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Abstract

In this paper, we investigate a class of McKean—Vlasov stochastic differential equations
(SDEs) with Lévy-type perturbations. We first establish the existence and uniqueness
theorem for the solutions of the McKean—Vlasov SDEs by utilizing an Eulerlike approx-
imation. Then, under suitable conditions, we demonstrate that the solutions of the
McKean—Vlasov SDEs can be approximated by the solutions of the associated averaged
McKean—Vlasov SDEs in the sense of mean square convergence. In contrast to exist-
ing work, a novel feature of this study is the use of a much weaker condition, locally
Lipschitz continuity in the state variables, allowing for possibly superlinearly growing
drift, while maintaining linearly growing diffusion and jump coefficients. Therefore, our
results apply to a broader class of McKean—Vlasov SDEs.
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1. Introduction

McKean—Vlasov stochastic differential equations (SDEs) have received significant attention
in recent years due to their broad applications across various fields, such as stochastic control,
stochastic games, and statistical physics. These equations were first introduced in [27], inspired
by the kinetic theory of Kac [18], and differ from standard SDEs in that their coefficients
additionally depend on the probability distribution of the solution process. In the literature,
McKean—Vlasov SDEs are also referred to as mean-field SDEs, because they arise as the limits
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2 Y. CHAO ET AL

of weakly interacting particle systems as the number of particles tends to infinity (so-called the
propagation of chaos [39]).

In view of the development on the aforementioned McKean—Vlasov SDEs, the noise pro-
cesses considered are primarily Gaussian. However, systems of practical relevance in physics
and biology sometimes require modeling with non-Gaussian noise. This can be verified by
some abrupt jumps in the individual particles and the related whole population. To repro-
duce the performance of these natural phenomena, it is appropriate to consider (non-Gaussian)
Lévy-type perturbations [1, 11, 23]. In this paper, we focus on the following d-dimensional
Lévy-type McKean—Vlasov SDE:

t t
AXe() =b (2. Xelt =), Zi) di40 (=, Xelt ). Bho) WD)

t -
[ h (X B2 Mg, X =0, (.0
U £

for t € [0, T], with a small parameter ¢ > 0. Here, Zx() denotes the law of X(¢) at time ¢,
and W(r) is an m-dimensional standard Wiener process defined on the complete probabil-
ity space (2, F, (F)r>0, P), with (F;);>0 satisfying the usual conditions. Let (U, U, v) be
a o-finite measure space with U C R?\ {0}, and let N(dt, dz) be a Poisson random mea-
sure on R™ x U with intensity measure v(dz)ds, independent of W(r). The compensated
Poisson random measure is given by N(dt, dz) = N(dt, dz) — v(dz) dr. The precise assump-
tions on the coefficients b:[0, 7] x RY x Mz(]Rd) — R4, 5:[0, T] x R4 x Mz(Rd) — Rdxm
and h:[0, T] x RY x Mp(R9) x R? — R? will be specified in later sections (see Section 2 for
the definition of M»(R%)). We also remark that X,(z —) is the left limit at the point ¢, i.e.
Xe(t =) = limgp, X (s).

The first aim of this paper is to consider the well-posedness of the McKean—Vlasov SDEs
in the form of (1.1). Let us briefly review some previous works on the well-posedness of
McKean—Vlasov SDEs with Brownian noise. Under the globally Lipschitz condition, the exis-
tence and uniqueness of strong solutions for McKean—Vlasov SDEs were obtained by using
the fixed-point theorem, for example, in [2, 5]. Results for the case with a one-sided glob-
ally Lipschitz drift term and a globally Lipschitz diffusion term can be found in [10, 40]. To
deal with the situation where the coefficients are locally Lipschitz with respect to (w.r.t.) the
measure and globally Lipschitz w.r.t. the state variable, Kloeden and Lorenz [20] developed
a method for constructing interpolated Eulerlike approximations. Recently, an extension to
locally Lipschitz conditions w.r.t. the state variable under a uniform linear growth assumption
was studied by Li et al. [22]; see also [9]. Moreover, Hong et al. [16] examined the strong and
weak well-posedness of a class of McKean—Vlasov SDEs with the drift and diffusion coeffi-
cients fulfilling certain locally monotone conditions, whereas they need to impose additional
structural assumptions on the coefficients to ensure a unique solution.

Unlike the case of Brownian noise, the study of McKean—Vlasov SDEs with Lévy noise is
still in its infancy, although some interesting works are emerging [12—14, 17, 28]. In particu-
lar, Hao et al. [15] investigated a class of Lévy-type McKean—Vlasov SDEs satisfying global
Lipschitz and linear growth conditions, established the existence and uniqueness of solutions,
and explored their intrinsic link with nonlocal Fokker—Planck equations. The well-posedness
results have been further developed for the case of superlinear drift, diffusion, and jump coef-
ficients using the fixed-point theorem [28, 30]. Recently, Cavallazzi [6] has proven the strong
well-posedness of McKean—Vlasov SDEs driven by Lévy process having a finite moment of
order 8 € [1, 2] and under standard Lipschitz assumptions on the coefficients.
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Motivated by previous works on the Brownian case as well as the Lévy case, in this paper,
we aim to treat (1.1) only imposing locally Lipschitz conditions w.r.t. the state variable, allow-
ing for a possibly superlinearly growing drift. We highlight that several essential difficulties
arise. On the one hand, compared with classical SDEs, standard localization arguments can-
not be applied directly due to the distribution-dependent coefficients. On the other hand, the
non-Gaussian Lévy noise introduces challenges in both analytic and probabilistic aspects.
Therefore, the results for classical SDEs (even with Lévy noise) or McKean—Vlasov SDEs
with Brownian noise cannot be extended directly to McKean—Vlasov SDEs with Lévy noise.
In this paper, we develop a Lévy-type technique of Eulerlike approximations to overcome
the difficulties caused by the local conditions and distribution dependency. The crux of our
method, which differs from the Brownian case [20, 22], lies in handling the drift terms under
more general conditions as well as the jump terms.

Apart from the existence and uniqueness of solutions, we are further interested in establish-
ing a stochastic averaging principle for (1.1) with drifts of polynomial growth under locally
Lipschitz conditions w.r.t. the state variable. In fact, the averaging principle is a powerful
method for extracting effective dynamics from complex systems arising in mechanics, mathe-
matics, and other research areas. Since the pioneering work of Khasminskii [19], the averaging
principle for usual SDEs has received significant attention and has stimulated much of the study
in controls, stability analyses, and optimization methods. Although the problems considered
take different forms (usually classified in terms of the noise or the conditions satisfied by their
nonlinear terms), the essence behind the averaging method is to simplify dynamical systems
and obtain approximate solutions to differential equations; see, e.g., [24, 33, 42]. Based on the
idea of stochastic averaging, the second goal of this paper is to show that the solution of (1.1)
converges to the following averaged equation (with X(0) = xo) as & tends to 0:

dX(0) =b (X(t —), Zxpy) dt+0 (Xt -), Lxg) AW + /U h (X(t =), Ly, 2) N(dt, da),
(1.2)

in a certain sense, under appropriate averaging conditions. Here, 5:R? x M>(R?Y) — RY,
&R x Mr(RY) — R4 and h:R?Y x Mp(R?) x U — R? are Borel measurable functions. For
more details on (1.2), see Section 3.

Again, we must point out that, compared with the case of classical SDEs, there are far
fewer results on the averaging principle for McKean—Vlasov SDEs due to their distribution-
dependent feature. Moreover, the existing studies on averaging principles for McKean—Vlasov
SDEs primarily focus on the Brownian case [36, 41]. For some interesting results involving
other types of noise, e.g., fractional Brownian noise, we refer to [37]. Nevertheless, to the best
of the authors’ knowledge, the averaging principle for McKean—Vlasov SDEs with Lévy noise
has not yet been considered to date. This inspires us to establish an averaging principle.

The real-life applications of the Lévy-type McKean—Vlasov SDE (1.1) and its correspond-
ing averaged equation (1.2) are not explored in this paper. Instead, we present an illustrative
toy model in Example 4.1 and refer to [2, 5, 28] for discussions on potential applications of
McKean—Vlasov SDEs with weak coefficient conditions in fields such as physics, finance, and
population dynamics. To numerically approximate a solution of the McKean—Vlasov SDE in
our setting, it is necessary to introduce an interacting particle system that is connected to the
McKean—Vlasov SDE and is shown to converge to the true solution of the McKean—Vlasov
SDE. This is popularly known as the propagation of chaos [39]. We present such a result in
Appendix B. For more recent progress on propagation of chaos for jump processes, we refer
to [6, 12—-14, 17, 28, 30], and the references therein.
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The rest of this paper is arranged as follows. In Section 2, we focus on investigating the
existence and uniqueness of solutions for a class of McKean—Vlasov SDEs with Lévy-type
perturbations. In Section 3, we prove an averaging principle for the solutions of the considered
McKean—Vlasov SDEs. In Section 4, we present a specific example to illustrate the theoretical
results of this paper. The details of the proof of Lemma 4 and the propagation of chaos result
are postponed to Appendix B.

2. Well-posedness of Lévy-type McKean—Vlasov SDEs

We start with some notations used in the sequel. Let | - | and (-, -) be the Euclidean vector
norm and the scalar product in R¢, respectively. For a matrix A, we use the Frobenius norm
defined as ||A|| = /tr[AAT], where AT represents the transpose of the matrix A. Let M(RY)
denote the space of all probability measures on R? carrying the usual topology of weak con-
vergence. Furthermore, for p > 1, let Mp(Rd) represent the subspace of M(RY) as follows:

Mp(RY) = {M e MRY):u(| - )= /ﬂ;{d |x[P 1a(dx) < 00} :

For g, pa € ./\/lp(Rd), the 7-Wasserstein metric between w1 and u; is defined as

1
Wplui. o) = inf (/‘ |x—yWn@mdy0p,
€ (1, 12) \JRIxRI

where €(u1, pn2) means the collection of all the probability measures whose marginal distri-
butions are w1, w2, respectively. Then M,,(]Rd) endowed with the above metric is a Polish
space.

Let 8, be the Dirac delta measure centered at the point x € R%. A direct calculation shows
that &, belongs to Mp(Rd) for any x € R?. Another remark is that if ; =.% and u» = %
are the distributions of the random variables X and Y, respectively, then

(mwth</

R4 x

i Ix — yI” ZLix,yy(dx, dy) =E|X = Y|?,

where Z{x,y) denotes the joint distribution of the random vector (X, Y).

Given T > 0, let D([0, T71; Rd) be the collection of all cadlag (i.e. right continuous with left
limits) functions from [0, 7] to R?. Note that, at the endpoints of the closed interval [0, T],
we stipulate that an element in D([0, TT; RY) is right continuous at 0 and has a left limit at 7,
respectively. For 1 < p < 0o, we use LP(9; Rd) to denote the family of all R9-valued random
variables Y such that E|Y|? < co. Similarly, we denote by L”(€2; D([0, TT; R4 )) the subspace of
all D([0, T]; R%)-valued random variables X that satisfy E[ supg<,<7 |X(0)["] < 0co. Then, we
present the following proposition.

Proposition 1.
(1) The space D([0, T1; RY), equipped with the supremum norm, is a Banach space.
(2) Let p€e[l, 00). The space LP(2; D([0, T]; R%Y), equipped with the norm ||X||r =
1
(IE [supogth |X(t)|p])1’, is also a Banach space.

