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Abstract

Background: Clinical trials for assessing the effects of infection prevention and control (IPC) interventions are expensive and have shownmixed
results. Mathematical models can be relatively inexpensive tools for evaluating the potential of interventions. However, capturing nuances
between institutions and in patient populations have adversely affected the power of computational models of nosocomial transmission.

Methods: In this study, we present an agent-based model of ICUs in a tertiary care hospital, which directly uses data from the electronic
medical records (EMR) to simulate pathogen transmission between patients, HCWs, and the environment.We demonstrate the application of
our model to estimate the effects of IPC interventions at the local hospital level. Furthermore, we identify the most important sources of
uncertainty, suggesting areas for prioritization in data collection.

Results: Ourmodel suggests that the stochasticity in ICU infections wasmainly due to the uncertainties in admission prevalence, hand hygiene
compliance/efficacy, and environmental disinfection efficacy. Analysis of interventions found that improvingmeanHCWcompliance to hand
hygiene protocols to 95% from 70%, mean terminal room disinfection efficacy to 95% from 50%, and reducing post-handwashing residual
contamination down to 1% from 50%, could reduce infections by an average of 36%, 31%, and 26%, respectively.

Conclusions: In-silico models of transmission coupled to EMR data can improve the assessment of IPC interventions. However, reducing the
uncertainty of the estimated effectiveness requires collecting data on unknown or lesser known epidemiological and operational parameters of
transmission, particularly admission prevalence, hand hygiene compliance/efficacy, and environmental disinfection efficacy.

(Received 11 June 2024; accepted 24 November 2024)

Introduction

Hospital-acquired infections (HAIs) pose a significant threat to
patient safety and burden the US healthcare system with an excess
$8 to $12 billion annually due to prolonged hospital stays and
increased mortality risk.1 The mechanisms by which organisms
spread between patients is complex and poorly understood,
hampering assessments of intervention effectiveness. The primary
pathways of transmission are presumed to include lapses in
infection control practices by healthcare workers (HCWs) and
contamination of medical equipment and the hospital environ-
ment.2–4 However, the complexity and heterogeneity of HCW-
patient contact patterns and frequent contacts with surfaces and
devices, many of which are untraceable,5 make it difficult to
measure and evaluate the relative role of each pathway.

A valuable, yet underutilized, source of data to reduce the
uncertainties in understanding of transmission pathways is
electronic medical records (EMRs). EMR data contains time-
stamped information on patient movements and interactions with
HCWs. Prior studies have utilized EMR data to develop network

models to assess transmission rates using statistical models.6–8 These
studies found that the structure of the patient-nurse network can
increase the risk of transmission. However, understanding the
relative role of different transmission pathways (eg, environmental
versus HCW-mediated) and the potential impact of interventions
remains limited. A more robust modeling process is needed to
effectively tie together information on patient location and the
HCW-patient contact network with transmission and infection
events derived from EMR data.

In this study, we present an agent-based simulation of the ICUs
in the Johns Hopkins Hospital (JHH), hereafter referred to as The
Hospital, coupled to JHH’s EMR data to simulate transmission of
two HAI-causative pathogens: Methicillin-Resistant Staphylococcus
Aureus (MRSA) andVancomycin-Resistant Enterococci (VRE).We
investigated the effects of parameter uncertainty onmodel outcomes
to provide insight about the most important sources of randomness,
for which further data collection could help reduce uncertainty.
Using our model, we also simulated a number of interventions and
estimated their impacts on reducing infections.

Methods

With the high operational cost of randomized clinical trials for the
assessment of infection control interventions, we advocate for
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simulation techniques as an alternative approach. The novelty of
our simulation-based framework is using a hospital’s EMR data to
tailor the simulations to the operations and environment of the
hospital.

Clinical data collection

Electronic medical records
All encounter and admission/discharge information for all patients
that were hospitalized in the adult ICUs were extracted in bulk
from The Hospital’s EMR system. The Hospital uses the Epic®
Medical Record System for the entire enterprise. Patients’ and
HCWs’ identification information were masked for privacy
protection, according to the Institutional Review Board (IRB)
Authorization Agreement. The de-identified data sets were
downloaded onto a secure virtual desktop for sharing and analysis.

