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Abstract. In this article we show that bi-intuitionistic predicate logic lacks the Craig
Interpolation Property. We proceed by adapting the counterexample given by Mints, Olkhovikov
and Urquhart for intuitionistic predicate logic with constant domains [13]. More precisely, we
show that there is a valid implication φ → � with no interpolant. Importantly, this result does
not contradict the unfortunately named ‘Craig interpolation’ theorem established by Rauszer
in [24] since that article is about the property more correctly named ‘deductive interpolation’
(see Galatos, Jipsen, Kowalski and Ono’s use of this term in [5]) for global consequence. Given
that the deduction theorem fails for bi-intuitionistic logic with global consequence, the two
formulations of the property are not equivalent.

§1. Introduction. Bi-intuitionistic logic (or Heyting–Brouwer logic) comes rather
naturally from adding the algebraic dual of the intuitionistic implication → to the
language of intuitionistic logic. This connective is known as ‘co-implication’, and we
denote it in what follows by ‘ ’.1 In the 1970s, Rauszer started an intense study of
various technical aspects of both propositional and predicate bi-intuitionistic logic in a
series of interesting articles spanning over a decade [18–23]. This work has been picked
up in recent years by a number of scholars [1–4, 6, 7, 9, 13, 17, 26, 27] and results on
all sorts of proof-theoretic and model-theoretic properties of these systems have been
produced.

In this paper we are concerned with refuting the Craig Interpolation Property
for predicate bi-intuitionistic logic. In other words, we will show that there are
valid implications φ → � with no interpolant in the sense of a formula � in the
intersection of the vocabularies of φ and� such that both φ → � and � → � are valid.
Our counterexample is extracted from [12] where the Craig interpolation problem
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1 This is sometimes also called subtraction [24]. In the Kripke semantics for bi-intuitionistic
logic, the new connective behaves similarly to a backwards looking diamond modality �–1.
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for predicate intuitionistic logic with constant domains is solved negatively. More
specifically, we consider the implication φ → � where

φ := ∀x∃y(P(y) ∧ (Q(y) → R(x))) ∧ ¬∀xR(x),

and

� := ∀x(P(x) → (Q(x) ∨ S)) → S.
One of the reasons why our construction works is because bi-intuitionistic predicate
logic is well-known to be sound with respect to its constant domain semantics [21].
Hence, the effect of adding the co-implication connective is that one can restrict
attention to Kripke models with constant domains (this has led some authors to
question the status of as an intuitionistic connective [11]).

Rauszer had already studied the interpolation problem for both predicate and
propositional versions of bi-intuitionistic logic for global consequence (which we
will denote by |=g) in [23].2 However, she had only established interpolation in a
much weaker version properly known as ‘deductive interpolation’ (see [5]): if φ �g �
there is a formula � in the intersection of the vocabularies of φ and � such that
both φ �g � and � �g �. Given that in bi-intuitionistic logic the deduction theorem
fails for global consequence,3 deductive interpolation is not equivalent to the usual
Craig interpolation. Craig interpolation for propositional bi-intuitionistic logic was
established only recently by a complex proof-theoretic argument [9]. Unfortunately, as
we will see, those techniques cannot be extended to the predicate case.

López-Escobar had observed in [11] that bi-intuitionistic predicate logic is not
conservative as an extension of intuitionistic predicate logic simply because the
axiom of constant domains is derivable in the former. It is known, however,
that bi-intuitionistic predicate logic is a conservative extension of constant domain
intuitionistic predicate logic [3]. Then, one could wonder whether this trivialises the
result in the present paper given the argument refuting interpolation for the latter
in [12]. A minute of reflection suffices to show the reader that this is not so, for the
argument in [12] only establishes that the interpolant does not exist in the language of
predicate intuitionistic logic which does not include the new co-implication connective.
It does, on the other hand, indicate that the present result is quite natural.

Recently [25], a number of questions have arisen as to the correctness of Rauszer’s
completeness theorem for predicate bi-intuitionistic logic with respect to the Kripke
semantics of constant domains. Three fundamental flaws of Rauszer’s proofs are
outlined in [25]: (i) the fact that they mistakenly mix up properties of global and
local consequence relations, (ii) the contradictory choice of rooted frames in the
completeness proof which would validate non-theorems of bi-intuitionistic logic, and
(iii) an incorrect application of some results by Gabbay. Incidentally, there is an
alternative completeness argument by Klemke in [8], where bi-intuitionistic predicate
logic is studied possibly for the first time in print (and, as far as we know, independently
from Rauszer’s work) and that contains other errors. This paper appears to have been

2 Later in the paper we will work with a local version of consequence. The many subtleties
between the two notions of consequence in the bi-intuitionistic setting are thoroughly studied
in [7]. That paper also corrects several mistakes by Rauszer in her original work.

