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STERN WAVES WITH VORTICITY
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Abstract

Steady two-dimensional free surface flow past a semi-infinite flat plate is considered. The
vorticity in the flow is assumed to be constant. For large values of the Froude number F,
an analytical relation between F, the vorticity parameter co and the steepness s of the waves
in the far field is derived. In addition numerical solutions are calculated by a boundary
integral equation method.

1. Introduction

Over the years important progress has been achieved in the computation of two-
dimensional nonlinear free-surface flows past surface piercing obstacles. Such flows
are relevant to the modeling of a ship moving at a constant velocity on the free surface
of a fluid. These flows are often studied by neglecting viscosity and by seeking steady
solutions in a frame of reference moving with the obstacle. Interesting particular flows
arise from assuming that the object is semi-infinite. They provide a local description
of the flow near the stern or the bow of a very long ship. We refer to these flows as
stern flows when there is a train of waves on the free surface and as bow flows when
the free surface is waveless in the far field.

Vanden-Broeck and Tuck [13], Vanden-Broeck, Schwartz and Tuck [12] and
Vanden-Broeck [10] obtained semi-analytical solutions for the stern flow past a semi-
infinite two-dimensional flat-bottomed body. They assumed that the flow rises up
along the rear face of the body to a stagnation point at which separation occurs.
Vanden-Broeck [9] described analytically and numerically another family of stern
flows in which the flow separates at the corner of the body. Further studies involving
waveless, time dependent and viscous solutions can be found in [3, 5, 8] and [14].
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322 Y. Kang and J.-M. Vanden-Broeck [2]

Dias and Vanden-Broeck [2] computed solutions for the bow flow past a semi-
infinite two-dimensional flat-bottomed body. The free surface is waveless in the far
field but there is a spray at the bow. The spray is modeled by a layer of water
rising along the bow and falling back as a jet. Bow flows with surface tension were
considered in [1].

All the above calculations assume that the flow is irrotational. This is usually a
very good assumption but vorticity can be generated near solid boundaries or on the
free surface (for example by wind stress).

In this paper, we shall generalize the stern flow of Vanden-Broeck [9] for rotational
flows. We assume that the vorticity is constant throughout the fluid. This assumption
is convenient mathematically and justified when the lengthscale of the free surface
variations is short compared to the lengthscale of the vorticity distribution. The fluid
is assumed to be of infinite depth. Results in water of finite depth were obtained by
McCue and Forbes [6]. Our results should provide a good approximation for flows
in finite depth, when the wavelength of the waves generated is small compared to the
depth. The problem is formulated in Section 2. In Section 3, we take advantage of
the simplicity of the configuration to derive an exact relation between the amplitude
of the waves in the far field and the main parameters of the flow. In Section 4, we
compute nonlinear solutions by a numerical procedure involving an integro-differential
equation coupled with Newton's iterations. The scheme is similar to the ones used
in [9] and [11]. The numerical results are discussed in Section 5. We note that the
results of this paper provide an example of a flow in which the waves discussed in [7]
and [11] occur.

2. Formulation

In this section we formulate the problem of a steady two-dimensional inviscid flow
past a semi-infinite flat-bottomed body (see Figure 1). The effect of surface tension
is neglected and the flow is assumed to separate smoothly from the flat bottom. The
flow is rotational and characterized by a constant vorticity £2. We introduce Cartesian
coordinates with X = 0 at the edge of the plate. The level Y = 0 corresponds to the
"undisturbed level of the free surface", that is, the level the free surface would have at
X = oo if it reached a constant horizontal level. We denote by C the corresponding
constant value of the velocity on the free surface. The draft H is defined as minus the
ordinate of the edge of the plate.

The flow is described in terms of a stream function ty{X, Y) satisfying

V2* = -n (2.1)

in the flow domain. We reduce the problem to one for Laplace's equation by subtracting
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a particular solution of (2.1). Thus if we write

* = \jr - -zY2 + CY

then V2\J/(X, Y) = 0. We require that \j/ -»• 0 as Y —> —oo. This is consistent with
our definition of C.

We make the variables dimensionless by referring them to the velocity scale C and
to a length scale C2/(2g). Thus we define the dimensionless quantities

Here a> is the dimensionless vorticity.
The quantity w(z) = u — iv = rjfy + i\jrx is an analytic function of z = x + iy,

where the fluid velocity vector is (M — coy + 1 , v). We apply Cauchy's integral formula
to the function w(z) on a contour consisting of the free surface, the plate (that is, the
surface just under the plate), a horizontal line at y = —oo and two vertical lines at
x = ±oo. Since w(z) vanishes at y = —oo, there are no contributions from the lines
at y = —oo and at x = ±oo and we have

, . 1 /" u>(?) ,. / o o ,
w(z) = : / dl;, (2.2)

where z is on L. Here L denotes the free surface and the plate. The integral in (2.2)
is a Cauchy principal value.

