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Abstract

The notions of limits and colimits are studied in the category of C*-algebras. It is shown that limits and
colimits of diagrams of C*-algebras are stable under tensor product by a fixed C*-algebra, and crossed
product by a locally compact group.
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1. Introduction

In a recent paper, Pedersen has initiated a systematic study of pullback and pushout
constructions and their intrinsic connection with extensions and free products in C -
algebra theory ([6]). In this paper we investigate the more general notions of limits
and colimits in the category of C*-algebras, which include pullback and pushout as
special cases. Our main results Theorem 3.3 and Theorem 4.2 are generalization of
[6, Theorem 4.8 and Theorem 6.3] to colimits of diagrams of C*-algebras. Namely,
assuming some restrictions, colimits of diagrams of C*-algebras are shown to be stable
under tensoring by a fixed C*-algebra, and under crossed product with a fixed group.
To prove these results we need to assume that the diagrams are connected and that the
connecting morphisms are proper. However, this restriction is not needed in the case
of limits. Examples of connected diagrams are pullback, pushout, and direct limits.
The paper is organized as follows. In Section 2, we gather notations, terminologies,
and several constructions from category theory. In particular, the notions of limits
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98 M. Khoshkam and J. Tavakoli [2]

and colimits which are the main subjects of the paper are discussed extensively. The
colimit of a diagram is seen to be a generalized amalgamated free product of the
C*-algebras appearing in the diagram, while the limit is a C*-subalgebra of the direct
product of the family. Section 3, is devoted to tensor products and our main theorem in
this section (Theorem 3.3) shows that if a diagram of C*-algebras is tensored (maximal
tensor product) by a C*-algebra, then the colimit of the resulting diagram is obtained
simply by taking the tensor product of the colimit of the original diagram with the
tensoring C*-algebra. In Section 4 we prove a similar theorem (Theorem 4.2) for the
full crossed product by a locally compact group when the algebras in the diagram are
equipped with an action of a locally compact group. The stability of the limit of a
diagram under tensor product (minimal and maximal) and crossed product (full and
reduced) is proved in Section 4. In the case of minimal tensor product or the reduced
crossed product we need the tensoring C*-algebra or the group to be exact (cf. [9]).
Throughout, C*-alg denotes the category of C*-algebras. The maps in this category
are *-homomorphisms of C*-algebras.

As alluded to, this work was motivated by the recent work ([6]) of Pedersen on
pullbacks and pushouts. Much of the ideas and techniques used in this paper are based
on that article.

2. Constructions

In this section we introduce our notations, definitions and several constructions.
The notions of limit and colimit in the category of C*-algebras are given. As well,
equalizers and coequalizers in C*-alg and their relation with limits and colimits are
studied. We show that in the category C*-alg both limits and colimits exist. The
existence of pullbacks and pushouts then follow as special cases. Our main reference
for categorical results is ([4]).

DEFINITION 2.1. Let / be a small (indexed) category with a set of objects and a
set of morphisms. A diagram, D, in C*-alg, indexed by / , is a functor / -»• C*-alg.
In other words, for each i e /, A(i) = At and for each i -+ j in / , there is a map
Ai —+ Aj m C*-alg. For i,j € / , / < j would mean that there exists a map i -+ j
in the category / including the identity maps.

For example any C*-algebra C determines a constant diagram, which has the same
value C for all i € I.

DEFINITION 2.2. A cocone is a map from a diagram D to a constant diagram C
(called the vertext), which consists of a family of maps {A, -A- C},€/, denoted by
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such that the triangle

A, 'JL . Aj

99

commutes, where a^ is the induced map from i -*• j in / .

