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Abstract

We examined how BMI, BMI trajectories, and BMI fluctuation around these trajectories in adolescence were correlated with BMI trajectories
and BMI fluctuation in early adulthood, as well as the genetic basis of these associations. BMI data from Finnish twins (N= 1379, 48%males)
were collected at ages 11.5, 14, 17.5, 24, and 37 years. BMI trajectories in adolescence (11.5–17.5 years) and early adulthood (17.5–37 years)
were estimated using linear mixed-effect models. BMI fluctuation was calculated as the average squared differences between observed and
expected BMI around these trajectories. Genetic twin models and a polygenic risk score for BMI (PRSBMI) were used to assess genetic
contributions to BMI fluctuation and its associations with BMI and BMI trajectories. Adolescent BMI fluctuation was positively correlated
with early adulthood BMI trajectories in females, while inmales, adolescent BMI trajectories were positively associated with BMI fluctuation in
early adulthood. Genetic factors affected BMI fluctuation in both adolescence and early adulthood when estimated using twin modelling and
PRSBMI. Adolescent BMI was positively associated with early adulthood fluctuation in both sexes, with genetic factors playing a role (genetic
correlations .08–.29). It was concluded that genetic factors play a significant role in BMI fluctuations in adolescence and early adulthood, with
some overlap with the genetics of BMI.

Keywords: BMI; Obesity; Weight fluctuation; Twin study

(Received 18 August 2025; revise received 18 August 2025; accepted 23 September 2025)

Obesity is considered a major public health challenge across all age
groups. A particular concern is childhood obesity, as it is a major
risk factor for developing obesity in adulthood (GBD 2015 Risk
Factors Collaborators, 2016). While obesity is defined as the
excessive accumulation of adipose tissue due to an imbalance
between energy intake and expenditure, it is a multifactorial
condition influenced by genetics, environment, behavior, and their
mutual interactions. The primary indicator of obesity in
epidemiological studies is body mass index (BMI), and it is also
commonly used in clinical settings to identify individuals whomay
require further assessment for fat accumulation. The heritability of
BMI ranges from 40% to 70% in twin studies (Silventoinen et al.,
2017; Silventoinen et al., 2016) and 20% to 50% in family and
adoption studies (Elks et al., 2012; Silventoinen et al., 2010).
Additionally, cross-sectional genomewide association (GWA)

studies have identified over 1000 independent loci associated with
adult BMI (Hardy et al., 2010; Min et al., 2013; Yengo et al., 2018)
and several loci associated with BMI in childhood (Locke et al.,
2015; Vogelezang et al., 2020). Previous studies have also shown
that genetic factors play an important role in determining BMI
trajectories in adulthood (Drouard et al., 2023; Hjelmborg et al.,
2008; Obeso et al., 2024; Ortega-Alonso et al., 2009). However,
there are no previous studies about the genetics of BMI trajectories
in adolescence and BMI fluctuations both in adolescence and
adulthood.

The role of BMI in adolescence in the development of adult
obesity (Silventoinen et al., 2022) and BMI trajectories in
adulthood has been demonstrated in previous studies (Obeso
et al., 2024). However, despite extensive research on BMI, only a
few previous studies have examined the fluctuation of BMI over
time (Freedman et al., 2018) and its associations with different
health-related conditions, such as metabolic syndrome (Guo et al.,
2024) and cardiometabolic disease risk (Sponholtz et al., 2019).
BMI fluctuation has important public health and clinical
implications since frequent weight cycling can predispose
individuals to future weight gain (Dulloo et al., 2015;
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Rhee, 2017). Furthermore, little is still known about the role of
genetic and environmental factors in BMI fluctuation and its
associations with BMI and its trajectory. Moreover, the association
between BMI fluctuation and genetic predisposition to high BMI,
as well as the heritability of BMI fluctuation, remains
underexplored.

