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Abstract  We consider the quasilinear elliptic variational system

—Apu = AFy(z,u,v) + pHy(z,u,v) in 2,
—Agqv = AFy(z,u,v) + pHy(z,u,v) in £2,
u=v=0 on 02,

where {2 is a strip-like domain and A and p are positive parameters. Using a recent two-local-minima
theorem and the principle of symmetric criticality, existence and multiplicity are proved under suitable
conditions on F.
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1. Introduction

Very recently, in [1] Kristdly studied the eigenvalue problem

—Apu = AF,(z,u,v) in £,
—Ayv = AF,(x,u,v) in 2, (Sy)
u=v=0 on 0f2,

where A > 0 is a parameter and {2 is a strip-like domain in RV, i.e. 2 = w x R!, w being
a bounded open subset of R™ with smooth boundary, m > 1,1 > 2,1 <p,g < N =m+I,
F € C°(2xR% R), and A,w = div(|]Vw|*~2Vw). Here, F, denotes the partial derivative
of F with respect to variable z. He applies a critical point result (see [5]) in order to obtain
the existence of an open interval A C (0,4o00) such that, for every A € A, the system S)

* Because of a surprising coincidence of names within our department, we have to point out that the
author was born on 4 August 1968.
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has at least two distinct non-trivial solutions. Also, he assumes that the nonlinear term
F is sub-p, ¢g-linear; that is,

F, F
(1p) lim Ful@,u,v) = lim RG] = 0, uniformly w.r.t. z € {2.
u,v—0 ‘u|p71 u,v—0 |'U|q71

Inspired by [1], we prove two multiplicity theorems, which extend the results contained
in [1], for the system

—Apu = AF,(z,u,v) + pHy(z,u,v) in £2,
—Agv = AF,(z,u,v) + pH,(z,u,v) in £2, (Sxp)
u=v=20 on 912,

where p is a positive parameter. Our approach is based on a recent result of Ricceri [6,
Theorem 4]; in a convenient form for our purposes it can be read as follows.

Theorem 1.1 (Ricceri). Let X be a reflexive real Banach space, let I C R be an
interval, and let ¥ : X x I — R be a function such that ¥(x,-) is concave in I for all
x € X, while W (-, \) is continuous, coercive and sequentially weakly lower semicontinuous
in X for all A € I. Further, assume that

sup inf ¥(x, \) < inf sup¥(x, \).
AerzeX (= 4) r€X el @A)

Then, for each p > sup;infx ¥(x, \) there exists a non-empty open set A C I with the
following property: for every A € A and every sequentially weakly lower semicontinuous
functional ¢ : X — R, there exists § > 0 such that, for each p € ]0,0[, the functional
(-, ) + pud(-) has at least two local minima lying in the set {x € X : ¥(z, \) < p}.

In the present paper, the function F is assumed to be a C°(§2 x R?,R) function such
that

(2r) F is azially symmetric in the first variable; that is,

F((z1,x2),s,t) = F((x1, gx2), 8,t) for all 1 € w, 5 € R, ge o), (s,t) € R?;

(3r) (s,t) = F(x,s,t) is of class C* and F(z,0,0) = 0 for all x € (2.

Moreover, let a* = Na/(N — a), a € {p,q}, be the critical Sobolev exponent and we
assume that

(4F) there exist € > 0, and r € |p, p*[, s € |q, ¢*[, with ps = ¢r, such that

[Fu(e, u,0)] < e(fufP =+ o] ®=DP 4 "),

‘Fv($7u7v)| < E(|’U|q_1 + |u‘(q_1)p/q + |,U|s—1)

for each z € 2 and (u,v) € R?.

https://doi.org/10.1017/50013091505001380 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091505001380

Multiple solutions for a quasilinear elliptic variational system 599

Throughout this paper, the norm on VVO1 *(£2) is defined by

1/
||u||a—( /Q |Vu|a) ac ).

As Kristdly points out in [1], since {2 is unbounded, the loss of compactness of the Sobolev
embedding W)“(2) — LP(R2), 8 € [a, a*], a € {p, ¢}, makes standard variational tech-
niques more delicate. For this reason, we consider the subgroup G of O(l) defined by
G =id™ xO(l). The action of G on W, *(£2) is defined by

gu(mla xQ) = u(xlagl_le)
for each (x1,22) € w x R, g =id™ xg; € G and u € Wy'*(£2). Let
Wolg(()) = Fix Wol’a(.Q) ={ue WOI’O‘(Q) sgu=u, Vg € G}.

Hence, the elements of Wolg(()) are the axially symmetric functions of Wy *(£2).
Obviously, the action G' on VVO1 ' (£2) is isometric, that is

lgulla = J[ulla, for all g € G.

