least k + 1 cannot be weakened.

The following result of Gu [9] is well known.

THEOREM D. Let F be a family of meromorphic functions defined in D, let k be a
positive integer, and let b be a nonzero complex number. If, for each function f ∈ F,
f 6= 0 and f (k) 6= b in D, then F is normal in D.

Recently, we improved Theorem D as follows.

THEOREM E [7, Theorem 1]. Let F be a family of meromorphic functions defined in
D, all of whose zeros have multiplicity at least k + 2, and let b be a nonzero complex
number. If each pair of functions f and g in F share 0, and f (k) and g(k) share b in
D, then F is normal in D.

We also gave an example to show that the condition in Theorem E that the zeros of
functions in F have multiplicity at least k + 2 cannot be weakened.

In this paper, we continue our investigations and prove the following results.

THEOREM 1.3. Let F be a family of meromorphic functions defined in D, all of whose
zeros have multiplicity at least k + 2, where k is a positive integer. Let a and b be two
nonzero complex numbers. If each pair of functions f and g in F share a, and f (k)

and g(k) share b in D, then F is normal in D.

EXAMPLE 1.4. Let

fn(z)=
(anz + 1)k+1

nz − 1
,

where an > 0 satisfies ak+1
n k! = n. Let F = { fn} and D = {z : |z|< 1}. It can be

shown, using Rouché’s theorem, that, for sufficiently large n, fn(z)=−1 has only
the solution z = 0 in D. Thus, for each pair of functions fn and fm in F :
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(1) fn and fm share −1 for n, m ≥ N , where N is a positive integer depending only
on k;

(2) all zeros of fn and fm have multiplicity k + 1; and
(3) f (k)n and f (k)m share 1.

Clearly, F is not normal in D. This shows that the condition in Theorem 1.3 that
‘all of whose zeros have multiplicity at least k + 2’ cannot be weakened.

EXAMPLE 1.5. Let a 6= 0 be a complex number, and let

fn(z)=
a

naz + 1
.

Let F = { fn} and D = {z : |z|< 1}. Then, for each f ∈ F , f 6= 0, f (k) 6= 0 and
f (z)= a has only the solution z = 0 in D. Thus, for each pair of functions fn and
fm in F :

(1) fn and fm share a;
(2) all zeros of fn and fm have multiplicity at least k + 2; and
(3) f (k)n and f (k)m share 0.

But F is not normal in D. This shows that b 6= 0 is necessary in Theorem 1.3.

THEOREM 1.6. Let F be a family of meromorphic functions defined in D; let a, b and
c be complex numbers such that a 6= b, c 6= 0; and let k be a positive integer. If, for
each pair of functions f, g ∈ F , f and g share the set S = {a, b} and f (k) and g(k)

share the value c, then F is normal in D.

Example 1.5 also shows that c 6= 0 is necessary in Theorem 1.6.

THEOREM 1.7. Let k ≥ 2 be a positive integer; let F be a family of meromorphic
functions defined in D, all of whose zeros have multiplicity at least k; and let a, b and
c be complex numbers such that a 6= b, c 6= 0. If, for each pair of functions f, g ∈ F ,
f and g share c and f (k) and g(k) share the set S = {a, b}, then F is normal in D.

Example 1.2 also shows that c 6= 0 is necessary in Theorem 1.7.

EXAMPLE 1.8. Let D = {z : |z|< 1} and F = { fn}, where fn(z)= nz + c. Then, for
each pair of functions f, g ∈ F , f and g share c, and f ′ and g′ share the set {1/2, 1/3}
in D. Clearly, F is not normal in D. This shows that Theorem 1.7 is not valid for k = 1.

THEOREM 1.9. Let a, b and c be complex numbers such that bc 6= 0; let k and m be
positive integers with k < m; and let F be a family of meromorphic functions defined
in D, all of whose zeros have multiplicity at least k + 1. If, for each pair of functions
f, g ∈ F , f and g share a, f (k) and g(k) share b, and f (m) and g(m) share c, then F
is normal in D.
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Example 1.2 shows that the condition in Theorem 1.9 that all zeros have multiplicity
at least k + 1 cannot be weakened, and [7, Examples 1 and 2] show that c 6= 0 is
necessary in Theorem 1.9.

2. Auxiliary results

For the proofs of Theorems 1.1, 1.3, 1.6, 1.7 and 1.9, we require the following auxiliary
results.

