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1. Introduction. In the course of classifying those finite groups F which have
exactly five maximal subgroups, R. W. van der Waall [4] proved that one encounters the
following situation. One class of such groups F is described by F = SP, where
S = 02(F)eSyl2(F), PeSyl3(F), 5/$(5) = Z2 x Z2, P is cyclic and P operates via
conjugation on 5 as a group of order 3, because in this case F/O(F) =AA.

This raises the problem of determining the internal structure of those finite 2-groups
with two generators which have an automorphism of order 3.

Apart from abelian groups with these properties—which turn out to be homocyclic—
there are also nonabelian ones. A search in [2] through the non-abelian 2-groups of order
at most 64 with two generators shows that there exist among these groups exactly three
groups of the desired type, all of them of class two. These are numbered in [2] as 8/5,
32/18 and 64/181; 8/5 being the quaternion group QH.

This suggests that the 2-groups in question occur rather rarely among the 2-groups
with two generators and gives some hope for a uniform description of them by a set of
well-chosen parameters.

The aim of this note is to show that—at least for groups of class two—this is actually
the case; we shall prove the following:

THEOREM. Let G be a finite nonabelian 2-group with two generators which has an
automorphism of order 3.

(i) / / G has class two, then one of the following two cases occurs:
(a) G = (x,y\x2" = y2t=[x,yf,[x,yf=[x,[x,y]} = [y,[x,y]] = l), where b^O

andk = d = b + l.
(b) G= (x,y\x2k = y2k = [x,yf =[x,[x,y]] = [y,[x,y]\ = \), where \^d<k.
(ii) If G is a product of two cyclic subgroups, then G = Q$.

The "experimental" knowledge of such groups obtained from [2] might suggest that
for a given s there exists at most one 2-group of order T satisfying the restrictions of part
(i) of the Theorem. However, the next result shows that even for such rather special
2-groups the intuition fails to offer the right answer:

COROLLARY. The number of nonisomorphic types of 2-groups of order T matching the
description of (b) in the Theorem tends to infinity with s. On the other hand, a group of
order 2s and of type (a) exists if and only if 5 = 0 (mod 3). For each s =0 (mod 3) there
exists an unique group of type (a) and of order 2s.

All groups in discussion are finite. The notation is standard and follows that of [1].

2. Preliminary results. Throughout this section G will denote a 2-group which
possesses an automorphism a of order 3. We shall denote Cc(a) := {x e G \ x = a(x)}
and [G, a] = {{x'^ix) \ x e G}). Note that [G, a] is a normal a-invariant subgroup of
G.
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For the sake of convenience we shall list here some special cases of well-known
results which appear in [1].

2.1 G = CG(a)[G, a]. If, moreover, G is abelian, then G = CG{a) x [G, a].

Proof. See Theorems 5.2.3 and 5.3.5 of [1].

2.2 If Cc(a) = l, then for every geG:
(>)ga(g)a2(g) = l

00 g<*(g) = a(g)g.

Proof. SeeTh. 10.1.5 of [1].

2.3 If G is abelian and if a acts indecomposably on G, then G is homocyclic.

Proof. See Th. 5.2.2 of [1].

2.4 If H is a normal or-invariant subgroup of G, then a induces on G := G/H an
automorphism a defined by a{gH) := a(g)H such that Cc(a) = CG{a)HIH.

Proof. See Th. 5.3.15 of [1].

3. Some lemmas. Throughout this section, G will denote a 2-group with two
generators which has an automorphism a of order 3. Here is the place to make some
notation which will be used freely in the sequel.

The Frattini subgroup <&(G) of G will be denoted by * . The three maximal
subgroups of G will be denoted by A/,, M2 and M3. One can suppose that a-(Af,) = M2,
a(M2) = M, and a(M3) = A/,.

If {x,y} is a minimal set of generators of G, one can suppose that x e M{ and
therefore that a(x) e M2\MX. Therefore there is no loss in supposing that y = a(x). From
now on we shall denote a(x) by y.

3.1 If H is an cr-invariant proper subgroup of G, then H ̂  3>.

Proof. Suppose for instance that H^MX. Then H = a{H)^Mx n a(Mt) = Af, PI
M2 = $ .

3.2 [G,a] = G.

Proof. Suppose by contrary that [G,a]J=G, so [G,ar]=s4> by 3.1. By 2.1,
G = CG{oc)® = Cc(a), contradicting \a\ = 3.

3.3 Cc(a)<G iff Cc(a)^Z(G).

Proof. If Cc(or) *s Z(G) there is nothing to prove. If CG(a)<lG, let / e Cc{a) and
g e G be arbitrary. Then a{f8) =fa{8) =/«, which means that [G, a-]« Cc(Cc(a)). The
result now follows by 3.2.

3.4 Cc(a) = l iff G is abelian.

Proo/. If CG(a) = 1, then G is abelian because of 2.2(ii) and the fact that
G = (x,a(x)).

If G is abelian, then by 2.1 and 3.2 G = CG{a) x G, thus CG{a) = 1.
3.5 If CG(a) =s / / and if H is a normal tv-invariant subgroup of G, then G' =£ //.
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Proof. A direct consequence of 2.4 and 3.4.

3.6 CG(a)^G'.

Proof. Let G := GIG' and define d- as in 2.4. Note that G has also two generators
and that |d-| =3. Since G is abelian, it follows by 3.4 that CG(a) = l. Therefore
CG{a)^G' by 2.4.

3.7 G' is the normal closure of Cc{a) in G.

Proof. Since the normal closure of Cc{<x) in G is a normal ar-invariant subgroup of
G, the result follows by 3.5 and 3.6.

3.8 If /c is the least positive integer for which x2" e G', then

Proof. If G and d- are defined as in 2.4, where G = G/G', then by 3.2 a acts
indecomposably on G. Therefore G is homocyclic by 2.3.