A cocone D —• C with vertex C is universal to D when for every other cocone
/ : D -» C" there is a unique map y : C —>• C with yt,; = / , for all i e / as in the
following commutative diagram

The universal cocone, if it exists, is called the colimit of the diagram D and is
denoted by C = lim D. For example, if / is the category < - • - > , then the colimit
is called a pushout, and when / is • =t •, the colimit is called a coequalizer (where
we have indicated only the nonidentity maps). The dual notion of colimit is limit. A
cone is a diagram map from a constant diagram C to some other diagram D, which
consists of a family of maps {C —'-* ^ i} 1 6 / , denoted by / : C -> D, such that the
triangle

commutes, where atj is the induced map from / -» j in / .
The universal cone, if it exists, is called the limit of the diagram D and is denoted

by C = limD. For example, if / has two elements as a discrete category, then a
diagram is just a pair of C*-algebras and a limit of that diagram is the product of these
C*-algebras. The limits of the category -> • «— is called a pullback and that of • ^3 •
an equalizer.

We show that C*-alg is closed under colimits. Given a family {Ai]ieI of C*-
algebras, the coproduct of the family is the universal C-algebra A such that there
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exists a morphism from each A, into A compatible with the connecting morphisms of
the diagram and if B is another C-algebra with these properties, then there exists a
unique morphism from A to B making the relevant diagrams commutative.

LEMMA 2.3. Let {A,},€/ be any family of C* -algebras. Then the coproduct of this
family exists.

PROOF. Let & be the set of finite subsets of / . Then, for F € &, it is easy to see
that the coproduct of {Af } f e F is just the free product of Af for / € F. If we denote
these free products by AF — \JfeF Af, then we get a directed system of C-algebras
{AF}Fz&. NOW the directed limit of this new family of C*-algebras is the coproduct
of the family {A,}je/ which we denote by A = JJJ€/ A,. Clearly, there exists an
embedding from each A, into A = ]J,€ / A,. On the other hand, if for each i € / there
is a morphism a, from A, to another C*-algebra B, then for each F e &, since AF

is finite coproduct, there exists a unique map fiF from A F to B making the triangles
commute:

V

B

Now since A is the directed limit of A F 's, there is a unique map y from A to B making
the following diagram commutative

Therefore, the C-algebra A has the universal property of coproduct. •

REMARK 2.4. The coproduct of a family {A,}(6/ is denoted by JJ, A,. If D= (A,}1€/

is a diagram of C*-algebras, JJj£y Ay, will denote the coproduct of the family {A; },<,
obtained by adding for each i < j one copy of Ay to the original family. Similarly,
fj,<, A, denotes the product of the family {A,},<, obtained by adding for each i < j
one copy of A, to the original family.

Next we show that in C*-alg every pair of parallel arrows have a coequalizer.

LEMMA 2.5. Let A ==t B ,

the equalizer off and g exist.
LEMMA 2.5. Let A ==s B be parallel maps in C-alg. Then the coequalizer and
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PROOF. We show that the diagram

B/(f(x) - g(x))

where {f (x) - g(x)) denotes the closed ideal of B generated by the differences
fix) - g(x) and n is the canonical surjection is the coequalizer of the two maps.
Obviously, nf = ng. Now if B ->• D is any map from B to D such that hf = hg,
then we can define y : B/(f(x) - g(x)) -+ D by y(b + I) = h(b), for all b e B. It
is easy to see that the map y is well defined and unique. Therefore the above diagram
is a coequalizer. It is clear that E = {x € A : / (x) = g(x)} is the equalizer of the
two maps / and g. •

EXAMPLE. The Calkin algebra is a coequalizer for the embedding K(H) -*• B(H)
and the zero map. Similarly, each quotient is a coequalizer.

THEOREM 2.6. In C*-alg every diagram has a colimit.

PROOF. Let D= {Aj}ie, be a diagram in C*-alg, where / is an indexed category.
Consider the following diagram

Ai ^ • A ,

Since JJ,^ Aj is a coproduct, there exists a unique map / making the upper square
commute and a unique map g such that the lower square commutes. By Lemma 2.5,
there is a coequalizer diagram for the two maps / and g,

Now we will show that C is in fact the colimit of the diagram D. The map n
composite with the injections i> gives maps a,; = ni,: : A,• —>• C for each i. Since 7r is
a coequalizer,

ajay = nijoijj = ngit = nf it = 7Tt, = a,.

