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Abstract

A simple diffusion-convection heat transfer model is formulated which leads to an
axially symmetric partial differential equation. The equation is shown to be closely related to a
second one which is adjoint to the original equation in one variable can and be interpreted as a
description of another diffusion-convection model. Fundamental solutions of the original equa-
tion are constructed and interpreted with reference to both models. Some boundary value prob-
lems are solved in series form and integral representations of the solutions are also given. The
boundary value problems are shown to be equivalent to an integral equation and the correspond-
ence between the two formulations is understood in terms of the two diffusion-convection prob-
lems. A Péclet number is defined in one of the boundary value problems and the behaviour of the
solutions is studied for large and small values of this parameter.

1. Introduction

Axially symmetric partial differential equations have attracted the interest of
many researchers and a considerable quantity of information about these equa-
tions has been accumulated in the literature (see Weinstein (1953), Burns (1967), and
Colton (1969), for example). The results obtained to date have been mainly theoret-
ical in character and the purpose of this paper is to describe some more practical
results. These have been obtained with the aid of a simple heat transfer model
which gives rise to an axially symmetric boundary value problem. In this problem
the temperature is governed by the equation.

T o*T 1—a 0T oT
1.1 77 + o + o o 21—5 = F(r),
where A and « are real constants, F(r) is a singular functional concentrated on an
arc or a point and (z, p, ¢) are the coordinates on a point in a cylindrical polar
coordinate system. Equation (1.1) is the main focus of interest in the paper.

Fundamental solutions of equation (1.1) will be constructed and their relevance
to the properties of the physical model will be discussed. Some boundary value
problems involving conditions prescribed on the axis of symmetry will also be

solved.
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The latter problems lead naturally to the integral equation

92/2-3/2 y1-a d

(1.2) AT — a3) 9T z—tN*TVPK (1,0 | 2 — t)dt = f(2),

c<z<d,

where a and A are the same constants as those appearing in equation (1.1) and
K, (w) is the modified Bessel function which is the solution of the equation

w2y +wy' —(w2 40y =0

with the asymptotic form K (w) ~ (n/2w)%e ~* as w — oo . The Bessel function has
a singularity at the origin which gives the whole kernel a singularity | z— tl_”"".

The boundary value problems can be formulated in terms of the partial
differential equation (1.1) or in terms of the integral equation (1.2). By interpreting
a certain partial differential equation, which is the adjoint of equation (1.1) in p,
as a conservation equation, it is shown that the solutions of these equations can
be deduced each from the other (the solution of equation (1.2) is given in another
paper by Belward (to appear); the results here are largely restricted to establishing
the abovementioned relationship). The behaviour of the solutions of the pronlems
for large and small values of A is investigated by approximating the integral
equation (1.2).

The physical model which is used to assist and interpret the analysis is a
forced convection heat transfer model. The transport mechanisms are those of
convection in a prescribed velocity field and of diffusion and the transporting
medium is an ideal inviscid fluid. The density, conductivity and specific heat of
the fluid are assumed to be unaffected by the temperature and are constant in
space and time.

In non-dimensional form the basic equations are

(1.3) = —VT+4qT,

which states that the heat flux is the sum of the diffusive and convective fluxes,
~ o
(1.4) q =22.z+5p,

which describes the velocity field, and
(1.5) divQ = F,(r)
which is the heat conservation equation.

The convection field consists of a uniform stream of velocity 24 parallel to
the z axis and the velocity due to a mass source of strengh 27 per unit length
distributed uniformly along the z axis. The constant A is the Péclet number. If
there is a characteristic length in the problem then it will be assumed that this
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[31 A forced convection problem 3

length has been scaled to unity. Since the thermal diffusivity has also been taken
to be unity, the constant A is genuinely the Péclet number, ULk~ !, which charac-
terises the ratio of typical magnitudes of the convective flux (by the uniform
stream) and the diffusive flux. When equations (1.3), (1.4) and (1.5) are combined,
equation (1.1) is obtained with

(L.6) F(r) = o;fT(z, P)5(p) — Fy(r).

The former of these terms is due to the mass source, which also acts as a heat
source because the fluid is assumed to appear or disappear at the z axis with the
ambient temperature of the fluid.