LEMMA 2.1 [14, 19]. Let F be a family of functions meromorphic in the unit disc, all
of whose zeros have multiplicity at least k, and suppose that there exists A ≥ 1 such
that | f (k)(z)| ≤ A whenever f (z)= 0, f ∈ F . Then, if F is not normal, there exist,
for each 0≤ α ≤ k,

(a) a number 0< r < 1,
(b) points zn, |zn|< r ,
(c) functions fn ∈ F , and
(d) positive numbers ρn→ 0,

such that
fn(zn + ρnξ)

ραn
= gn(ξ)→ g(ξ),

locally uniformly with respect to the spherical metric, where g is a nonconstant
meromorphic function on C.

LEMMA 2.2. Let k be a positive integer and g a function meromorphic on C such that
g(k) omits two values in C. Then g(k) is constant.

PROOF. Clearly, no nonconstant rational function omits two values on C. On the other
hand, if g(k) is transcendental, then it takes on every finite value with at most one
exception infinitely often [10, Theorem 3.4]. 2

LEMMA 2.3 [17, Theorem 7]. Let F be a family of meromorphic functions defined in
D, all of whose zeros have multiplicity at least k + 2; and let b be a nonzero complex
number. If f (k) 6= b for each f ∈ F , then F is normal in D.

LEMMA 2.4 [6, Theorem 2]. Let F be a family of meromorphic functions defined in
D; let a and b be nonzero complex numbers; and let k be a positive integer. If, for each
f ∈ F , all the zeros of f have multiplicity at least k + 1 and f (z)= a if and only if
f (k)(z)= b, then F is normal in D.

LEMMA 2.5 [1, 8, 12, Corollary of Theorem 1]. Let f be a nonconstant meromorphic
function on the plane and k ≥ 2 a positive integer. Suppose that f (z) 6= 0, and
f (k)(z) 6= 0 for all z ∈ C. Then either f (z)= eAz+B or f (z)= 1/(Az + B)m, where
A 6= 0 and B are constants and m is a positive integer.

LEMMA 2.6 [17, Lemma 8]. Let f (z)= anzn
+ an−1zn−1

+ · · · + a0 + q(z)/p(z),
where a0, a1, . . . , an are constants with an 6= 0, and q and p are two coprime

https://doi.org/10.1017/S1446788708000505 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708000505


[5] Normality and shared sets 343

polynomials, neither of which vanishes identically, with deg q < deg p; and let k be a
positive integer and b a nonzero complex number. If f (k) 6= b, and the zeros of f all
have multiplicity at least k + 1, then

f (z)=
b(z − d)k+1

k!(z − c)
,

where c and d are distinct complex numbers.

LEMMA 2.7 [5, Theorem 1]. Let F be a family of meromorphic functions defined in
D; let k (where k ≥ 2) be a positive integer; and let a, b, c and d be complex numbers
such that b 6= a, 0 and c 6= 0. If, for each f ∈ F , all zeros of f − d have multiplicity
at least k, f (z)= 0 if and only if f (k)(z)= a and f (k)(z)= b implies that f (z)= c,
then F is normal in D.

LEMMA 2.8 [6, Theorem 1]. Let F be a family of meromorphic functions defined in
D; let k (where k ≥ 2) be a positive integer; and let a, b, and c be complex numbers
such that b 6= 0 and c 6= a. If, for each f ∈ F , f has only zeros of multiplicity at least
k, f (z)= a if and only if f (k)(z)= b and f (k)(z)= 0 implies that f (z)= c, then F is
normal in D.

LEMMA 2.9 [2, 18, Lemma 2.4]. Let T (r) be a continuous, nondecreasing, nonnega-
tive function and a(r) a nonincreasing, nonnegative function on the interval (r0, R).
If there exist constants b and c such that

T (r)≤ a(r)+ b log+
1

ρ − r
+ c log+ T (ρ)

whenever r0 < r < ρ < R, then

T (r)≤ 2a(r)+ B log
2

R − r
+ C,

where B and C are constants depending only on b and c.

LEMMA 2.10 [11, 18, Lemma 4.3]. Let f (z) be meromorphic in |z|< R (where R ≤
∞). If f (0) 6= 0,∞, then, for every positive integer k,

m

(
r,

f (k)

f

)
≤ Ck

{
1+ log+ log+

1
| f (0)|

+ log+
1
r

+ log+
1

ρ − r
+ log+ ρ + log+ T (ρ, f )

}
,

where 0< r < ρ < R and Ck is a constant depending only on k.