AHence D -> C is a cocone. If D —• £ is any other such cocone, its maps A,
factor through a unique map LI,e/A, —> E from the coproduct. In other words,
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kit = Yi for all '• Since y is a cocone, kf = kg. And n being a coequalizer, there
exists a unique C E such that Sn — k. Therefore

Sat = 8cij = kit = Yi

for all /. Hence So = y, that is, y factors through a. This proves that (C, a) is
a universal cocone. Therefore, (C, a) is colimit for the diagram D, that is, C =
limD. •

COROLLARY 2.7. In C*-alg pushouts exist.

PROOF. Since a pushout is the colimit of a diagram
exists in C*-alg.

•, by Theorem 2.6, it
D

LEMMA 2.8. In C*-alg, every coequalizer is a pushout and conversely every pushout
is a coequalizer.

PROOF. Let A =t B
ing diagram is pushout

C be a coequalizer diagram in C*-alg. Then the follow-

where (^) and (*) are the unique induced maps from the coproduct (free product)
A * B. lix, y : B -*• X are two maps with JC(^) = y(s,), thenxf = yg andx = y.
But n is coequalizer, so there exists a unique map C -*• X such that yn = x = v.
Hence the diagram is pushout. The converse follows dually. •

The following theorem is the dual of Theorem 2.6, which shows that C*-alg is also
closed under limits.

THEOREM 2.9. Any diagram D in C*-alg has a limit.

PROOF. By Lemma 2.5, the equalizer of any two parallel maps exists in C*-alg.
If we show that the product of any family of C*-algebras exists, then the limit of
the diagram D would be the equalizer of the two parallel maps between fT(6/ At

and ]"[;<, Aj, and the proof is the dual of Theorem 2.6. Given {A,},e/, a family of
C*-algebras, the product of the family is simply the direct product denoted by ["[, A/-

https://doi.org/10.1017/S1446788700008491 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700008491


[7] Categorical constructions in C*-algebra theory 103

This is the C*-algebra of functions defined on / such t h a t / (i) e A, and i -*• \\f (i)\\
is bounded, under pointwise operations. This C-algebra has also universal property
of product. For, if {C A A,) . , is a family of maps from a C-algebra C to A,, then
we define the unique map C -> fT/ ^ ' by y (c) = / , where / (/) = 7T,(c). D

In fact, an explicit description of the limit of a diagram £>({A,}1£/) as a C*-
subalgebra is given by

hmD= / eYlA,:f(j) = av(f(i)), «<, : A,- -* A, .

COROLLARY 2.10. /n C*-alg pullbacks exist.

PROOF. Since a pullback is the limit of a diagram —>••<-, by Theorem 2.9 it exists
in C*-alg. •

LEMMA 2.11. In C*-alg every equalizer is a pullback and conversely a pullback is
an equalizer.

PROOF. Let E —^ A =t B be an equalizer diagram in C*-alg. Then the following
diagram is pullback

— A x B

where / is the identity map A —* A. If a,b : K -» A are two maps from Y to A
such that (/, g)a = (I, f )b, then ga = f b and a = b. Since E is an equalizer, there
exists a unique map F A £ such that ea = a = b. Therefore the above diagram is
pullback. The converse follows dually. •

3. Tensor products

In this section we prove that colimit diagrams are stable under maximal tensor
product by a fixed C*-algebra Y. Throughout this paper <g) will denote the maximal
tensor product. Recall that a morphism a : A -> B between C*-algebras is said
to be proper if for any approximate unit (ut) of A, («(«,)) is an approximate unit
of B. For a C*-algebra A, M(A) denotes the multiplier algebra of A. It is easy to see
that a proper morphism a : A —> B extends to a morphism from M(A) into M(B).
Let D = {A/J.-g/ be a diagram of C*-algebras. Then, D <g> Y denotes the diagram
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obtained by taking the maximal tensor product of the members of D by Y. Given a
map a : A -*• B, the induced morphism, a ® i from A ® Y into B <g> Y will always
be denoted by a. The case of minimal tensor product is considered at the end of the
next section along with the reduced crossed product.