Equation (1.1) can be regarded as an equation which governs the outer solu-
tions of several heat transfer and viscous flow problems. In the temperature prob-
lems, the velocity component due to the mass source may be prescribed in the
full problem, or it may arise due to the effect of a strong heat source which creates
a heat plume and causes suction into the buoyancy jet.

Since we will mostly consider problems in which the boundary conditions
are prescribed on some segment of the axis of symmetry, the results will be
relevant to problems involving finite bodies, or semi-infinite bodies whose dimen-
sions in the z direction are large compared to their other dimensions (e.g. a
paraboloid of revolution).

The rotationally symmetric motion of a viscous fluid can be described (see
Pillow (1970)) in equations of the form of equation (1.1), thus:

.7 div(—nVT+)u +2;”B)T) —0,
21 A J, _

8 div(=nvi+ (s =2p)1) = 27T — amntaie,
and

. 2.
(1.9) div-vy+3p w) = o2,
where AP ’
(1.10) u=uz+u,p+ud,,
with
(1111) u=—1-§% u—-—-lgll—l u=I—
and *Tpop’ paz’ "t p’
(1.12) pl=o ;j; with @ = curlu.

¥ is the Stokes stream function, set to zero on the z axis, I is called ring
circulation volume density and # is the kinematic viscosity. Equations (1.7) and
(1.8) are conservation equations for angular momentum and ring circulation re-
spectively, equation (1.9) is a consequence of the definition of the vorticity.
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For flows past finite bodies in an unbounded fluid with free stream velocity 24
at infinity we may use the Oseen approximation and substitute # = 2% in the
terms #l and uT of equations (1.8) and (1.7). Then equations (1.7), (1.8) and
(1.9) all become special cases of equation (1.1). The form of equations (1.8) and
(1.9) shows that these purely viscous problems can also be modelled as diffusion
convection problems in which angular momentum and ring circulation are con-
served quantities. Finally note that we can also put u = 242 +(a/p)p into these
equations. This would be done if the heat were regarded as being transported
in a vicsous fluid, and not an inviscid fluid as stated earlier.

Equation (1.2) arises in an elastic half space problem where the medium is
isotropic and the Youngs modulus, E, varies as a power of the depth, E= E,d® /2
1 < a < 2. The equation is the Fourier transform of a two-dimensional integral
equation, and f(z) is the transform of the prescribed displacement on the surface
of the half space and g(r) is the transform of the unknown normal stress at the
surface. For z <c¢, and z > d, g = 0 and f is unknown. For further details of
this problem the reader is referred to Koroniev.

Before deriving explicit solutions some general properties can be noted. Prop-
erties of the solutions near p = 0 can be determined with A = 0. For, near
p = 0 either diffusion or convection by the line source will be dominant. In con-
trast, at large distances the values of A are important since convection by the
uniform stream is then the dominant effect.

Secondly, following Weinstein [1953], wenote that if T*=p~*T then
o2T* 9*T* 1+ a OT* oT*

+ + -

dp? 0z2 p Op 24 oz poED).

(1.13)

This implies that a flux vector and a conservation principle can be associated
with T* T* is called “‘a-temperature’ and the associated energy quantity is
called ‘‘a-heat”. The convection field is the same except that the radial component
has its sign reversed. This property is important because certain fundamental
solutions which lack a simple interpretation as heat singularities can be recognized
as the fields of multipoles of a-heat. Note finally that if T,(r;a) is a solution of
(1.13) and F(r) = O then a second solution is given by

(1.14) T,(r; ) = p*T,(r; — a).

2. Fundamental solutions of the axially symmetric equation, equation (1.1)

The solutions of equation (1.1) which will be given in this and the next section
can be put into two groups, namely fundamental solutions and solutions of certain
boundary value problems. The meanings of these terms is self-evident, we com-
mence with fundamental solutions.

