
J. Appl. Prob. 42, 950–963 (2005)
Printed in Israel

© Applied Probability Trust 2005

NONSTATIONARITY AND RANDOMIZATION
IN THE REED–FROST EPIDEMIC MODEL
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Abstract

The purpose of this paper is to determine the exact distribution of the final size of
an epidemic for a wide class of models of susceptible–infective–removed type. First,
a nonstationary version of the classical Reed–Frost model is constructed that allows us
to incorporate, in particular, random levels of resistance to infection in the susceptibles.
Then, a randomized version of this nonstationary model is considered in order to take into
account random levels of infectiousness in the infectives. It is shown that, in both cases,
the distribution of the final number of infected individuals can be obtained in terms of
Abel–Gontcharoff polynomials. The new methodology followed also provides a unified
approach to a number of recent works in the literature.
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1. Introduction

The Reed–Frost chain-binomial epidemic model is a classical model that describes the spread
of infectious diseases of susceptible–infective–removed (SIR) type. It is concerned with a
closed, homogeneous, and independently mixing population. Initially, the population contains
n susceptibles, m infectives, and no removed cases. If contacted by an infective, an individual
goes through a latent period of fixed length followed by an infectious period that is contracted
to a single point of time. At that instant, the infective is able to contact any given susceptible
with probability p = 1 − q, 0 < q < 1, all possible encounters being independent of each
other. The infective then recovers and becomes immune to the disease, so being removed from
the infection process.

We take a discrete time scale t = 0, 1, 2, . . . , to represent the successive generations of
infectives. If at time t there are It infectives, any of the St susceptibles will remain susceptible
at time t + 1 with probability qIt . Thus, the conditional law of St+1 is of binomial type, i.e.

St+1 | (St , It )
d= bin[St , q

It ], t ∈ N, (1.1)

where S0 = n, I0 = m, and N = {0, 1, 2, . . . }. Moreover, It+1 = St − St+1 by construction.
The epidemic ceases as soon as there are no more infectives in the population, which happens
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The Reed–Frost epidemic model 951

almost surely after a finite time T . Hence, ST gives the ultimate number of susceptibles escaping
the disease and FT = n − ST is the total number of newly infected cases.

The statistics ST and FT play an important role in theory and practice. Their study, exact
and asymptotic, has received considerable attention in the literature. Hereafter, we will focus
on the determination of their exact distributions. As shown in several works (e.g. von Bahr and
Martin-Löf (1980) and Lefèvre and Picard (1990)), the law of ST satisfies the n relations

E{ST,[k]qkST } = n[k]qk(m+n), k = 1, . . . , n, (1.2)

using the notation x[k] = x(x −1) · · · (x −k +1), for any natural numbers x and k. The system
(1.2) provides n linear equations in the n unknown probabilities P(ST = s), s = 1, . . . , n. It
can be solved recursively for k = n, . . . , 1, and P(ST = 0) then follows.

Relations (1.2) can be exploited to derive a (quasi)explicit formula for the law of FT in
terms of remarkable polynomials named Abel–Gontcharoff polynomials. More precisely, let
U = {ui, i ∈ N} be a given sequence of real numbers. Denote by Gj(x|U), j ∈ N, the unique
family of Abel–Gontcharoff polynomials of degree j in x associated with U . For a definition
and basic properties, we refer the reader to the brief outline given in Appendix A. Lefèvre and
Picard (1990) proved from (1.2) that

P(FT = j) = n[j ]q(m+j)(n−j)Gj (1|{qm+i , i ∈ N}), j = 0, . . . , n. (1.3)

This elegant formula illustrates the algebraic structure underlying the distribution of FT .
It is also of practical interest, since the Abel–Gontcharoff polynomials can be numerically
determined by means of efficient recursive methods.

Let us recall that Gj(x|U), j ≥ 1, depends on U only through its first j elements, and that
G0(x|U) = 1. Thus, for instance, for each Gj, 1 ≤ j ≤ n, of (1.3), the set of indices i ∈ N

may be replaced by i, 0 ≤ i ≤ j − 1. In the sequel, however, in such a case it will be more
convenient to write 0 ≤ i ≤ n for each Gj, 0 ≤ j ≤ n.

The Reed–Frost model relies on rather specific assumptions, and a number of variants and
generalizations have been proposed for infectious diseases of SIR type. Much on this can
be found in the recent comprehensive treatises by Daley and Gani (1999) and Andersson and
Britton (2000); see also the review paper by Lefèvre (1990).