LEMMA 2.11. Let f be meromorphic in D = {|z|< R}; let k (where k ≥ 2) be a
positive integer; and let a, b and c be complex numbers such that b 6= a and c 6= 0.
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Suppose that all zeros of f have multiplicity at least k, f (0) 6= 0,∞, f (k+1)(0) 6=
0,∞; that for some z0 ∈ D, z0 6= 0, f (z0)= c, but f (z) 6= c for any z ∈ D, z 6= z0;
and that f (k)(z) 6= a, b, for any z ∈ D. Then, for 0< r < R,

T (r, f )≤
1

k − 1

{
k log r + 2km

(
r,

f ′

f

)
+ km

(
r,

f ′

f − c

)
+ m

(
r,

f (k+1)

f (k)

)
+ m

(
r,

f (k+1)

f (k) − a

)
+ m

(
r,

f (k+1)

f (k) − b

)
+ log

|( f (k)(0)− a)( f (k)(0)− b)|

| f (k+1)(0)|

+ log
1
| f (0)|

+ k log
| f (0)( f (0)− c)|

| f ′(0)|
+ M

}
, (2.1)

where M is a constant.

PROOF. Starting from [10, (2.1)], we have by familiar properties of the functions of
Nevanlinna theory (see [10, pp. 4–5, 56])

m

(
r,

1

f (k) − a

)
+ m

(
r,

1

f (k) − b

)
≤ m

(
r,

1

f (k) − a
+

1

f (k) − b

)
+ M1

= m

(
r,

(
f (k+1)

f (k) − a
+

f (k+1)

f (k) − b

)
1

f (k+1)

)
+ M1

≤ m

(
r,

f (k+1)

f (k) − a
+

f (k+1)

f (k) − b

)
+ m

(
r,

1

f (k+1)

)
+ M1

≤ m

(
r,

1

f (k+1)

)
+ m

(
r,

f (k+1)

f (k) − a

)
+ m

(
r,

f (k+1)

f (k) − b

)
+ M1 + log 2

≤ T (r, f (k+1))− N

(
r,

1

f (k+1)

)
+ log

1

| f (k+1)(0)|

+ m

(
r,

f (k+1)

f (k) − a

)
+ m

(
r,

f (k+1)

f (k) − b

)
+ M1 + log 2

≤ T (r, f (k))+ N (r, f )+ m

(
r,

f (k+1)

f (k)

)
+ m

(
r,

f (k+1)

f (k) − a

)
+ m

(
r,

f (k+1)

f (k) − b

)
+ log

1

| f (k+1)(0)|
+ M1 + log 2.

Since f (k) 6= a, b, the extreme left-hand side of the inequality above is

T

(
r,

1

f (k) − a

)
+ T

(
r,

1

f (k) − b

)
.
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On the other hand (see [10, (1.10)–(1.11)]) we have

T

(
r,

1

f (k) − a

)
+ T

(
r,

1

f (k) − b

)
= T (r, f (k) − a)+ T (r, f (k) − b)− log | f (k)(0)− a| − log | f (k)(0)− b|

≥ T (r, f (k))− log+ |a| − log 2− log | f (k)(0)− a|

+ T (r, f (k))− log+ |b| − log 2− log | f (k)(0)− b|

= 2T (r, f (k))− log |( f (k)(0)− a)( f (k)(0)− b)|

− log+ |a| − log+ |b| − 2 log 2.

It now follows that

T (r, f (k)) ≤ N (r, f )+ m

(
r,

f (k+1)

f (k)

)
+ m

(
r,

f (k+1)

f (k) − a

)
+ m

(
r,

f (k+1)

f (k) − b

)
+ log

|( f (k)(0)− a)( f (k)(0)− b)|

| f (k+1)(0)|
+ M2, (2.2)

where M2 is a constant depending only on a, b and k.
Since

T (r, f (k))= m(r, f (k))+ N (r, f (k))≥ N (r, f )+ k N (r, f )≥ (k + 1)N (r, f ),

(2.3)

it follows from (2.2) and (2.3) that

k N (r, f ) ≤ m

(
r,

f (k+1)

f (k)