If an exponential factor ¢** is first removed from T and the new equation
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written in spherical polar (7, 8, ¢) coordinates, then the following family of separ-
able solutions can be found:

(21) Tn(rs 0) = elz(l - #2)a/2C§‘<}+a/2)(ﬂ)r(a— 1)/2-I<n+(l +z)/2(lr) s B = 0, 1; 2, »

Here p = cos@ and C(w) is a Gegenbauer polynomial (see Erdelyi (1954),
Volume II). This sequence of solutions is a sequence of multipole expansions,
the multipoles being situated at the origin. For n = 0 the solution (2.1) is tha
field of a source of heat, for n = 1 the solution is a linear combination of a source
and a dipole, and so on.

To identify these temperature fields we first consider the case A = 0. For
n = 0 we have

sin® @

2.2 T = pa

By analogy with established results in potential theory one is tempted to identify
this as the field of a point source, because of its r—! dependence. Such an argu-
ment must be invalid because of the importance of the term (1 — a)/p - 0T /dp
at p = 0, although in fact the conclusion is true. It is proved rigorously by showing
that

sin* @

r

2.3) (V> + ¢q'V) = (const.) (r),

where g = (o/p)p. We form the inner product of the left hand side of (2.3) with
a C® function of bounded support,  say. We can then prove that

_ 4ndT(1 +a)2)

2.4) L[(-—v2 +q-V) ]t//dv - e 4.

This implies that (2.2) is the field of a point source of heat of strength
43T + /2T (3 +/2)
Corresponding to A = 0, further separable solutions are

(2‘5) Tn = (1 - uZ)E/ZC'(l'}“‘H/Z)(ﬂ)r—l"n’ n = 1’ 2: st

sin® 0
r

These are the fields of a 2"-pole of heat aligned along the z axis. To prove this
we observe that

ap (4 a - @, a -p-
(L = ) PCERr™") = (= 17pll — w2y e Py,

(a result which can be proved by induction). Then, because equation (1.1) is
autonomous in z it follows that

(2.6) (-V2+q-V)T, = (const.)(2-V)'(r).
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Finally, the identification of the set (2.1) as the elements of a multipole expansion
is implied by the expansion of the Bessel function for small values of r. To be
strictly rigorous in the above statements the condition « > — 2 must be added.
For a« £ — 2 the sets (2.1) and (2.5) remain solutions of equation (1.1) but the
interpretations given above are no longer applicable.
We note for later use that the field
() T = 1 e*sin®0 r* ™ V2K ;| o2 (r)
Tl + of2)n3 23 +/2

is the field of a point source of heat at the origin, of strength unity.
On applying equation (1.14) to the sequence of solutions (2.1) we obtain a
second set thus:

(28) Tm(r’ 0) = elzcr(n%_aﬂ)(au)r(a_1)/2Km+(1—a)/2(lr) , M = 0: 13 2, Tt

These solutions are as equally important as the set (2.1). They are the temperature
field of linear combinations of multipoles of a-heat. This assertion is proved by
forming TX(r,0) = p~*T,(r,0), thus

(2.9) TA(r0) = (1 — 1) 2CE D (r™ VK, ayar), m=0,1,2, -

Now since the fields (2.1) satisfy equation (2.6) it follows from the remarks lead-
ing to equation (1.14) that the set (2.9) satisfies

(2.10) (— V2 + g* - V)T = (const.) (2 V)"5(r),

where ¢ * = — (a/p)p, thus the fields T%, and thus T, are multipole fields of
a-heat, as asserted. Note in particular that for m = 0 the field (2.8) is that of
a source of a-heat of strength 232727321 — «/2). Note also that the condi-
tion a < 2 should preface the statements concerning equations (2.8,9, and 10) in
the same way that « > — 2 was imposed earlier.

It can be seen that the fields (2.8) are well behaved for all values of r other
than r = 0, whereas the solutions (2.1) are either zero or infinite on the z axis
according to the sign of a. In the latter case it is the values of T* which are well
behaved, and thus we have an interesting duality; multipoles of heat have finite
a-temperature everywhere, whereas multipoles of a-heat have finite temperature
everywhere (with the exception of the origin in both cases). This points to the
need for a condition on T or T* on the z axis in the complete statement of any
well posed boundary value problem involving equation (1.1). This is a consequence
of the singular convection field.