We aimed to analyze the genetics of BMI fluctuations, defined as
the temporal variability of BMI around an individual’s fitted BMI
trajectory, and how it relates to future BMI and its trajectory over
time. Specifically, we analyzed the association between (1) BMI in
adolescence and BMI fluctuation in early adulthood, (2) BMI
trajectories in adolescence and BMI fluctuation in early adulthood, (3)
BMI fluctuation in adolescence and BMI trajectories in early
adulthood, and (4) BMI fluctuation in adolescence and BMI
fluctuation in early adulthood. Additionally, we investigated whether
genetic predisposition to high BMI is associated with BMI fluctuation
and BMI trajectories in adolescence and early adulthood. We used
two analytical designs, genetic twinmodeling and polygenic risk score
of BMI (PRS_BMI), eachwith different background assumptions, and
applied them to longitudinal data. This approach allowed us to
unravel the complex interplay between genetics and the environment,
as well as account for confounding factors.

Methods

Cohort

The data were obtained from the longitudinal FinnTwin12 study,
which included five waves of data collection. The initial mailed
questionnaire survey (wave 1) was sent to all twins born in Finland
between 1983 and 1987 when they were 11–12 years old, resulting
in a total of 5362 participants (response rate 87%). Four follow-up
surveys (waves 2–5) were sent at the average ages of 14 (response
rate 88%), 17.5 (response rate 92%), 24 (response rate 66%), and 37
(response rate 43%) (Cooke et al., 2025; Kaprio et al., 2002; Rose
et al., 2019). Participants reported their current weight and height
in each survey, which was used to calculate BMI (kg/m2). The
correlation between self-reported and measured BMI was .97 in a
subsample of these twins at age 24, indicating good reliability of
self-reported BMI (Drouard et al., 2023). Zygosity was assessed
using DNA, or if not available, based on questions about physical
similarity in the baseline questionnaire. In a validation study of 395
same-sex twin pairs in this cohort, 97% of questionnaire
assignments of zygosity were confirmed by a DNA test, showing
high reliability (Jelenkovic et al., 2011). The Ethics Committee of
the Helsinki University Central Hospital District (HUS) approved
themost recent data collection (wave 5) (HUS/2226/2021, dated 22
September 2021), as well as the use of previously collected data.
The participants or their parents/legal guardians provided
informed consent when participating in the surveys.

Participants with valid BMImeasures in all fivewaves (N= 1379)
were selected. From these participants, we selected complete twin
pairs (N= 336 pairs) for genetic twinmodeling (Figure 1). Although
BMIwas not a criterion for selecting twins, we found that the BMI of
those selected in the current study was slightly lower, but not
statistically significant, compared to those not included (0.16–0.58
kg/m² after adjusting for age and sex in each survey), suggesting that
there may be some self-selection related to BMI.

BMI Trajectory Calculation

The BMI trajectories in adolescence were calculated using BMI
measures from waves 1–3 (between 11.5 and 17.5 years), while

early adulthood BMI trajectories were based on measures from
waves 3–5 (from age 17.5 to 37). In both cases, the trajectories were
calculated using linear mixed-effects (LME) models that included
both fixed and random effects, as explained in detail elsewhere
(Obeso et al., 2024). Random effects were applied to individual
identifiers to estimate individual baseline BMI (i.e., intercept) and
BMI trajectory (i.e., slope). R software (version 4.2.3) packages
lme4 (version 1.1-34), lmerTest (version 3.1-3), dplyr (version
1.1.4), modelsummary (version 1.4.3), and optimx (version 2023-
10.21) were used.

BMI Fluctuation Calculation

The participant-specific BMI trajectories and baseline BMI were
used to estimate BMI fluctuation. Initially, the BMI trajectory value
was determined using the formula y = xnþm, where n represents
the BMI trajectory measured in kg/m2 per year, m is the baseline
BMImeasured in kg/m2 (i.e., wave 1 for adolescence and wave 3 for
early adulthood), and x is the difference between the age of interest
and the baseline age (i.e., wave 1 for adolescence and wave 3 for
early adulthood). Next, the squared differences between observed
and expected BMI values were calculated at each age. Finally, the