We parameterize the free surface by x = x/(t), y = y/(t) and the plate by
x = xp(t), y = yp(t) = y(0) where / is the arclength. We choose t = 0 at the edge
of the plate. Then

2 2 = l. (2.3)

Since Y(0) — —H and X(0) = 0, our choice of dimensionless variables implies

where F = C/-Jg~H is the Froude number.
On the plate

y'p(t) =

We consider u and v on the free surface and on the plate as functions of t. Thus
we write u = u/ (t), v = vf (r) on the free surface and u = up(t), v = 0 on the plate.
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Taking the real part of (2.2), we obtain after some algebra and letting

VI = ii/ (s)y'f (s) - vf (s)x'f (s) and V2 = uf (s)x'f (s) + vf (s)y'f (s),

= - f°° (Xf (S) ~ Xf ( 0 ) V1 ~ (y/ {S) ~ yf {t)) V2 dzJo ( ( ) ( ) ) 2 ( ( ) ( ) ) 2

f

Jo
up(s)x'p(s)(yfQ)-y(0))

J ( ( ) ( 0 ) 2 + ( ( t ) (0))2 S'(xp(s) - ^ ( 0 ) 2 + (yf(t) -
when z is on the free surface and

(Xf(s)-xp(t)y + (yf(s)-y(O))2

when z is on the plate.
On the free surface the kinematic condition and Bernoulli equation yield

(«/ (0 - coyf {t) + \)y'f (t) = vf {t)x'f (t), (2.6)

(uf (t) - (oyf ( 0 + I ) 2 + vf (t)
2 + y f - l = 0 . (2.7)

Equation (2.7) expresses the fact that the pressure is constant on the free surface.
For given values of co and F, we seek the functions uf,Vf,x'f, y'f and up satisfying

(2.3), (2.4M2.7).

3. Conservation of momentum

In this section, we show how to use the principle of conservation of momentum to
derive an exact relation between the Froude number F, the vorticity parameter a> and
the steepness s of the waves in the far field. For u> = 0, this relation reduces to the one
derived by Vanden-Broeck [9]. For simplicity we assume that s is small so that the
waves in the far field are described by linear theory. The validity of this assumption
will be justified by the numerical calculations of Section 5.

The principle of conservation of momentum implies that

P

Here S is any closed simply connected contour inside the fluid region, V = (Vx, VY)
is the vector velocity, P is the pressure, p is the density and n is the exterior normal
to the contour. We now choose S to consist of the plate Sp, the free surface SF, a
vertical line SF at X = +00, a horizontal line SH at Y = -00 and a vertical line SL

at X = —00. Taking the component of (3.1) along the X-axis, we obtain

(3.2)
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Here nx is the component of n along the X-axis. It is convenient to replace the line SH

by a horizontal line at Y = —d, where d is arbitrarily large. The integrals over Sp and
SH in (3.2) do not contribute since nx=0 and V(V • n) = 0. Along SF, V(V • n) = 0
and P = 0, so that the integration over SF gives

- f
J-H

Here we chose SR such that y = 0 at the intersection of SR and SF.
As X —> oo, we assume a train of linear waves of amplitude a. Using linear theory

(see for example [3]), we write

Vx = -QY+C-aCkekycoskX, (3.3)

VY = -aCkekY sin kX. (3.4)

The choice of SR implies that cos kX = 0 and sin kX = 1 along SR. Thus

C, (3.5)
W = -aCkekY. (3.6)

To perform the integration over SR, we need an expression for the pressure P. For
this purpose we consider the ^-component of the Euler equation

3VY dVY idP
Vx—-+VY—- = g. (3.7)

a x dY p d Y s

Differentiating (3.4) with respect to X and using cos kX = 0 implies that 3 VY/dX = 0
along SR. Therefore integrating (3.7) with respect to Y along SR gives

---gY=l-V2
Y+ct, (3.8)

where a is a constant of integration.
Substituting (3.8) into (3.2), we get after neglecting terms of order exp(—2kd)

/
°

As X ->• - o o ,

= -QY+T and VY = 0. (3.9)

Here T is a constant which tends to C as <i -> oo. We obtain an equation for the
pressure by substituting (3.9) into (3.7) and integrating with respect to Y. This gives

-P/p-gY = p. (3.10)
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Here /3 is a constant of integration.
Substitution of (3.10) into (3.2) at X = - c o yields

-d

Combining the various contributions over SF, SR and SL in (3.2) gives

-dT2 + pd-ad = 0. (3.11)

We now derive an equation for P — a. We first note that the principle of conservation
of mass implies

, - » ,0

/ {-Q.Y+T)dY=\ (-VY+C)dY. (3.12)
J-d J-d-d J-d

Evaluation of the integrals in (3.12) gives

(3.13,

Next we write Bernoulli's equation at Y = — d (where d is arbitrary large) as

^(-nY+T)2-p=^(-QY+C)2-a. (3.14)