Since [ > 2, the embedding Wolg(ﬂ) — LA(2), a < B < a*, a € {p,q}, is compact [2].
In the space W, *(£2) x Wy'%(£2), endowed with the norm
1w, 0)llp,q = llullp +[vllq,
one has
Fixg(Wo?(2) x Wy () = {(u,v) € Wy (2) x Wy () : g(u,0) = (u,v), Vg € G}
= W §(2) x W (12).

2. Main result

Our main result is the following.
Theorem 2.1. Let F': 2 x R2 — R be a continuous function that satisfies conditions
(1p)—(4F). Furthermore, assume that
F
(5) limsup 7(96’5777)
(&m)|——+o0 1P+ 1|7
(6) there exists (ug,vo) € Wolg(ﬂ) X W(}g;(ﬂ) such that

< 0 uniformly for every x € (2;

/ F(z,up(z),vo(x))dz > 0.
o)

Then there exist a number o and a non-degenerate compact interval C' C [0, +o0o[ such
that, for every continuous function H : £2 x R? — R satisfying conditions (15 )—(45) and
for every A\ € C, there exists § > 0 such that, for each p € 10,4[, the problem (S5 ,)
has at least two solutions, denoted by (u ,,v} ), ¢ € {1,2}, with u} , and v} , axially
symmetric and with norms less than o.
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Proof. Let X = Wolé”;((?) X Woljg;(!?). We define two functionals ¢ and F by setting,
for each (u,v) € X,

B(u,) = 7 [ully+ - ol
F(u,v) = —/()F(m,u(ac),v(x))dx.

In view of (3r) and (4r), and using the Sobolev embeddings, we can prove that F is a
class-C! function; its differential is given by

F'(u,v)(w,y) = — /Q[Fu(a:,u,v)w + Fy(z,u,v)y] dz.

By the same arguments as used in the proof of [1, Theorem 2.2], owing to (1r), (3r) and
(6) there exists p > 0 such that the functional

G(u,v, ) = D(u,v) + AF (u,v) + Ap
satisfies the inequality

sup inf G(u,v,\) < inf supG(u,v, ),
)\EI:I) (u)U)EX ( ) (u’v)eX )\GII) ( )

where I = [0, +00[. Now, we wish to apply Theorem 1.1 to the continuous functional G.
Clearly, for each (u,v) € X, the functional G(u,v, ) is concave in I.

Fix A € I. Since W(l;o‘(Q) — L*(£2) is continuous, there exist two positive constants,
c1 and cg, such that

[ullr < erffull, and - jollze < colfv]lq-
Let
< mi 1 1
min{ —, — .
¢ Apc’ Mgl
Since (5) holds, there exists a function k, € L'(§2) such that
Fa, & n) < a(lgl” + [nl*) + ka(z)

for all (¢,7) € R? and z € £2.
Fix (u,v) € X. From the last inequality we deduce that

/QF(%u(m)yv(w))dw < a(eqllullf + lvllg) + 1kall -

So,
1 1
G0, > (5 =)l + (5 = A ol = Ml + 3.

ie. G(-,-,\) is coercive.
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Fix A € I. In view of (1) and (4r), by [1, Lemma 3.4], the functional F is sequentially
weakly continuous on X. Thus, the functional G(-,-,\) is sequentially weakly lower
semicontinuous in X.

Now, fixing v > sup,¢;inf(y,vyex G(u, v, A), Theorem 1.1 ensures that there exists a
non-empty open set A C I with the following property: for every A € A and every
continuous function H : 2 x R? — R satisfying conditions (1z)—(4f), there exists § > 0
such that, for each p € ]0,4[, the functional

EA»M(uav) = g(uvvv )‘) + MH(U,U)

has at least two local minima lying in the set {(u,v) € X : G(u,v,\) < v}, namely
(ul)\ T vﬁ\y #), i € {1,2}, where H is the sequentially weakly continuous functional defined
by

H(u,v) = —/QH(:E,u(x),v(x)) dz.

Since F' and H are axially symmetric in the first variable, and each g € G is isometric,
the function E) , is G-invariant, i.e.

Exu(g(u,v)) = Ex u(gu, gv) = Ex pu(u, v)
for each g € G, (u,v) € Wy (2) x WyU(£2). As
Fix(Wy P (£2) x Wy (£2)) = Wy &(£2) x Wy &(42),

by the principle of symmetric criticality of [3], we find that (uf\yﬂ,vf\w), i € {1,2}, are
also the critical points of E} , and then weak solutions of the problem (S5 ,).
Finally, let [a,b] C A be any non-degenerate compact interval. Observe that

U {(wv) € X:6(u,0,)) <7}
A€EJa,b]
C {(u,v) € X : G(u,v,a) <y} U{(u,v) € X : G(u,v,b) < ~v}.
This implies that the set

S = U {(u,v) € X : G(u,v,\) < v}

A€EJa,b]

is bounded. Hence, the local minima of Ej , have norm less than or equal to o, taking
0 = 8up(y,p)es || (1 v)|lp,q- This concludes the proof. O

Now, we give an example in which the hypotheses of Theorem 2.1 are satisfied.