)
+ m

(
r,

f (k+1)

f (k) − a

)
+ m

(
r,

f (k+1)

f (k) − b

)
+ log

|( f (k)(0)− a)( f (k)(0)− b)|

| f (k+1)(0)|
+ M2. (2.4)

Using reasoning similar to that used to obtain (2.2),

m

(
r,

1
f

)
+ m

(
r,

1
f − c

)
≤ m

(
r,

1
f
+

1
f − c

)
+ M1

≤ m

(
r,

1
f ′

)
+ m

(
r,

f ′

f

)
+ m

(
r,

f ′

f − c

)
+ M1 + log 2

≤ T (r, f ′)− N

(
r,

1
f ′

)
+ m

(
r,

f ′

f

)
+ m

(
r,

f ′

f − c

)
+ log

1
| f ′(0)|

+ M1 + log 2
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≤ T (r, f )+ N (r, f )− N

(
r,

1
f ′

)
+ 2m

(
r,

f ′

f

)
+ m

(
r,

f ′

f − c

)
+ log

1
| f ′(0)|

+ M1 + log 2.

Thus

T

(
r,

1
f

)
+ T

(
r,

1
f − c

)
≤ T (r, f )+ N (r, f )+ N

(
r,

1
f

)
+ N

(
r,

1
f − c

)
− N

(
r,

1
f ′

)
+ 2m

(
r,

f ′

f

)
+ m

(
r,

f ′

f − c

)
+ log

1
| f ′(0)|

+ M1 + log 2

≤ T (r, f )+ N (r, f )+ N

(
r,

1
f

)
+ N

(
r,

1
f − c

)
+ 2m

(
r,

f ′

f

)
+ m

(
r,

f ′

f − c

)
+ log

1
| f ′(0)|

+ M1 + log 2.

But

T

(
r,

1
f

)
+ T

(
r,

1
f − c

)
= T (r, f )− log | f (0)| + T (r, f − c)− log | f (0)− c|

≥ 2T (r, f )− log | f (0)| − log | f (0)− c| − log+ |c| − log 2.

Hence

T (r, f ) ≤ N (r, f )+ N

(
r,

1
f

)
+ N

(
r,

1
f − c

)
+ 2m

(
r,

f ′

f

)
+ m

(
r,

f ′

f − c

)
+ log

∣∣∣∣ f (0)( f (0)− c)

f ′(0)

∣∣∣∣+ M3.

Since all the zeros of f have multiplicity at least k and f − c has only a single zero
in D, we obtain

T (r, f ) ≤ N (r, f )+
1
k

N

(
r,

1
f

)
+ log r + 2m

(
r,

f ′

f

)
+ m

(
r,

f ′

f − c

)
+ log

| f (0)( f (0)− c)|

| f ′(0)|
+ M3, (2.5)

where M3 is a constant depending only on c.
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Together with (2.4), this yields

kT (r, f ) ≤ k N (r, f )+ N

(
r,

1
f

)
+ k log r + 2km

(
r,

f ′

f

)
+ km

(
r,

f ′

f − c

)
+ k log

| f (0)( f (0)− c)|

| f ′(0)|
+ k M3

≤ m

(
r,

f (k+1)

f (k)

)
+ m

(
r,

f (k+1)

f (k) − a

)
+ m

(
r,

f (k+1)

f (k) − b

)
+ 2km

(
r,

f ′

f

)
+ km

(
r,

f ′

f − c

)
+ T (r, f )+ log

1
| f (0)|

+ k log
| f (0)( f (0)− c)|

| f ′(0)|

+ log
|( f (k)(0)− a)( f (k)(0)− b)|

| f (k+1)(0)|
+ k log r + (k M3 + M2).

Thus (2.1) follows, so Lemma 2.11 is proved. 2

LEMMA 2.12 [3]. For k a positive integer, let F be a family of meromorphic functions
defined in D, all of whose zeros have multiplicity at least k + 1; and let G = { f (k) :
f ∈ F}. If G is normal in D, then F is also normal in D.

3. Proofs of Theorems 1.1–1.9

PROOF OF THEOREM 1.1. Fix z0 ∈ D. We show that F is normal at z0. Let f ∈ F .
We consider two cases.