We then combine (3.13) and (3.14) and obtain

d(p -a) = Qd2T- Qd2C - ]-{dC2 - dT2)

, , QTH2 QCH2 THC T2H
= nd2T-nd2C+—— + —j—+ —— + -—. (3.15)

Substitution of (3.13) and (3.15) into (3.11) yields

Since 7" —> C as d —>• oo, we can simplify (3.16) as

1 QW

- UlCH2 -VJL + fiH. (3.17)
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Using Bernoulli's equation on the streamline consisting of the plate and the free
surface at X = ±00 and the relations (3.5), (3.6), (3.8) and (3.10) yields

^(-QY+T)2-p = ̂ (-QY+C)2 + ^a2C2k2-a. (3.18)

Since T -*• C as d -> 00, (3.18) implies p = QCH + \S12H2 + a + O(a2).
Furthermore (3.8) on the free surface (where P = 0, Y — 0 and VY satisfies (3.6))
shows that a = O(a2). Therefore/3 = QCH + \Q2H2+ 0{a2). Since (3.17) implies
H = O(a), we can simplify (3.17) as

VCH + O(a3). (3.19)

Multiplying both sides of (3.19) by \/(HC2) gives

1 a2k oi
= TT7 + -=T- (3-20)2/T2 4 / /

The dispersion relation of linear waves C2 = (g — QC)/k (see [4] for example)
can be rewritten as

F2 = (l -2co)/kH. (3.21)

We note that this dispersion relation implies that the linear waves considered here only
exist for g < Q.C, that is, co < 0.5.

Substituting (3.21) into (3.20) gives

1 _/fly/
2F1~\H) V

l - 2 a A co

Thus

a/H =

We derive the relation between steepness of the wave and Froude number by noting
that 2a is the peak-to-trough wave height since Y = a cos kX. Therefore the steepness
s of the waves (that is, the peak-to-trough wave height divided by the wavelength) is
2a/X.. Using (3.21) and (3.22), we have

-2f)l;'. (3.23,

If we set co = 0, (3.23) reduces to the relation

s2 = 2/(TT2F4)
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derived by Vanden-Broeck [9]. Next we use (3.21) to derive the following equation
for the dimensionless wavelength

H l-2co
(3.24)

Finally we note that the wave height h (that is, the difference of ordinates between a
crest and a trough) is given by

h/H =sX/H = 2a/H = 2-Jl. (3.25)

4. Numerical schemes

In this section, a numerical scheme based on the integro-differential equation
formulation derived in Section 2 is used to solve the problem in the fully nonlinear
case. First, we define N mesh points on the free surface and A' mesh points on the
plate by specifying values of the arclength parameter t = S, where S, = E(i — 1).
Here E is the interval of discretization. We shall also make use of the intermediate
mesh points S,_,/2 = (5,_i + S,)/2. We now define 5N — \ corresponding fundamental
unknown quantities

*;.,-=*; (5,), y'ri=y'f(S,) (4.1)

(i = 1,2 N) on the free surface and

u P . i = u p ( S t ) , i = 1 , 2 , . . . , N - l (4.2)

on the plate. We estimate the values of Xj,,- = JC,(S,-), y,.,- = y/(Si) in terms of the
fundamental unknowns by the trapezoidal rule, that is, xfA = 0, yfA = -2/F2 and

x f J = */,,_, + x'f (Si_t/2)E, y f J = y f J - l + y'f ( 5 , - _ , / 2 ) £ , i = 2,3,...,N

where x'f (5,_i/2) and y'f (S,_i/2) are evaluated from x'f . and y'f i by a four-point inter-
polation formula.

We satisfy (2.3), (2.6) and (2.7) at the mesh points Sh i = 1,2, ...,N. This yields
3N nonlinear algebraic equations. Next we evaluate JC/ (5 ,_I / 2 ) , yf(Sj-\/2) by four-
point interpolation formulas. We then satisfy (2.4) and (2.5) at the points / = S,_i/2,
i = 2, 3, . . . , N by applying the trapezoidal rule to (2.4) and (2.5) with a sum over
the points s = Sj, j = 1,2,..., N. The symmetry of the discretization and of the
trapezoidal rule with respect to the singularity of the integrand at s = t enables us
to evaluate the Cauchy principal value integrals by ignoring the singularity, with an
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0 10 20 30 40 50 60

FIGURE 1. Computed free surface profile with w = 0.05 and F = 6.5.