Our purpose in the present paper is to point out how formulae (1.2) and (1.3) can be extended
to incorporate nonstationarity in the individual contact probabilities. Such a generalization
allows us to cover, in particular, situations in which the susceptibles display random levels
of susceptibility (this arises, for instance, in a vaccination context when vaccine response is
random). Furthermore, a randomization of the contact probabilities in the nonstationary model
will then allow us to deal with situations in which the infectives exhibit random levels of
infectiousness (this is usually due to the variability of the length of the infectious periods).

To the best of the authors’ knowledge, a nonstationary Reed–Frost model has not yet been
discussed. Nevertheless, the case of random infectiousness has been widely investigated (it is
generally called the randomized Reed–Frost model); see, for instance, Ludwig (1975), von Bahr
and Martin-Löf (1980), Ball (1986), Martin-Löf (1986), and Picard and Lefèvre (1990). The
case of random susceptibility is less studied; see, for instance, Ludwig (1975), Picard and
Lefèvre (1991), and a similar model for vaccination of Becker and Utev (2002). Combining both
random infectiousness and susceptibility generates additional, often considerable, difficulties;
see, for instance, Scalia-Tomba (1985) and Ball and O’Neill (1999).
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2. Nonstationary version of the model

2.1. Final state distribution

To construct a nonstationary Reed–Frost model, we first assign to each infective – initial
or newly infected – a label l taking values in 1, 2, . . . , m + n. For clarity, we here interpret l

as specifying a (possibly arbitrary) order of infection of the infectives over the course of time.
Then, with each infective l, we associate a probability pl = 1 − ql , 0 < ql < 1, that represents
the probability of this infective transmitting the disease to any given susceptible still present
at that time. Note that, since l indicates an order of infection, each susceptible still present
has necessarily escaped contact with the infectives labelled 1, . . . , l − 1. Thus, pl in fact
corresponds to the conditional probability that a susceptible is contacted by infective l given
that it has escaped infection by the previous l − 1 infectives. Obviously, pm+n will have no
role in the analysis (since there are no more susceptibles when all m + n individuals have been
infected); to unify the presentation, however, we prefer not to neglect it. Encounters made by
different infectives are still assumed to be independent.

We are in a position to generalize the binomial formulation (1.1). For the first generation of
infectives,

S1 | (S0 = n, I0 = m)
d= bin

[
n,

m∏
l=1

ql

]
.

More generally, until generation t ∈ N, the total number of infected cases is equal to m+n−St .
Thus, the It infectives present in generation t are labelled as m+n−St −It +1, . . . , m+n−St .
For the conditional laws, we then obtain

St+1 | (St , It )
d= bin

[
St ,

m+n−St∏
l=m+n−St−It+1

ql

]
, t ∈ N. (2.1)

To work with an expression simpler than (2.1), we introduce the parameters πl = q1 · · · ql ,
l = 1, . . . , m + n. Obviously, πl represents the probability that a susceptible escapes contact
with the first l infectives. Throughout the paper, we set π0 = 1. Then (2.1) becomes

St+1 | (St , It )
d= bin

[
St ,

πm+n−St

πm+n−St−It

]
, t ∈ N. (2.2)

Since It = St−1 − St for t ≥ 1, and holds too for t = 0 when defining S−1 = m + n, we can
finally rewrite (2.2) as

St+1 | Ft
d= bin

[
St ,

πm+n−St

πm+n−St−1

]
, t ∈ N, (2.3)

where Ft denotes the σ -field generated by {S−1, . . . , St }. Note that, for the classical Reed–Frost
model, ql = q and πl = ql for each l, meaning that (2.3) reduces to (1.1).

Let T represent the time at which the epidemic ends. We will show that the distributions
of ST and FT are provided by formulae (2.4) and (2.5) below, which generalize the previous
results (1.2) and (1.3).

Proposition 2.1. We have

E

{
ST,[k]

(πm+n−ST
)k

}
= n[k], k = 1, . . . , n, (2.4)
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yielding

P(FT = j) = n[j ](πm+j )
n−jGj (1|{πm+i , 0 ≤ i ≤ n}), j = 0, . . . , n. (2.5)

Proof. From (2.3), the conditional factorial moments of St+1 are given by

E{St+1,[k] | Ft } = St,[k]
(

πm+n−St

πm+n−St−1

)k

, k = 1, . . . , n.

Thus, {
St,[k]

(πm+n−St−1)
k
, Ft , t ∈ N

}
, k = 1, . . . , n, is a martingale. (2.6)

By definition, T is the first time t ≥ 1 such that It = 0, i.e. St = St−1. Obviously, it corresponds
to a stopping time for the martingales (2.6). By applying the optional stopping theorem, we
then obtain the n relations (2.4).