Proof. (i) The proof is primarily based on the properties of cadlag functions, as out-
lined on p. 140 of [1]. Let B([0, TT; R9) denote the space of bounded functions from [0, T]
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to R?. It is important to note that B([0, T]; R?), when equipped with the supremum norm,
is a Banach space [1, p. 6]. Referring to the property (4) in [1, p. 140], it follows that
D([0, T1; RY) c B([0, T): Rd). Hence, the Cauchy sequence {f,,} of functions in D([0, T1; Rd)
converges uniformly to some bounded function f € B([0, T7; R9). The desired result is then
obtained by applying the property (6) in [1, p. 140], which states that the limit of a sequence
of cadlag functions on [0, 77 is itself cadlag. (if) The result follows directly from [32, Theorem
2.23 and Example 2.25], which establish the general completeness of L”-spaces over Banach-
valued random variables. For further references, see also [3, Theorem 4.1.3] and [4, Theorem
4.8 and Comment 4 in Chapter 4]. U

We recall several useful inequalities that will be employed frequently throughout this paper.
The first is Young’s inequality, stated as

a? _a b4 1 1
ab<e—+¢e¢ »—, foralle,a,b>0, wherep>1, —+-=1. 2.1)
p q P q

Next, we list two elementary inequalities:

k ! I k
Z lai| | < (k max |a,~|) gk’Z |a,'|[, foralll >0, a;eR, keN, 2.2)
i=1 ISisk i=1
and
(a+b+0) <37 a' + 16" + ¢, foralll>1, a,b,ceR. (2.3)

In addition, noting that stochastic integrals w.r.t. compensated Poisson random measures are
local martingales, we require the following preparatory results to proceed with the analysis.

Proposition 2. Ler H:[0,T1 x U—R? be a Borel measurable function satisfying
f(; f y 1H(s, Z)|2v(dZ) ds < oo, almost surely. Define the stochastic integral I;:=
fol f v Hs, z)N (ds, dz). Then, the following estimates hold.

(i) Foranyp >2and 0 <t <T, there exists a constant D, > 0 such that

t p/2
E(sup |IS|”><D,,]E [( f / |H(s, z)lzv(dz)ds) ]
0<s<t 0 Ju
t
+D,E [f / |H(s,z)|pv(dz)ds]. 2.4)
0 JU

This result is commonly referred to as Kunita’s first inequality [1, Theorem 4.4.23].

(ii) Forany 1 <p <2and0<t<T, there exists a constant K, > 0 such that

t p/2
E ( sup |1s|1’> <K,E [( / / |H(s, 2)[*v(dz) ds> } . (2.5)
0<s<t 0 JU

Proof. We emphasize that this proposition can be viewed as a special instance of Novikov’s
result, which is rigorously established in [31, Theorem 1]; see also [21, Theorem 4.20] for
applications of Novikov’s result and its relation to variants of the Burkholder—Davis—Gundy
(BDG) inequality. For the case p > 2, a proof of the conclusion (i) based on the BDG inequality
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for local martingales is presented in [29, Lemma 1], whereas an alternative approach uti-
lizing It6’s formula (applied to x +— x”) and Doob’s martingale inequality can be found in
[1, Theorem 4.4.23]. For the case 1 < p <2, the conclusion (ii) is stated in [7, Lemma 2.1]
without proof. To ensure clarity for readers and maintain mathematical rigor, we provide a
detailed proof for this case here. For convenience, we define the processes

t
A= / / [H(s, 2)|*v(dz) ds
0 JU

and

t —p -
]t:zf f(AS+8)_ZTH(s, 2)N(ds, dz)
0 Ju

for 0 <t < T, where I <p<2ande¢ > 0is a small parameter.

On the one hand, applying the integration by parts formula (also referred to 1t6’s product
formula; see [1, Theorem 4.4.13]), we obtain

2 ! 2-, 4 -
st = [Lnafacro® ] [ Heones .
0 0 Ju
Noting that (A; + 5)? is a nonnegative and nondecreasing process, we deduce the bound

2 4 2 2
<o + [ dd [+ o] <2< sup |Jx|) A+ 7.
0 0<s<t

Since this estimate holds for all ¢ > 0 and the right-hand side remains nondecreasing, it follows
that

P

Q2-pp
sup |LIP<2P | sup |Js| )] (Ar+e) # .
0<s<t 0<s<t

By Holder inequality [26, p. 5], we further derive

P

Q2—p)p

E( sup ILIP)<2E| | sup 175]] Ai+e)
0<s<t 0<s<t

P
B r372 2p
pe-p 2 172
<2P |E| sup |Jsl |:E(At+£) 4 21’]
0<s<t
)
2

2—p

2
— P IE( sup |JS|) []E(A,+.s)’%]T . (2.6)

0<s<t

On the other hand, applying the Itd isometry for integrals with respect to compensated
Poisson random measures yields

! —2 ! p—2 2 D
E|J,|2=IE/O /U(As—i—g)pT|H(s, z)|2v(dz)ds=]E/O A, +¢)7T dAygl—)IE(At—i—e)]f.
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By Doob’s martingale inequality [1, Theorem 2.1.5], we then obtain

8
E( sup [f? ) S4B < K@, +6)t. @.7)
0<s<t p
Combining (2.6) and (2.7), and using the fact that E (supy<,, |Js|)2 =E (suppc<; 1sl?),
we arrive at )
32)\?2
E| sup |I1P) < (—) Ele +A/%.
0<s<t p
The result follows by letting ¢ — 0. This completes the proof. O

2.1. Formulation of the well-posedness results

This section is dedicated to establishing the existence and uniqueness theorem for the
solutions of the d-dimensional Lévy-type McKean—Vlasov SDEzg, i.e.

dX()=b (1, X(t =), Zx)) dt+o (1, X(1 =), Lx) dW()
+ /U h(t, X(t =), Lk, z) N(dt, dz) (2.8)
for t € [0, T] with initial condition X(0) = xg. The functions b, o, and & are defined as follows:
b:[0, T] x R x M(RY) - R?,  o:[0, T] x RY x M(RY) — R¥™,
n[0, T] x R? x M(R?) x U — R,

where b, o, and h are Borel measurable functions. We now proceed by providing the precise
definition of a solution to (2.8).

Definition 1. We say that (2.8) admits a unique strong solution if there exists an {FJo</<T-
adapted R9-valued cadlag stochastic process (X(t))ic[o0,1] such that

() X(0)=x0+ [y b (5, X(s =), Lxs)) ds+0 (s, X(s =), Lxisy)) dW(s) +
fU h (s, X(s =), LX), z) N(ds, dz), t € [0, T], P-almost surely;

(1) if Y =X (®))sefo,1) is another solution with Y(0)=xo, then P(X(t) =Y(t)forall e
[0, T)=1.

Assume that there exists a constant k > 2 such that the following assumptions hold.

Assumption 1. (One-sided locally Lipschitz condition on the state variable.) For every R > 0,
there exists a positive constant Lg such that for any t € [0, T, x, y € R? with |x| V |y| <R, and
p € Ma(RY),

(x—y, b(t, x, ) = b(t, y, W) V |lo(t, x, W) — a(t, y, w)|>
v / Ih(t, x, 11, 2) — h(t, y, 10, 2 v(dz) < Lalx — yI.
U

Here, the symbol ‘v’ denotes the maximum of the multiple terms.

Assumption 2. (Globally Lipschitz condition on the measure.) There exists a positive constant
L such that, for any t € [0, T], x e R, and 1, s € Ma(R9),
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|b(t, x, 11) — b(t, x, p2)> + llo(t, x, 1) — o (t, x, p2)lI*

+ f h(t, x, 11, 2) — h(t, y, 1, 21> v(dz) < LW;3 (i1, o).
U

Assumption 3. (Continuity.) For any t € [0, T, b(t, -, -), o (t, -, -), and f U h(t, -, -, 2)v(dz) are
continuous on R4 x My(R9).

Assumption 4. (One-sided linear and global linear growth condition.) There exists a positive
constant K such that, for any t € [0, T], x € R, and n € Mo(RY),

(x, b(t, x, W) v llo(, x, > v f |h(t, x, 1, 2)*v(dz) < K+ |x1? + W3 (1, 80)).
U

Assumption 5. (k-order growth condition on the drift coefficient.) There exists a positive
constant K\ such that, for any t € [0, T], x € R, and n € Mo(R?),

Ib(t, x, 11> < K1 (1 + |x[* + W (11, 80)).

Assumption 6. (r-order moment condition for the initial data.) Consider xo € L"(2; RY) for
some r > max{k?/2, 4}, i.e. E|xo|" < oo.

Assumption 7. (Additional growth conditions and Lipschitz type conditions on the jump coef-
ficient h.) There exists a positive Ky such that, for any t € [0, T], x € R4 and ne Mz(Rd),

/ |h(t, x, p, 2)|"v(dz) < Ko(1 + |x|]" + Wi, 80)).
U

In addition, if k > 2, there exist constants Kz, L' > 0 such that, for any t € [0, T, x,y € R?,
and ., 11, pa2 € Ma(RY),

/ |A(t, x, ., 2)|“v(dz) < K3(1 + [x]* + W5 (i, 80)),
U

/U |h(t, x, 1, 2) — h(t, x, n2, )| v(dz) <L'W5 (1, p2),

and for every R > 0, there exists a constant Ly > 0 such that for any t € [0, T], x, y € R with
| v Iyl SR and € Ma(R?),

/ |h(t, x, , 2) — h(t, y, w, 2| v(dz) < Lglx — y|*.
U

The main result of this section is stated as follows.

Theorem 1. (Well-posedness.) Let Assumptions 1-7 be satisfied. Then (2.8) admits a unique
strong solution (X(t))icjo,1] € L*(£2; RY) with the initial value X(0)=xy, where k >2.
Moreover, the following estimate holds:

0T

E|: sup |X(t)|’:| <C, (2.9)

where C:= C(T, r, E|xo|") is a positive constant. Here, r > maX{KZ/Z, 4}.
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Remark 1. We emphasize that the conditions in Assumptions 1-7 are carefully chosen, and
the results in Theorem 1 are broadly applicable.

(i) The one-sided locally Lipschitz condition in Assumption 1 is weaker than the classical
locally Lipschitz condition. In fact, it is clear that the locally Lipschitz condition implies
the one-sided locally Lipschitz condition (via the mean value inequality). However, the

converse is false. For example, consider b(¢, x, ) =x— x-% +t+ fR zu(dz) in R. For
|x] V |y] <R, we have

1 1
(=3, bt x, 10 = bty ) = e = yI2 (6 a9 +97) = (=) (65 = 57)
<3Rx —yP,

since (x — y)(x% - y%) >0 for all x, y. Thus, b is one-sided locally Lipschitz but not
locally Lipschitz.

(i1) In contrast to the one-sided (globally) Lipschitz condition in the recent paper [30], which
asserts that there exists a constant C > 0 such that for any x, y € R? and u € M, (RY),

()C -y, b(tv X, I’L) - b(tv ) /’L)) + ”O'(t, X, I‘L) - U(tv ) M)”z

n / Ih(t, x, 2. 2) — h(t, y. 10, 2> v(d2) < Clx — P2,
U

the one-sided locally Lipschitz condition in Assumption 1 is expressed using the oper-
ation ‘v’ instead of ‘+’. This makes the condition in Assumption 1 weaker in some
cases. For instance, consider b as a one-sided locally Lipschitz function and 0 =h =x
with v(U) < co. In this case, Assumption 1 holds, but the one-sided (globally) Lipschitz
condition in [30] is not satisfied.

(iii) The result simplifies to the case of pure Brownian motion when 2= 0. In contrast to
the Brownian motion model considered in [22], where the drift coefficient is required
to satisfy a linear growth condition, the present framework imposes only a one-sided
linear growth condition on the drift coefficient b. Furthermore, b is permitted to exhibit
polynomial growth w.r.t. the state variable, as specified in Assumptions 4 and 5.