Figure 1. Participant flowchart and general study plan diagram.
Caption: The study was divided into twomain parts based on the analyses after a data
preprocessing phase. Preprocessing consisted of obtaining sex-specific BMI
trajectories (slope and intercept) and fluctuation from those participants with height
and weight measures for the five waves. One part of the study was phenotypic
associations between BMI variables themselves and with the polygenic risk score of
BMI. The other main part of the study was the classical twin genetic modelling which
was based on BMI trajectories (slope and intercept) and fluctuation. Two exclusion
criteria were performed at different times: they correspond to (1) data preprocessing
and (2) selection of complete same-sex twin pairs. Abbreviations: MZ, monozygotic
twins; DZ, dizygotic twins; N, number of participants
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total BMI fluctuations in adolescence and early adulthood were
calculated for each participant by averaging the squared difference
values (using waves 1, 2, and 3 for adolescence andwaves 3, 4, and 5
for early adulthood). A sensitivity analysis was conducted to
evaluate the accuracy of the method used for the estimation of BMI
fluctuation. For that, another method (one that makes no
assumptions about the linearity of BMI trajectories) was used
for the estimation of BMI fluctuation and then compared to the
previously used method (Zonneveld et al., 2023). A strong
correlation was found between the BMI fluctuations obtained in
these different ways (Supplementary Table 1 and related text).

Polygenic Risk Score of High BMI (PRSBMI)

At wave 4, DNA from a subset of twins selected from the cohort
independently of their BMI was obtained from venous blood or
saliva samples and used in the PRSBMI analyses (N= 1478; Rose
et al., 2019). The technical details of genotyping, quality control
and imputation in genotype data processing have been described
elsewhere (Kujala et al., 2020). The PRSBMI was derived using
GWA summary statistics from elsewhere (Yengo et al., 2018). For
the calculation of the PRSBMI, a total of 996,919 single nucleotide
polymorphisms (SNPs) with a minor allele frequency >5% in
European individuals obtained from 692,578 participants were
used. To correct for population stratification, the PRSBMI was
regressed to the top 10 genetic principal components, and the
residuals were scaled to a mean of zero and a variance of one (Price
et al., 2006). We found no difference in PRSBMI distributions
between included and excluded participants (p = .19), suggesting
that there was no selection bias for PRSBMI.

Association Study

Linear mixed-effects regression models were conducted to
calculate the associations between (1) BMI in adolescence (at
waves 1, 2 and 3) and BMI fluctuation in early adulthood, (2) BMI
trajectories in adolescence and BMI fluctuation in early adulthood,
(3) BMI fluctuation in adolescence and BMI trajectories in early
adulthood, and (4) BMI fluctuation in adolescence and BMI
fluctuation in early adulthood (the models used are displayed in a
footnote of the corresponding table). Furthermore, the associations
between the PRSBMI and BMI fluctuation in adolescence and early
adulthood were assessed to determine whether genetic predis-
positions for high BMI were associated with higher BMI
fluctuation in adolescence and early adulthood (the models used
for the study of associations of PRSBMI with BMI trajectories and
fluctuations in adolescence and early adulthood are displayed in a
footnote of the corresponding table). All analyses were conducted
separately for males (n= 665) and females (n= 714) since mean
BMI (from wave 3 onwards) and BMI trajectories differed by sex.
We considered associations 0–0.39 as weak, 0.40–0.59 asmoderate,
and 0.60–1.00 as strong. The analyses were conducted using the R
software (version 4.2.3) and the R package lme4 (version 1.1-35.5)
and lmerTest (version 3.1-3).

Genetic Twin Modeling

The genetic analyses were continued by twin modeling based on
the different genetic relatedness of monozygotic (MZ) and
dizygotic (DZ) twins: while MZ twins have virtually identical
genetic sequences, DZ twins share, on average, 50% of their genes
identical-by-descent. The trait variance can be decomposed into
four components: (1) additive genetic variation (A), which

includes the effects of all the loci that play a relevant role in the
trait (correlation of 1 in MZ twins and 0.5 in DZ twins); (2) effects
due to dominance (D) where the heterozygote phenotype deviates
from the additive model (correlation of 1 in MZ twins and .25 in
DZ twins); (3) shared environmental component (C), including all
the environmental factors that make the co-twins similar
(correlation of 1 in MZ and DZ twins); and (4) unique
environmental component (E), including all environmental factors
making the co-twins different along with the measurement error
(correlation of 0 in MZ and DZ twins). For twins reared together,
all four components cannot be simultaneously estimated, hence
ACE and ADE are chosen as starting models depending on the
pattern ofMZ andDZ correlations. ADEmodels are used when the
MZ twin pair correlations (rMZ) are equal to or greater than twice
the correlations on DZ twin pair (rDZ) (rMZ≥ 2rDZ). If the
correlations of MZ twin pairs are less than two times the
correlation of DZ twins (rMZ< 2rDZ), ACE models are estimated.