DEFINITION 3.1. A diagram, D, of C*-algebras is said to be connected if given

At,Aj € D, at least one of the following holds

(i) there exists a morphism atj : Ai. -*• Aj<;
(ii) there exists a morphism a,, : Aj -> A,;

(iii) there exists k e I and morphisms aik : A,- -*• Ak and ajk : Aj -> Ak;
(iv) there exists k. e / and morphisms atjr : Ak -*• At and att; : Ak -*• Aj.

For Ai, Aj•., Ak in D with morphisms ati; : Ak —*• Ah akj : Ak —>• Aj let Ay be the
corresponding pushout given by the commutative diagram

Aj • Ay

The C-algebra Ay may not be in D. Denote by D the diagram obtained by adding all
such pushouts to D, that is, the pushout completion of D. The pullback completion
is defined similarly and denoted by D. With these conventions we have the following
lemma whose proof is routine and omitted.

LEMMA 3.2. Let D be a diagram of C*-algebras. Then,

(i) HmD = lim£>;

(ii) ljrn D = ljm D.

THEOREM 3.3. Let D be a connected diagram of C*-algebras such that the con-
necting morphisms are proper. Then,forany C*-algebra Y, lim(£><g) Y) = limZ)<g) Y.

PROOF. Let A = lim D. We want to prove that A <g) Y = lim(Z) (g> Y). First assume

that Y is a unital C*-algebra. For each / € / , let ij/,; : A, <S) Y —*• Z be a morphism

into the C* algebra Z such that for all /, j the diagram

At (g) Y
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[9] Categorical constructions in O-algebra theory 105

commutes, where "ay = ay <g> I. Restrict each t/o to A, to get commuting diagrams

Hence, there exists a unique morphism a : A —»• Z such that the triangles

Z

are commutative, that is yr; — a cxpj for all j e / , where ^ : : A\ —> A is the injection.
Next, consider the diagrams

where Zy is the C*-subalgebra of Z generated by V) (A/ ® ^) U iM^i ® ^)- Since
Txy is proper, an application of ([6, Lemma 4.4]) shows that there exists a map
\jfj : M(Aj ® Y) -*• M(Zjj) C M(Z), an extension of i/r,, where the last inclusion
follows from ([5, 3.12.12]). Now, in view of the inclusion Y = I <g> Y C M(At ® Y)
we obtain morphisms p{•. = r̂,-|y : K —>• M(Z). We show that p,(y) is independent of
i for each y e K. Given i, j € I, using the connectedness of the diagram D, there are
three cases. There exists ay : A, —> A; (or from Aj to A,), or there exists k e / and
morphisms a,t : A, ->• At and ay i : Aj —> At, or aki : At ->• A, and akj : Ak -*• Aj.
Since the morphisms a,, 's are proper we obtain commuting diagrams

M(A, ® Y) • M(Aj ® Y)

and

M(At ® Y) - 2
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The claim in the first two cases follows easily from the commutativity of the above
diagrams. The third case is reduced to the previous cases by using Lemma 3.2. To
see that p(y) commutes with a (a) for each y e Y and a € A, it suffices to verify this
fora € A,. But,

= ^,(a <g> y).a(<p(a))p(y) = ft{a

On the other hand,

p(y)cr(<p(a)) = (a(«?(a*))p(y*))* = y).

Hence, p(y) commutes with cr(<p(A,)). Since IJ, ^,(A,) generates A it follows that
for each y e Y, p(y) commutes with <r(A). There exists, by ([7, Proposition 4.7]), a
unique morphism r : A <g> Y —*• Z such that x{a <8> y) = a(a)p{y). To complete the
proof we must show that the triangles

commute, that is, V^OO
forma <8>y e A,,<S> Y.

It is enough to check this for the elements of the

<8> y)) = r ( ^ ( a ) ® y) =

y).