(iv) Referring to [35, Theorem 25.3], when the jump coefficient 4 is a submultiplicative
function with respect to z, the growth conditions in Assumption 7 can be interpreted as
requiring that the jump measure [v]y has a bounded |k|"-moment or, equivalently, the
associated Lévy motion has bounded |i|"-moments, for every r € [0, T], x € R4 ,and u €
Mz(]Rd), where r > max{lc2 /2, 4} and k > 2. In particular, the associated Lévy motion
can be said to have bounded r-order moments when h(t, x, i, z) = z. We remark that
while Brownian motion can be considered a 2-stable Lévy motion, our assumptions
exclude applications involving jump measures associated with «-stable Lévy motions
for 0 <a < 2. This exclusion arises because such a-stable Lévy motions process r-
order moments only for r < «; see [35, Example 25.10]. For a recent study addressing
the strong well-posedness of McKean—Vlasov SDEs driven by Lévy noise with finite
moments of order 8 € [1, 2], we refer to [6]. However, it should be pointed out that the
assumptions in [6] regarding the coefficients with respect to both the space variable and
the measure remain within the globally Lipschitz framework.
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2.2. Euler-type approximation and auxiliary lemmas

A key aspect of our approach to proving Theorem 1 is the construction of an Eulerlike
sequence for the McKean—Vlasov SDEs (2.8). Once we demonstrate that this sequence is
Cauchy in an appropriate complete space (specifically, L*($2; D([0, T]; R%)), as is shown
later), we can conclude that there exists a limiting process, which is indeed the desired solution

to (2.8).
To this end, let T > 0 be given, and consider the equidistant partition of the interval [0, T].
For any integer n > 1, define h,, = % and tZ =kh,,k=0,1,...,n.Forafixedk(0<k<n—-1)

and 7 € (1, ;1. we analyze the following approximation:

AX" (1) = b (r XM ), ;ﬁ”)) di+o (z Xy, M(")) AW (@)

P

+ / h(t XMt —), u(”) )N(dz, dz), (2.10)
U

where ,LLE,",) = .,Z”X(n)(tn) denotes the law of X(”)(tZ) Observe that for each fixed k, if the initial
value X(”)(t”) and the distribution Ky ,,) (at the left endpoint #!) are known, then (2.10) reduces

to a standard SDE that is 1r1depender1t of the law of X" (7). We now establish, by induction, the
existence and uniqueness of the solution to (2.10).

In fact, for k=0 and 7€ [0, #{], the distribution is ug') = fxw)(O) =%, Applying
Assumptions 1 and 4, we observe that the coefficients in (2.10) (with k = 0) satisfy

(b (o) = () + o (o) =0 ()|
/‘h t, X, uo ,z> h<t,y, Mf)"),z)‘ v(dz) < 3Lglx — yI?

and

(n) (n) 2 ™ \|?
(x,b(txuo )>+ a(txuo + h txuo,z> v(dz)
U
2
<3K (11 + W3 (1", 00)) < MQ+M§O+EMWM).

Referring to [25, Theorem 1.1], it admits a unique solution on [0, t’f]. Furthermore, by

. . 2 . ..
Assumption 5, it follows that for r > max{%-, 4}, there exits a positive constant C such that

E|( sup
o<t}

whose proof is quite similar to Lemma 1, and we omit the details here. Therefore, we can
define X(”)(t’f) (which satisfies E|X(”)(t”)|’ < 00) and ,ug,’) = .Zx(m(,n).

Fork=1and € (¢], ;], we can use (X(")(t”) u(")) in place of (X"(0), u(")) and repeat the

above procedure. Inductively, forany k=0, 1, ..., n —landre (&%, 1} i 11, we obtain the exis-
tence and uniqueness of the solution to the SDE (2.10) as well as the corresponding estimate

r
E| sup ‘X(”)(t)‘ gc(
BSISH

by similar arguments.

MWMi<cQ+EkaW)

n r), @.11)
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At this point, we define by [¢], = for all r € (1, k+1] where k=0, 1,...,n— 1. Then,
for ¢ € [0, T], we introduce the followmg approximating SDE

AX" (1) =b (r XM -, M")) di+o (: XMt -, yf”)) AW ()

+ /U h(n X6 =), uff 2) Ndr, da, (2.12)

with the initial value X" (0) = xo, where M[] = Ly, According to the previously pre-
sented procedures and results for (2.10), we conclude that there exists a unique solution to
(2.12). In fact, for each n > 1 and 7 € [0, T], we can always find a certain k, (0 <k, <n—1)
such that ¢ € (IZ*, ZZ* 411 Then, the solution to (2.12) can be written as

ke amt At
X"(t)=x0 + Z/ " b (t, XM (s -, /L;;?) ds+o (s, X5 —), MEZ)) dW(s)
k=0 t]r(t
[ (5. X6 20, 2) Wi, a2
U
ky ’Zﬂ“
= X"+ ) f (X" =) 1) ds+ o (5, X6 =), 1) dWs)
tn
k=1""k

+ / (5, X =), 1% 2) Nds, do)
U

t
=X"()+ / b (1 X =), 1) ds o (5, X0 ), 1) dWCs)
m * *

ke

+ / (5. X =), . 2) Neds. da),
U

and it is well-defined based on the results for (2.10) with k=0, 1, ..., k.. Moreover, we have
the following estimate

n—1
r r r

OsisT k=0 LESISHy

< C(n) < 0. (2.13)

Under Assumption 6, which requires that the initial data xq satisfies E|xg|” < oo with r >
max{%, 4} >k, we deduce that X™ e L7(2; D([0, T1; R?)) c L (2; D([0, T]; R?)). Hence,
the stochastic processes {X(”)(t)}n>1 given by (2.12) form a sequence in L*(2; D([0, T1; RY)).
To demonstrate that this sequence is Cauchy, we require the following two auxiliary lemmas.

Lemma 1. (Uniform boundedness property.) Under Assumptions 4, 6, and 7, for any T > 0,
there exists a positive constant C, (independent of n) such that

.
E| sup ‘X(")(I)‘ <C,. (2.14)
0T
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Proof. Forr > max{ﬁ, 4} and € [0, T, applying It6’s formula [1, Theorem 4.4.7] to |x|",
along with the identity v(dz)dt = N(d¢, dz) — N (dt, dz), yields that

XO0| =1l +r fo x| 7 (s o0, b (s X0 . 1)) s
+2 / x| Ho(s,x<">(s o] as
2 [ e o e (s x| o
+r / x| (x<"><s 5.0 (5, X062, 1)) dWes)
R e e S L

/ / ’X(")(s —)+h(s XD(s —), u(?]), ))r

_ )X(”)(s _)‘ _ r‘X(")(s _)‘ .(x<n>(s -, h(s, X" (s —), ut) ,z)>]N(ds, dz).
(2.15)

By virtue of Assumption 4, Young’s inequality (2.1) (with € =1, p = -5, and g = 5), Holder
inequality and the elementary inequality (2.3) (with /= 5), one can estimate the second term
of (2.15) by

K /Ot [xs —)‘r_z <1 +[xs —))2+E X, —))2> ds
¢ . t 2 2\ 2
g(r—z)K/O ‘X(")(s—)‘ ds+2K/O <1+‘X(”)(s—)‘ —l—E‘X(")([s]n—)‘) ds

t r t r r
g(r—Z)K/ ‘X(")(s —)‘ ds+2.3%*1K/ (1+ ‘X“”(s —)‘ +E‘X(")([s]n—)‘ ) ds.
0 0 (2.16)

Analogously, the third and fourth terms of (2.15) can be estimated by

K/t ‘X(”)(s—)‘r ds+35_1K/t (1 n ‘X(”)(s—)‘r—HE‘X(”)([s]n—)‘r> ds, (2.17)
0 0

and

(V—Z) / ‘Xm)(s_)’ ds+ 35 1(r_2)K/ (1+‘X(n)(s_)’r+]E’x(n)([s]n—)‘r> ds,

(2.18)

respectively. Furthermore, note that the map y — [y|” is of class C? and the remainder formula
for |y|” gives

1
yl” — |b]" — r|b|"" (b, y — b) < C /0 ly —bI*|b+6(y — b)|""*db

< C(bI" 2y = b + [y — b]"), (2.19)
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for any y, b € R%. The last term on the right-hand side of (2.15) can thus be estimated as
t r
le / QX(”)(S ‘h (5 X0 ), i) z)\ + [ (5. X0 =), 1l 2)| ) N(ds, dz).
0JU
(2.20)

Denote the above upper-bound (2.20) by N;. Substituting (2.16)—(2.20) into (2.15), taking the
supremum over [0, u] for u € [0, T] and then taking expectations gives that

E sup [X®)|" <Elxo|"+E sup [M|+E sup |Nj|
0<t<u 0<ru 0<r<u

+WK/ ]E)X(”)(s _)‘r ds
2 0

4354 I)K/u (1 +E ‘X(")(s —)]r+lE(X(”)([s]n —)‘r) ds
0 2.21)

where
My—r / ' ‘Xm)(s_)‘r_z (X0 =), 0 (5. XD ), 1)) dWes)

tr / f ‘XW(S )( <X<">(s )h(s X5 — )M";]),z))ﬁ(ds, dz)

is indeed a local martingale. On the one hand, by the BDG inequality (for the Brownian case)
[26, Theorem 7.3 in Chapter 1] and the inequality (2.5) (with p = 1) in Proposition 2, there
exists a constant Cp > 0 such that

1

u ) 2r—2 ) ) 2 2
E sup |M,|<CaorE / ‘X (s—)‘ Ha (s,x" (s =), )H ds
0<r<u 0 o

1

+c2rE[ /0 ' /U ‘X@)(s—)fr_z [ (5, X -, Mf?])n)(z v(d2) ds:|2
<C2rIE{Oi1t1[<)u ! [(/Ou ( X (s —), “("))Hz ds)%
/ /‘h (5 X6 ), ,Lm)‘z u(dz)dsf“.

Applying Assumption 4 yields

X™(t —)

E sup [M|
0<r<u
1

x“”(r—))H-zK ( /0 uoifg <1+ X )] +E [X([r), -)| )m)z

Then, due to Young’s inequality (2.1) (with € = m, p = =7, and g = r), Holder inequal-
ity, the elementary inequality (2.3) (with /= %) and Lyapunov inequality, one can further
conclude

< GrE | sup
0<t<u
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E sup M|
0<r<u
1
<<E sup [XP¢ )| + e — 1y QK)E
0<t<u

r

u 2 2 2
x [/ sup (1+ X(”)(t—)‘ +E’X(n)([t]n_)‘ ) ds}
0 0<r<s

1 ,
<<E sup X0 )| + e - )y-'eryusIE
0<t<u
u 2 2\ %
x / sup (1+ X(”)(t—)‘ +E‘X(")([t]n—)‘> ds
0 0<r<s
1 r ,
<<E sup [X(r—)| + 50— DY ' 2K) Bu)2 'R
0<t<u
u r r
x / sup (1+‘X(”)(t—)‘ +E‘X(”)([t]n—)‘ ) ds. (2.22)
0 0<r<s

On the other hand, utilizing Assumptions 4 and 7, along with Young’s inequality (2.1) (with
e=1, p=-55, and g = 3), the elementary inequality (2.3) (with /= 3), and Lyapunov’s
inequality, we obtain the following estimate for the supremum of |V;|:

u r—2 o) 2
E sup |N,|<C1E/ / <)X<n>(s _)‘ ‘h (s,X(")(s o), an,z)‘
0<r<u 0o Ju

[ (5, X6 -, 1) 2)| )v(dz) ds
<CE /0 [K ’X(")(s —)(Fz <1 + ‘XW(S —)’2 +E ‘X(")([s]n - )’2)
+ K (1 + ‘X(”)(s —)‘r + (E ’X(")([s]n - )DE) } ds

2 [u
<C1KV / E sup
0

r 0<1<s

u
x/ 14+E sup
0 0<1<s
Note that, by (2.13), we have

E sup |X(t—)|"<E sup |X(0)|" < oc. (2.24)
0<t<u 0<r<u

2K
X"t —)‘r ds+ Cy <—321 +K2>
r

,
XMt —)‘ +E sup

0<1<s

X", —)‘r> ds.  (2.23)