The behavior of the temperature on the axis in the presence of a heat (as
opposed to a-heat) singularity is entirely consistent with the physics of the problem.
For, it is well known that if, in the absence of convection, a needle is placed on
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the z axis to release heat into the fluid, then in order to produce a non zero tempera-
ture in the fluid the temperature has to be infinite on the needle. When « is positive
the radial convection takes heat away from the axis rapidly tending to reduce the
temperature there, whereas for a negative the convection field tends to prevent
heat escaping from the axis. The fact that the field of a point source of heat has
T ~ p* as p —0 is consistent with this behaviour. _
The asymptotic behaviour of these functions and the dispersion of the heat
(or a-heat) in various directions in the fluid is information worthy of interest. The
asymptotic expansions can be written down immediately, thus with z = r cos 6,

2.11) T,~(1 - ”2)a/2c’(l§+a/2)(u)e-zr(1 —cos0),.2/2=1 ,

and we obtain a paraboloidal wake which is characteristic of many forced convec-
tion problems. There is exponential decay across the paraboloid of revolution
r(1 — cos ) = a constant, and on the surface of the paraboloid T ~ r—! as r —
since (1 — p2)”2r*2~t = [K(1 — cos 8)]*/*(1 + cos §)*/*r~'. The asymptotic form
of (2.8) is very similar,

(2.12) Tm ~ C'(n-}—a/Z)(#)e—lr(l—cose)ra/Z—l

the only difference being that T~r*?>"! on the surface of a paraboloid of revo-
lution now.

With regard to the dispersion of heat within the fluid, in the absence of radial
convection it is well known that all heat is carried downstream, and none gets
upstream. Exactly the same results hold in the current problems, for any value a.

Let M equal the heat flux across the plane z = a, then

o
M= J; Qz|z=a2npdp°
It is easily shown, when T is given by equation (3.7), that

aj2+3/2_3/2 .
M={2 T F(1+2), a>0,

0 , a<0.

Thus no heat crosses a plane upstream of the source, but it all crosses every plane
downstream, so that it must all go downstream. Similar results hold for the dis-
tribution of o-heat, the calculation is identical to that given above except that
— o replaces o.

This completes the analysis of solutions in spherical coordinates. We next
find some fundamental solutions in cylindrical polar coordinates. It is instructive
for us to find the field of a ring source of heat situated at z = 0, p = a, since
it helps to understand the behaviour of the solutions of equation (1.1) on the
axis of symmetry. The solutions can be found as expansions in terms of the multi-
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pole fields (2.1) or (2.8), but it is preferable to use cylindrical polar coordinates
since a closed form solution can then be found.

If a ring source of total strength M is placed at z = 0, p = a, then T must
satisfy equation (1.1) with

@.13) F() = — 2_11‘:425(,; — 0)8(2).

One can then solve equation (1.1) by taking Fourier transforms in z and solving
the resulting ordinary differential equation in p. The problem has two admissible
solutions which decay at infinity. They are

(2.142) T = k (a)e*p® f R™**7*K_,,,_(AR)sin’tdt,
V]

where
M /lal 244

and R? = a? + p? + z2 — 2apcos t,
PR + af?) P P

k(@) =

or equivalently

(2.14b) T* = k,(a)e* f:R"’z"*K_,,z_*(lR) sin®tdt,
and
(2.15) T = ky(x)e™* fo xR“/Z'*Ka,z_,}(AR)sin'“tdt,
where

ki) = Ma 2"

23/2-a/2n2r(% — O!/Z) :

For r*(= p? + z?) large it may be verified that the solutions (2.14) have the asymp-
totic behaviour of a point source of heat and that the solution (2.15) has the
asymptotic behaviour of a point source of a-heat. The choice of (2.14) or (2.15)
as the unique solution of the original problem can only be made if the behaviour
of T or T* is specified on the z axis in the statement of the problem. The most
natural interpretation seems to be to regard (2.15) as the field of a ring source of
heat and (2.14) as the field of a ring source of «-heat. Then we impose T* ~ const.
to get (2.14) or T ~ a const. to get (2.15). This interpretation is possible because
there is no qualitaive distinction to be made betewen a ring of heat and a ring
of a-heat. If F(r) appears on the right hand side of the equation for T, then
p “F(r) appears on the right hand side of the equation for T*. But when
F(r) = (M[2ra)p~*3(p — a)d(z), because f(x)d(x) = f(0)d(x) at a point of a con-
tinuity of f, the p~™* term becomes a % Thus a ring source of heat of total strength
M can also be regarded as a ring source of a-heat, of total strength Ma™"% It

https://doi.org/10.1017/51446788700023867 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700023867