(1) (2)

FIGURE 2. (1) Computed free surface profile of wave with F = 5.5 and (a): w = 0, (b): w = 0.2.
(2) Same as (1) with (a): o> = 0, (b): w = - 0 . 2 .

accuracy no less than a non-singular integral. This yields 2N — 2 extra nonlinear
equations. One more equation is obtained by imposing

"/.I
= 0. (4.3)

We now have 5N — 1 equations for the 5N — 1 unknowns (4.1)-(4.2). This system is
solved by Newton's method for given values of F and a>.

We found that the truncation of the integrals in (2.4) and (2.5) at s = SN did not
affect the accuracy of the results near the plate, provided SN was sufficiently large.
The only noticeable effect of the truncation was a distortion of the free surface profile
over the last few computed wavelengths in the far field. This distortion can be moved
to larger and larger values of X by increasing SN. Furthermore we found that this
distortion could be minimized by choosing SN such that y/,N = 0. Therefore the
results presented in the next section are based on a modified version of the scheme
described above in which we impose the extra equation

yr.N = 0 (4.4)
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TABLE 1. Values of s, h/H andk/H for various values of wand F = 5.5 with N = 301 and W = 225.

Analytical
solution

Numerical
solution
N = 301

Numerical
solution
N = 225

CO

-0.2
-0.1

0.0
0.1
0.2

-0.2
-0.1

0.0
0.1
0.2

-0.2
-0.1

0.0
0.1
0.2

.s

0.020834
0.017858
0.014882
0.011905
0.008929
0.020894
0.017915
0.014930
0.011939
0.008941
0.020430
0.017521
0.014608
0.011686
0.008762

h/H

2.828427
2.828427
2.828427
2.828427
2.828427
2.820860
2.821571
2.821375
2.819560
2.814659
2.813131
2.814568
2.815461
2.815219
2.813313

X/H

135.760152
158.384310
190.056914
237.574826
316.766434
135.006413
.157.497852
188.973970
236.169036
314.798733
137.697517
160.636548
192.739231
240.873556
321.067336

TABLE 2. Values of s, h/H and X/H for various values of w and F = 2.35 with N = 301 and N = 225.

Analytical
solution

Numerical
solution
N = 301

Numerical
solution
N = 225

CO

-0.2
-0.1

0.0
0.1
0.2

-0.2
-0.1

0.0
0.1
0.2

-0.2
-0.1

0.0
0.1
0.2

s

0.114119
0.097816
0.081513
0.065211
0.048908
0.137738
0.117949
0.098071
0.078529
0.058687
0.134793
0.119337
0.099302
0.079107
0.057356

h/H

2.828427
2.828427
2.828427
2.828427
2.828427
3.082258
3.084950
3.079049
3.078580
3.063495
3.079198
3.083014
3.080104
3.064428
3.055341

X/H

24.784891
28.915495
34.698727
43.373408
57.831211
22.376201
26.154959
31.396071
39.203178
52.200828
22.843887
25.834607
31.017534
38.737748
53.269672
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FIGURE 3. (1) Computed free surface profile of wave with F = 2.35 and (a): w = 0, (b): a» = 0.2.

(2) Same as (1) with (a): co = 0, (b): w = - 0 . 2 .

and add E to the list of unknowns. We then have a system of 5N nonlinear equations
with 5N unknowns to be solved by Newton's method for given values of N, F and
co. We note that in this version of the scheme, N is fixed and E is found as part
of the solution to satisfy (4.4). There are of course an infinite number of points in
the far field for which y = 0, each two successive points being separated by half a
wavelength of the train of waves. The choice of the particular point at which (4.4) is
satisfied depends on the initial guess and defines the point at which the free surface
is truncated. A convenient choice for the initial guess for the modified scheme is a
converged solution of the first scheme in which (4.4) is approximately satisfied.

5. Discussion of the results

The free surface profile contains a train of waves behind the plate. The highest
point of the profile corresponds to the crest nearest the plate and the steepness of the
waves decreases away from the plate and reaches a constant value after a few cycles
even if the vorticity is not zero. As the vorticity increases, the wavelength lengthens.
Most of the computations were performed with N = 3 0 1 .

In Tables 1 and 2, we compare the numerical values of s, h/H and X/H with
the analytical approximations (3.23), (3.25) and (3.24) for F = 5.5 and F = 2.35.
Results for different values of N are listed to illustrate the accuracy of the results. All
the calculations were done with the scheme satisfying (4.4). The results show that the
agreement between analytical and numerical values improves as F increases. This
is consistent with the fact that the amplitude of the waves decreases as F increases.
Therefore the waves in the far field are described by the linear theory as F —> oo.

Typical computed nonlinear profiles are shown in Figures 1-3. We note that the
waves in Figure 3 are nonlinear gravity waves with sharp crests and broad troughs.
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Finally let us comment on formula (3.23). It implies that for a fixed value of the
Froude number F, positive vorticity decreases the steepness of the waves in the far
field. This suggests that the generation of vorticity (for example by the boundary
layers) might reduce the wave resistance.
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