We now notice that (
s

k

)(
n

k

)−1

=
(

n − k

n − s

)(
n

n − s

)−1

,

for any natural numbers k, s, and n, 0 ≤ k ≤ s ≤ n. Since n − ST = FT , (2.4) is equivalent to

E

{ (
n−k
FT

)
(

n
FT

)
(πm+FT

)k

}
= 1, k = 1, . . . , n,

which identity also holds for k = 0. More explicitly, this yields

n−k∑
j=0

(n − k)[j ](πm+j )
n−k−j aj = 1, k = 0, . . . , n, (2.7)

where

aj = P(FT = j)

n[j ](πm+j )n−j
, j = 0, . . . , n. (2.8)

It remains to observe that (2.7) can be identified with the Abelian expansion (A.3), below, of
the polynomial xn−k constructed from the family U = {ui = πm+i , 0 ≤ i ≤ n} and evaluated
at x = 1. Therefore, aj = Gj(1|{πm+i , 0 ≤ i ≤ n}) for 0 ≤ j ≤ n, from which we recover
(2.5).

Remark 2.1. Let us generalize the model by allowing susceptibles also to be infected
from outside the population (as, for instance, in Addy et al. (1991) and Ball et al. (1997)).
Specifically, suppose that each of the n susceptibles has probability p0 = 1 − q0 of being
infected by an external source of infection during the course of the epidemic, independently of
the other members of the population.

The final size in such a model is easily seen to have the same distribution as that of the model
without infection from outside, but now with random initial sizes (S0, I0), whereS0

d= bin[n, q0]
and I0

d= m + bin[n, p0] (whence S0 + I0 = m + n, as before). We then observe that (2.6)
remains valid, meaning that the optional stopping theorem gives

E

{
ST,[k]

(πm+n−ST
)k

}
= n[k]qk

0 , k = 1, . . . , n,
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instead of (2.4). Moreover, straightforward adaptations of (2.7) and (2.8) then yield

P(FT = j) = n[j ](q0πm+j )
n−jGj (1|{q0πm+i , 0 ≤ i ≤ n}), j = 0, . . . , n,

instead of (2.5). Note that if only external infection is possible (i.e. πl = 1 for each l), then
FT

d= bin[n, p0], as expected.

It is intuitively clear that the epidemic will be less severe if the probabilities of noninfection
are large. This can be formalized as follows. Let F̂T be the final number of new cases for a
model with parameters π̂l , and denote by ‘≤d’ the distributional order relation.

Property 2.1. If π̂l ≥ πl for 1 ≤ l ≤ m + n, then F̂T ≤d FT .

Proof. By (2.5), the distribution function of FT is

P(FT ≤ k) =
k∑

j=0

n[j ](πm+j )
n−jGj (1|{πm+i , 0 ≤ i ≤ n}), k = 0, . . . , n,

which corresponds, by (A.3), to the first k terms in the Abelian expansion of xn constructed
from U = {ui = πm+i , 0 ≤ i ≤ n} and evaluated at x = 1. Thus, to obtain the result it suffices
to apply a comparison result given in Property 4.2 of Lefèvre and Picard (1993).

This property could be proved by other methods (coupling, for example). Moreover, we
mention that it is possible to derive bounds on P(FT = j) by bounding Gj in (2.5), but this is
omitted here.

2.2. Application to vaccination

In the framework of the classical Reed–Frost model, suppose that the population has been
vaccinated against the disease and that the vaccine response varies randomly between indi-
viduals (such as discussed by Becker and Utev (2002)). More precisely, we assume that any
given susceptible, if ever contacted by an infective (which occurs with probability p = 1 − q),
can resist infection with a certain (personal) random probability, and that these resistance
probabilities are independent, identically distributed random variables, distributed as ε, say.

It is clear that this model with vaccination corresponds to a particular case of the previous
nonstationary Reed–Frost version in which

πl = E{(q + pε)l}, l = 1, . . . , m + n. (2.9)

Therefore, the final state distribution is provided by Proposition 2.1 written in terms of these
probabilities πl .