9] A forced convection problem 9

will therefore be not unexpected when we observe that if a —» 0 in equations (2.14)
and (2.15) we obtain (2.7) if a » 0, with M fixed and @2.8) (withm = 0)ifa—0
with Ma™* fixed.

3. The solution of two boundary value problems

In this section we will give some solutions of equation (1.1) which fit pre-
scribed values of T on the intervals (— 1, 1), or (0, ©), and have a certain behaviour
on the z axis at points exterior to these intervals. The latter constraint is added
in the light of the properties of the fundamental solutions constructed in the

previous section.
We shall solve, in detail, the boundary value problem:

@#T  &T 1-adT _, 0T

3.1) 5z + 3 > 2}.—6—2— =0,

3.2) T(z,0) = f(z), for |z|<1,

(3.3) T —0as z2 + p?> - 0, except possibly along p =0, z> 0,
and

(3.4) T(z,p) ~ t;(z) as p~0 for |z|>1.

Since T ~ a constant, or T ~ p* as p— 0 for fixed z, the condition (3.4)
specifies the former behaviour. The form of (3.4) emphasises that the value of
the constant depends on z.

The problem will be solved using elliptic coordinates in an azimuthal plane.
Set
3.5) z + ip = cosh(é + in),

then curves of constant £ are confocal ellipses with foci at (+ 1,0) and curves of
constant 5 are confocal hyperbolae with foci at (4 1,0).
It is the equation for e** T which is separable thus with V = ¢** T we obtain

v 0%V ov
Frz + o 4+ (1 — x)coth 60_6—

~ A*(sinh? ¢ 4 sin2p)V =0,
so with V = X(&) Y() we find

+ (1 —a)cot Z—V
(3.6) n

(3.7 X"+ (1 —a)cothE X’ — (k + A?sinh? &)X = 0,
and
@3.%) Y +(1 —a)cotnY’' — (— k+ A%sin®n)Y =0,

where k is the separation constant.
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" The boundary condition is given on ¢ = 0 and so we are most concerned
with choosing eigensolutions of the second equation (3.8). A complete mapping
of the zp plane is obtained for ¢ = 0, 0<n<m and it suffices to consider solutions
of (3.8) which are even in 7.

With u = cosy and Y = (1 — u?)*?W equation (3.8) is replaced by

09) Q- 2y (4 7

o
PP P R SRR MY
W 2udu k+4 1 5 a-u’))w

which is a particular form of the spheroidal differential equation. The book by
Meixner and Schifke (1954) contains an extensive study of this equation and
Arscott (1964) and Erdélyi (1954; Volume III) also contain many useful proper-
ties. The substitution #, = n/2—n transforms equation (3.8) to the Associated
Mathieu equation which has been investigated thoroughly by Campbell (1955).

From the work of Meixner and Schifke and of Campbell it can be proved
that there exists an ennumerable sequence of values k, of k such that the corre-
sponding solutions Y,(n) of (3.8) are expressible as a series of Gegenbauer poly-
nomials, thus

(3.10) Y, (1) = 2 ADCED(cosy).

r=0

They are orthogonal on (0, n) with weight function (sinn)!-% for 0 <a <2, and

n!
" (n+i—o)(n+1-0)

(3.11) fo Y, ()Y o(r)(sin ) ~%dn = 5

They are complete on (0, x) spanning the space of functions which are analytic
in a closed region of the complex plane which contains (0, 7) in its interior.