Case 1. f (k)(z0) 6= a, b. Then there exists a disc Dδ = {z : |z − z0|< δ} such that
f (k) 6= a, b in Dδ. Thus, for each g ∈ F , the zeros of g have multiplicity at least k + 1
and g(k) 6= a, b in Dδ.

We claim that F is normal in Dδ. For notational simplicity, we may assume that Dδ
is the unit disc 1.

Suppose, on the contrary, that F is not normal in 1. Then by Lemma 2.1, we
can find fn ∈ F, zn ∈1 and ρn→ 0+ such that gn(ξ)= ρ

−k
n fn(zn + ρnξ) converges

locally uniformly with respect to the spherical metric to a nonconstant meromorphic
function g on C, all of whose zeros have multiplicity at least k + 1. By Hurwitz’s
theorem, either g(k) 6= a, b or g(k) ≡ a or g(k) ≡ b. In either of the latter cases, g would
be a polynomial of degree at most k, contradicting the fact that g is nonconstant and
all zeros of g have multiplicity at least k + 1. Hence g(k) 6= a, b. But then from
Lemma 2.2, it follows that g(k) is a constant. As before, since the zeros of g have
multiplicity at least k + 1, it follows that g is a constant, a contradiction. Hence F is
normal in 1, and so F is normal at z0.

Case 2. f (k)(z0)= a or b. Then there exists δ > 0 such that f (k) 6= a, b in Do
δ =

{z : 0< |z − z0|< δ}.
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Let G = { fn} be a sequence in F . Then, without loss of generality, we may
assume that there exists a subsequence of { fn} (which we again denote by { fn})
such that f (k)n (z0)= a. Thus, by the condition of the theorem, f (k)n 6= a, b in Do

δ and

f (k)n (z0)= a. As before, we may assume that z0 = 0 and δ = 1.
We claim that G is normal in 1.
Suppose, on the contrary, that G is not normal in 1. Then by Lemma 2.1, we can

find a subsequence of G, which we again denote by { fn}, zn ∈1, zn→ 0 and ρn→ 0+

such that gn(ξ)= ρ
−k
n fn(zn + ρnξ) converges locally uniformly with respect to the

spherical metric to a nonconstant meromorphic function g on C, all of whose zeros
have multiplicity at least k + 1.

Clearly, g(k) 6= b. Now we consider two subcases.

Case 2.1. zn/ρn→∞. Then g(k) 6= a, so, again by Lemma 2.2, g is constant, a
contradiction.

Case 2.2. zn/ρn→−α. Then, it is easy to see that g(k)(ξ) 6= a for ξ 6= α and
g(k)(α)= a. We consider a further two subcases.

Case 2.2.1. b 6= 0. Then by Lemma 2.6, it follows that

g(ξ)=
b(ξ − d)k+1

k!(ξ − c)
,

where c and d are distinct complex numbers. Thus

g(k)(ξ)= b +
A

(ξ − c)k+1 ,

where A is a nonzero complex number.
Obviously, g(k)(ξ)= a has k + 1 distinct solutions, which contradicts the fact that

g(k)(ξ)= a has only the solution ξ = α.

Case 2.2.2. b = 0. Then g(k) 6= 0. Since all the zeros of g have multiplicity at least
k + 1, it follows that g 6= 0.

If k ≥ 2, then by Lemma 2.5, either g(ξ)= eAξ+B, or g(ξ)= 1/(Aξ + B)n , where
A and B are complex numbers, A 6= 0, and n is a positive integer. Clearly, for functions
of this form, g(k)(ξ)= a has more than a single solution, contradicting what has been
shown above.

If k = 1, then g 6= 0 and g′(ξ)= a has only one solution. It follows from Hayman’s
alternative [10, Corollary to Theorem 3.5] that g is a rational function. This together
with g 6= 0 and g′ 6= 0 yields g(ξ)= 1/(Aξ + B)n , where A and B are complex
numbers, A 6= 0, and n is a positive integer. Again g′(ξ)= a has more than a single
solution, a contradiction.

Hence G is normal in 1. Thus a subsequence of { fn} converges locally uniformly
with respect to the spherical metric to a meromorphic function or ∞. Hence F is
normal at z0, and so F is normal in D. The proof of Theorem 1.1 is complete. 2
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PROOF OF THEOREM 1.3. Let z0 ∈ D. We show that F is normal at z0. Let f ∈ F .
We consider two cases.