In the literature, special attention is paid to two particular kinds of protective effect for a
vaccine (see, e.g. Smith et al. (1984))

(i) The vaccine confers either complete or zero protection, i.e. ε = 1 with probability γ1 and
ε = 0 with probability γ0 = 1 − γ1. Such models are called all/nothing models. In this
case, (2.9) yields πl = γ1 + γ0q

l for all l, and (2.5) becomes

P(FT = j) = n[j ]γ j
0 (γ1 +γ0q

m+j )n−jGj (1|{qm+i , 0 ≤ i ≤ n}), j = 0, . . . , n, (2.10)

after (A.4), below, has been used to simplify Gj .
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(ii) The vaccine confers partial, uniform protection, i.e. ε = r almost surely, with r fixed in
(0, 1). Such models are called leaky models. In this case, (2.9) reduces to πl = (q + pr)l for
all l, and we obtain a Reed–Frost model with parameter q + pr (rather than q).

Let us return to the general situation (2.9). The protective efficacy of a vaccine is usually
measured by the parameter E{ε}. Thus, it can be useful to estimate the distribution of FT

in terms of this parameter. This is done below by deriving lower and upper bounds in the
distributional sense. We emphasize that a result of a similar nature has been established by
Becker and Utev (2002).

Property 2.2. Under (2.9), we have F
(1)
T ≤d FT ≤d F

(2)
T , where F

(1)
T is the final number of

infections in an all/nothing model with parameters π
(1)
l = E{ε} + [1 − E{ε}]ql , 1 ≤ l ≤ m+n,

and F
(2)
T is the final number of infections in a leaky model with parameters π

(2)
l = [q + p E{ε}]l ,

1 ≤ l ≤ m + n.

Proof. Let g(ε) = (q + pε)l , such that πl = E{g(ε)}. By convexity of the function g(·),
we obtain the inequality

[q + p E{ε}]l ≤ E{g(ε)} ≤ E{ε} + [1 − E{ε}]ql, l = 1, . . . , m + n. (2.11)

Indeed, the lower bound in (2.11) follows from Jensen’s inequality. Furthermore, g(ε) ≤
g(0)(1 − ε) + g(1)ε and taking expectations yields the upper bound in (2.11). The result then
follows directly from Property 2.1.

The approximating model that yields the upper bound F
(2)
T confers a partial and uniform

protection with efficacy level E{ε}. This comparison result thus means that replacing the random
resistance level ε by its mean E{ε} leads to a standard Reed–Frost model that will overestimate
the final severity of the disease. On the other hand, the approximating model that yields the
lower bound F

(1)
T confers either complete or zero protection with probability of success E{ε}.

In other words, the lower bound F
(1)
T is attained when the resistance level has a Bernoulli

distribution with parameter E{ε}.
2.3. Application to randomized susceptibilities

More generally, the nonstationary extension enables us to incorporate random levels of
susceptibility. Thus, instead of (2.9), we could choose πl = E{Rl} for 1 ≤ l ≤ m + n, where
R is a random variable valued in [0, 1] that represents a global level of resistance to infection
per susceptible. For instance, if R is uniform on [0, 1] then πl = 1/(l + 1).

A more natural way to introduce variable susceptibility in the Reed–Frost model is through
the concept of random infection tolerance (such as discussed by Sellke (1983)). Specifically,
suppose that each infective has a fixed power of infection, given by d, and that any given
susceptible becomes infected when its total absorbed exposure to infection reaches a certain
(personal) random level, distributed as ξ , say (with the usual independence assumptions); then,

πl = P(ξ > ld), l = 1, . . . , m + n. (2.12)

The authors were rather surprised to obtain a formula as simple as (2.5) for the model with
randomized susceptibilities. Indeed, in a previous work on this model, Picard and Lefèvre
(1991) derived a formula for P(FT = j) that is much more complicated. The equivalence
between the formulae, however, is established in Appendix A.
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Returning to (2.12), we see that when ξ has an exponential distribution with parameter β,
the model reduces to a Reed–Frost model with parameter q = exp(−β). Now consider the
case in which ξ has a uniform law on an interval (0, α), which yields

πl = 1 − ld/α, l = 1, . . . , m + n, (2.13)

with the constraint α ≥ (m + n)d to guarantee the positivity of the πl . We notice that
the assumption of a uniform tolerance could be rather restrictive in an epidemic context.
Let d̄ = d/α.

Corollary 2.1. Under (2.13),

P(FT = j) =
(

n

j

)
md̄[(m + j)d̄]j−1[1 − (m + j)d̄]n−j , j = 0, . . . , n. (2.14)

Proof. By (2.13), the polynomials Gj in (2.5) are constructed from a family U = {πm+i ,
0 ≤ i ≤ n} that is affine in i. As we recall in Appendix A, the Gj in this case reduce to the
standard Abel polynomials, i.e. by (A.6),

Gj(1|{1 − (m + i)d̄, 0 ≤ i ≤ n}) = md̄[(m + j)d̄]j−1

j ! , j = 0, . . . , n. (2.15)

Substituting (2.15) into (2.5) then yields (2.14).