This study is focused on the six adult ICUs at The Hospital:
Cardiac Care Unit (CCU), Cardiovascular Surgical ICU (CVSU),
Medical Intensive Care Unit (MICU), Neuro Critical Care Unit
(NCCU), Surgical ICU (SICU), and Weinberg Surgical
ICU (WSICU).

Time-stamped data from laboratory results (including surveil-
lance culture results), medication administration, and flowsheet
information (which includes vital signs and other reportedmedical
interventions), were used to identify HCW-patient interactions
following the samemethodology as Klein et al.8 Briefly, medication
administration and laboratory specimen collection were assumed
to represent an actual HCW interaction. Flowsheet data is more
complex and includes auto-populated data; thus, an algorithm was
used to filter events judged as likely to be automated events. As an
HCW-patient interaction could consist of multiple events within a
short period of time (eg, multiple medication administrations,
specimen collections, or vital signs), we combined separate line-
items from a single HCW that occurred within 15 minutes of each
other and created an interaction start and end time.

Event queue construction
We compiled time-stamped HCW interactions with patient
location data for the period of June 1, 2017, to July 1, 2018, and
sorted all events by time to create an event queue data file. The
event queue provides the time and location of patient-HCW
interactions and movement of patients (admission, discharge, and
transfer) to be simulated.

Simulations
We used Agent-Based Modeling (ABM) to simulate colonization
and infection events due to the interactions between patients,
HCWs, and room environments, in the ICUs of The Hospital.

ABM is a bottom-up modeling technique where complicated
global behaviors of systems, or complex processes such as
nosocomial transmission of HAIs, can be predicted by modeling
the fundamental entities (agents) of the system/process and
defining their interactions with each other and the environment.9

Each agent interacts with other agents and the environment based
on a set of probabilistic and deterministic decision rules.

The agent-based model
Our agent-based model of HAI-causing pathogen transmission is
based on our previous work on the study of the effects of
uncertainties on the dynamics of nosocomial transmission of
HAIs.10 The model consists of six ICUs and includes patients and

HCWs modeled as agents (ie, separate entities). Below is a
summary of the modeling specifications (details in Appendix A).

Model dynamics
Daily routine
On admission, a new patient is generated, unless in readmission
cases where the corresponding patient is retrieved from the model
memory. Each patient is assigned to their room, with their disease
state assigned randomly based on the admission status proba-
bilities. On discharge, the terminal disinfection protocol is
executed in the patient’s room to clear the room contamination
based on an efficacy rate (De).

For contact events, the following steps are simulated:

• Before a patient contact:
º For patients under contact precautions, the HCWmay comply
with wearing PPE with some probability (Ec). Otherwise, the
HCW may comply to hand washing with a probability (He

c ),
which can remove the contamination from the HCW’s hands,
though the contamination on their clothes (eg, sleeves, scrubs,
etc.) may remain (Hr).

º The HCWmay contact the room environment. This allows for
both environmental shedding by contaminated HCWs (Phr)
and HCW contamination from a contaminated room (Prh).

• During a patient contact:
º If the HCWor their PPE is contaminated, a susceptible patient
may become colonized with some probability (Php).

º Similarly, a colonized patient can contaminate the HCW or
their PPE with some probability (Pph).

• After a patient contact:
º The HCW may contact the patient’s environment again,
which with a probability may lead to environmental
contamination if the HCW or their PPE is contaminated (Phr).

º The HCW discards their PPE, if using, otherwise, they may
comply with hand washing with a probability (Hx

c ) when
exiting the room.

To account for direct environmental colonization from a
contaminated room (aside from HCW-mediated environmental
contamination), a Bernoulli trial is conducted every hour for
patients with a success probability equal to the hourly probability
of direct environmental colonization (Prp).

Colonization screening is performed once every 7 days on a
fraction of patients, determined by the screening compliance level
(Cc) using a Bernoulli trial with a success probability equal to the
test accuracy (Ca).

The disease state of colonized patients may progress into
infected with some probability at any time during their stay. This
probability is estimated based on the data for the time of infection
onset from admission. Time of infection onset was assumed to be
the time of specimen collection for the infection diagnosis test.
Based on this data, the probability distribution of time-to-infection
(TCI) was constructed with a Gaussian Kernel Density function
(Figure A1).

Parameterization
We defined the probability distribution of random variables in the
model based on the findings from the literature (Table 1). We used
uniform distributions to allow for an unbiased uncertainty analysis
where there was no evidence in the literature suggesting more
informative distributions. For parameters that were informed from
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the EMR data, we fitted Uniform, Beta, and Gaussian Kernel
Density distributions.