The transformations u= cosh &, X = (1 — u?)*?W applied to equation (3.7)
give equation (3.9) again, but on this occasion our interests lie with solutions
defined for u > 1. For the values k, of k which correspond to the solutions (3.10)
the solutions of equation (3.9) defined for u > 1 are expressible as series of
Bessel functions. Any type of Bessel function is admissible but since it can be
proved (Meixner and Schifke, § 1.9) that the series inherits the asymptotic form
of the Bessel functions at infinity our choice is restricted to a series of modified
Bessel functions; the solutions are thus

(3.12) X, (&) = (cosh§)**~* _z(;) B{PK, ¢ 4—q2(Acosh &).
From an examination of the behaviour of the solutions of equation (3.9) in

the neighbourhodd of the singular point u = 1 and u = — 1, it can be deduced
that as £ -0,
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a constant, for a >0,
(3.13) : X6 ~ {log(sinhf), for « =0,
: (sinh &), for «a <0.

Since sinh & ~ & for ¢ small, then p ~ £siny and z ~ cosy, thus as p -0, for
|z|<1 we have

1(2), for > 0,
(3.14) XD Y, (m) ~ {fn(Z) logp, for «a=0,
1,(2)0%, for a < 0.

A similar argument also shows that when « > 0, X, () Y, () ~ t,(2) as p -0 for
|z| > 1. Thus it follows that the series

(3.15) T = &8 3 a,X (DY, (1)
n=0

is a solution of equations (3.1), (3.3) and (3.4). For « < 0 this expansion is inappro-
priate because of (3.14). However if we apply the result (1.14) to the series (3.15), we
obtain a series for which X, (&)Y, (n) ~ f.(z) as p —» 0. But then the terms of this
series satisfy T* ~ t,(z) on p = 0, | z| > 1 and so the condition (3.4) will not be
satisfied. The a, will be chosen to fit the boundary condition (3.2). For a« <2
they can be determined from the orthogonality relationships (3.11).

The asymptotic from of T as given by (3.15) will follow the behaviour of
X, (&) for a well behaved series, thus since

X0~ e exp (T et) a5 £ oo,

and 28
e
r2=p2+22:T, n~0,as o0,
then
(3.16) T ~ 12 Yexp (— Ar(1 + cos6)).

This is the asymptotic form of the source of a-heat and it enables us to regard
the temperature field given by (3.15) as the field induced by a distributed source

of a-heat spread along the z axis between z = 1 and z = —1 whose density per
unit length is adjusted so that it induces. the prescribed temperature on the segment
p=0,]z|<1.

The reader familiar with the properties of Mathieu functions will have noted
the resemblance of the expansions (3.10) and (3.12) to the series for ce,(n) and
Fek, (&) respectively. The special case « = 1 gives these functions precisely the
problem is then mathematically identical to the two dimensional problem for a
heated plate set tangential to a uniform stream of inviscid heat conducting fluid
(Belward (1969)).
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The case when the interval (— 1, 1) is replaced by (0, ) in the boundary
value problem can be treated in an exactly similar manner. The problem retains
all the main properties of the previous problem in respect to the dependence
on «. It is solved in terms of parabolic coordinates in the zp plane. The mapping
function is

.17 z+ip = (& =in
The solution, for « >0, is

(3.18) T=e 2" % a,,Lf,'“’z’(252)‘I’(n + 1~g—, 1 —°21; 2r,2) ,
n=0 K

where I9(w) is a Laguerre polynomial and W(a, b; w) is a confluent hypergeo-
metric function (see Erdélyi (1954); Volumes I and II)). The boundary conditions
are applied on # = 0 and the Laguerre polynomials are orthogonal and complete
on (0, ).

A solution which satisfies equations (3.2), (3.3), (3.1) and the condition
T* ~ t,(z) as p — 0 can also be written down. One solution of interest is the special
solution corresponding to the boundary condition T = 1 on p = 0,z > 0. Then
we have

(3.19) T = r“(g)r(g, 2;12),

so that T is constant on each paraboloid of revolution p? = 45%(z + 53). The
case of o« = 1 which corresponds to the two dimensional problem is well known.

The parabolic wake appears explicity in these solutions. Along the curves
n = a constant the dependence is algebraic whereas across the curves the depend-
ence is exponential.