The law (2.14) is recognized to be a quasibinomial distribution of type I (see Consul (1974)).
It is somewhat unexpected to obtain a completely explicit formula for the distribution of the
final size in an SIR epidemic model. Recently, the authors found that this formula, with
d̄ = 1/(m + n), was derived by Islam et al. (1996, Equation (5)) using a random graph
representation of the same model (in a different formulation). We point out that, in the case in
which d̄ = 1/(m + n), the insertion of (2.13) into (2.2) yields

St+1 | (St , It )
d= bin[St , St/(St + It )],

which means that each susceptible meets, per unit of time, a single individual taken at random
from the whole population (including itself).

3. Randomized version of the model

3.1. Final state distribution

Let us now examine a generalization of the Reed–Frost model that incorporates random levels
of infectiousness. More precisely, each infective l is assumed to contact any given susceptible
still present with a random probability Pl = 1−Ql , and the Ql, 1 ≤ l ≤ m+n, are independent,
identically distributed random variables distributed as Q, say. Such a situation occurs when the
infectious periods Dl are of random length (instead of being instantaneous) and correspond to
independent, identically distributed random variables distributed as D. For instance, if any pair
of individuals can meet at the points of a Poisson process of rate β, then Ql = exp(−βDl). As
indicated in the introduction, this extended model has received much attention in the literature.

Clearly, the model can be studied by randomizing the previous nonstationary version. We let
�l = Q1Q2 · · · Ql , 1 ≤ l ≤ m + n. Taking the expectation in (2.5), we then obtain

P(FT = j) = n[j ] E{(�m+j )
n−jGj (1|{�m+i , 0 ≤ i ≤ n})}, j = 0, . . . , n. (3.1)
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In practice, it is not easy to determine the law of FT by means of (3.1). However, we are
going to deduce an equivalent formula, given in (3.2) below, that is expressed solely in terms
of the parameters q(l) = E{Ql}, 0 ≤ l ≤ n. This simplification provides a real advantage in
numerical computations. We mention that (3.2) was derived in Picard and Lefèvre (1990), but
by a method that does not rely on the nonstationary model.

Proposition 3.1. A simpler form for (3.1) is

P(FT = j) = n[j ]
j∑

k=0

1

k! [q(n−k)]m+kGj−k(0|{q(n−j + i), 0 ≤ i ≤ j}), j = 0, . . . , n.

(3.2)

Proof. We first expand Gj in (3.1) using the standard Taylor expansion around 0; by (A.5),
we obtain

P(FT = j) = n[j ]
j∑

k=0

1

k! E{(�m+j )
n−jGj−k(0|{�m+k+i , 0 ≤ i ≤ n−k})}, j = 0, . . . , n.

(3.3)
For 0 ≤ k ≤ n, let �

(k)
0 = 1 and �

(k)
l = Qk+1Qk+2 · · · Qk+l , 1 ≤ l ≤ m + n − k. In (3.3),

we can then write �m+j = �m+k�
(m+k)
j−k and �m+k+i = �m+k�

(m+k)
i . By substituting these

into (3.3) and then applying (A.4) to Gj−k , we obtain

P(FT = j) = n[j ]
j∑

k=0

1

k! E{(�m+k)
n−k(�

(m+k)
j−k )n−jGj−k(0|{�(m+k)

i , 0 ≤ i ≤ n − k})}.
(3.4)

However, each random variable �m+k is independent of the random variables �
(m+k)
i , 0 ≤

i ≤ n − k, meaning that, by definition of q(l), (3.4) becomes

P(FT = j) = n[j ]
j∑

k=0

1

k! [q(n − k)]m+k E{(�(m+k)
j−k )n−jGj−k(0|{�(m+k)

i , 0 ≤ i ≤ n − k})}.
(3.5)

To evaluate the expectation in (3.5), we have recourse to Theorem 4.1 of Picard and Lefèvre
(2003), which gives the identity

E{(�(m+k)
j−k )n−jGj−k(0|{�(m+k)

i , 0 ≤ i ≤ n − k})} = Gj−k(0|{q(n − j + i), 0 ≤ i ≤ j}).
(3.6)

Inserting (3.6) into (3.5) then yields (3.2).