The contamination-related parameters were assumed to take
equal values as there is no evidence that would suggest otherwise.
All the other parameters were assumed to be independent due to
lack of correlation evidence in the literature.

Parameter identifiability
In the absence of data, we defined the following identifiability
scenarios for probability of environmental direct colonization (Prp)
and post-handwashing residual contamination (Hr) as unknown
parameters (Table 2): Low and High Environmental colonization
(denoted by LE and HE, respectfully), and Low and High Residual
contamination (denoted by LR and HR, respectfully).

Uncertainty analysis

We used partial rank correlation coefficients (PRCCs) to
investigate the effects of parameter uncertainty on model output.
For uncertainty analysis, the simulations were repeated while
relaxing parameter distributions (see Table 1).

We also investigated the effects (sensitivity) of parameter
distribution boundaries on PRCC calculations. For doing so, we
changed the upper and lower bounds of the distribution of each
parameter and repeated the PRCC analysis.

Results

Summary statistics of EMRs

There were variations in capacity, admission rate, length of stay
(LOS), HCW contact patterns, and infection rate across the ICUs
(see Tables B1 and B2 and Figure B1). The medium number of
visits each patient received in an hour was lowest in the NCCU
(0.8) and highest in the SICU (2.2). Most contacts were by
registered nurses (69%–83%). The remainder of the contacts
involved more than 40 other types of HCWs, most commonly
technicians, respiratory therapists, and nurse practitioners.

Model calibration results

Themodel parameters could only be fitted to the observed number
of infections when post-handwashing residual contamination was

Table 1. Model parameters and their probability distributions

Parameter Prior distribution(1) Source
Relaxed distribu-
tion(2)

Sampled
per

Admission prevalence (�C) U [a= 0.01,
b= 0.15](3)

EMRs U [a= 0, b= 0.5] Simulation

Culture test accuracy (Ca) U [a= 0.4, b= 0.95] 22,23 U [a= 0, b= 1] Simulation

Active surveillance compliance (Cc) U [a= 0.75, b= 0.9] EMRs U [a= 0.75, b= 1] Simulation

Mean hand hygiene compliance probability on entry (He
c ) U [a= 0.5, b= 0.7] 24–27 U [a= 0.5, b= 1] HCW

Mean hand hygiene compliance probability on exit (Hx
c ) U [a= 0.6, b= 0.9] 24–27 U [a= 0.6, b= 1] HCW

Hand hygiene compliance variability from mean (�Hc
) U [a= 0, b= 0.2] Assumed U [a= 0, b= 0.2] Simulation

Hand hygiene compliance probability (Hc
cÞ Beta (He

c , �Hc
)(4) Assumed Beta (He

c , �Hc
) HCW

Mean HCW PPE compliance probability (Ec) U [a= 0.8, b= 0.9] 24,28 U [a= 0.8, b= 1] Simulation

HCW PPE compliance variability from mean (�Ec ) U [a= 0, b= 0.2] Assumed U [a= 0, b= 0.2] Simulation

HCW PPE compliance probability (Ec) Beta (Ec, �Ec ) Assumed Beta (Ec, �Ec ) HCW

Residual contamination post-handwashing (Hr ) U [a= 0, b= 1] Assumed U [a= 0, b= 1] Simulation

Terminal room disinfection efficacy (De) U [a= 0.4, b= 0.6] 26 U [a= 0.4, b= 1] Simulation

Probability of room contamination by colonized patients per day (Ppr ) U [a= 0.4, b= 0.8] 13 U [a= 0, b= 1] Simulation

Probability of transmission from contaminated HCW to susceptible patient
(Php)

U [a= 0, b= 1] Assumed U [a= 0, b= 1] Simulation

Probability of HCW contamination from a colonized patient (ph) U [a= 0.4, b= 0.8] 13 U [a= 0, b= 1] Simulation

Probability of HCW contamination from contaminated environment (Prh) U [a= 0.4, b= 0.8] 13 U [a= 0, b= 1] Simulation

Probability of environmental contamination from contaminated HCW (Phr ) U [a= 0.4, b= 0.8] 13 U [a= 0, b= 1] Simulation