By combining all the estimates from (2.22) to (2.24) and applying Gronwall’s inequality, we
deduce from (2.21) that

r C.T
E sup [x0| <201 +Elxolnet” <G,
0T

where C,=K(r— 2)’”’# +4-327 10+ D+ G2 = 1T 2K (3T) 2T 4 4C -
(%(35_1 +K2). It is evident that the positive constant C, depends on r, T, K, K>, and the
initial condition xg, but is independent of n. Thus, the proof is complete. O
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Lemma 2. (Time Holder continuity.) Let Assumptions A4-A7 hold. For any initial condition
xo € L"(2; Rd) with r > K2/2, there exists a positive constant C such that, for any 0 <s <t <
T with |t — 5| < 1,

sup E [ |X(0) - X5
n>1

Proof. Tt follows from (2.12) that

K] <Clt—sl. (2.25)

t t
X0 (@) = X (s) = / b (0, X =), 7)) du+ / o (. X =), i) ) dWGw)
S

s
+ / t / h (u,x<">(u =), i z) N(du, dz).
s JU
By taking expectations on both sides, one obtains
t K
/ b (u XM —), M%’;L) du :|
S

! )

B[x?0) - x)| <318 [

t K
/ / h (u XPw—), M%Z; , z) N(du, dz) i|
s JU 8

=:B1 + By + Bs. (2.26)

+3"1E[

+3"1E[

We proceed by estimating By, B2, and B3 individually. To maintain clarity, we present only the
core estimation steps for each term. By applying Holder inequality, Assumption 5, Lyapunov
inequality, and estimate (2.14), we derive the following bound for By:

1 K
By <3K_1(I—S)K_I/S E{[b (. xP@—), ufy) )| ] du
2

. ‘ 2 2\ T
<3T K (1 — 5y / LHE [X0w—)| T + (E X[, —)| ) du
S

B t 2
<2.337“*2K17(z—s)“1/ (1+IE1 sup ‘XW(M) 2) du < Ce (1 — s)~.
s

0<uT

For B», using the BDG inequality, Holder inequality, Assumption 4, and estimate (2.14), we

have
t 5
I

_ 1
<3 =97 [ o (wx— )| T o

s

2
o (X0 )|

B, <3 'M.E [

K K K—. t K K
<2.3%*2Mkkf(t—s)72/ 1+E sup ‘X(”)(u)‘ du < Colt —9)%,
s o<uT

where M, = [k*t! /2(k — 1)F _1]%. For B3, using Kunita’s first inequality (i.e. the inequality
(2.4) in Proposition 2), Holder inequality, Assumptions 4 and 7, and estimate (2.14), we obtain
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+3K—ID/ E[/ (. X w =, 1) 2)| u(dz)] du
<3K—1D(t_s)%f [(f ‘h u, X (u —), Hn,z)‘zv(dz))q du
+3K_1D/ [/ (X0 =), 1) 2) [ v(dz):| du

p K«
<3K*‘DK%(t—s)”z;2/ E |:<1+)X(”)(u—)‘z+IEX(”)([u],,—)2>2i| du

t p K
—|—3"’]DK3/ E|:<1+)X(")(u—)‘ —i—(]EX(”)([u],,—)z)z)} du

‘h u, X(")(u—) M[u] ,Z)‘z v(dz) du

By <3 1DE[

N

o<uT

3k 2 K k=2 ¢ K
<2.3%- DKf(t—s)T/ 1+E sup )X(”)(u)‘ du
N

t
+2~3HDK3/ 1+E sup ‘X(”)(u)"( du
s o<uT

SClt—9)+ -7,

where D is a positive constant dependent on «. Consequently, the desired assertion follows by
substituting the above estimates on By, B, and B3 into (2.26) and then taking the supremum
over n. O

With Lemmas 1 and 2 established, we proceed to demonstrate the following result.

Lemma 3. (Cauchy sequences.) The sequence {X(”)(t)}n>] given by (2.12) is a Cauchy
sequence in L(2; D([0, TT; ]Rd)). Specifically, for any n, m > 1, the following holds:
1

HX(”)—X(’”) L= (E[ sup ‘X(”)(t)—X(m)(t)‘K]> 50, asmm—oo. (227

0T

Proof. Note that, for € [0, T], the difference between X ) and X satisfies the following
equation:

X0 - x0) = | o (5. X6, 1) b (s X, 1) )] as
+/t[ (s XM (s —), /L(") ) -0 (s X5 —), u(m) )] dW(s)

/ / s, X(”)(s =), 1y, ,z) (s, X(s =), ufy) ,z)]N(ds, dz).

To facilitate the analysis, we define the stopping time:

g = inf [te [0, T1: ‘X(”)(t)‘ v ‘x“")(t)‘ > R} ,
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for each R > 0. The stopping time technique is employed here to ensure boundedness of
the processes X and X up to 1z, leveraging the fact that (2.12) describes a classical
(nondistribution-dependent) SDE. It is clear that, for 0 <7< 1z A T, we have X (r —)| <R
and | X" (¢t —)| < R. Then, by De Morgan’s law, we arrive at

K K
E| swp [x00) - x| | =E[ sip [xP0) - x| Iigpory]
0<<T 0<i<T
K
+ IE[ sup (X('”(t) . X(’”)(t)‘ ]I{TRQ}]
0<I<T

=:Ji1+ /2, (2.28)

where 14 is the indicator function of the set A.

In the subsequent analysis, we estimate each term J; and J> on the right-hand side of (2.28).
(1) Estimation of the term J;. We note that

K
L <E| sup ‘X(”)(t ATR) — Xt A rR)‘ <00, (2.29)
0T

where the finiteness of the term is guaranteed by Lemma 1. By applying It6’s formula, we
obtain the following representation:

K
‘X(”’(t A TR) — X"t A TR)‘ =J1.8(0) + J2.r() + T3 g(0) + Ja g (D) + J5.R(1) + J6.R(2),

where the individual terms J; g, fori=1, ..., 6, are given by

INTR
J1rR() =k /
0

) <X(")(S - X(m)(s b <S’ X(")(S -), M%L) —-b <S, X(’”)(S -), ME;?L) >ds,

K INTR
Jor(D) = 5 /
0

2
-0 (s, X(s —), MEZ’]L) H ds,

) INTR
Jir() = % /0

(353 o000 oo 60 i)

XM(s —) — X —)(K_z

K—2
X0 =) =X ) o (5. X6 =), i) )

Kk—4
X0(s =) = X5 )|

t
it = [ 150 ==X <) 1 (5. X6 -0 2
U
K
et )
K k=2
=[x =) = X )| = i [0 =) = x|
(X =) = X5 =), (5, X0 =), 1l 2)

—h (s, XM (s —), ,ug'ﬁ, z)> 1|N(ds, dz),
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INTR
Js.r() =« /
0

: <X<">(s )= XM(s—), o (s, X5 =y, 1™ ) —o <s, X (5 =), ) dW(s)> ,

[sln [s]m
IATR K—2
oty =rc [ [ a6 — x|
0 U

(X0 =) = X ), (5, X5 -, 13 )

X5 =) — X —)(K_z

—h (s, X (s =), ufn z>>N(ds, dz).
In order to take the supremum over time and the expectation, we need to estimate
E[ supyg,<, Jir@®] fori=1,...,6.

Note that the terms J; g for i = 1, 2, 3 are standard Lebesgue integrals, and can be estimated
in a similar manner. For any u € [0, T], applying Assumptions 1 and 2, we derive

INTR
E|[ sup Jir(® </<E[ sup /
0<r<u 0<t<u Jo

X5 =) = X5 =), b (5, X0 =), ufl) )

-b (s, XM (s —), ,ug,’])”) >ds]

UNTR
+ KE|: /
0

o (X 2nf) =b (s X620 m)

UNTR
<«kLgE |:/
0

UNTR
+kVLE [ /
0

k=2
X (s —) — XM (s —)‘

Kk—1
X005 =) = X (s )|

s

k—1
oo w5 ) o]

X5 =) = X )| ds]

By further applying Young’s inequality (2.1) (with € = 1, p = %5 and g = k), we obtain

E| sup Ji,r(®)
o<r<u
UNTR K
< (KLR ok — 1)JZ) E U ‘XW(S —)— XU —)] ds}
0
UNTR ( ) (m)
+ 3K_1\/Z/0 I:WIZ((M[?],,’ Mﬁ")) + Wé( (Mgn)’ :“*Em)) + Wé( (Mg‘m)’ M[x]m):l ds
UNTR K
< [KLR +VL (K -1+ 3K_1>] / E ’X(")(s —) = Xx"(s —)‘ ds
0
UNTR K K
+3 VL[ (B[x6 ) = x00s1, - 4B X6 )~ x5t - as
0
(2.30)
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Analogously, by Assumptions 1 and 2 and Young’s inequality (2.1) (with e =1, p= 55,
q= %), we derive the following bounds for J g and J3 g:

E| sup Jor(¥)
0<r<u

UNTR K
< [KLR YL (K 242, 3“-1)] / E ’X(")(s —y— xm(s —)‘ ds
0

Cop e /O”MR (B [x¢s =~ xs1, | +E x5 -~ x(1s1 [ ) s

2.31)
and

E [ sup Jz,R(o}

0<r<u

UNTR K
< —2) [KLR + (/c 242, 3“-1) L] / E ‘X(")(s Sy = XM )| ds
0
UNTR K
+2L-3 (ke —2) / (IE ‘X(")(s —) = X"([s], — )‘
0
+E ‘X(’")(s )= X"([s],0 — )(K) ds. (2.32)

As for the last three terms, we first use the remainder formula in (2.19) and Assumption 7 to
obtain

0<r<u

gclEfWR/ (‘Xw)(s_)_X(m)(s_)‘H) (5 X0 =), ). )
—h(s XM (s —), V“s],,, )’2
’h( X5 —), u(") ) h( X" (s )u(m) ))K>v(dz)ds.

—242. 3/(—1 L UATR
<C (LR MGt ) ) / E ‘X(")(s —y— xms —)‘K ds
0

K

E [ sup 14,R<r>}

Kk—1

UATR K K
+2CL- / (E [xs =) = X151, =) +E [x™ =) = XO(s1,, )| ) ds
0

K
UNTR K
+ 012 IE[ /(h (5. X =), 1fl 2) = (5, X6 =), mfly 2) || vido) ds
o [ (5, X =), 1) 2) = (5, X = “dnd
1 Sa (s =), sy, < s, X" (s —), ,Uv[s] » 2 v(dz) ds
0 U

—242. 31(—1 L UATR
<C (LR+ s + ) +2K—1L%+L/6K—1)/ E sup
K 0 0<1<s

2L UNTR
+3¢y (— + 2K—1L’> / (E [xs = —xOs1, -
0

+1E(X<'">(s ) — X" (5] —)’) (2.33)

K
X (p) — X(m)(t)‘ ds
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We exploit the BDG inequality and Assumptions 2 and 3 to obtain

]E|: sup J5,R(t):|

0<t<u

UNTR
<k - 32E</
0
2 \2
-0 (s, XM (s —), [,LE:]?”) H ds)

K—1 UNTR
Xt A 1) — XM (1 A rR)’ ( / 2 H (s X (s —), u("))
0

262
X0 =) =X )| o (5. X6 ), 1))

<6¢E| sup
0<t<u
2
_ (m)eo _ (m)
0<S,X (s )’M[»Y]n>H
2 \2
2o (xe iy -o (xs i) ) |

Kk—1 UNTR 2
X0 (1 A tR) — X1 A ‘L’R)‘ ( / 2Lk ‘XW(S ) — X5 —)
0

< 6kE| sup
0<r<u

1
2
+2LW2 ( (;’]) s ,uﬂ?) ds) :|
Then owing to Young’s inequality (2.1) (with € = m, p= =, and g=«), Holder
inequality, the elementary inequality (2.2) (with k=2 and /= %), the elementary inequality

(2.3) (with [ = k), and Lyapunov inequality, we further have

XDt A 0) — Xt A rR))K]

K

0<t<u 0<r<u
(n) (m) (m) (m) ’
Lg | X" (s =) — X" (s —) +LW2 st s, ) 48

1
E |: sup Js’R(t):| - ZIE |: sup

UNTR

<6254k — D) 'E (/
0

<6° . 27(4%c — 1)y 12!