From (3.1) and Property 2.1, we see that an increase in the �l , in a distributional sense
(by decreasing D for example), will lead to a less severe epidemic in the same sense.
More flexible comparisons in terms of the parameters q(l) were provided in Lefèvre and
Utev (1996). For instance, respectively denote by ‘≤icx’ and ‘≤icv’ the increasing-convex
and increasing-concave order relations. If Q ≤icx Q̂ then the corresponding final numbers
of infectives, FT and F̂T , are such that FT ≥icv F̂T . In particular, approximating the infec-
tious periods Dl by their mean E{D} overestimates, in the ≤icv-sense, the final size of the
epidemic.
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3.2. Combination with vaccination

Let us re-examine the problem of vaccination discussed in Section 2.2 within the framework
of the model presented above. Each infective l contacts any given susceptible with a random
probability Pl = 1 − Ql , the Ql, 1 ≤ l ≤ m + n, being independent, identically distributed
random variables distributed as Q. In addition, if ever contacted, each susceptible escapes
infection with a certain (personal) random probability distributed as ε, independently of the
others. Thus, conditionally upon fixed values pl = 1 − ql for the variables Pl , the model
corresponds to a nonstationary Reed–Frost version in which the parameters are

πc
l = E

{ l∏
l′=1

(ql′ + pl′ε)

}
, l = 1, . . . , m + n. (3.7)

The distribution of FT for this model can be determined by inserting (3.7) into (2.5) and
then taking the expectation with respect to the variables Ql (at this stage, the Ql need not be
identically distributed). Unfortunately, the evaluation of this expectation is, in general, very
difficult. It is therefore of great interest to obtain lower and upper bounds that can be effectively
calculated.

For that, we will again have recourse to the two special kinds of protective vaccine effect
considered in Section 2.2.

(i) For partial, uniform protection, i.e. if ε = r almost surely, (3.7) becomes

πc
l =

l∏
l′=1

[r + (1 − r)ql′ ], l = 1, . . . , m + n. (3.8)

Thus, this leaky model is equivalent to the case of randomized infectiousness only in which,
for each l, the probability r + (1 − r)Ql is substituted for Ql , as in Section 3.1. Consequently,
the distribution of FT is given by (3.2) with, now,

q(l) = E{[r + (1 − r)Q]l}, l = 0, . . . , n.

(ii) For complete or zero protection, i.e. if ε = 1 or 0 with respective probabilities γ1 and γ0,
(3.7) yields

πc
l = γ1 + γ0

l∏
l′=1

ql′ , l = 1, . . . , m + n. (3.9)

In this all/nothing scheme, the distribution of FT is given by the simple formula (3.10) below.
Note that (3.10) is rather intuitive and generalizes (2.10).

Corollary 3.1. Under (3.9),

P(FT = j) =
n−j∑
k′=0

(
n

k′

)
(γ0)

n−k′
(γ1)

k′
P(Fn−k′,T = j), j = 0, . . . , n. (3.10)

Here, Fn−k′,T is the final number of infections in a model with randomized infectiousness only
in which there are initially n − k′ susceptibles and m infectives and the contact probabilities
are Pl = 1 − Ql; its law is given by (3.2) with n − k′ substituted for n.
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Proof. Instead of (3.1), we now have, for j = 0, . . . , n,

P(FT = j) = n[j ] E{(γ1 + γ0�m+j )
n−jGj (1|{γ1 + γ0�m+i , 0 ≤ i ≤ n})}, (3.11)

where �l = Q1Q2 · · · Ql for all l. By using (A.4) and expanding the factor (γ1 +γ0�m+j )
n−j ,

we obtain

P(FT = j) =
n−j∑
k′=0

(
n

k′

)
(γ0)

n−k′
(γ1)

k′
(n−k′)[j ] E{(�m+j )

n−k′−jGj (1|{�m+i , 0 ≤ i ≤ n})},

which, by (3.1), can be rewritten as (3.10).

Let us now proceed to the general situation with conditional parameters given by (3.7).
For fixed values pl = 1 − ql , consider the associated nonstationary Reed–Frost model and let
Fc

T denote the corresponding final number of infections. It is directly seen that Property 2.2
can be extended as follows:

F
c,(1)
T ≤d Fc

T ≤d F
c,(2)
T ,

where F
c,(1)
T is the final number of infections obtained with parameters

π
c,(1)
l = E(ε) + [1 − E{ε}]q1 · · · ql, 1 ≤ l ≤ m + n,

and F
c,(2)
T is the final number of infections obtained with parameters

π
c,(2)
l = [q1 + p1 E{ε}] · · · [ql + pl E{ε}].

Therefore, removing the conditioning on the Pl , we deduce the following bounds for the law
of FT .