3 One counterexample, already in bi-intuitionistic propositional logic, is thatp�g (� p)→⊥,
but p → ((� p) → ⊥) is not valid (see [7]).
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sadly neglected in the history of the subject and it contains valuable techniques such
as a version of the unraveling construction used in [13] (see [8, Definition 4.1]).

Let us note, however, that the central result in the present paper does not actually
require any appeal to completeness. All we need is (i) that the axiom of constant
domains is a theorem of bi-intuitionistic predicate logic and (ii) that bi-intuitionistic
predicate logic is sound with respect to the Kripke semantics for intuitionistic logic of
constant domains. This is because our implication φ → � described above is a theorem
of intuitionistic predicate logic with the addition of the axiom of constant domains,
and hence by (i), a theorem of bi-intuitionistic predicate logic. Furthermore, if there
would be a proof-theoretic Craig interpolant for this implication, then, by (ii), it would
be a semantic interpolant and hence we would get the desired contradiction reasoning
as in Theorem 2.

The article is arranged as follows: in §2 we introduce all the required technical
preliminaries that we will use in the construction of our counterexample, namely the
language of the logic and its models, as well as the notion of a bi-asimulation (among
a few other things); in §3 we introduce the Craig Interpolation Property, Mints’s
counterexample from [12] and we show how to adapt the technical argument in that
paper to obtain the central result of the present article (Theorem 2); finally, in §4 we
provide some concluding remarks on the failure of interpolation described here.

§2. Preliminaries and notation.

2.1. The first-order language. In this paper we will use ‘first-order’ and ‘predicate’
interchangeably as qualifiers for a logic. We start by fixing some general notational
conventions. In this paper, we identify the natural numbers with finite ordinals. We
denote by � the smallest infinite ordinal, and by N the set � \ {0}. For any n ∈ �, we
will denote by ōn the sequence (o1, ... , on) of objects of any kind; moreover, somewhat
abusing the notation, we will denote {o1, ... , on} by {ōn}. The ordered 1-tuple will
be identified with its only member. For any given m, n ∈ �, the notation (p̄m)�(q̄n)
denotes the concatenation of p̄m and q̄n, and the notation p̄n �→ q̄n denotes the relation
{(pi , qi) | 1 ≤ i ≤ n}; the latter relation is often explicitly assumed to define a function.

More generally, if f is any function, then we will denote by dom(f) its domain
and by rang(f) the image of dom(f) under f ; if rang(f) ⊆M , we will also write
f : dom(f) →M . If f : X → Y is any function, and Z is any set, then we denote
by [f]Z the set {q ∈ Y | (∃p ∈ Z)(f(p) = q)}; in particular, if p̄n �→ q̄n defines a
function, then [p̄n �→ q̄n]Z stands for {qi | pi ∈ Z, 1 ≤ i ≤ n}.

For a given set Ω and a k ∈ �, the notation Ωk (resp. Ω �=k) will denote the k-th
Cartesian power of Ω (resp. the set of all k-tuples from Ωk such that their elements are
pairwise distinct). We remind the reader that in the special case when k = 0 it is usual
to define Ω0 := {∅} = 1, given our earlier convention about the natural numbers.
Moreover we will denote the powerset of Ω by P (Ω). We also define that Ω∗ :=⋃
n≥0 Ωn. Finally, the notation |X | will denote the cardinality of the set X, so that, for

example, |X | = � will mean that X is countably infinite.
In this paper, we consider a first-order language without equality based on any set

of predicate letters (including 0-ary predicates, that is to say, propositional letters) and
individual constants. We do not allow functions, though.

An ordered couple of sets Σ = (PredΣ, ConstΣ) comprising all the predicate letters
and constants allowed in a given version of the first-order language will be called the
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signature of this language. Signatures will be denoted by letters Σ and Θ. For a given
signature Σ, the elements ofPredΣ will be denoted byPn andQn, where n > 0 indicates
the arity, and the elements of ConstΣ will be denoted by lowercase Latin letters like a,
b, c, d and so on. All these notations and all of the other notations introduced in this
section can be decorated by all sorts of sub- and superscripts. We will often use the
notation Σn for the set of n-ary predicates in a given signature Σ. Our signature will
not contain function symbols as they are not necessary for the counterexample, and
clearly our counterexample in a poorer signature carries over to more complex ones.