Finally, we consider the non-unital case. Given coherent morphisms ^ : A t ® Y -+
Z, first as before we extend them to get morphisms \frt : M{At <8> Y) -*• M(Z).
Since A, ® K is an essential ideal in A, ® Y, where Y is the unitization of Y,
we have that A, (g> Y C M(At <8» Y). Hence, by restriction we obtain morphisms
yjfi : Ai ® Y -*• M(Z). By the first part of the proof there exists a morphism
~a : A <g> Y ->• M(Z) such that for each / € / , r/s,; = ~o o Tpt. Let a = ~a\A®y. Then,
\]/,: = a o Jpi for all i € I. This completes the proof. •

REMARK 3.4. The above theorem is false if the connectedness is not assumed.
For the simplest nonconnected diagram consisting of two points A and B and no
morphism, the theorem implies that (A * B) <g) D = (A ® D) * (B igi D) which is
false. Any disconnected diagram can be reduced to the discrete case of points and no
morphisms by taking the colimits of its components.

https://doi.org/10.1017/S1446788700008491 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700008491
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4. Crossed products

Let G be a locally compact group. An action of G on a C*-algebra A is a
homomorphism a : G -*• Aut (A), Aut(A) being the automorphism group of A, such
that g -*• a(g)a is continuous for each a e A. The full and reduced crossed products
A x G and A >ir G are the enclosures of the involutive algebra L'(G, A) under
certain norms. See [5, 7.6] for details of crossed product constructions. Recall that if
the group G acts on the C*-algebras A and B, then a morphism / : A —> B is said
to be equivariant if it commutes with the action of G, that is, / (ga) = gf (a) for all
a e A and g e G.

PROPOSITION 4.1. Let D = {A,},€; be a diagram of C*-algebras with a group
G acting on each At such that the connecting morphisms are G-equivariant. Let
A = lim D and A = lim D. Then there exists a unique action ofG on A, and a unique
action on A such that the morphisms <pt : A; -> A and n,•, : A —> A, are equivariant
for all i el.

PROOF. For each i € / and j e G w e have a morphism % o g : At —*• A defined
by (pi o g(x) = cpi(gx). Moreover, if c*y : A,: —*• Ajt then

(Pi O g(CKyCO) = <Pi(gaij(x)) = (Piioiijigx)) = (Pi(gx) = (Pi O g(X).

Hence, by the universal property of colimit, there exists a unique morphism

ag : A -> A

such that (pi; o g = ag o ip,. It is routine to check that g -*• og defines an action of G on
A. The limit case is similar or one may use the remarks following Theorem 3.3 and
define the action by (sf)(i) = s.f (i) for e a c h / e lim D, i e I, and s e G. D

THEOREM 4.2. Let Dbea connected diagram of C* -algebras equipped with an ac-
tion of a locally compact group G. If, the connecting maps are proper and equivariant,
then

lim(D xi G) = lim D x G,

where the action ofG on lim D is given by Proposition 4.1.

PROOF. Let A = lim D and let (p,•• : A,—•> A be the injection. Let TT, : A, x G ->• K
be coherent morphisms into a C*-algebra K. This means that 7f, o Oy = 5r)-, where
c*y: : A,; x G —• Aj x G is induced from the G-invariant morphism ay : A, -> A,.
Assume that Y c # ( # ) for some Hilbert space / / . By [5, Proposition 7.6.4] there
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exists a covariant representation (jr;, «,) of (A,, G) such that TCj — n{ x «,-. First we
show that the diagram

A, •Aj

B(H)

commutes whenever there exists a morphism ay : A, —• Aj. Let {fk} be an approxi-
mate unit of L'(G). Then,

nj («„ (a))uj (fk) = Wj (atf (a) ® fk) = Wj (a}, (a ® /»))(1)

where a <8> / denotes the function defined by a <g> / (^) = / (g)a and 5, denotes
the representation of Ll(G) induced by «,-. Taking limit as )fe - • oo we obtain
7Tj(aij(a)) = 7Tj(a) when a € A,. This shows that the morphisms 7r, are coherent.
Hence, there exists a unique morphism n : A —> B(H) such that the triangles

B(H)

commute. Next, we show that if there exists a morphism a*, : A,
y =

j , and

(2) = Uj(g)y.

This fact is needed later in the proof. First, if/ € CC(G), where CC(G) denotes the
algebra of compactly supported continuous complex valued functions on G, and g e
G, then Ui(g)yui(f) = Uj(g)yUj(f). To see this observe that, y = ^(^(ay (a)) =
itj(ao(a)) = jti{a). l i f e L\G), then by (1), 7rj(au(a))iij(f) = jr,(a)Ui(f).