E
%
+ LW2 (ME']) , uﬁ’]ﬂ,)) ds

UNTR K
<12° - (4l — )t IR UO (L,Z

L% w5 (,ug']) , ,u%) )) ds]

K P UNTR K

<12°- @0 — DY a1 +1537) f E[x®(s ) — x| ds
0

F 126 ()5 (120 — 1)) 15— /u " (IE ’X(")(s —)—X(")([s]n—)‘lc
0

FE|X(s —) — XM((s] —)\)

|:/~u/\‘ER (LR ‘X(n)(s -) _X(m)(s _)‘
0

X(s =) — XM (s _)‘K

(2.34)
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Finally, we apply the inequality (2.5) (with p =1) in Proposition 2 and Young’s inequality
(2.1) (with e = m,p = 5, and g = k) to obtain

E| sup Jer(?)
0<r<u

“nT ) g 4|72 ) )
@DE([() /U\X (=) =X )7 [ (5. X0 ), 1) . 2)

1
2 2
—h (5. X =), 1) 2) [ vido) ds)

1
<-=E| sup
4 |o<i<u

XD A ) — XA rR))K]

P K p UNTR
+2D) - (4 — 1)Ly (L,g +L73"_1>/ E sup
0 0<I<s

X)) — X“’”(;)‘K ds

F@D) L5120 — 1)<~ u5 ! /u " (]E (X<">(s )= X"([s], — )‘K
0
+E ‘XO")(S —y— X" ([s],, — )‘K ) ds. (2.35)

Substituting the estimates derived from (2.30)—(2.35) into (2.29) yields the inequality

K
E| sup |[XPA1R)—X"™0A 'L’R)‘
0<r<u

u
<2M1(u)/ E sup
0 0<t<s

XP(t A 10) — Xt A rR)’K ds
+2. 3K—1M2(u)/ ‘ (E ‘X(”)(s —) = X"([s], —)‘K+ E ‘XW)(S —) = X" (5], —)‘K) ds.
0

Here, Miw)=k*Lr+(k —14+3 " YDVL+ K — Dk —2+2-3* HL+ C; (LR +
(22D 4 26U 6L ) (125 + QDY — DY (L + L33 u !
and My(u) = VL +2L(k — 1)+ C) (ZK—L + 2K—1L/) + (12 + 2DY)LE (4(k — )Y 'u2=!. In
addition, for any ¢ € [0, T], the result in Lemma 2 implies that
K K
E ‘X(”)(t) - X(")([t]n)‘ <Ch, and E ‘X('”)(t) — X('”)([t]n)‘ < Chyp.

By these estimates, together with Gronwall’s inequality, we conclude that

K R ~
L <E [ sup ‘X(”)(t AR) — X A rR)‘ ] <2CT(hy + hyy) - 3~ Wo(T)2M DT
0<<T

=: T(hy + hy)Clie, T, L, L)l C&T-LLr L L), (2.36)
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(2) Estimation of the term J,. With the aid of the Cauchy—Schwarz inequality, we have

K
Jo=FE| sup ‘X(")(l‘) — X(m)(l)‘ Lzr<ry
0<I<T

2
< ]E( sup |X(”)(t)—X(’")(l)|K> E(H{tRST})2

\[\

N

]E( sup |X(”)(t)—X(’")(f)| ) (H{rRST})

0T

Z

sup }X(")(t)| + sup ‘X(’”)(t)|2'{ IP’(rRéT)
0<t<T <<

/ (2.37)

Here, the result of Lemma 1| has been utilized. Further, by employing the subadditivity of
probability and invoking Lemma 1 once more, we can estimate

X 44 \x0m 4
(e <) <E(H{rR<T}| Gt + P )

4 4
E sup )X(")(t)‘ +E sup ‘X(m)(t)‘
R 0<I<T 0<I<T

C
X F
By substituting this into (2.37), we further obtain
Jr < 2R (2.38)
At this point, we can estimate (2.28) by combining (2.36) and (2.38) as follows:

K I C
E sup (X0 —X"@)| <T(hy+hw)Clk, T, L, L)e" C®TLErE Ly 4 —

o, 7k (2.39)

Note that R is independent of n and m, and 1% converges to 0 as R — oo. For any given ¢ > 0,
there exists a sufficiently large number R(¢) > 0, such that,

C ¢

— <,

R~2
when R, > R(e). Since both h, and h, converge to 0 as n, m — oo, for the ¢ > 0 chosen
previously, we have
T-C0e,ToL Ly L Ly ) £

2 9

by letting n, m — o0o. Consequently, we conclude that (2.27) holds. U

T(hy + hw)Ce, T, L, L')e
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2.3. Proof of Theorem 1

In this subsection, we turn to proving the main theorem in this section. The proof consists
of three steps.

Step 1: Existence. Let {X(”)(t)},@l be the Cauchy sequence in L*($2; D([0, T]; R%))
given by (2.12). Keep in mind that the space L(2; D([0, T]; R¢)), equipped with the norm

1
[1X]|x = (IE [SuPogzgr |X(t)|"]) «, is a Banach space (see Proposition 1). Thus, there exists

an {F;}ogs<r-adapted R?-valued cadlag stochastic process {X(f)}:c0,77 With X(0) =xo and
s = Lx(y such that

1

K]“l < lim |:]E sup ‘X(")(t)—X(t)‘Kj|K=O. (2.40)

lim [E ‘X(”)(t) — X(1) lim.
o<i<T

n—oQ

We next prove that {X(#)}:c[0,77 is a solution to (2.8). Indeed, the main idea is to show that the
right-hand side of (2.12) converges in probability to

t t t
X0 +/ b(s, X(s =), ps) ds +/ o (s, X(s =), ps) dW(s) +/ / h(s, X(s =), s, 2N (dz, ds),
0 0 0JU

by taking the limit on both sides of (2.12). Here uy = L(X(s)) for any s € [0, T].
First, it follows from (2.40) that there exists a subsequence (for notational simplicity, still
indexed by n) such that, for all s € [0, T,

xm (s, w) = X(s, w), [P-almost surely.

By applying Lemma 2, the Wasserstein distance between ,ug])n and u; satisfies

lim sup Wi (ME}:])n’ ,uS)

n=>00 (o<t

<21 lim sup B X9 = XO([sl,)| 4257 lim E[ sup
n—0oQ

=0 0Ls<t 0<s<t

K
X(5) — X(s)‘
<2°7!'C lim h, =0. (2.41)
n— 00

Taking Assumption 3 into account, it follows immediately that, for all s € [0, T and almost all
w e,

b (5. XP), 1fl ) > b (5. X, 115). o (5. X0, 1l ) = & (5, X(5), 1),

/ h<s, X5 ), Hg'])n,z) v(dz) — / h (s, X(s =), s, 2) V(d2), (2.42)
U U

as n — oo.

Next, we claim that the sequences {b(s, X" (s), “gl]),,)}n% and {o (s, X™(s), /LE?])n)},@] are
uniformly integrable. In fact, from Assumptions 4 and 5 and Lemma 1, we obtain the following
uniform boundedness,
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sup Elb(s, X" (s), u{) ) < v/3K1 sup E[1 + X" (5)|% + Wy (M?{n 80)] < V/3Ki(1420),

n>1 n>1

(n) (n) (n) 2 (n)
sup Eflo(r, X" (s), u{m 1> < K sup E[1 + X" ()2 + W3l . 80)] < K(1 +20),
n>1 n>1

and the following uniform absolute continuity,

K
sup E Ub (s, X" (s), M%Z]) )‘ HA] < K sup [E (1 + ’X(")(s)
n>1 " n>1

+ w5 (i) 8 ))] (PA))?

<KW+ 2C(P(A)? — 0,

1

2 2 212
supE[Ha(s,xW(s), uii,)| HA]SK sup [E <1+]X“’)(s)\ + W3 (u%?f,,so))} (P(4))?

n=>1 n=>1
<KV3(1 + 20)(P(A))? — 0,

when P(A)— 0. The uniform integrability —of  {b(s, X"(s), MEZ])n)}”% and

{o (s, X?(s), i3] Y1 follows from [38, Lemma 3 in p. 190].
Hence, by applymg the dominated convergence theorem [38, Theorem 4 on p. 188], together
with (2.42), we obtain, for any s € [0, T],

lim E ’b (s, X0 Gs), ") ) — b (s, X(s), )| =0, (2.43)
n—o00 n
2
lim E Ha (s, X (s), ™ ) — o (5. X(s). wo)| =0 (2.44)
n—o00 n
In addition, note that, following from (2.40),
E| sup [X®IF|<C
0T
We further have the following estimates based on Assumptions 4 and 5 and Lemma 1:
sup sup B [b (5, X(s), ) ) = bis, X(s), 1)
n>1 sel0,1] "
<+/3Ki sup sup E [2 + X[+ XN+ W5 () ) + W (s, 50)}
n>1s€l0,1]
<2y/3K1(1+20), (2.45)
2
sup sup E o (5. X(5), ufl, ) = (5. XC5), 1)
n>1 sel0,1] "

2
<2K sup sup E [2 n ‘X(”)(s)‘ + X + WE ( o 30) + W (i, 50)} <4K(1+20).
n>1 sel0,1]

(2.46)

For any t € [0, T], by applying the dominated convergence theorem in conjunction with (2.43)
and (2.45), we eventually obtain
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t
lim E ’ / b 5. X"(s), Mff])n) — b(s, X(s), us)) ds

n—oo

< lim )b( X0 (s), ") ) — b(s, X(s), 115)

n— oo

ds=0. (2.47)

Similarly, in view of (2.44) and (2.46), we arrive at

2
lim E ‘ f (5. X0, ) ) = 05, X, 1)) AW (s)

n—o0

= lim E H (s X Gs), " ) — o X6 1| ds=o. (2.48)

n—oo

Finally, we examine the estimates for the integral w.r.t. the Poisson random measure. For any
u € [0, T], it follows from the inequality (2.5) (with p = 1) in Proposition 2 and Assumptions
1 and 2 that

E sup
o<ut

f ' f( (5 X =), 1ff) + 2) = s, X5 =), 115, 2)) Nds, do)
0 U

t
<DE [ / / i (5 X0 =), 1) 2) h(s,X(s—),us,z))zwdz)dsr
0 JU

! 2
<sz1@[ /0 / ()h(s X ), wlf) <) = s, X(s =), ufl, |
U

‘h (s X(s —), ,,f';]), ) h(s, X(s —), MS,z)f)v(dz)dsiIé
< V/2DE [/ xs ) x5 | ds—i—/ w2 (i) ) ds];
<2DE UO ‘XW(S - X(s—)’ ds] +2DE U (M";]),M)d];

<2DVTE |: sup

0<s<t

XM (s) —X(s)‘:| +2DVT sup W> (,u[s]) , Ms) .
0<s<t

By (2.40), (2.41), and Lyapunov inequality, we deduce that

lim E sup

n=>00  0<u<s

/Ou /U (h (s, XO(s ), ul z) — h(s, X(s =), s, z)) N(ds, dg)| =

(2.49)

As a consequence, by (2.47), (2.48), and (2.49), we conclude that the process {X()}e[0,7]
is a strong solution to (2.8). This completes the proof of existence.