Example 2.2. Let 2 = w x R?, where w is a bounded open interval in R. Let a, 3 :
2 — R be two continuous, non-negative, not identically zero, axially symmetric functions
with compact support in 2. Then there exist a number ¢ and a non-degenerate compact

https://doi.org/10.1017/50013091505001380 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091505001380

602 F. Cammaroto, A. Chinni and B. Di Bella

interval C' C [0, 4o00[ such that, for every a € ]%,3[, be }%,9[, X € C, there exists § > 0
such that, for each p € ]0,d[, the system

Ay = BAa(a)ulucos((ul’/? + o) + pB@)aulul*? in 2,
—Ag/4v = 3Xa(z)|v|v cos(|ul®? + [v]®) + pB(z)bv|v|*—2 in 02,
u=v=0 on 89,

has at least two solutions with the properties from Theorem 2.1.
In this case we have

F(x,&n) = a(z)sin(|¢? + [n]°) and  H(z,€&,1) = B@)(|€]* + n]")

for each (z,£,m) € £2. It is easy to observe that conditions (1p)—(3r) and (1x)—(3m)
hold immediately, while (45) is verified by choosing r = &, s = 33, and (4p) is verified
choosing 7 € Ja, 3[,s € ]b,9] with s = Zr. Finally, (5) is obvious and (6) follows by
putting ug(z) = (:7)2/® for every = € supp o and vy(z) = 0 for every z € 2.

By the same arguments as used in the proof of Theorem 2.1, but applying also the
Palais—Smale properties, we obtain the result below. We recall that a Gateaux differen-
tiable functional S on a real Banach space X is said to satisfy the Palais—Smale condition
if each sequence {x,} in X such that sup,,cy |S(2,)| < 400 and limy,—, 4 ||S" (25 )||x =0
admits a strongly converging subsequence.

Theorem 2.3. Assume that the hypotheses of Theorem 2.1 hold.
Then there exists a non-empty open set A C [0, +oo[ such that, for every A € A and
for every continuous function H : £2 x R? — R satisfying conditions (1z)—(4) and

H
(5g) limsup M < +o00 uniformly for every x € {2,

[(€m)]—-+oo [§IP + |nl
there exists 6 > 0 such that, for each p € |0,9], the problem (S ,) has at least three
solutions axially symmetric.

Proof. Let A and E) , have the same meaning as in the proof of Theorem 2.1, H :
2 x R? — R being a continuous function satisfying (55 ). Reasoning as in the proof of
Theorem 2.1, there exists 6; > 0 such that, for each p € ]0,6;[, the problem (Sy ) has
at least two solutions.

First of all, the functional E} , is coercive. In fact, from (5x), there exist a positive
constant b € R and a function k,(x) € L'(£2) such that

H{(z, & n) <b(E" + [n]7) + k()

for all z € 2 and (£,7) € R%
Fix (u,v) € X. From the previous inequality we deduce that

H(u,v) = — QH(x,u(m),v(m)) da = =b(c]|ullp + c3llvll§) — ko]l L1
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1/ 1 1/ 1
§<minidy,~(——Aa),~(— —Aa) .
<oin o (g 0)5 (g )}

So, for each A € A and p € 0, §], we have

E u(u,v)
= Gl 0, \) + ()

1 1
> (p - cf(Aawb))IIulli n (q - czuawb))vnz — Alkellz + A= allkslls

for all (u,v) € X. This ensures the coercivity of the functional F) , for each A € A and
u €1]0,4[.

Now, let us check the Palais-Smale condition for E} ,. To this end, let {(un,v,)} be
a sequence in X satisfying

sup |Ex u(tn, v,)| < M, lim ||EY , (tn,vn)|[x+ =0, (2.1)
neN n—oo

Since the functional E} , is coercive, the sequence {(u,,v,)} is bounded in X. So, apply-
ing [1, Lemma 3.5] to the functional Ej ,(-,-) we obtain that {(un,v,)} contains a
strongly convergent subsequence in X.

Since the functional E} ,, is C' in X, our conclusion follows by [4, Corollary 1], which
ensures that there exists a third critical point of the functional Ey , which is a solution
of problem (S ). O
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