Moreover, when g e G it is easy to see that «,(,?)«,(/) = Uj(fg), where fg(h) =
f(g~lh) for he G. Now

(3) u,(g)yu,(f) = KI-

= 7Tj

= Xj (gay («))«;
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Now (2) follows from (3) by taking the limit over an approximate unit of Ll(G).
To define the representation u : G —> B(H) such that {n, u) is a covariant pair
for the C*-dynamical system (A, o, G) we proceed as follows. Without loss of
generality we assume that n is nondegenerate. That is the linear span of the set
H = {n(a)£ : a € A, £ € H) is dense in H. Since (J(. #>,(A,) generates A and the
diagram D is connected, it suffices to define u(g) on vectors of the form n(<pj(a))t;
for a € A, and £ e H. Let

To show that ug is well defined we must prove that if j r(^(a))£ = n((pj(b))r}, then
= ug(jt(<Pj(a)))r). If there is a map ay : A, ->• A; , then by (2),

= Uj(g)7Ti(a) and hence

Next, suppose there is no morphism between A, and A; but there exist maps aik :
A, —> Ak and ajk : A; —*• Ak for some k e I. Then, using (2) we get

)nj (a)r)

Finally, suppose there exist maps aki : Ak -» A, and akj : Ak -*• Aj for some
k € I. Let Ay be the resulting pushout of otki and akJ (see Proposition 4.1) added
to the diagram D. Since the maps are proper, by [6, Theorem 6.3] there exists a
covariant pair (7Ty, Uy) for the C*-dynamical system (Ay, G) which brings us back
to the previous case, and hence u is well defined. Clearly ug is bounded and hence
extends to H. To show that ug : H -*• H is a unitary operator again we must consider
three cases. Consider the generating vectors <p,(a)£, <Pj(b)r) in H. If a*, : A, —>• Aj,
a e Aj, and b € Aj, then using

where the second equality follows by using (2). The other cases can be dealt with
by using the connectedness of the diagram. This proves that ug is a unitary operator.
Now we prove that g -*• ug is a representation of G. Let g,h e G and a € A,. Then,
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Hence, u(gh) = u(g)u(h). It is also easy to show that if gt -*• g in G, then
u(gd% -*• «(#)£ for each £ e H. Finally, to show that (n, u) is a covariant pair, one
checks that u(g)n(<Pi(a)) = n(g<Pi<id))u(g) for g e G, and a € A, for all i e / . It
suffices to verify this identity for vectors of the form Tij (b)% for b € Aj, £ e H, and
j € I. For this consider three cases.
Case I. There exists a map between A, and Aj. From the commutativity of the first
diagram on page 108, we have

= Uj (g)7Tj (.ay (a))nj (b)$ = JTJ (ay (ga))uj (g)jtj

= n(g<pi(a))u(g)n(<pj(b))%.

Case II. There is no morphism between A, and A; but for some k e I we have
morphisms aik : A, -»• Ak and ajk : Ay —>• At . Using the corresponding commuting
diagram we have

= u(g)7i(<pk(uik(a)))(nk(ajk(b))%) =

= nk(aik(ga))uk(g)nk(ajk(b))£ = 7Ti

Case III. For some k € I there exists morphisms aki : Ak —• At and akJ : Ak -*• Aj.
Let A,y, 7T/,, and w,y be as before. Then, we are back in the previous case. Since
Ui <Pi(Ai) generates A, ugn(a) = n(ga)ug for all a e A and g & G. This proves that
(7r, M) is a covariant pair. It is straightforward to show that n x u : A x G -+ B(H)
is the desired map. D

EXAMPLE. Let A ==x B -JL* B/(f(x) - g(x)) be a coequalizer situation (see
Lemma 2.5) with a group G acting on the C*-algebras A and B, and equivariant
morphisms / and g. Note that the ideal I = (f (x) — g(x)) is G invariant. Then, the
above theorem says that