Separate univariate models for each trait were used to
determine the best-fitting model and to calculate the relative
contributions of genetic and environmental factors. Intraclass
correlations by zygosity were calculated by dividing within-pair
variation by between-pair variation using the analysis of variance.
Based on these correlations, the additive genetic/shared environ-
ment/unique environment (ACE) model was selected as the
baseline model (Supplementary Table 2). Model comparisons were
conducted using−2 log likelihood (−2LL) and Akaike information
criterion. Based on the model comparisons, a full AE model with
sex differences was selected for all the variables (Supplementary
Table 3). However, in females the model suggests the presence of a
shared environmental component (C) having rDZ > rMZ.
However, this result can be attributed to a small sample size.

Finally, the bivariate Cholesky decomposition, a model-free
method to decompose all variation and covariation in the data into
uncorrelated latent factors (Kaprio & Silventoinen, 2011), was used
to decompose the covariation between the different measures into
genetic and environmental covariances. When these covariances
are standardized, we obtain estimates of additive genetic (rA) and
unique environmental (rE) correlations. Genetic twin modeling
was performed using the R software (version 4.2.3) and the R
package OpenMx (version 2.21.11). The 95% confidence intervals
(CI) were assessed using maximum likelihood estimation (Neale
et al., 2016).

Results

Table 1 displays the descriptive information of the data used. The
mean BMI increased from 17.48 kg/m2 inmales and 17.39 kg/m2 in
females in wave 1 to 26.09 kg/m2 and 24.93 kg/m2, respectively, in
wave 5. Males showed a higher mean BMI from age 17.5 onwards,
which coincided with the establishment of statistically significant
BMI differences between the sexes (p < .01). Accordingly,
statistically significant sex differences were observed for the
estimates of BMI trajectories, being higher in males in adolescence
(0.64 kg/m2 per year in males and 0.54 kg/m2 per year in females,
p< .01) and early adulthood (0.22 kg/m2 per year inmales and 0.20
kg/m2 per year in females, p = .01).

Table 2 presents the heritability estimates for the BMI
trajectories and BMI fluctuation in adolescence and early
adulthood for males and females. The heritability of BMI
fluctuation in males was higher in adolescence (a2 = .80) than
in early adulthood (a2 = .34), while in females the heritability was
higher in early adulthood (a2 = .51) than in adolescence (a2 = .34).
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Regarding BMI trajectories, heritability in males was higher in
early adulthood (a2 = .70) than in adolescence (a2 = .61), while in
females the heritability was higher in adolescence (a2 = .75)
compared to early adulthood (a2 = .61). However, not all
differences were statistically significant, as indicated by over-
lapping 95% CIs.

Table 3 displays the phenotypic, additive genetic, and unique
environmental correlations between the analysed pairs of traits.
The BMI fluctuation in adolescence was only linked to BMI
trajectories in early adulthood in females (r = .18). Additionally,
BMI in adolescence had significant phenotypic associations with

BMI fluctuations in early adulthood in both males (r = .16–.30)
and females (r = .37–.39). However, BMI trajectories in
adolescence and BMI fluctuations in early adulthood showed a
significant phenotypic association only in males (r = .14). The
association between BMI fluctuation in adolescence and early
adulthood was significant only in males (r= .26). Subsequently, we
decomposed the significant correlations into genetic and envi-
ronmental components. Genetic factors accounted for most of the
phenotypic associations between BMI fluctuation and BMI
trajectories: the additive genetic correlations (rA = .14 for the
associations between BMI fluctuation in adolescence and BMI

Table 1. Means and standard deviations of bodymass index (BMI) at different waves and its trajectories in adolescence (waves 1 to 3) and early adulthood (fromwave
3 to 5) by sex

Males (n= 665) Females (n= 714)