4. On integral representations and integral equations

In the following paragraphs some integral representations of solutions of
equation (1.1) will be given and the integral equation (1.2) will be constructed. It
will be shown that the solution of the boundary value problems of the previous
section can be used to solve equation (1.2). Finally we shall use two different
integral representations of the same function to derive an inverse operator for
equation (1.2) on (— o0, ©).

The function
S S T 2 aqa-1y4
————— Ne™ ™ -1 *

e vpmerl ICOM (CRDE T

* Kia-1y2(AL(z — )* + p2]H)dt,

is a solution of equation (1.1) provided only that g is a generalised function of
slow growth at infinity. When g is integrable and o > 0, we have

4.1) T(z,p) =
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Ji-el2pal2-3/2

“4.2) TE0 = Srra =) .

g(t)el(z—t)l 7 — tl(a—l)/z

X Kq-1y2(A]z — t]dt,

which is essentially equation (1.2). Thus in the usual way the boundary value
problem is reduced to an integral equation, and the solution of the integral equa-
tion gives the solution of the boundary value problem through the representation
“.1.

We can also show, more importantly, that the solution of the boundary value
problem gives the solution of the integral equation. This follows by identifying
the role of g in the boundary value problem. We prove that

4.3) 9(z) = lim (—2np““%—T-), for @ <2.

p—0 P .
First note that by comparison with the solution (2.8), with m = 0, the field (4.1)
is the field of a source of a-heat distributed with strength g(f) per unit length along
the segment (c,d). Thus M*, the total flux of a-heat from the segment (c,d) is
given by

44 we = [qto.

But M* can be calculated directly from T. If the segment p = 0, c <z <d is
contained in the cylinder 0 < p < a, h < z < k then the flux of a-heat from the
cylinder M* is

z=k

2npdp.
z=h

ke oT* « )
— — -T*)2n
( o p )P

The cylinder can now be reduced in height and radius until it coincides with the
segment p = 0, ¢ <z <d. We find that, in terms of T,

a ,; *
dz +f (— a—T—+2,1T*)
p=a

4.5 M*= f -

h

4. 1-2 0T
(4.6) M* = | lim (— 2mp'~* = )dz, for a <2,
c p—0 ap 7
and (4.3) follows by comparison of (4.4) and (4.6). For a = 2 the integrals in
(4.5) may not converge. A more rigorous proof of this result is given in another
paper by Belward (to appear), where the integral equation (1.2) is given individual
treatment.
The function

Ai—+a/2 a

d
p Az=1) _ —(a—1)/4
232+%27312[ (1 — a)2) j;h(t)e [(z =0+ p?]

T(z,p) =
@.7
X K_(a-1y2(A[(z = 1) + p*]Hdt.
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is also a solution of equation (1.1), and by comparison with (2.6) this is clearly
the field of a distributed source of heat. From this we can deduce that

4.8) h(z) = 270 T(2,0) for c <z <d and a> — 2.

Note therefore that the function (4.7) is the solution of the boundary value prob-
lem in which (3.4) is replaced by the condition T* ~ t,(z) for z ¢(c,d), provided
we put h(z) = 2naf(2).

Finally note that when T is given on the entire z axis either representation
1s possible. This provides an elegant method of deducing an inverse operator
for the integral equation (1.2). Simply replace h(t) by 2naf(f), then calculate
g(®) from (4.7) by computing

_, 0T
lim{ — 2zpt ——)
n—'O( b ap

The result is
JEta2py

@49 g0 = T 2:2-3021(y2)

f f(z)el(' z)lt ZI (a—1)/2
X K_(a_l)/z(j.lt— Zl)dz.

The integral above does not converge in the ordinary sense when 0 <a <2.
However the statement of (4.9) as the inverse operator is valid for all « when
interpreted as a relationship between distributions.

5. Large and small Péclet numbers

A feature of practical interest in these problems is the dependence of the solu-
tions on the parameter A, the Péclet number defined in section two. The boundary
value problem in section three in which the temperature is specified on (— 1, 1)
is a problem in which the Péclet number is genuinely defined since there is a charac-
teristic length in the problem. In this section some approximate solutions will be
deduced for A large and for A small. The form of the solution (3.15) is extremely
complicated and it seems impossible to deduce the dependence on A from it in
terms of simple functions, so we use the integral equation formulation of the
problem instead.