AxG = = = * B x G — 2 — ( W O O - * ( * ) » M G

is also a coequalizer. This means that B x G / J = B/I x G, where J = {f (t) — g{t)).
On the other hand, by the general properties of the crossed product, B/I x G =
B x G/I x G. From these we have conclude the relation

{f (0 - | (0> = ( / " ( * ) - «(*)) xi G.
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We end this section by proving the analogue of Theorem 3.3 and Theorem 4.2 for
limits. It turns out that the minimal tensor product and the reduced crossed product
must be considered in the case of limits. Recall that a C* -algebra Y is said to be
exact if whenever a short exact sequence is minimal tensored by Y it remains short
exact. On the other hand a group G is said to be exact if given a short exact sequence
of C*-algebras equipped with actions of G and if the maps are equivariant, then the
sequence remains short exact upon taking reduced crossed product by G. See, for
example [1, 2, 3,9] for more on the notion of exactness. We will denote by A (g^n B
the minimal tensor tensor product of the C* -algebras A and B.

THEOREM 4.3. Let D = {A,},e/ be a diagram of C*-algebras.

(a) / / Y is exact, then lim(£> ®min Y) = Km D (g^,, Y.
(b) If the exact group G acts on D such that the connecting morphisms are equiv-

ariant, then Hm(Z) >ir G) = lim£> x r G.

PROOF. Let X = ljm D. Then, by Theorem 2.9 X —?-~ f ] , A, = 4 = £ lT<, Aj
is an equalizer. Where / and g are as mentioned in Theorem 2.9. Moreover,
f~l(g(UiAi)) = PiX). To see this, clearly p(X) c f-l(g(U,A/))- If * €
f~(g(riiAi))> t n e n t h e r e ex i s t s a> e YlieiAi such that f (a) = g(a'). From the
definition of/ and g

Ttjf (a) =7Tj(a)= aj, 71) g (a1) = ai} 7T, (a) = a].

Hence, a = a' and f (a) = g(a') = g(a). Therefore, a € p(X) and hence p(X) =

/" ' («(11(6/ Ai)). This implies that

0 - • ke r / n p(X) - A p(X) - 1 * g ( n , 6 / A,-) - • 0

is short exact. Since Y is exact

0 - • ke r / n p(X) ®min Y - • p ( £ ) <g-min Y -> g(A) O , ^ K -> 0

is also short exact. As g(A) ®mm Y = g(A ®min y), we conclude from the above short
exact sequence that/~~'(|(A ®min Y) = p(X <8)min K). Using this we show that

X <g>min Y

is an equalizer. First, by [7, Proposition 4.22] p is injective. Let a : Z -> fj,. AI-®minl'
be such that/" o a = goa. We must show that a factors through p uniquely. Forz e Z,
we have f'a(z) = ga(z), or a(z) € / - ' ( ^ ( n , , , A,)) = p(X Q^ Y). Therefore,
there exists x e X <g>min Y such that p(x) = a(z). Define, 8 : Z ->• X <g>min K by
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S(z) = x. Since, p is 1-1, S is well defined and it is clear that S is unique with respect
to the relation pS = a. Now (a) follows from Theorem 2.9.

To prove part (b) using the exactness of G and the above short exact sequence, we
obtain

0 -» (kerf n p(X)) xr G -* p(X) xr G -+ g (Y[isI At) xr G -* 0

a short exact sequence. Now the proof of part (a) may be repeated. •

REMARK 4.4. The analogue of Theorem 4.3 for <g>max and full crossed product
follows from [6, Theorem 6.3 and Remark 3.10]. In this case exactness of Y or G is
not needed. We summarize here how this goes for the tensor product. The proof for
crossed product is similar. Using the equalizer stated at the beginning of the proof of
Theorem 4.3 and using Lemma 2.11 we obtain the pullback

It follows from [6, Remark 3.10] and f], A,® Y = Y\,(A' ® r ) t h a t

Cx)

is a pullback. Now, one checks that

X <g> Y — ^ YltA; ® Y) =J=x Y\lsl (Aj 9 Y)

is also an equalizer and hence X <g> Y = lim(D ® Y) by Theorem 2.9.
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