Sex differences (p value)Mean SD Mean SD

Wave 1

Age (years) 11.41 0.30 11.42 0.30 0.79

BMI (kg/m2) 17.48 2.39 17.39 2.45 3.91e-07

Wave 2

Age (years) 14.03 0.07 14.03 0.06 0.30

BMI (kg/m2) 19.20 2.56 19.24 2.44 0.91

Wave 3

Age (years) 17.60 0.20 17.59 0.20 0.17

BMI (kg/m2) 21.42 2.47 20.81 2.41 <2.2e-16

Wave 4

Age (years) 24.14 1.70 24.19 1.62 0.06

BMI (kg/m2) 23.90 3.06 22.36 3.27 <2.2e-16

Wave 5

Age (years) 37.13 1.42 37.23 1.47 0.02

BMI (kg/m2) 26.09 3.75 24.93 4.24 <2.2e-16

BMI trajectories1

BMI adolescence trajectories (kg/m2 per year) 0.64 0.15 0.54 0.12 <2.2e-16

BMI early adulthood trajectories (kg/m2 per year) 0.22 0.08 0.20 0.12 5.34e-12

Note: 1The BMI trajectory estimates were obtained by linear regressionmodels based on BMI at waves 1, 2 and 3 for adolescence, and at waves 3, 4, and 5 for early adulthood. The sex difference
was studied using linearmixed-effect models: (1) for ages: Age at nwave= Sexþ Zygosityþ (1| Family ID). (2) For BMI: BMI at nwave= Age at nwaveþ Sexþ Zygosityþ (1| Family ID). (3) For BMI
trajectories in adolescence: BMI trajectories in adolescence = BMI intercept for adolescence þ Adolescence age baseline þ Zygosity þ Sex þ (1|Family ID). (4) For BMI trajectories in early
adulthood: BMI trajectories in adulthood = BMI intercept for adulthood þ Adulthood age baseline þ BMI intercept for adolescence þ Zygosity þ Sex þ (1| Family ID).

Table 2. Relative proportions of body mass index (BMI) variance explained by additive genetic and unique environmental variance components with 95% confidence
intervals (CI) of BMI trajectories and fluctuation in adolescence and early adulthood by sex1

Males Females

Additive genetic factors Unique environmental factors Additive genetic factors Unique environmental factors

a2

95% CI

e2

95% CI

a2

95% CI

e2

95% CI

LL UL LL UL LL UL LL UL

BMI fluctuation in adolescence 0.80 0.69 0.87 0.20 0.13 0.31 0.34 0.17 0.49 0.66 0.51 0.83

BMI fluctuation in early adulthood 0.35 0.11 0.53 0.65 0.47 0.89 0.51 0.38 0.62 0.49 0.38 0.62

BMI trajectory in adolescence 0.62 0.44 0.74 0.38 0.26 0.56 0.75 0.65 0.83 0.25 0.17 0.35

BMI trajectory in early adulthood 0.71 0.56 0.80 0.29 0.20 0.44 0.61 0.47 0.72 0.39 0.28 0.53

Note: 1AEmodel with sex differences was selected for the BMI fluctuation in adolescence and BMI trajectory in early adulthood in both sexes. a2, proportion of total variance explained by additive
genetic factors; e2, proportion of total variance explained by unique environmental factors; LL, lower limit; UL, upper limit
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trajectories in early adulthood; rA = .16–0.51 for the associations
between BMI in adolescence and early adulthood BMI fluctuation;
rA = .50 for the associations between BMI fluctuations in
adolescence and early adulthood in males) were generally higher
than the phenotypic correlations. However, in males, the
association between BMI fluctuation in early adulthood and
BMI trajectory in adolescence was entirely (rE = .24) and the
associations between BMI at wave 3 and early adulthood BMI
fluctuation partly attributable to unique environmental factors
(rE = .22).

Finally, we examined the association between PRSBMI with BMI
trajectories and BMI fluctuation in adolescence and early
adulthood (Table 4). In males, PRSBMI was associated with BMI

fluctuation (β = .13) and BMI trajectory in early adulthood (β =
.11). In females, statistically significant associations were found
with BMI fluctuation in adolescence (β = .21) and early adulthood
(β = .23), as well as with BMI trajectory in early adulthood
(β = .16).