Property 3.1. Under (3.7), we have F
(1)
T ≤d FT ≤d F

(2)
T , where the law of F

(1)
T is determined

in an all/nothing model with the conditional parameters (3.9) with γ1 = E{ε}, and the law of
F

(2)
T is determined in a leaky model with the conditional parameters (3.8) with r = E{ε}.

3.3. Combination with randomized susceptibilities

The next step is to consider a more general Reed–Frost model that incorporates both
randomized infectiousness and susceptibility. In a previous paper, the authors proposed a
tentative modelling approach to describe this situation (see Lefèvre and Picard (1999)). As
pointed out by Ball (2000), however, the model built does not allow us to account for these two
random factors in a completely appropriate way.

In the spirit of Section 2.3, we are going to formulate such a model on the basis of the infection
tolerances (see also, for instance, Ball and O’Neill (1999)). Specifically, each infective l now
exerts a random power of infection that corresponds to its infectious period Dl , and any given
susceptible is infected as soon as its total absorbed exposure to infection reaches a certain
(personal) random threshold distributed as ξ ; standard independence conditions are assumed
to hold. Thus, for fixed values dl of Dl , the conditional parameters are defined by

πc
l = P(ξ > d1 + · · · + dl), l = 1, . . . , m + n. (3.12)

In particular, if the Dl are constant and equal to d, then πc
l = πl for each l and (3.12) reduces

to (2.12).
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The law of FT is here provided by the expectation of (2.5) with

πl = P(ξ > D1 + · · · + Dl), 1 ≤ l ≤ m + n.

This result can be found in Ball and O’Neill (1999, Equation (3.5)).
When ξ has an exponential law with parameter β, we have πl = exp(−βD1) · · · exp(−βDl)

for all l, meaning that the model reduces to a situation discussed in Section 3.1 with randomized
infectiousness only. Let us now suppose that the Dl are independent, identically distributed
random variables valued on an interval (0, c), and that ξ has a uniform distribution on (0, α),
where α ≥ (m + n)c. Then (3.12) becomes

πc
l = 1 − (d1 + · · · + dl)/α, l = 1, . . . , m + n. (3.13)

Let D̄l = (D1 + · · · + Dl)/α, 1 ≤ l ≤ m + n. We will show that the distribution of FT is now
provided by the explicit formula (3.14), below. Notice that the law (3.14) generalizes (2.14)
and can be viewed as a randomized extension of a quasibinomial distribution.

Corollary 3.2. Under (3.13),

P(FT = j) =
(

n

j

)
E{D̄m(D̄m+j )

j−1(1 − D̄m+j )
n−j }, j = 0, . . . , n. (3.14)

Proof. First, inserting (3.13) into (2.5), using (A.4), and taking the expectation with respect
to the Dl yields

P(FT = j) = n[j ] E{(1 − D̄m+j )
n−jGj (0|{−D̄m+i , 0 ≤ i ≤ n})}, j = 0, . . . , n.

(3.15)
Let D̄

(m)
0 = 0 and D̄

(m)
i = (Dm+1 + · · · + Dm+i )/α, 1 ≤ i ≤ n; again by (A.4), (3.15) can

then be rewritten as

P(FT = j) = n[j ] E{(1 − D̄m − D̄
(m)
j )n−jGj (D̄m|{−D̄

(m)
i , 0 ≤ i ≤ n})}. (3.16)

To simplify the expectation in (3.16), we have recourse to Theorem 2.2 of Picard and Lefèvre
(2003). More precisely, it is easily seen that the following identity is a direct implication of
that theorem. Let Xi, i ≥ 1, be a sequence of nonnegative independent, identically distributed
random variables, and denote by Si = X1 + · · · + Xi , i ≥ 1, the associated partial sums, with
S0 = 0; then, for any natural number k and any real numbers x and y,

E{(y − Sj )
kGj (x|{−Si, i ∈ N})} = E{(y − Sj )

kx(x + Sj )
j−1}

j ! , j ∈ N. (3.17)

Of course, (3.17) holds also when x and y are replaced by random variables independent of
{−Si, i ∈ N}. Therefore, by applying (3.17) (with n − j substituted for k, 1 − D̄m for y, D̄m

for x, and D̄
(m)
i for Si), we deduce that (3.16) reduces to (3.14).

To close, it is worth indicating that the present study can be extended to obtain the joint gen-
erating function Laplace transform of the final size and severity of the epidemic. Furthermore,
this methodology allows us also to deal with multigroup models involving cross-infections and
movements of infectives between groups; see, for instance, Picard and Lefèvre (1990) and Ball
and O’Neill (1999).
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Appendix A.

