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1. Abstract

A generalization of Neumann's integral connecting the two kinds of Legendre
function is obtained. It contains an extra parameter which is not a function
of the parameters of the Legendre functions, unlike all previous extensions of
the original formula. These extensions are shown to be particular cases of the
new generalization and some further particular cases are also indicated.

2. Introduction

In 1848 Neumann ([1]; page 292) expressed the Legendre function of the
second kind in terms of that of the first kind:

for all complex z except those real values in the interval [ — 1,1] and for n a
non-negative integer. Wrinch [7] obtained, in 1930, a generalization which
inserted a polynomial of degree not greater than n, namely,

(2) 6.(z)p(z) = i f — , P(t)dt
J-i z — »

Since then, further generalizations have been given by Gormley [3] in 1934,
Robin [5] in 1957 and Love [4] in 1965. Gormley and Robin extended (2) to the
associated Legendre functions but still one of the parameters was required to be
integral. Love obtained results for both the associated and "unassociated"
functions which removed this restriction. These results were for functions of the
type

(3) E(z) = (z + l)'(z - lfQu
v(z)

where a and /? are functions of v and n, with sometimes a Wrinch-type generaliza-
tion being added.
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This paper gives generalizations of Neumann's integral which free one of
the parameters a and /? from the restriction that it should be a function of v and
\i. It will also be shown that the results cited above are special cases of this more
general result. A further special case is also indicated.

The main result obtained is:

(4) If re(l + v) > 0, min re(fi ± \n + 1)> 0, v + n is not an integer, z is in
the plane cut along the real axis from — 1 to + 1, k is any integer satisfying

0 ^ k < min re (v - fi ± \n + 1)

andp(z) is any polynomial of degree k or less, then

(5) (z + iy-g-k(z - l)BQu
v(z)p(z)

z - t

( i ± i ^ p( _ 0 j nt)dt

The case /? = 0 appears to be a result on the same level of generality as
Love's, but new.

The term "cut plane" throughout this paper will refer to the complex plane
omitting the closed interval [ — 1,1] of the real axis. All powers occurring are
principal values, that is, zw is defined to be exp (w log z) where — n < im (log z) ^ n.

3. Regularity of £ (z)

To establish these results we use Cauchy's integral, the usual method of
establishing Neumann's integral (see, for instance, [1] p. 292 or [2] p. 153),
rather than employing successive integrations by parts and orthogonality rela-
tions as the later workers have done. We find that

(6) £(z) is regular in the cut plane if re(l + v) > 0, v + pi is not an integer,
and a, = v - r - /?.

PROOF. In the cut plane £(z) has, in general, a branch point at infinity.
However, by [2]: equation 3.2(5), £(z) behaves near infinity as a multiple of
z«+/>-v-i g0 t j j a t j n t jje c a s e w h e r e a + )S — v is an integer there is no branch
point at infinity. Thus £(z) can be defined in some neighbourhood of the segment
of the real axis from 1 to infinity in terms of principal values. Analytic continu-
ation then gives the required result.
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4. Application of Cauchy's Integral.

[3]

The above result enables Cauchy's integral to be used on the contour C
shown in the diagram. The radii of the circles Cx, C2 and C4 are R, E and r\

respectively and values of these are chosen so that the outer circle is large enough
and the two straight line segments and small circles close enough to the branch
cut to ensure that z lies inside the contour. So

dw = Ji + 12 + h + h +2ni Jc w — z

, I f £(w)
where Ir — —— — — dw.

2ni JCr w — z

On C1; w = Re'e and so by ([2]: equation 3.2(36)) It is a multiple, inde-
pendent of z and R, of

• (Re" + If + iM"v"1(,Re'8 - l/~*" F
«/ o Reie-zy

Provided i? is sufficiently large,

I ' l l ^ * i
R-\z

(R ±

where Kt is a positive constant, and the upper or lower sign is taken according as
re (a + \\.i — v — 1) or re(/? — ^/i) is positive or negative. Thus as i?-^oo,/1-^-0
if re(a + j 8 - v - l ) < 0 .

https://doi.org/10.1017/S1446788700010843 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700010843


[4] Further generalizations of Neumann's integral 371

On C2, w = — 1 + eew and so by ([2]: equation 3.2(33)) I2 is equal to

•2* eeie

-l+£e
ie-z l v '

+ (£e'Y"iB( - 2 + 8^**'BF, } dO

where Ft and F2 are the hypergeometric functions F( — v,l + v; \ + (i; ieeitt)
and F(—v, l + v; l + ,u; ^ £e)'eand A and B are constants, independent of £ and z.