Progression time from colonization to infection (TCI) GKDE (m ¼ 7.1 days,
IQR: 1.2–33.4)(5)

EMRs N/A Patient

Probability of patient direct environmental colonization per hour (Prp) U [a= 0, b= 0.2] Assumed U [a= 0, b= 0.2] Simulation

Shedding increase factor for infected (�I) U [a= 1, b= 2] Assumed29 U [a= 1, b= 2] Simulation

Pathogen natural clearance rate from dry surfaces per day (�) U [a= 0, b= 0.01] 30,31 U [a= 0, b= 0.1] Simulation

(1)Used for intervention simulations.
(2)Used for uncertainty analysis.
(3)U[a, b] denotes uniform distribution where a and b are the lower and upper bounds, respectively.
(4)Beta(μ, σ) denotes Beta distribution where μ and σ are the mean and standard deviation. The shape parameters of the Beta distribution can be obtained as follows: α = (μ2 – μ3 – μσ2)/σ2 and
β = α(1/ μ – 1).
(5)GKDE(m, IQR) denotes Gaussian Kernel Density where m and IQR are median and interquartile range, respectively.
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assumed to take values smaller than 10%, that is, under the LELR
(low environmental colonization and low residual contamination)
and HELR (high environmental colonization and low residual
contamination) scenarios (Figure B2). This implies that post-
handwashing residual contamination is unlikely to take large
values as the model could not reproduce the observed infection
rates under such an assumption.

Results of uncertainty analysis

Partial rank correlation coefficients
The results from our uncertainty analysis revealed that the two
major sources of uncertainty in determining the rate of infection
were admission prevalence and hand hygiene compliance levels.
Other parameters also showed moderate to significant contribu-
tions to infection uncertainty depending on the parameter
identifiability scenario (Table 3).

The parameters that were correlated with infections also varied
across the ICUs (Tables B3-B6). For example, mean hand hygiene
compliance on exit showed a weak correlation with infections in
the CVSU and NCCU while showed stronger correlations in the
other four ICUs. Also, the probability of environmental
contamination from HCWs was moderately correlated with
infections in the MICU, while it showed weak correlations in
the CVSU and NCCU.

The results also suggested nonlinear correlations between
infections and certain model parameters (Table 4). For example,
the mean hand hygiene compliance level was only correlated with
infections when compliance varied above 50%. That is, changes in
mean compliance level from 0 to 50% did not reduce infections.

The details of the uncertainty analysis for each ICU are
elaborated in Appendix B.

Intervention selection
Based on the definition of statistical correlation, parameters with
strong correlation coefficients (PRCCs) with infections can be
regarded as potentially more effective interventions. Thus, the
following interventions were defined to be simulated: improving
hand hygiene compliance among HCWs (improving mean
compliance among all HCWs to 95% and improving compliance
among the least-compliant HCWs to 75% to reduce variation from
mean), hand hygiene efficacy (through reducing mean post-
handwashing residual contamination from 50% to 1%), and
improving mean terminal room disinfection efficacy from 50% to
95%. As admission prevalence cannot be reduced through an

Table 2. Identifiability scenarios: LELR denotes low environmental colonization
and low residual contamination; LEHR denotes low environmental colonization
and high residual contamination; HELR denotes high environmental
colonization and low residual contamination; and HEHR denotes high
environmental colonization and high residual contamination

Scenario
name

Post-handwashing
residual contamination

Patient direct
environmental
colonization rate

Other
parameters

LELR U [a= 0.0, b= 0.1] U [a= 0.00, b= 0.01] See Table 1

LEHR U [a= 0.1, b= 1] U [a= 0.00, b= 0.01] See Table 1

HELR U [a= 0.0, b= 0.1] U [a= 0.10, b= 0.15] See Table 1

HEHR U [a= 0.1, b= 1] U [a= 0.10, b= 0.15] See Table 1

Table 3. Parameters with above-moderate correlation coefficients (defined as
partial rank correlation coefficients larger than 0.3 for positive correlation and
smaller than −0.3 for negative correlation) under different parameter
identifiability scenarios

Identifiability scenario: LELR (low environmental colonization and low
residual contamination)

Admission prevalence 0.97***

residual contamination post-handwashing 0.48***

Mean hand hygiene compliance probability on entry −0.42***

Mean hand hygiene compliance probability on exit −0.35**

Terminal room disinfection efficacy −0.30***

Identifiability scenario: LEHR (low environmental colonization and high
residual contamination)