A second parameter of practical value in heat transfer problems is the Nusselt
number. This is the nondimensioned heat flux into the fluid. In the problem of
section three it is natural to generalise this notion and consider the total flux of
o-heat, M*, into the fluid. The asymptotic dependence of M* on A can easily be
established by using the approximate solutions of the integral equation. We im-
pose the restriction 0 < o < 2, because M* is not in general finite for a« = 2 and
the kernel is not integrable for « < 0.
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The estimates are obtained by approximating the kernel of equation (1.2) so
that the integral equation becomes a more simple equation whose solution can
be given in closed form.

For large A we approximate the kernel of (1.2) by its asymptotic form. It
is then exponentially small for positive values of its argument, when A is large,
so we ignore this contribution to the integral. Equation (1.2) (for convenience
assumed given on (0, 2) now) becomes the Abel equation :

)L-a/22a/2—2 z
(51) m og(t)(z—t)alz-ldt =f(Z).

The solution is

(52 g(z) = #7222 ('r(a /g(;(;j/f)_ o L Oz — w)"‘“/zdw),

where n is chosen so that —1<n — /2 — 0. Here it is assumed that
F90) =0, i=0,1,2,---,n—1. While M* is not in general finite for a >2 due
to the non-integrability of g at the origin, these conditions do ensure that M* is
finite for large A. ,

The dependence on A, for 0 <« <2, is demonstrated by the solution for
T(z,0) = 1. In this case

1—af2_-af2
— al2 71:2 4
(5.3) g(z) = A ———————r(alz)
and
(5.9 M* = %2 24~—an

Q= l(@/2) -

The validity of these manipulations might be questioned because the approx-
imation of the kernel is not uniform in 1. However the analysis is supported by
two results. First a boundary layer analysis gives (5.3) precisely; and secondly
if g(z) (from (5.3)) is substituted into the full equation the integral can be shown
to equal 1 4+ 0(A~%/?), thus the method is valid if ‘small’ right hand sides give
‘small’ solutions.

For A small and 0 < a < 2 the kernel can be approximated by

r (_1 > “)2"‘““>/2w“-1, 0<a<l,

W(a—l)/zK(a—l)/z(W) = —logiw , a=1,
(5.5) 9

oo — 1 1 — o
r
F( 2 ) ( 2 )‘”a-l

L 23/2-2/2 + SE+aiz " ,l<a<?,
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and the three cases 0 <a <1, a = 1, and 1 < a <2 have to be considered se-
parately. We outline the calculation for 0 < a < 1 and quote the remaining results.
In all cases the dependence on A is obtained by taking T(z,0) = 1lon 0 <z < 2.
For0<a<l.

_ 2
5.6 10 2 p = o [ o]z ar
0o

Equation (5.6) is Carleman’s equation, its solution is well known and is given,
for instance, by Carrier et al. (1966). The solution is

5.7 ) = 4r* 4"1/2(2 _ t)—a/2
' 90 = g a2 e2) " ,
and thus

. _ 471 — af2)
9 M= T(@/2)C(1/2 — o/2)T(32 — af2)’

Here we have the interesting result that g and M* are independent of A to a first

approximation.
For a = 1, the solution of the equation is

(5.9 9(2) = (1 ¢ Yo 2))7”?) ez -2
and
(5.10) M* ~ —2z%(logA)~!.
For 1 <a <2 we find
(5.11) | 9(@) = (1 — kA 7 M¥)z" 2 2— 2)"2,

where

a3 T 1) g f, @ = r
k,=2 3F(—2—)“ T 1(1 2) lﬂ‘zr(3/2—a/2)l”(1+a/2)’

and .
(5.12) M* = 23‘“n3/2r(1 ~ g)r(f‘zf - %)A“‘.

The approximations made in obtaining this last group of results are uniform over
their range of application and hence there should be little doubt of their validity.
The analysis could be made rigorous by writing the kernel of equation (1.2) as
the sum of the leading term plus an error term. By applying the inverse operator
for Carleman’s equation to the resulting equation the magnitude of the error term
could then be estimated.
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