Step 2: Boundedness. For 7 € [0, T, let X(r) € L*($2; D([0, T]; R%)) be a solution to (2.8).
In the following, we estimate the rth moment of the solution (X());¢[0,7], Where r > max{ ’%2 4}
and the initial value X(0) = xp satisfies E|xg|” < 0o, as specified in Assumption 6.

For every R > 0, we define the stopping time

mg = inf {1 € [0, T):|X(t) > R} A T.
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Itis clear that | X (7 —)| < R for 0 <7 < 7g, and E supg; <y, 1X(1 —)|" < 0o forany u € [0, T].
To derive an upper-bound for E sup)<;c,an, [X(D|", we employ the procedure similar to
that in the proof of Lemma 1, where the case for X(")(t) with ¢ € [0, T] was considered.

. 2 ege _» A
Specifically, for r > max{%-, 4} and ¢ € [0, u A 7], and utilizing tools such as It6’s formula,
as demonstrated in the proof of Lemma 1, we estimate that

] PR u
E sup |X(t)|r<]E|xo|r+§IE sup |X(t—)|r+D/ <1+E sup |X(t—)|’)ds
0

0<tr<unmg 0<t<uAmR O<t<SATTR
2 u
r“+r+2C
+K(r—2)—l/ 1+E sup X)) ds < oo,
2r 0 O<t<SATTR

(2.50)

with D=2-35"1(r+ DK + C52"(r — 1y~ @K)'(3T)3 ! +2¢; - (27K3%*‘ +K2) . Note
that
E sup XCol<E sup  [X()I.

O<t<uAmR 0<t<uUAmR

Since g — T, P-almost surely, we conclude the proof of the estimate (2.9) by applying
Gronwall’s inequality and the Fatou’s lemma. Specifically, we have

E sup |X()|" <liminfE sup |X()|" <C, <o0.
0<<T R—>00 0T AR

Step 3: Uniqueness. Let X (), Y(f) be two solutions of (2.8) on the same probability space
with X(0) = Y(0). By (2.14), for a fixed r > max{k?2/2, 4}, there exists a positive constant C,
such that

E |: sup |X(t)lr} <Gy, IE|: sup |Y(t)|’] <C,.

01T 0<i<T
For a sufficiently large R > 0, we define the stopping time
Tg := inf {r € [0, T]:|X(0)| v |Y(1)| > R}.
To proceed, we compare |X(7) — Y(¢)| and T in this context with |X(”)(t) — X(m)(t)| and tg, as

introduced in the proof of Lemma 3. Clearly, the same method as used in the proof of Lemma
3 can be applied here, yielding the following estimate:

E [ sup |X(r) — Y(t)lz] =E [ sup | X(r) — Y(t)|2H{fR>T}i|

0<I<T 0<I<T

+E [ sup |X(r) — Y(r>|2H{fR<T}}

0<I<T
i} - _ c
<E| sup Xt ATR) —YEATRP | +C P(zRgr) <=
o<i<T R

Letting R — oo gives the uniqueness of the solution to (2.8).
This completes the proof of Theorem 1.
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3. Stochastic averaging principle

In this section, we establish a stochastic averaging principle for the following stochastic
integral equation

t t

N N
Xe(t)=x0+ /O b (2 Xels ). L) ds+ /0 o (2 Xels =) i) W)

t
—l—//h(E,Xg(s—),fxg(s),z)ﬂ/(ds,dz), re0, T, G.1)
0 Ju &

where ¢ is a small positive parameter (0 < & < 1). Assuming that (3.1) satisfies the conditions
specified in Assumptions 1-7, the existence and uniqueness of its solution follow directly as a
consequence of Theorem 1.

As mentioned in Section 1, our main goal is to demonstrate that the solution (X, (#)):e[0,7]
of (3.1) can be approximated by a simpler (or averaged) process in an appropriate sense. To
proceed, we associate (3.1) with the following averaged McKean—Vlasov SDE:

r_ _ t _
X(H)=x0+ /0 b (X(s =), L)) ds+ /O o (X(s =), Zxy)) AW(s)
t
+ / / h (X(s =), L- 2) N(ds, dz), €10, T1, (3.2)
0 JU

where b:R? x Ma(R?) — R9, 5:RY x Ma(RY) — R¥*™ and h:RY x Mp(RY) x U — RY are
Borel measurable functions. To ensure that (3.2) also admits a unique solution and to facilitate
the application of stochastic averaging techniques, we impose specific averaging conditions. It
is worth noting that these conditions differ slightly from the classical ones (see, e.g., [36, 42])
due to the distinct characteristics of the nonlinear terms involved in the equation.

Assumption 8. (Averaging conditions.) There exist positive bounded functions (sometimes
referred to as rate functions of convergence) @;, defined on [0,T], with lim;_,  ¢;(t) =0 for
i=1, 2,3, such that

1 [t -

- fo |b(s, x, 1) — b(x, w)|* ds < p1(HC( + [x]?),
1 ! 2 2
- fo lo(s, x, 1) — & (x, w)l|? ds < pa()CH(1 + |x]?),

1 [t _
- f / h(s, x, i, 2) — h(x, @, 2)|*v(dz) ds < g3(NCR(1 + |x]%),
0 JU

respectively, forall t € [0, T], x, y € R? with |x| v |y| <R, and . € M»(R?). Here, C5, Cg, and
Cﬁlz are positive constants.

Furthermore, if ¥ > 2, an additional condition is required.

Assumption 9. (Additional averaging conditions on the jump coefficients.) There exists a
positive bounded function ¢, defined on [0, T], with lim;_, «, ¢(f) = 0, such that
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1! _
" f / h(s, x, 11, 2) — h(x, W, 2)|"v(dz) ds < () CR(1 + |x]"),
0 JU

1 [t _
;/ / h(s, x, @, 2) — h(x, @, 2)|“v(dz) ds < (HCR + [x]°),
0o Ju
respectively, forallt € [0, T], x, y € RY with x| V Iyl <R, and n € Mz(]Rd).

The main theorem on the averaging principle for (3.1) is thus formulated as follows.

Theorem 2. (Averaging principle.) Suppose that Assumptions 1-9 hold. Then, the following
averaging principle holds:

limE sup |X.(t)—X(®)|>=0. (3.3)
e—0 0<I<T

As a direct consequence of Theorem 2 and by applying the Chebyshev—Markov inequality,
we have the following corollary.

Corollary 1. The solution X.(t) converges in probability to the averaged solution X(f).
Specifically, for any § > 0,

P( sup [X.()—X(1)|>8)—0, ase—0.

SIS

Prior to establishing Theorem 2, it is necessary to address the well-posedness of the
averaged equation (3.2). The following lemma ensures this property.

Lemma 4. Under Assumptions 1-9, there exists a unique solution X(t) to the averaged

equation (3.2).

Proof. By Theorem 1, it suffices to verify that the coefficients functions b,o,and h satisfy
the conditions required for the existence and uniqueness of the solution. Note that both (3.1)
and (3.2) share the same initial condition x¢. The condition in Assumption 6 is directly satisfied.
Regarding the conditions in Assumptions 1-5, we focus on the function b, as similar arguments
apply to the functions & and k. Finally, we verify that & satisfies the condition in Assumption
7. The details of these verifications are provided in Appendix A. (|

We now complete the proof of Theorem 2 as follows.
Proof of Theorem 2. For any t € [0, T}, it follows from (3.1) and (3.2) that

X () — X(t) = /Ot [b (S Xe(s —), 3&@) —b (X(s ), .Z,—((s))] ds
+ /O t [o (g Xeo(s ), zxg(s)) — 5 (X(s-), z)—((s))] dW(s)

* /ot/U E (g Xels =), i, 2) = h (X(s =), Ly, )| N(ds, da).

To handle the one-sided locally Lipschitz case, we introduce a stopping time ng for each R > 0
defined as
ng == inf {r € [0, T]:|X: (1) V |X(1)| > R}.
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Using De Morgan’s law, the following decomposition holds:

E|: sup IXs(t)—?_((t)lﬂ =]E|: sup |X6(t)_X(t)|2H{nR>T}j|

0<<T 0<I<T

+E[ sup |Xs(t)_)_((t)lzﬂ{ﬂR<T}:|
0<t<T

=11+ I,.
We now proceed to estimate each term on the right-hand side of the equation above.

(1) Estimation of the term /7. We begin by bounding the term /; as follows

I =E [ sup [|Xe(?) —X(I)Izﬂ{npn] <E [ sup X (t Ang) — X(t A 77R)|2:| < 00.
0<I<T 0<I<T

(3.4)
Here, we are effectively considering the process up to the stopping time ng, which
ensures that | X (f —)| and |X(# —)| are bounded by R for all # < T. By applying the 1t6’s
formula, we obtain

5
IXe(t Ang) = X(t ATR)? =) Ail),

i=1

where the terms A; fori=1, ..., 5 are defined as follows:

IANR _ s -
Ar(r) = 2f0 (Xets =) = Xs ). (g’ Xe(s =), L) = b (X =), L)) s,

IANR
Aa(?) =/
0

IANR s _ 2
M= [ [ (5l ) S 2) = B (R, Ly )| N
0 u'l N&

o (g Xo(s ), EXS(S)) —& (X(s ), L) Hz ds,

IANR _ s
ps=2 [ 562 X0 (X600 L)
-5 (X(s =), L)) AW(s)),
tANR _ s
Ast=2 [ (xe6s 2 = X2 (2 Xels ), Lo )
—h (X(s =), L) 2)) N(ds, dz).

By taking the supremum over [0, «] for u € [0, T] and then taking expectations, we can

now estimate IE[ SUPo<r<u Ai(t)] fori=1,...,5, respectively. In view of Assumptions
1, 2, and 8, we obtain
E| sup A1(®)
0<t<u
IANR _ s
<2| s [ (X=X b (Xl ). B
0<t<u J0 &
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—b (g (s —), fxe(s)» ds]

IANR _ s -
+2E | sup / [Xe(s —) — X(s —)| - ‘b (—, X(s —), 3&@))
o<i<u Jo €

b (2, xGs —)»fm)‘ ds]

~
T, |l

IANR _ S -
+2E| sup / |Xe(s —) — X(s —)] - ‘b (—,X(s =), z,—((s))
| o<r<u Jo €

— b (X(s —). L(y)| ds]

UANR _
<2IxE / 1X.(s —) — X(s —)|? ds:|
0

UANR _
+2VLE [ / Xe(s =) — X(s =) - Wa (Lxos)» Lies)) ds:|
0

UNTR _ s -
+2E [ /O Xe(s =) = X2l - b (5. X6 0. L)
—b ()_((s =), f}'{(s))| ds]

< QLR + 2VL+ DHE |:/u " X (s —) — X(s _)|2 ds]
0

uAIR
£ € — I
+uE [u | 1B (5, X(se =), Lisey) — b (XCse =), L) | ds:|

u
<QLr+2vVL+ 1)/
0

5 UNTR
E sup |X:(tAng)— XA nR)I2 ds+uC§<p1 ( )
0<r<s &

x [ 1+E sup |X0)
0<r<u

u
g(zLR+2«/Z+1)/
0

0<r<s

S 2 b UNTR
E sup |Xo(t A ng) — X(t A g)| ds+uCR~Cg01( )

(3.5)
Here, we have used the fact that for each u € [0, T],

2
E sup |X®)?| <(E sup |5((z)|’)%<oo, if E|X.(0)|" < oo.
0<t<u 0<t<u

By applying Assumptions 1, 2, 8, and employing techniques analogous to those used in
deriving the estimate for A, we establish the following bound for A»:

E| sup Ax(®)

0<1<u
<3E fm (5. X0, 4 ) (5. X6-), 4 )sz
< sup o\ =, Xe(s =), Lx,(5)) —0 | = X(s —), Lxe(. s