Case 1. f (k)(z0) 6= b. Then there exists a disc Dδ = {z : |z − z0|< δ} such that
f (k) 6= b in Dδ. Thus, for each g ∈ F , the zeros of g have multiplicity at least k + 2
and g(k) 6= b in Dδ. By Lemma 2.3, F is normal in Dδ. Hence, F is normal at z0.

Case 2. f (k)(z0)= b. Then there exists δ > 0 such that f (k) 6= b in the punctured
disc Do

δ = {z : 0< |z − z0|< δ}. Hence, for each g ∈ F , g(k)(z) 6= b, z ∈ Do
δ . We

consider two subcases.

Case 2.1. f (z0) 6= a. Then there exists a disc Dδ = {z : |z − z0|< δ} such that
f 6= a in Dδ . Hence, for each pair of functions f, g ∈ F , f 6= a, g 6= a, and f (k)

and g(k) share b in Dδ . It follows from Theorem E that F is normal in Dδ and hence
normal at z0.

Case 2.2. f (z0)= a. Then there exists δ > 0 such that f 6= a in the punctured disc
Do
δ = {z : 0< |z − z0|< δ}. Hence, for each g ∈ F , all zeros of g have multiplicity at

least k + 2, and g(z)= a if and only if g(k)(z)= b, z ∈ Dδ. Thus, by Lemma 2.4, F is
normal in Dδ, and so F is normal at z0.

Therefore, F is normal in D. The proof of Theorem 1.3 is complete. 2

PROOF OF THEOREM 1.6. Let z0 ∈ D. We show that F is normal at z0. Let f ∈ F .
We consider two cases.

Case 1. f (z0) 6= a, b. Then there exists a disc Dδ = {z : |z − z0|< δ} such that
f 6= a, b in Dδ. Thus, for each g ∈ F , g 6= a, b in Dδ. Consider the family of functions

Fb = {g − b : g ∈ F} on Dδ . Clearly, if h ∈ Fb, then h 6= 0 on Dδ . Furthermore, if
h, h̃ ∈ Fb, then h and h̃ share a − b while h(k) and h̃(k) share c. Thus by Theorem 1.3,

Fb and hence F is normal in Dδ, so F is normal at z0.

Case 2. f (z0)= a or b. Then there exists δ > 0 such that f 6= a, b in Do
δ = {z :

0< |z − z0|< δ}. Let { fn} be a sequence of F . Then, for each fn , fn 6= a, b in Do
δ

and fn(z0)= a or b. Thus there exists a subsequence, which we continue to denote by
{ fn}, such that (say) fn(z0)= a. Hence, for each fn , fn 6= b in Dδ; and for each pair of
functions fn and fm , f (k)n and f (k)m share c. As in Case 1, it follows from Theorem 1.3
that { fn} is normal in Dδ , so F is normal at z0.

Therefore, F is normal in D. The proof of Theorem 1.6 is complete. 2

PROOF OF THEOREM 1.7. Let z0 ∈ D. We show that F is normal at z0. Let f ∈ F .
We consider two cases.

Case 1. f (z0) 6= c. Then there exists a disc Dδ = {z : |z − z0|< δ} such that f 6= c
in Dδ. Thus, for each g ∈ F , g 6= c in Dδ. Applying Theorem 1.1 to the family
Fc = {g − c : g ∈ F}, we see that Fc, and hence F , is normal in Dδ. Thus, F is normal
at z0.
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Case 2. f (z0)= c. Then there exists δ > 0 such that f 6= c in the punctured
disc Do

δ = {z : 0< |z − z0|< δ}. Hence, F is normal in Do
δ . Next we consider two

subcases.

Case 2.1. f (k)(z0)= a or b. Then there exists δ > 0 such that f (k) 6= a, b in
Do
δ = {z : 0< |z − z0|< δ}.

Let { fn} be a sequence of F . Then for each fn , f (k)n 6= a, b in Do
δ and f (k)n (z0)= a

or b. Then there exists a subsequence, which we again call { fn}, such that (say)
f (k)n (z0)= a for all n. Hence, for each fn , all of whose zeros have multiplicity at
least k, f (k)n 6= b and fn(z)= c if and only if f (k)n (z)= a in Dδ . Thus, by Lemmas 2.7
and 2.8, { fn} is normal in Dδ , so there exists a subsequence of { fn} that converges to
a meromorphic function or∞ in Dδ . Hence F is normal in Dδ , so F is normal at z0.