Even though we have defined signatures as ordered pairs, we will somewhat abuse
the notation in the interest of suggestivity and, given a set Π of predicates and a set Δ
of individual constants outside a given signature Σ, we will denote by Σ ∪ Π ∪ Δ the
signature where the predicates from Π are added to PredΣ with their respective arities
and the constants from Δ are added to ConstΣ. Moreover, we will write Σ ⊆ Θ iff there
exists a set Π of predicates and a set Δ of individual constants outside Σ such that
Θ = Σ ∪ Π ∪ Δ; in other words, iff Θ extends Σ as a signature. In case Π = PredΣ′ and
Δ = ConstΣ′ , we also express this same fact by writing Θ = Σ ∪ Σ′; furthermore, in case
we haveP ∈ Π and c ∈ Δ, we will writeP /∈ Σ and c /∈ Σ. Similarly, if Θ1 = Σ ∪ Π1 ∪ Δ1

and Θ2 = Σ ∪ Π2 ∪ Δ2, for pairwise non-overlapping sets of predicates Π1 and Π2 and
sets of constants Δ1 and Δ2, we will write that Σ = Θ1 ∩ Θ2.

If Σ is a signature, then the set of first-order formulas is generated from Σ in the usual
way, using the set of logical symbols {⊥,�,∧,∨,→, ,∀,∃} (here stands for the bi-
intuitionistic co-implication) and the set of (individual) variables Var := {vi | i < �},
and will be denoted by L(Σ). The elements of Var will be also denoted by x, y, z, w,
and the elements of L(Σ) by Greek letters like φ, � and �. As is usual, we will use ¬φ
as an abbreviation for φ → ⊥.

For any given signature Σ, and any given φ ∈ L(Σ), we define FV (φ) and BV (φ),
its sets of free and bound variables, by the usual inductions. These sets are always
finite. We will denote the set of L(Σ)-formulas with free variables among the elements
of x̄n ∈ Var �=n by Lx̄n (Σ); in particular, L∅(Σ) will stand for the set of Σ-sentences. If
ϕ ∈ Lx̄n (Σ) (resp. Γ ⊆ Lx̄n (Σ)), then we will also express this by writing ϕ(x̄n) (resp.
Γ(x̄n)).

Similarly, given a φ ∈ L(Σ), one can define a signature Θφ such that, for any
signature Σ′ we have φ ∈ L(Σ′) iff Θφ ⊆ Σ′. The definition proceeds by induction
on the construction of φ and looks as follows:

• ΘP(t̄n) = ({Pn}, {t̄n} ∩ ConstΣ), for any P ∈ Σn and t̄n ∈ (Var ∪ ConstΣ)n.
• Θ⊥ = Θ� = ∅.
• Θ�◦� = Θ� ∪ Θ� for ◦ ∈ {∧,∨,→, }.
• Θ◦� = Θ� for ◦ ∈ {∀x,∃x | x ∈ Var}.

If X ⊆ Var is finite and f : X → ConstΣ, then, for any φ ∈ L(Σ), we denote by
φ[f] ∈ L(Σ) the result of simultaneously replacing every free occurrence of every
x ∈ X by f(x). The precise definition of this operation proceeds by induction on the
construction of ϕ ∈ L(Σ) and runs as follows:

• P(t̄n) := P(s̄n), where P ∈ Σn, and t̄n, s̄n ∈ (Var ∪ ConstΣ)n are such that, for
all 1 ≤ i ≤ n we have:

si :=

{
f(ti ), if ti ∈ X,
ti , otherwise.

https://doi.org/10.1017/S1755020322000296 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020322000296


INTERPOLATION FAILS IN BI-INTUITIONISTIC PREDICATE LOGIC 615

• (φ)[f] := φ for φ ∈ {⊥,�}.
• (φ ◦ �)[f] := φ[f] ◦ �[f], for ◦ ∈ {∧,∨,→, }.
• (Qxφ)[f] := Qx(φ[f � (X \ {x})]), for x ∈ Var and Q ∈ {∀,∃}.

Since dom(f) is always finite, we will write φ[c1/x1, ... , cn/xn] (or, alternatively,
φ[c̄n/x̄n]) in place of ϕ[f], whenever f is x̄n �→ c̄n. It is clear that every ϕ[f] can
be written in this format. An important particular case is when dom(f) = {x}, so that
we can write φ[f] as φ[c/x] for the corresponding c ∈ ConstΣ.

The following lemma states that our substitution operations work as expected. We
omit the straightforward but tedious inductive proof.

Lemma 1. Let Σ be a signature, let x̄n ∈ Var �=n, φ ∈ Lx̄n (Σ), ȳm ∈ Var �=m, and
z̄k ∈ Var �=k be such that {z̄k} = {x̄n} \ {ȳm}. Moreover, let c̄m ∈ (ConstΣ)m, and let
(i1, ... , im) be a permutation of (1, ... , m). Then the following statements hold:

1. φ[c̄m/ȳm] ∈ Lz̄k (Σ).
2. φ[c̄m/ȳm] = φ[ci1/yi1 , ... , cim/yim ].
3. φ[c̄m/ȳm] = φ[c1/y1] ... [cm/ym].
4. If FV (φ) ∩ {x̄n} = {xj1 , ... , xjm}, then φ[c̄n/x̄n] = φ[cj1/xj1 , ... , cjm/xjm ].
5. If � ∈ Lx̄n (Σ ∪ {c̄m}), and {ȳm} ∩ ({x̄n} ∪ BV (�)) = ∅, then there exists a � ∈
L(x̄n)�(ȳm)(Σ) such that �[c̄m/ȳm] = �.