0<t<u Jo e’ " © € ©
IANR s - s - 2
3E -, X(s ), % — -, X(s-), % d
e [ o (5560 ) =0 (2560 ) ]
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IANR
+3E sup/
_Ogtgu 0

o (f X(s—), Z )—5(5(@—) A )H2 ds
g’ > == X(s) > == X(s)
r UANR _ UANR
/ Xe(s =) — X(s )2 ds} +3LE [ / W3 (L Zicw) ds]
0

<3LRE
- UANR s - s 2
+3E /0 o (g’ X(s ). .z,—((s)) —& (X(s —), .z)—((s))H ds]
i u - un
<3(LR+L)/ E sup |xg(mnR)—X(mnR)|2ds+3ucg-Cgoz( "R). (3.6)
0 0<r<s &

Similarly, using Assumptions 1, 2, and 8, we obtain the following estimate for As:

0<r<u
IANR s _ 2
<2 [ [ (50 L)~ X6 . L) viaras|
0 U &
(”A"R). (.7)
&

E|: sup A3(t)i|

E sup |X.(t Ang)— X (& Ang)|*ds + 3uCh - Cos

u
<3(Lg +L) /
0 0<I<s

Next, we apply the BDG inequality, along with Young’s inequality (2.1) (with € = ﬁ

and p = g = 2) and the estimate (3.6), to derive the following bound for A4:

E| sup A4()
0<t<u

<2V32E ( /0 T s = x6 P o (£ X, B

1
X6 -), L) ds)°
S
o (E’ Xe(s —), fxs(s))
)

_ UANR
sup |Xe(t Ang) — X A nR)l (/
0<r<u 0

_5(
< 12E|:
5 (56, Zi)|* a5)’ }

1 _ ] UATIR s
<-E| sup |Xe(tAng) — X(t A )l | + 144E [/ o (—, Xe(s —), $x€<s>>
4 Y i 0 &
. 2
~5 (%) Ly | 0]
[ _ | u
<-E| sup [Xe(tANR) —X(EANR)" | +432(Lg +L) | E sup |Xe(t Ang)
4 | o<i<u 0 0<i<s

_ A
— X(t Anp)|? ds + 432uCS - Cos (” "R). (3.8)

By applying the inequality (2.5) (with p =1) from Proposition 2, Young’s inequal-
ity (2.1) (with € = %, p=¢q=2) and the estimate (3.7), we arrive at the following
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estimate for As:

E| sup As(r)
0<1<u

UNNR
<2DE ( [ [ o= x6 R (Goxs - L. 2)
0 U &

1
— k(X =), Ly 2)| vd2) ds)

E| sup |Xe(tAng) — Xt AnR)*
| 0<<u

<

Iy

5 UANR s _ 2
+4D’E [/0 / ‘h (g’ Xe(s =), L. z) —h (X(s -), La), z)‘ v(dz) ds]
U

E| sup [Xe(rAng)—X(t A )
| O<r<u

<

FN

u
+12D%(Lg +L)/ E sup |X.(t Ang)—X(t Ang)l*ds
0 0<I<s

A\
+12D%Ch - Cys (= E"R ). (3.9)

Finally, substituting the estimates (3.5)—(3.9) into the expression (3.4) for I, and further
utilizing Gronwall’s inequality, we obtain

L<E| sup [Xe(tAng) —X(t Anp)l* | < NpeMT (3.10)
0<i<T

with Ny = 4(Lg + VL) + 24 12 - (73 + 2D*)(Lg + L) and No = 2TC% - Cg, (“"R) +
8707C% - Cy (“"R) +6(1 +4D*)TCG Cps (“”R).

(2) Estimation of the term /5. Using the Cauchy—Schwarz inequality and Theorem 1, we
deduce that

2

- - 2

12=E|: sup |Xe(t)_X(t)|2H{nR<T}j| < E( sup IXs(f)—X(l)Iz) E (Lipe<y)
0T

0T
_ X 44 1 X(np)l4
SZ«/E E( sup |X5(t)|4~|— sup |X(t)|4)\/E (H{nkgT}| (MR 4| (mr)| )
0<I<T 0<I<T R
242 C
< ‘/2— E sup X0 +E sup IXO)*) < = G.11)
R 0<I<T 0<I<T

By combining the estimates on /1 and I, i.e. (3.10) and (3.11), we conclude that

c
E sup |Xe(r) — X(0)? < Mae'T +
0<t<T
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Now, for any § > 0, we can choose R > 0 large enough such that R—C2 < % In addition, by taking
¢ sufficiently small and using the averaging condition 8, we obtain that

]Vzeﬁlr < é
2

Thus, the arbitrariness of & implies that E supy, <7 |Xe(t) — X)) converges to 0, as & goes
to 0. This completes the proof. (]

4. Example

In this section, we provide an illustrative example to demonstrate the theoretical results
established in this paper. We highlight that the model (4.1) is carefully designed to satisfy all
the conditions of our assumptions and to facilitate the explicit derivation of the corresponding
averaged equation.

Example 1. Consider the following one-dimensional McKean—Viasov SDE

1
X, () = |:<X5(t =X —)) - +EX£(I—)i| dr

1+1
13

+ [Xs(t —)sin (1og2 (1 + X2t —))) 5 j_- ; +EX. (1 —)} AW ()

+/ [Xe(t ~)sin (1og% (1 + X2 —))) (1 —e—ﬁf) +H«:X€(t—)] Nar, dz), (4.1)
U

with t € [0, T] and the initial condition X.(0)=xq. Here, W(t) is a scalar Wiener process,
U =R\{0}, and v is a finite measure with v(U) = 1. Define the following functions:

b(t, x. u)=(x—x3)1#+t + /R yuldy), ot x, u)=w(x>2#+t + /R yi(dy),

W, x, 1, 2) = (1 — )+ /R Ydy),

where Yr(x) = x sin ( 1og2 (14 x%)) and ¢(x) = xsin ( log% (14 x%)) are continuously differen-
tiable functions. For any x € R, we can show that

W< Ix, @] < Ixl, [(0y)0)] < 1+4log (141

and  [(8y9)(x)| <1+ 34/log (1 + x?). 4.2)

(1) Well-posedness. To show that (4.1) has a unique solution (X;(t)):c[0,T], Wwe need to verify
that the conditions in Theorem 1 are satisfied. For any R > 0, x, y € R with |x| vV |[y| <R
and p € M»>(R), we provide the following estimates:

(= VB x, 10) — bt y, 1) = (x — Y)x — 23 —y+ y3>1#+t
x=y? ==y +xy+y7)

<|
< —yPA =) <A+ RY)x — y? =t Lhlx—yl%,
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2
_ 2 _ 2
lo(t, x, u) —o(t,y, WI" =¥ x) — ¥ )l <2+t)

2

1
< /0 (B0 + O — ) — y) d6

<[ sup @@ |l —5P

|z]<R

[|z|<R ( +4log(1 +Z2)> ]2|x —y|2

(1 +4log (1 +R2)> =y = L3 — P,

fu h(t, x, 1, 2) — (2, y, 1, 2)1*v(dz) = [p(x) — pI> (1 —e™")?

2

1
< /O (Beh)(y + 0(x — )(x — y) dO

- 2
sup |(ax¢)(z)|] Jx—yl?

<
| leI<R
— 2 2
<| sup <1 +34/log (1 +Z2)>] lx —y]|
- |zI<R

2
< (1 +3,/log (1 +R2)> Ix —y|> = Lylx — y|*.

These estimates imply that Assumption 1 is satisfied by denoting Lr = maX{L}e, LIZQ, L%}.
Next, we estimate the following for any x € R and w1, uz € M>(R)

|b(t, x, 1) — b(t, x, p2)> + llo(t, x, 1) — o (t, x, p2)lI*
+ / It x, 11, 2) — h(t. v, . DI (d2)
U

=3‘/ ym(dy)—/
R R

which shows that b, o, and h satisfy Assumptions 2 and 3. Furthermore, using the bounds
in (4.2) and the fact that L, and 1 —e™" are bounded, we deduce that for any

l+t’ 2%
xeR? and p € M>r(R),

2
<3WE(11, p2),

x-b(t, x, n) < x(x — x3)<1:_ >+x/Ry;L(dy)

1, 1 2
<x2+—x2+§ (/ yu(dy)> <2(1+x2+W22(M,50))s
R

2
+ / yu(dy)
R
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2
<2|1p(x)|2+2< /R yu(dy)> <2 (14 e+ Wi, 60,

2

2
<2A¢WI? +2 ( /R yu(dy)>

/U |h(t, x, i, 2)[*v(dz) = ’d)(x)(l —e )+ /R yu(dy)
<2 (1 + x> + Wi, 50)) .

Thus, Assumption 4 holds. In addition, for any x € RY and € Mar(R), we have

2 2
t
Ib(t, x, > <2(x —x°) (m) +2 ( / yu(dy)) <207 — 4x* + 200 4+ 2W3 (1, o)
R
<4 (1 + x84+ Wi(u, 80)) .
Thus, Assumption 5 holds with k = 6. Finally, since X.(0) is a constant, Assumption
6 (with r > 18) naturally holds. Due to the expression of h and the finiteness of v,

Assumption 7 can be easily verified using the same technique as Assumptions 1 and
2 were checked.

(2) Averaging principle. Define
b(x, p)=x—x" + /R yu(dy), o (x, )=y (x)+ /R yi(dy),
h(x, w, 2) = $(x) + /R YI(dy).

We can now verify that the averaging conditions in Assumptions 8 and 9 (with k = 6 and
r > 18) are satisfied:

1 [t _ 1 [t s 17 1
— | 1bGs, x, 1) — bx, w2 ds = — P 1= | ds=x21 -3 —
tfol(sxu) (x, w)|~ ds t/0|x x| s s=x( x)1+t

<o (1+1xP)

1 [ 3 2d_1’21s2d_22
;f0|0(5,x,ﬂ)—U(X,M)| S—;/Ollf(x)[ _Z_—l-s] S—l/f(x)z—_H

<0G (1+1x?)

1 [! _ 1 [t
- / / h(s, x, 11, 2) — h(x, @, 2)[*v(dz) ds = — / P> — (1 —e ™) ds
tJo Ju t Jo

2t

=¢*(x)

1—e™
t

— <eOCk (14 1),

and

t t
! / f Ih(s, x, w, 2) — h(x, u,z>|lv(c1z>c1s=l / '@ — (1 —e ) ds
t Jo Ju t Jo
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1— e—lt

_ 4l
=)

<o Ch (1+1l'), 1=rors,

178—2r
2t

and ¢(t) = 1_;% are continuous, positive, and bounded, with the property that
limy, o0 @i(1) =limy 00 (1) =0, fori=1,2, 3.

for x e R with |x| <R, where the functions ¢1(t) = %—s—r () = 2+-t o3(t) =

Based on the discussion and the result of Theorem 2, the solution of (4.1) can be
approximated by the following equation (for ¢ € [0, 7] and X(0) = xg)

AX(t) = [(X(z - X —)) +EX( —)] dr
n [5((: ~)sin (1og2 (1 X2 —))) FEXG —)] AW ()
n /U [5((; ~sin (1og% (1 X2 —))) FEX( —)] N(dr, dz), 4.3)

in the sense of mean square.

We now carry out numerical simulations to compute the solutions of (4.1) and (4.3)
with xo=1, T=10, ¢ =0.01 and xo =1, T =10, ¢ =0.001, respectively. Figure 1(a) and
(b) illustrate the comparison between the solution X.(¢) of (4.1) and the averaged solution
X(7) of (4.3). As shown, the solutions of the original equation and the averaged equation
exhibit strong agreement. In addition, one can find that, for fixed sample points, the error
SUP)<s< 10 | X (t) — X(1)| decreases when & changes from 0.01 to 0.001. This observed behavior
aligns with the predictions of the averaging principle stated in Theorem 2.