For this result we impose the restrictions that v+n is not a negative integer
and that \i is not an integer; the latter restriction will removed later.

Provided £ is sufficiently small,

| z + l | — £ 2 ~ 3 ~

where K2 and K^ are positive constants and the upper or lower sign is taken in
the first term according as re(/? — ip) is positive or negative and in the second
term according as re (jS + Jrju) is positive or negative. Thus as e -+ 0, I2 -* 0 if
re(a + \u + 1) > 0 and re(oe - \\i + 1) > 0.

On C4, w = 1 + rje'9 and a similar treatment using ([2]: equation 3.2(32))
indicates that as r\ -* 0, 74 ->• 0 if v + \x is not a negative integer, n is not an
integer, re(/? + i/t + 1) > 0 and re()3 - in + 1) > 0.

Thus, using Cauchy's integral and the above results, we have

(7) (z + l)*(z - l)5Q"(z)

2^j J_j Z - f

Use of Erdelyi ([2]: equation 3.4 (9)) gives, for - 1 < t < 1,

"v(< - 00 = eiiu* lQu
v(t) + iinPu

v(t)-] and

So, using Erdelyi ([2]: equation 3.4 (14)), which can be shown to hold in
— 1 < t < 1, and supposing that v + n is not an integer,

Trie""1

sin (v +
(pj(Q sin (v - /? + i/i)n + PJ( -
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Thus (7) becomes

(z

The two terms may be integrated separately, since the resulting integrals are
both convergent. This may be seen by reference to ([4]: page 449). If t is replaced
by - t in the second integral and a is replaced by v — r — f! in both integrals, as
required by (6), we find that:

(8) / / re(v + 1) > 0, r is a non-negative integer, r < min re(v-/? ±ifi + 1),
minre(/? + \\i + 1) > 0, v + pi is not an integer and fi is not an integer, then

(9) (z + l)T-'-'(z - lM(z)

' 1 1 + 0v~r~"(l - Q"sin(v -p + jn)n

z - t

+

Both sides of (9) are analytic functions of ft which are regular at integer values
of v so long as v + n is not an integer. Hence (9) can be extended to integral
values of fi by analytic continuation.

5. Wrinch-Type Generalization.

Taking linear combinations of the result (9) for various admissible values
of r and changing the order of summation and integration yields

s a' ty

wi: z - t r = 0 (1 + t)T

2
t r = 0

which simplifies to the result (5) under the conditions (4).
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6. Special Cases.

1. Putting p = — i,a in (5) and (4) yields a result almost the same as one
found by Love ([4]: equation (36)), from which it differs in two respects—the
restriction that v + fx should not be integral and the values of z for which it holds.
The restriction can be removed by proceeding directly to the result, rather than
through the general result.

The result holds for all z except those in the interval [—1,1], whereas
Love's results exclude all values in (—oo, 1]. This arises because Love's approach
considers each factor of E(z) separately as an analytic function while the methods
adopted in this work consider E(z) as a single function allowing the branch cut
along ( — oo, — 1) to be dispensed with.

If we allow v + JX to be integral and put p(z) = 1, we obtain Gormley's
result ([3]: equation (4)). The conditions imposed also simplify to those of
Gormley.

2. When ft = + ifi another of Love's results ([4]: equation (45)) is found
under exactly the same conditions but for the extended set of values of z.

3. The substitution of v + \ fi for ft requires k to be zero so that p(z) = 1.

Replacement of z by - z and Qt( - z) by - e±iv1tQ"v(z) then yields a gene-
ralization of Robin's result ([6]: equation (187)). The same result was found by
Love ([4]: equation (30)), but for the more restricted set of values of z indicated
earlier.

4. When j8 = 0 a result is found which does not seem to appear elsewhere in
the literature. However, the subcase with n = 0 has been given by Love ([4]:
equation (3)).

5. The case with /? = v is analogous to the result for which p = 0 but with
the factor (z - l)v instead of (z + l)v. Some generality is lost however since the
integer k becomes zero and p(z) = 1.

6. Substitution for 0 of £(v - {*) and i(v + /i) yield results analogous to those
for which /? is - \\i and v + \[i respectively but with the factor (z2 - l ) i v instead
of (z + l)e or ( z - l ) v . The analogy is not however a strict one since the integrals
contain two terms rather than the single terms of the earlier cases.

The latter result has more generality than its analogue since k is not neces-
sarily zero and the polynomial p(z) can consequently be retained.

Finally, I express my appreciation to Professor E. R. Love for several valuable
suggestions and to the referee for his helpful comments concerning the presen-
tation of this paper.
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