Case 2.2. f (k)(z0) 6= a, b. Then there exists a disc Dδ = {z : |z − z0|< δ} such that
f (k) 6= a, b in Dδ . Without loss of generality, we assume that z0 = 0 and Dδ is the unit
disc 1.

Let { fn} be a sequence of F . Then, for each fn , fn(0)= c and fn(z) 6= c for
z 6= 0, z ∈1. Hence, either there exists a subsequence (which we continue to denote
by { fn}) such that all zeros of fn(z)− c have multiplicity at least k + 1, or there exists
a subsequence such that all zeros of fn(z)− c have the same multiplicity l, 1≤ l ≤ k.
If all zeros of fn(z)− c have multiplicity at least k + 1, then, by Theorem 1.1, { fn} is
normal in 1. Suppose, then, that all zeros of fn(z)− c have the same multiplicity l,
1≤ l ≤ k; we prove that G = { fn} is normal at z = 0.

Suppose, on the contrary, that G is not normal at z = 0. By Lemma 2.1, there exist
sequences fn ∈ G, zn→ 0 and ρn→ 0+ such that

gn(ξ)= fn(zn + ρnξ)

converges locally uniformly with respect to the spherical metric to a nonconstant
meromorphic function g in C, whose zeros all have multiplicity at least k.

Since gn(ξ)= c has the unique solution ξ =−zn/ρn with multiplicity l for all n, it
follows by the argument principle that g(ξ)= c has at most one solution in C.

We claim that g(k+1)
6≡ 0. In fact, if g(k+1)

≡ 0, then g(ξ)= A(ξ − ξ0)
k , where A

is a nonzero constant. Thus g(ξ)= c has k (where k ≥ 2) distinct solutions, which
contradicts the fact that g(ξ)= c has at most one solution.

Now, we consider two subcases.

Case 2.2.1. There is a subsequence { fn j } of { fn} such that f (k+1)
n j (zn j + ρn j ξ)≡ 0.

Then

g(k+1)
n j

(ξ)= ρk+1
n j

f (k+1)
n j

(zn j + ρn j ξ)≡ 0.

Letting j→∞, we obtain g(k+1)(ξ)≡ 0, a contradiction.
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Case 2.2.2. There are only finitely many fn such that f (k+1)
n (ξ)≡ 0. We may

assume that f (k+1)
n (ξ) 6≡ 0 for all n. Take ξ0 ∈ C such that

g(ξ0) 6= 0, c,∞, g′(ξ0) 6= 0, g(k)(ξ0) 6= 0, g(k+1)(ξ0) 6= 0.

Then ∣∣∣∣ 1
ρn

( fn(zn + ρnξ0))
k−1( fn(zn + ρnξ0)− c)k

( f ′n(zn + ρnξ0))k

∣∣∣∣
×

∣∣∣∣ ( f (k)n (zn + ρnξ0)− a)( f (k)n (zn + ρnξ0)− b)

f (k+1)
n (zn + ρnξ0)

∣∣∣∣
=

∣∣∣∣gk−1
n (ξ0)(gn(ξ0)− c)k

(g′n(ξ0))k

(g(k)n (ξ0)− aρk
n)(g

(k)
n (ξ0)− bρk

n)

g(k+1)
n (ξ0)

∣∣∣∣
→

∣∣∣∣gk−1(ξ0)(g(ξ0)− c)k

(g′(ξ0))k

(g(k)(ξ0))
2

g(k+1)(ξ0)

∣∣∣∣ as n→∞.

It follows that

k log
| fn(zn + ρnξ0)( fn(zn + ρnξ0)− c)|

| f ′n(zn + ρnξ0)|
+ log

1
| fn(zn + ρnξ0)|

+ log
|( f (k)n (zn + ρnξ0)− a)( f (k)n (zn + ρnξ0)− b)|

| f (k+1)
n (zn + ρnξ0)|

= log

∣∣∣∣ρn
gk−1

n (ξ0)(gn(ξ0)− c)k

(g′n(ξ0))k

(g(k)n (ξ0)− aρk
n)(g

(k)
n (ξ0)− bρk

n)

g(k+1)
n (ξ0)

∣∣∣∣
→−∞, as n→∞. (3.1)