Admission prevalence 0.94***

Terminal room disinfection efficacy −0.32***

Identifiability scenario: HELR (high environmental colonization and low
residual contamination)

Admission prevalence 0.96***

Mean hand hygiene compliance probability on entry −0.61***

Mean hand hygiene compliance probability on exit −0.52***

Residual contamination post-handwashing 0.40***

Probability of environmental contamination from
contaminated HCW

0.36***

Identifiability scenario: HEHR (high environmental colonization and high
residual contamination)

Admission prevalence 0.92***

Terminal room disinfection efficacy −0.39***

(***) Significant at the 1% level; (**) Significant at the 5% level.

Table 4. Parameters with statistically significant sensitive partial rank
correlation coefficients (PRCCs) to distribution boundaries (from the half-
range(1) uncertainty analysis)

Parameter

Lower distri-
bution range

(PRCC)

Upper distri-
bution range

(PRCC)

Probability of HCW contamination from
contaminated environment

0 – 50%
(r1 ¼ 0:13)

50 – 100%
(r2 ¼ 0:42)

Mean hand hygiene compliance on
entry

50 – 75%
(r1 ¼ �0:29)

75 – 100%
(r2 ¼ �0:42)

Mean hand hygiene compliance on exit 50 – 75%
(r1 ¼ �0:19)

75 – 100%
(r2 ¼ �0:44)

Hand hygiene compliance variability
from mean

0 – 10%
(r1 ¼ �0:10)

10 – 100%
(r2 ¼ �0:37)

Terminal room disinfection efficacy 40 – 70%
(r1 ¼ �0:12)

70 – 100%
(r2 ¼ �0:44)

Probability of environmental
contamination from contaminated
HCW

0 – 50%
(r1 ¼ 0:57)

50 – 100%
(r2 ¼ 0:08)

(1)If a parameter takes values between a and b (ie, [a – b]), withm as the middle point, lower
and upper half-ranges are defined as [a – m] and [m – b], respectively.
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intervention in a single hospital, we excluded lowered admission
prevalence as an intervention to be simulated.

Results of intervention simulations

Although all the selected interventions showed comparable
impacts on reducing infections, improving the mean handwashing
compliance to 95% had the largest impact, resulting in an average
of 36% reduction in total number of infections in the hospital
(Figure 1). The order of interventions in terms of impact on
reducing infections are (from larger to smaller): improving the
mean terminal room disinfection efficacy to 95% (average impact:
31%), improving minimum hand hygiene compliance to 75%
(average impact: 31%), and reducing mean post-handwashing
residual contamination to 1% (average impact: 26%).

Our probabilistic methodology provides the uncertainty level in
the estimation of the impact of interventions, as well. This explains
the certainty level of the estimated impact of interventions due to
all sources of randomness or unknowns. For example, improving
the mean terminal room disinfection efficacy to 95% had an
average impact of 31% in reducing infections. That is from 2192
cases in baseline to at least 1478 cases with a 50% probability.
However, the cumulative probability plot of the intervention
impact (Figure 2) shows that the infections would be reduced to at
least 1505 cases with a probability of 95%. See Appendix B: Results,
Section B3.4 for the probabilistic plots of the rest of the
interventions.

Discussion

Our results support the claim that more data on infection control
and environmental contamination is needed to better estimate the
potential impact of interventions. Meanwhile, we also demonstrate
that there are still significant gains to be made from exploiting
already available data. In particular, EMR data can address some of
the uncertainties in the behavior of HCWs and patients. Here, we
demonstrated their utility to evaluate the potential impact of
interventions to reduce transmission using simulation.
Importantly, our methods are generalizable by tying intervention

evaluations directly to data extracted from the EMR of a hospital,
allowing hospitals to tailor intervention simulations to their own
operations and environment.

Although our results may not be applicable to all hospitals, as
intervention effectiveness may differ across hospitals, our model
and results point to some important general data gaps. Firstly,
parameterization issues were most pronounced in the environ-
mental components of our model. This accords with the lack of
literature regarding pathogen transfer between different surfaces,
patients, and HCWs. Although some studies have shown the
potentially significant role of the environment in transmission,11–13

challenges remain in accurate quantification of the role of the
hospital environment in transmission.