Discussion

The current study examines the associations between BMI, BMI
trajectories, and BMI fluctuations in adolescence with the BMI
trajectories and fluctuation in early adulthood. First, we found that
BMI in adolescence is associated with BMI fluctuation in early
adulthood. This indicates that greater BMI in adolescence is
associated with greater BMI fluctuation (more erratic weight
changes) in early adulthood. The associations in the early (11.5
years) and middle (14 years) stages of adolescence were fully
attributable to genetic factors. In contrast, the association observed
in the late stages of adolescence in males was influenced by both
genetic and environmental factors. Second, in males the BMI
trajectories in adolescence are related to BMI fluctuation in
adulthood, indicating that greater weight gain in adolescence is
associated withmore BMI fluctuation in adulthood. This association
was found to be fully influenced by environmental factors.
Moreover, the fluctuation in BMI in adolescence is associated with
fluctuation in early adulthood in males, indicating that greater
fluctuation in BMI in adolescence is associated with greater
fluctuation in adulthood. This association was driven exclusively
by genetic factors. Finally, the BMI fluctuation in adolescence was
associated with BMI trajectories in early adulthood in females,
indicating that the more BMI fluctuates in adolescence the more
pronounced theweight gains in early adulthood are. This association
was also explained purely by genetic factors. Our results on the role
of genetic factors behind BMI and its fluctuations were supported by
the association between PRSBMI with BMI trajectories and
fluctuations in early adulthood. The results indicate that genetic
factors influencing BMI variation may also contribute to the
definition of BMI trajectories and fluctuation.

Previous studies have reported associations between BMI in
adolescence and BMI in adulthood (Ng & Cunningham, 2020;
Wang et al., 2008), as well as between BMI trajectories in
adolescence and BMI in adulthood (Ng & Cunningham, 2020;
Yang et al., 2021). Both genetic and environmental correlations
explain these phenotypic associations (Choh et al., 2014;
Hjelmborg et al., 2008; Jelenkovic et al., 2016). When interpreting
these associations, it is noteworthy that during adolescence,
trajectories in BMI reflect changes in both height and weight,
whereas in adulthood the trajectories in BMI are primarily
explained by weight change, especially the accumulation of fat
mass. Moreover, childhood and prepubertal BMI, as well as other
obesity markers, are associated with earlier onset of puberty, which
may impact these associations (Busch et al., 2019; Kaplowitz,
2008). It is known that earlier pubertal timing predicts higher BMI
and increased risk of obesity in adulthood (Prentice & Viner,
2013). Furthermore, the associations between prepubertal or
childhood BMI with puberty timing, as well as between puberty
timing and adulthood BMI and obesity, are explained by both
genetic and environmental factors (Day et al., 2015; Silventoinen
et al., 2022). Thus, the genetic factors associated with puberty may
contribute to the association between BMI fluctuation in
adolescence and weight gain in adulthood.

The heritability estimates of BMI fluctuations in adolescence
were found to be high in males and low in females. In early

Table 3. Phenotypic associations, additive genetic and unique environmental
correlations of BMI, BMI trajectories and BMI fluctuation in adolescence (Var 1,
slope 1) versus early adulthood (Var 2, slope 2) by sex, and specific ages1

Phenotypic
correlations

Additive genetic
correlations

Unique envi-
ronmental
correlation

r

95% CI

rA

95% CI

rE

95% CI

LL UL LL UL LL UL

Males (n= 665)

BMI at 11.5 and
BMI Var 2

.16 .01 .30 .26 .10 .47 .05 −.15 .26

BMI at 14 and BMI
Var 2

.17 .03 .31 .16 .01 .36 .21 −.02 .42

BMI at 17.5 and
BMI Var 2

.30 .16 .44 .24 .07 .43 .22 .04 .39

BMI slope 1 and
BMI Var 2

.14 .02 .26 −.99 −1.00 1.00 .24 .03 .42

BMI Var 1 and BMI
slope 2

−.18 −.32 .07 − − − − − −

BMI Var 1 and BMI
Var 2

.26 .08 .44 .50 .22 .92 −.22 −.43 .02

Females (n= 714)