Set hn(z)= fn(zn + ρnξ0 + z), n = 1, 2, 3, . . . . Then

hn(0) = fn(zn + ρnξ0)= gn(ξ0)→ g(ξ0) 6= 0, c,∞,

h′n(0) = f ′n(zn + ρnξ0)=
g′n(ξ0)

ρn
→∞,

h(k)n (0) = f (k)n (zn + ρnξ0)=
g(k)n (ξ0)

ρk
n
→∞,

h(k+1)
n (0) = f (k+1)

n (zn + ρnξ0)=
g(k+1)

n (ξ0)

ρk+1
n

→∞. (3.2)

Now for R = 1, |z|< 1
2 , zn + ρnξ0 + z ∈ D̃ = {w : |w|< R} for sufficiently large

n. Hence, by (3.1), (3.2) and Lemma 2.11, for r < R and sufficiently large n,
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T (r, hn) ≤
1

k − 1

[
k log r + 2km

(
r,

h′n
hn

)
+ km

(
r,

h′n
hn − c

)
+ m

(
r,

h(k+1)
n

h(k)n

)
+ m

(
r,

h(k+1)
n

h(k)n − a

)
+ m

(
r,

h(k+1)
n

h(k)n − b

)
+ log

|(h(k)n (0)− a)(h(k)n (0)− b)|

|h(k+1)
n (0)|

+ log
1

|hn(0)|

+ k log
|hn(0)(hn(0)− c)|

|h′n(0)|
+ M

]
≤ C

[
2km

(
r,

h′n
hn

)
+ km

(
r,

h′n
hn − c

)
+ m

(
r,

h(k+1)
n

h(k)n

)
+ m

(
r,

h(k+1)
n

h(k)n − a

)
+ m

(
r,

h(k+1)
n

h(k)n − b

)
+ 1

]
. (3.3)

By Lemma 2.10, we have

T (r, hn)≤ C1

[
log+ T (ρ, hn)+ log

1
ρ − r

+ 1
]
,

where 0< r < ρ < R.
Thus, by Lemma 2.9, we obtain

T (r, hn)≤ C2

[
log

2
1− r

+ 1
]
,

where C2 does not depend on hn .
Let bn be a pole of hn with |bn|<

1
2 . Then

log
1/2
|bn|
≤ N

(
1
2
, hn

)
≤ T

(
1
2
, hn

)
≤ C3,

so that |bn|> 1/(2eC3).
Thus fn is holomorphic in |z|< 1/(2eC3), and hence (see [10, Theorem 1.6])

log M

(
1

4eC3
, fn

)
≤ 3T

(
1

2eC3
, fn

)
≤ 3C2

[
log

2
1− 1/(2eC3)

+ 1
]
.

Therefore, G is normal at the origin, so F is normal in D. The proof of Theorem 1.7
is complete. 2

PROOF OF THEOREM 1.9. Let z0 ∈ D. We show that F is normal at z0. Let f ∈ F .
We consider several cases.
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Case 1. f (z0) 6= a. Then there exists a disc Dδ = {z : |z − z0|< δ} such that f 6= a
in Dδ. Thus, for each g ∈ F , g 6= a in Dδ. Since Fa = {g − a : g ∈ F} satisfies the
hypotheses of Theorem E, Fa and hence F is normal in Dδ; and so F is normal at z0.

Case 2. f (z0)= a. Then there exists a disc Do
δ = {z : 0< |z − z0|< δ} such that

f 6= a in Do
δ . Hence, F is normal in Do

δ . We consider two subcases.

Case 2.1. f (k)(z0) 6= b. Then there exists a disc Dδ = {z : |z − z0|< δ} such that
f (k) 6= b in Dδ . Set G = { f (k) : f ∈ F}. Then for each pair of functions f, g ∈ G,
f 6= b and g 6= b, and f (m−k) and g(m−k) share c in Dδ . As before, Theorem E shows
that G is normal in Dδ . Thus by Lemma 2.12, F is normal in Dδ and so at z0.

Case 2.2. f (k)(z0)= b. Then clearly there exists δ > 0 such that f (k) 6= b in Do
δ =

{z : 0< |z − z0|< δ}. Thus, for each function f ∈ F , f (z)= a if and only if
f (k)(z)= b in Dδ , so by Lemma 2.4, F is normal in Dδ . Thus F is normal at z0.

This completes the proof of Theorem 1.9. 2
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