3.9 CG(a)<G iff G'^Z(G).

Proof. This follows from 3.3, 3.6 and 3.7.

3.10 If G = (x)(y), then<i>=(x2)(y2).

Proof. Remember that x e Mi and y e M2, so Mx = {x)Q> and M2 = (y)®. This shows
that (jc)n<D=(jt2) and (y) n<D= (y2). Now M, = M, DG = M, n <x)<y) = (x)(Mi C\
(y)) and since (y2) = (y) n<& =s (y) D M, < <y) it follows that M, fl (y) = (_y2). Finally,
since) '2e$, one obtains that $ = $flJW1 = $ n (*)(y2) = O^H^H (x))= (y2)(x2) =
(x2)(y2).

4. Proofs of the results.

Proof of the Theorem. We start by proving (i). Since G is of class two, G' =sZ(G),
so by 3.7 Cc(ar) = G' ^Z(G). But G has two generators, so G' = ([*,)>]). Set 2d = |G'|
and let k be defined as in 3.8. Because JC2* e G' = ^ ( a - ) , one obtains that y2* = a-(̂ 2*) =
x2\ Moreover, since x2" e Z(G), one has [x2\ y] = [x, y]2" = 1, which shows that d \ k.

Now x2* = y2*eG'= ([x,y]), so there exists some b with O^b^d such that
x2k = y2" = [x,yfb.

From 3.4 and 2.2(i) we infer that xya(y) = xa(x)a2(x) e G'. Without any loss (one
can change the set {x,y} of generators of G if necessary), one can assume that
a(y)=y~lx~1. Then one verifies that a3(x)=x, a3(y) = y and a([x,y]) = [x,y],
provided that a defined by a(x): = y and a(y) : = y~lx~* is indeed an automorphism of
G. Note that the above defined a must also satisfy the relation a(y)2" = y2" = [x,y]2\

By taking into account that \[x, y]\ = 2d divides 2* and that [x, y] e Z(G), one obtains
that a(yf = (y-ix-lf = [x~\y~l]2k~H2k~')y~2kx~2k = [x,y]-^2k"+2''+'). From the equality
a{yf = [x,yf it follows that [x,yf"+3-2b = 1. This implies that 2d \ 2"'1 + 3.2". We
distinguish two cases:

(a) If b<d, then d-b^l and 212*-6"1+ 3, which forces k = b + l. Thus
b + l*£d*zk = b + l, giving k = d = b + l, 6 3=0.

(b) If b = d, then 2d \ 2k~l + 3 . 2d, which imposes no other restrictions on b, d, k
than 0<b = d<k. Here b >0 because G is nonabelian.
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In order to prove (ii), we may assume that G = (x)(y), so by 3.10 $ = (x2)(y2). If
k is defined as in 3.8, then by 3.8 and repeated use of 3.10 one obtains G' = (x2k)(y2k).

We claim that CG(a) = G'.
Assume the contrary; then one can suppose that x2* £ Cc{a). Indeed, otherwise

y2"= x2", so G' = (x2") is cyclic. Since Cc(a)^<&(G'), one contradicts 3.7. Now since
x2" $ Cc(a), then y2k¥=x2" and this together with G' = {x2k){y2k) shows that G' has also
two generators.

If p-.= a\C', then Cc(/3) = CG(a) < G', which shows that 0 has order 3. By 3.2,
Cc{a)=£ <&(G'), contradicting again 3.7. This proves the claim.

Now by 3.3 Cc(ar) = G'=£Z(G), which means that G has class two. Therefore
G' = (x2k) = ([*,>']) and one can assume x2" = [x,y]. If (b,d,k) has the same meaning
as in case (i) of the Theorem, we obtain in this case that (b, d, k) = (0,1,1). But then
G = (x,y \x2 = y2 = [x,y], [x, [x,y]] = [y, [x,y]] = [*,y]2 = 1) = Qs, which ends the
proof.

Proof of the Corollary. Note that if the presentation of G is described by a list
(b,d,k), then \G\ = \G : G'\. \G'\=22k+d. This shows at once that if s is given, there
exists a group G of order 2s with a presentation of type (a) if and only if 5 =
3d = 0 (mod 3). Moreover, s determines uniquely the presentation of G in this case
because b = d — 1, k = d = s/3. This proves the second assertion of the Corollary.

Suppose now that s is given and that we want to produce a group of order 2s

admitting a presentation of type (b). Then such a presentation is described by a list
(b,d,k) where 1 =£ b = d < k and 2k + d = s (although b does not appear explicitly in the
description of a group of type (b)), we use this notation for the sake of uniformity).

This shows that the number of the lists (b,d,k) verifying these conditions tends to
infinity with s and proves the Corollary.

Remarks, (i) It is interesting to relate the outcome of our analysis to a result of U.
Martin [3]. She proved that if p is a prime, if a(d,n) is the number of d-generators
p-groups of Frattini class n and if e(d, n) is the number of these groups having no coprime
automorphisms, then lim a(d, n)/e(d, n) = 1.

d—•oo

In particular this shows that if we keep the Frattini class of a 2-group fixed, the
number of 2-groups of this Frattini class and having no coprime automorphisms tends to
infinity with their number of generators.

Our Corollary may be regarded as a counterpart of this observation: it shows that the
number of the nonisomorphic types of class two 2-groups with two generators and which
have coprime automorphisms also tends to infinity with their Frattini length.

(ii) It is easy to prove that for a given s the number n(s) of the 2-groups of order 2s,
of class two, with two generators, which have an automorphism of order 3 (of course, we
refer here to nonisomorphic such groups) is given by the following formulas:
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if 5 = 0 (mod 3) and

if s ^ O (mod 3).
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