BMI at 11.5 and
BMI Var 2

.37 .25 .50 .27 .13 .40 .01 −.15 .18

BMI at 14 and BMI
Var 2

.39 .27 .51 .34 .21 .47 .04 −.11 .20

BMI at 17.5 and
BMI Var 2

.39 .26 .51 .51 .39 .63 −.10 −.25 .04

BMI slope 1 and
BMI Var 2

.00 −.00 .00 − − − − − −

BMI Var 1 and BMI
slope 2

.18 .11 .25 .14 .00 .29 .05 −.10 .21

BMI Var 1 and BMI
Var 2

.01 −.10 .14 − − − − − −

Note: 1Association estimates were obtained from the linear mixed-effects models: (1) for BMI
in adolescence and BMI fluctuation in early adulthood = BMI at n wave of adolescence = Age
at n wave of adolescence þ Zygosity þ BMI fluctuations in early adulthood þ (1| Family ID).
(2) For BMI trajectories in adolescence and BMI fluctuations in early adulthood: BMI
fluctuations in early adulthood = BMI trajectories in adolescence þ zygosity þ BMI intercept
in adulthood þ (1| Family ID). (3) For BMI fluctuation in adolescence (BMI var 1) and BMI
trajectories in early adulthood (slope 2) BMI trajectories in early adulthood= BMI fluctuations
in adolescenceþ Zygosityþ BMI intercept in adolescenceþ BMI intercept in early adulthood
þ (1| Family ID). (4) for BMI fluctuations in adolescence and BMI fluctuations in early
adulthood: BMI fluctuations in early adulthood = BMI intercept in early adulthood þ BMI
fluctuation in adolescence þ Zygosity þ (1| Family ID). Everything is summarized with
associations estimates besides their confidence intervals (CI). rA, additive genetic correlation;
rE, specific environmental correlation; LL, lower limit; UL, upper limit.
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adulthood, females presented moderate heritability, while males
presented a low estimate. These findings indicate that genetic
factors influence BMI fluctuations in adolescence, but the role of
genetic factors diminishes in early adulthood for males while the
opposite occurs for females. However, genetic factors continue to
exert an influence in early adulthood in both sexes. Regarding BMI
trajectories, heritability estimates are high in both life stages and
both sexes. High heritability estimates of BMI have been reported
previously in adolescence (Allison et al., 1994; Pietiläinen et al.,
1999) and adulthood (Korkeila et al., 1991; Silventoinen et al.,
2017) (0.80–0.85 for adolescence and 0.57–0.72 for adulthood).
Additionally, BMI trajectories in adulthood have previously been
shown to be heritable in another Finnish twin cohort (Drouard
et al., 2023). However, to the best of our knowledge, our study is the
first to report the heritability estimates for BMI fluctuations.

The current study has both strengths and weaknesses. Themost
notable strength is the use of longitudinal population-based data
spanning from early adolescence to early midlife over a period of
more than two decades and five measurement points, along with
information not only on twins’ status but also PRSBMI, allowing us
to use two methods to analyze the role of genetics, each based on
different assumptions. However, the sample size decreased due to
selecting only participants with BMI measurements at all ages,
potentially reducing statistical power and increasing uncertainty in
our estimates. The number of measurement points does not fully
cover the BMI trajectories and therefore also the fluctuations. This
may lead to an underestimation of the true variations, especially
among those with a lot of weight cycling. This underestimation
may be more pronounced in adulthood, considering the 13-year
time gap between the last two measurements. However, to the best
of our knowledge, there are limited observational cohorts that have
measured BMI values over a sufficiently long period of time with
short time periods between BMI measurements to more precisely
capture weight cycling; for example, Nurses’ Health Study (Field
et al., 2004) and Health Professionals Follow-up Study (Song et al.,
2015). Linear mixed-effect models used to estimate BMI
trajectories do not capture non-linear patterns in BMI trajectories.
However, capturing nonlinear patterns with a limited number of
BMI measurements per individual is challenging. Another
limitation is the lack of control for potential confounders such
as diet or physical activities among others.

In conclusion, the current study provides evidence of a shared
genetic background between BMI, BMI trajectories, and BMI
fluctuations in adolescence and early adulthood using both twin
modelling and polygenic risk scores. These associations emphasize
the significance of adolescence in understanding BMI development
in early adulthood, as temporal changes and fluctuations in BMI in
adolescence are related to these traits in adulthood. This knowledge
is important for identifying individuals at a higher risk of weight
gain in early adulthood. However, while these findings are
promising, it would be advantageous to confirm them in other
populations to improve the generalizability.
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