Second, our uncertainty analysis identified admission preva-
lence as the most critical model parameter. Increasing levels of
pathogen prevalence at admission increases colonization pressure,
which in turn, increases risk of transmission.14 Inaccurate

Figure 1. Results of intervention simulations under different parameter scenarios. Bar values show the average impact of each intervention on reducing infections. LELR: low
probability of direct environmental colonization and low levels of residual contamination; HELR: high probability of direct environmental colonization and low levels of residual
contamination.

Figure 2. Cumulative probability plot for the annual number of infections after
improving terminal room disinfection efficacy to 95% through an intervention. Dashed
lines show the 50th (median) and 95th percentiles. LELR: low probability of direct
environmental colonization and low levels of residual contamination; HELR: high
probability of direct environmental colonization and low levels of residual
contamination.
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estimation of admission prevalence risks overestimation of
transmission parameters, leading to an incorrect estimation of
the impact of interventions. More extensive admission testing is
likely required to address the uncertainty in admission prevalence
in ICUs.

Third, we found that interventions for improving hand hygiene
compliance is complicated by the uncertainty in the level of
compliance among HCWs. In accord with the literature,15,16 we
found that increasing the mean handwashing compliance was
highly impactful. However, our simulations also suggest that
reducing the variability among the HCWs, or more specifically,
improving compliance among the least compliant HCWs, was
comparably effective. Further studies are needed to assess the cost-
effectiveness of improving overall compliance or retraining low-
compliant HCWs to a pre-established minimum threshold.

Fourth, we found a strong degree of sensitivity to post-
handwashing residual contamination. Although interventions
have largely been targeted at handwashing compliance16 and
improved efficacy in removing contamination from HCWs’
hands,17 studies have also shown that long-sleeved white coats
and ties are frequently contaminated with HAI-causing patho-
gens.18,19 Thus, in recent years, a number of healthcare facilities in
the UK and US have instituted “bare below the elbow” mandates
(BBE) to reduce the likelihood of post-handwashing contamina-
tion. BBE typically not only bans neckties and long sleeves, but also
non-medical devices (eg, cellphones) or cosmetic accessories (eg,
jewelry).20 Our results suggest that reducing post-handwashing
contamination from all these potential sources of contamination
should be a focus of future research, particularly, we need more
clinical studies and data collection to better quantify the role of
post-handwashing contamination in transmission, as currently
this theoretically important parameter is completely unknown.

In a nutshell, for more effective intervention assessment
through modeling, future research must prioritize areas with the
greatest uncertainty. For example, the role of environmental
contamination along with HCW-mediated transmission
(ie, patient-to-HCW-to-patient) is critical to be understood as
each requires different interventions to mitigate transmission. For
example, when environmental colonization was assumed low, our
model suggested that improving hand hygiene was more effective
than scenarios in which environmental colonization was assumed
high. Collecting measures of pathogen absolute abundance
(ie, pathogen load) on patient room surfaces combined with
HCW visit and patient movement data from EMR, could provide a
rich tapestry describing the patient-environment-HCW network
and the role of patient and HCW shedding in transmission.

Challenges and limitations

First, while EMRs provide a rich source of data on patient and
HCW movements and encounters, not all HCW-patient inter-
actions are documented. Second, certain structural assumptions
had to be made due to lack of data (eg, HCW-environment
contacts in patient rooms) and certain behaviors had to be
excluded, for example, HCW-to-HCW contamination, HCW
contamination outside of patient rooms, and environmental
contamination by visitors and custodians, as none of these
activities is recorded in EMRs. Third, we did not account for
patient-specific risk factors of susceptibility to colonization due to
lack of sufficient data. The decision to excludemany of these details
originates from either lack of data or insufficient knowledge about

their epidemiological mechanisms of increasing risk of coloniza-
tion. For example, antibiotic exposure was found to increase risk of
acquisition from 20% to 90%.8,21 Given the uncertainty in the
impact of antibiotics, from a statistical analysis perspective, one
may infer that there might be other confounding parameters that
are needed to be included to correctly evaluate the role of antibiotic
exposure as a colonization risk factor for different patients.

Lastly, the computational cost of our simulations is extremely
high, limiting the number of realizations we could obtain. Future
work is needed to develop more computationally tractable
simulations, particularly for parameter estimation.
Advancements in neural networks may be a means to improve
parameter estimation in such complex simulations.
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