We remark that in our numerical simulations to approximate the McKean—Vlasov SDE
(4.1) and (4.3), we use N-dimensional systems of interacting particles, which can be regarded
as standard SDEs. This approach is based on the so-called propagation of chaos result (see
Appendix B). Based on Proposition 3, we briefly introduce an Euler-Maruyama (EM) numer-
ical scheme to approximate the solution of (B.2), which, in turn, serves as an approximation
for the solution of the McKean—Vlasov SDE (2.8). To this end, we partition the time interval
[0, T] into n subintervals of equal length and define t,’j =kh, fork=0,1,...,n, wherene N
and the step size is given by &, = L. The EM scheme for the interacting particle system (B.2)

n ) . .
is specified by the initial condition X"--"(0) = X"-¥(0) and the recurrence relation
XN ) = XN + b XN ™+ o (1 XN, ™AW R

n
T

By . .
+ / ' / B XN, SN ORI A, = 1,2, N, (4d)
zZ U

7
I

where Xi’N’"(t’,Z) denotes the approximation of Xi*N(tZ), Mé’N’" =1lv ;-vzl (SXj_N,n(,:kz) is the

empirical measure, and AW>"(t) = W! (#; L)~ Wi (#;) is the Brownian increment. To simulate

the integrals w.r.t. the compensated Poisson random measure N (dt, dz) = N(dt, dz) — v(dz) dt,
we also employ the technique of introducing a compound Poisson process |, U ZN(t, dz), as
detailed in [1, Section 4.3.2].

For this example, we simulate N = 100 particles with a time step 0.01, 7 = 10. Figure 2(a)
and (b) depict the realizations of the interacting particle systems associated with the McKean—
Vlasov SDEs (4.1) and (4.3), respectively, under the initial conditions X;(0) =X(0)=1 and
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(@) 5 0.06 -
— Xelt) — Xe(t) - X(t)
4 p—
3 [
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g’ -
& [ S
0 ~0.02
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Time Time
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X4(0) = X(0) = 1, & = 0.001

FIGURE _1. Comparison of the solutim} X (t) for (4.1) with the averaged solution X(7) for (4.3): (a)
X:(0)=X(0)=1, e =0.01; (b) X;(0) =X(0)=1, e =0.001.

& =0.01. Numerically, the Wasserstein distance between the distributions of the solutions to
4.1) (i.e. Zx,(1)) and (4.3) (i.e. .Z}-m)) is approximated via the empirical distributions of the
interacting particle systems, as illustrated in Figure 2(c).

Appendix A. Details of the proof for Lemma 4

Proof for Lemma 4. For any t€ [0, T], x,y € R4 and W, 1, U2 € Mz(Rd), we calculate
successively that

_ _ 1 1 _ _
br=. B 1) = b0 ) < br =12+ 5 fo (1665, x, 1) = bCx, 1 + 1bGs. v, 1) = by, 10I2)
><ds—|—LR|x—y|2
b 2 2 1 2
<QUOCRA + 16 + ) + (5 + Lol =P

- X2 1 [t -
(v, e, W) < -+ 5 fo |b(s. x, 1) — b(x, j0)|* ds + K(1 + [x|* + W3(u, 8))
<1 b 2 E 2 2
< SOUOCRA + ) + SK A+ [xf + W3, 80)).

_ _ 3 [t _ _
b, 1) = bix, o) <5 fo (1565, x, ) = B, s + 1G5, 3, 12) = b, )]
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(@ Realizations in the N-particle system associated with (4.1)
5
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FIGURE 2. Comparison of the interacting N-particle systems associated with McKean—Vlasov SDEs
(4.1) and (4.3), for N =100 and ¢ = 0.01.
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1b(s. % 1) = b(s, x, p2)) ds

<6Cho1 (O + |x|%) + 3LW3 (11, 112),
t

_ _ 3 _ _
b, ) = b0, p2)I* < 5 /0 (1665, ) = b, )P+ 1bGs, v, 1) = by, )2
+ 1b(s, x, w1) = b(s, y, M2)|2> ds

3 t
<6Chor 1+ 1xP) + /0 b5, %, 1) — bls, , o) ds,
_ ) 1 ! _ 2 1 ! 2
1BGx, 10)| <2];[ b5, x, 1) = bCx, 1) ds| +2\;f b(s, x, 1) ds
0 0
<2Ch1 ()1 + [x[%) + 2K (1 + [x[* 4+ WK (1, 80)).
Similar estimates hold for & (x, 1) and h(x, i, z). Let t— 0o in the above estimates, we

conclude that the averaged equation (3.2) satisfies Assumptions 1-5.
We next check the extra conditions for & by calculating that (for / = r or k)

_ 21—1 t B
/ i, 1 2)'v(d) < S— f f (1. x. .9 — e, . 9
U t Jo Ju

+ |h(s, x, @, Z)|l> v(dz) ds
I—1h ! -1 i I
<27 Cro()(1 + [x1) + 27 K(1 + |x]" + Wh (i, 80)),

_ _ 3/{*1 t B
/ |h(x, w, 2) — h(y, 1, 2)|“v(dz) < / / (1h(s, x, , 2) — h(x, u, 2)I*
U t 0o Ju

+ |h(s, y, 11, 2) — (Y, 11, 2)[F
+ |h(s, x, p, 2) — h(s, y, w, 2)“)v(dz) ds

<3 oM CRQ2 + X + ) + 3 L lx — yI¥,

_ _ 3/(—1 t B
/ |h(x, w1, 2) — h(x, p2, 2)|“v(dz) < ; /0 / (hCs, x, 21, 2) — h(x, 1, 2|
U U

+ s, x, w2, 2) = hlx, pa, 2)|¢
+ / (s, x, w1, 2) — h(s, x, p2, 2)/)(dz) ds
U
<23 p(OCR(L+ ) + 37 LW (1, pa).
Taking t — oo, we conclude that Assumption 7 holds. ]

Appendix B. Propagation of chaos

ForN>landi=1,2,...,N, let (Wi, N, Xi(O)) be independent copies of (W, N, X(0)).
We introduce the noninteracting particle system associated with the McKean—Vlasov SDE
(2.8). The state X'(¢) of the particle i is given by

dX'()=b (t, X'(t =), Lxiy) dt + o (t, X'(t =), Lxigy) AW (1)
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+ [ h(t, X't =), Zxigy, 2) N'(dt, d2) (B.1)
U

for t € [0, T] with initial data X*(0). According to Theorem 1, we have Lxiy = Lx, for all
i=1,2,...,N.Here, X(¢) is the solution of the McKean—Vlasov SDE (2.8) for ¢ € [0, T] with
initial data X(0) = xp.

We also consider the associated interacting particle system

dxX"N()=b (t, XN -), uf’N) dt+o (t, XNt -), uf(’N> dwWi(r)
+ / h (z, XN =), i, z) Nidr, dz) (B.2)
U

with initial data X**V(0) = X(0), where x=*" is the empirical measure of N interacting particles
given by ,uf’N = 1%] Zjvz 1 Oxin (- We proceed to establish and prove the propagation of chaos
result. Furthermore, we note that compared with the existing literature on the Lévy case, par-
ticularly [6, 28, 30], the coefficient conditions in our framework are somewhat more relaxed,
as discussed in Remark 1.

Proposition 3. (Propagation of chaos.) Suppose Assumptions 1-7 hold and r > 4. Then, the
interacting particle system (B.2) is well-posed and converges to the noninteracting particle
system (B.1), that is,

lim sup sup E|X(5)— X"N(o)|* =0. (B.3)
N—00 | KN 0KILT

Proof. First, note that the interacting particle system {X*V }1<igy given in (B.2) can be
regarded as a system of ordinary SDEs driven by Lévy noise, taking values in R¥*V. Thus,
according to [25, Theorem 1.1], it has a unique cadlag solution under Assumptions Al, A4,
AS such that

sup E sup |X"’N(t)|4 <C,
1IN 0<i<T

for any N > 1, where C > 0 is independent of N.
To handle the one-sided locally Lipschitz case, for any 1 <i< N and R > 0, define the

stopping time: ‘ _
¢r = inf {t€ [0, TI:IX'0)| Vv X"V ()| > R} .

Then, by De Morgan’s Law, we obtain

sup E[Xi(0)— XN(0)|* < sup IE[|Xi(t)—Xi'N(t)‘ZH{;R>T}]
0<I<T 0<I<T

. . 2
+ sup E [|X’(t) — XN ()| ]I{;RgT}]
0T
=:01+ O,
where I4 is the indicator function of set A. Similarly to the proof of Theorem 2, we now

estimate Q1 and Q5 respectively.
(1) Estimation of the term Q;. Note that

; ; 2 ; ; 2
Q1= sup E[[X’(t)—X”N(t)| I[{g,pn]g sup E |X'(t A gp) — X"N(t A gp)|” < 0.
t

0<I<T 0<I<T
(B.4)
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By 1t6’s formula, we have
E XA ) = XN A )|
—2E /0 " i ) = XN 2, b (s, XG5 ), Z) — b (5, XV Gs -, V) ds
e fo% o (s Xts =), L) = o (5 X (s =), V)| as

INER . )
+ E/ / ‘h (s, X'(s =), Lxis)» z) —h (s, XV (s —), ,uf’N, z)‘2 v(dz) ds
0 U
=: Q1,rR(D) + Q2 (1) + O3 R. (B.5)

We now estimate Q; g fori =1, 2, 3 by Assumptions 1 and 2 and obtain that
INCR . N 2 IACR ) XN
01.r() < QLR+ 1) / E [X'(s =) —X"N(s )| ds +L/ EW5 (Lxigs me ") ds,
0 0
INCR . N 2 INCR 5 YN
Qo (1) < 2Lg / E [X'(s—)—X"N(s—)|" ds+ ZL/ EW5 (L) 15") ds,
0 0

AR . . 5 AR )
03 (1) <2Lg / E [X'(s =) —X"N(s )| ds+2L / EW; (Lxics), 12 ") ds,
0 0

where

M{REWZ Lricers pXN) ds <2
) 2( Xi(s)s Ms ) S X )

INCR

IACR
EW? (Lxis)- ,uf) ds + 2/0 EW3 (Mf, /LfN) ds,
(B.6)

with M; v Zl | 8xi¢y the empirical measure of N noninteracting particles. Then, by
combining these estimates and applying Gronwall’s inequality, we eventually have

T
; i 2
01 goil:ETE Xt A gr) — XPN (2 A Gr)|” < 10LeCLRHIHIONT /O EW; (Lyi(s)s 14y) ds.

(2) Estimation of the term Q. Using the Cauchy—Schwarz inequality and Theorem 1, we
deduce that

0:= sup B[ - X0 lggen] < sup B (|50~ X% ) B (epen)?

o<I<T o<I<T
X’ 4 XzN 4
<2V2 |E( sup X4+ sup [XEN( \/ ( | () +z|1 ) )
0<I<T 0<I<T R
2 C
< ‘/2— E sup X0 +E sup [X"V(n)* )< —. (B.7)
R 0<I<T 0<I<T R

With the estimations of Q1 and Q; at hand, we conclude that

T
. v C
sup sup E|X(t) — X"N(1)|” < 10LeCLrHIHIODT / sup EW3 (Lxigs) 1Y) ds+ 25
1<i<N O<I<T 0 I<i<N

(B.8)
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Note that, by [5, Theorem 5.8], we have the following estimate for the Wasserstein distance:

N2, ifd <4,
EW; (L 1) SCINT2In(N), ifd=4,
N7/, ifd > 4.
Thus, we observe that the right-hand side of the estimate (B.8) converges to 0 as N — oo. The
result follows, and the proof is complete. O
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