A.1. Abel–Gontcharoff polynomials

These polynomials, introduced by Gontcharoff (1937), have been studied (and generalized)
by the authors in a series of papers motivated by probabilistic applications; see, for instance,
Lefèvre and Picard (1990) and Picard and Lefèvre (1996). Let U = {ui, i ∈ N} be a given
sequence of real numbers (where, recall, N = {0, 1, 2, . . . }). To U we assign a unique family of
Abel–Gontcharoff polynomials Gj(x|U), j ∈ N, of degree j in x that are defined recursively
by the triangular system of equations

k∑
j=0

k[j ]uk−j
j Gj (x|U) = xk, k ∈ N. (A.1)

Note that, by (A.1),

G0(x|U) = 1 and Gj(u0|U) = δj,0, j ∈ N, (A.2)

and Gj(x|U), j ≥ 1, depends on U only through the elements {u0, . . . , uj−1}. Alternative
definitions of the Abel–Gontcharoff polynomials are available (for example, through an integral
representation).

Identity (A.1) can be generalized as follows: any polynomial p(x) of degree k admits an
Abelian-type expansion with respect to the Gj , namely

p(x) =
k∑

j=0

p(j)(uj )Gj (x|U), (A.3)

where p(j)(x) is the j th derivative of p(x). The Abel–Gontcharoff polynomials satisfy various
basic properties. For instance, for any reals a and b, we have

Gj(ax + b|aU + b) = ajGj (x|U), (A.4)

where aU + b is the family {aui + b, i ∈ N}; for k = 1, . . . , j , we have

G
(k)
j (x|U) = Gj−k(x|EkU), (A.5)

where EkU is the family {uk+i , i ∈ N}; and, if ui is affine in i, we have

Gj(x|U) = (x − u0)(x − uj )
j−1

j ! , (A.6)

which are the classical Abel polynomials. A few other properties used in the paper (but not
recalled here) were derived in Lefèvre and Picard (1993) and Picard and Lefèvre (2003).

A.2. A formula equivalent to (2.5)

In Picard and Lefèvre (1991), the authors studied the model presented in Section 2.3 for
which πl = E{Rl}, 1 ≤ l ≤ m+n, R being any random variable valued in [0, 1]. There it was
shown that the law of FT is given by

P(FT = j) = n[j ]
j∑

k=0

1

k! (πm+k)
n−kH

(n−j)
n−k (0), j = 0, . . . , n, (A.7)
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where H
(n−j)
n−j (0) = 1 and

H
(n−j)
n−k (0) = −

j∑
l=k+1

1

(l − k)!
(

πm+l

πm+k

)n−l

H
(n−j)
n−l (0), k = 0, . . . , j − 1. (A.8)

Equation (A.7) is less convenient to apply than (2.5). Let us check that they are equivalent.
First, we will show that (A.8) is equivalent to

H
(n−j)
n−k (0) = (πm+j )

n−j

(πm+k)n−k
Gj−k(0|{πm+k+i , 0 ≤ i ≤ n − k}), k = 0, . . . , j. (A.9)

Let us proceed by induction and suppose that (A.9) holds for k = l′ + 1, . . . , j , say.
By inserting (A.9) in (A.8) for k = l′, we then find that

H
(n−j)

n−l′ (0) = − (πm+j )
n−j

(πm+l′)n−l′

j∑
l=l′+1

(πm+l′)l−l′

(l − l′)! Gj−l (0|{πm+l+i , 0 ≤ i ≤ n − l}),

which, by (A.5), can be re-expressed as

H
(n−j)

n−l′ (0) = − (πm+j )
n−j

(πm+l′)n−l′

j−l′∑
l=1

(πm+l′)l

l! G
(l)

j−l′(0|{πm+l′+i , 0 ≤ i ≤ n − l′}). (A.10)

Now, by (A.2), Gj−l′(πm+l′ |{πm+l′+i , 0 ≤ i ≤ n − l′}) = 0 for j − l′ ≥ 1. By Taylor
expanding this polynomial and using (A.5), we then find that (A.10) reduces to (A.9) for k = l′,
as required.

Second, we may substitute (A.9) into (A.7), to yield

P(FT = j) = n[j ](πm+j )
n−j

j∑
k=0

1

k!Gj−k(0|{πm+k+i , 0 ≤ i ≤ n − k}). (A.11)

Again by a Taylor expansion, we find that (A.11) is equivalent to (2.5), which is the desired
result.
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