6. Θφ[c̄m/ȳm ] ⊆ Θφ ∪ {c̄m}.

Note that Part 2 of the lemma holds just by the notational convention, since
permutations of the set of the ordered pairs define one and the same function.
Moreover, the joint effect of Parts 2 and 3 is that one can break up [c̄n/x̄n] into a
finite set of parts of arbitrary size and then apply those parts to a given φ in arbitrary
order without affecting the result of a substitution. The latter is something that does
not hold for the substitutions of arbitrary terms but is valid in our case due to the
restriction to constants.

The notion of substitution is necessary for a correct inductive definition of a
sentence that is independent from the inductive definition of an arbitrary formula.
More precisely, let Σ be a signature and let c be any constant, perhaps outside Σ. Then
L∅(Σ) is the smallest subset Sent(Σ) of L(Σ) satisfying the following conditions:

• P(c̄n),⊥,� ∈ Sent(Σ) for all n ≥ 1, P ∈ Σn, and c̄n ∈ (ConstΣ)n.
• If φ,� ∈ Sent(Σ), then (φ ◦ �) ∈ Sent(Σ) for all ◦ ∈ {∧,∨,→, }.
• If x ∈ Var and φ[c/x] ∈ Sent(Σ ∪ {c}), then ∀xφ,∃xφ ∈ Sent(Σ).

2.2. Semantics. For any given signature Σ, a constant domain intuitionistic Kripke
Σ-model is a structure of the form M = (W,≺, D,V, I ) such that:

• W is a non-empty set of worlds, or nodes.
• The accessibility relation ≺⊆W ×W is reflexive and transitive (i.e., a pre-

order).
• D is a non-empty set (or domain) of objects which is disjoint from W.
• The mapping V is a function from PredΣ ×W into the set

⋃
n≥0 P (Dn) such

that, for every n ≥ 0, every P ∈ Σn, and all w, v ∈W , it is true that V (P,w) ⊆
Dn and

w ≺ v ⇒ V (P,w) ⊆ V (P, v).
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Given a P ∈ Σn, we will sometimes consider the unary projection functions of
the form VP :W → P (Dn) arising from the binary function V. It is clear that
we may view V as the union of the corresponding family of the unary functions,
that is to say, that we can assume V =

⋃
P∈PredΣ

VP .
• I : ConstΣ → D is the function interpreting the individual constants.

In what follows, we will always assume the particular case when I is just the identity
function on ConstΣ; in other words, we will only consider the constants that are names
of themselves.

An interesting particular case arises when P ∈ Σ0. In this case, our definition
says that VP :W → P (D0), but P (D0) = P ({∅}) = {∅, {∅}} = {0, 1} = 2, given our
identification of natural numbers with the finite ordinals. Therefore, VP in this case is,
in effect, a function from W to {0, 1}, and VP returns 1 for a given w iff P0 holds at w
in M.

Since we will only consider in this paper the models of the type described above, we
will simply call them Σ-models.

When we use subscripts and other decorated model notations, we strive for
consistency in this respect. Some examples of this notational principle are given below:

M = (W,≺, D,V, I ),M′ = (W ′,≺′, D′, V ′, I ′),Mn = (Wn,≺n,Dn, Vn, In).
As is usual, we denote the reduct of a Σ-model M to a signature Θ ⊆ Σ by M � Θ.

As for the reverse operation of expanding a model of a smaller signature to a model
of a larger signature, if M is a Σ-model, Pn1

1 , ... , P
nk
k /∈ Σ are pairwise distinct, and

A ⊆ D, then, for any given sequence of 	1 :W → P (Dn1), ... , 	k :W → P (Dnk ) of
functions monotonic relative to ≺, we will denote by (M; P̄k �→ 	̄k ; A) the unique
Σ ∪ {Pn1

1 , ... , P
nk
k } ∪ A-model M′ such that M′ � Σ = M, V ′(Pnii , w) = 	i(w) for all

w ∈W , and I ′(a) = a for all 1 ≤ i ≤ k and all a ∈ A. In case k = 0 or A = ∅, we will
write (M; A) or (M; P̄k �→ 	̄k), respectively.

The semantics is given by the following forcing relation defined by induction on
the construction of a sentence. If Σ is a signature, M is a Σ-model, w ∈W , and
φ ∈ L∅(Σ ∪D), then we write that (M;D), w |= φ and say that φ is true at w in
(M;D) iff it follows from the following clauses:

(M;D), w |= P(ān) ⇔ ān ∈ VP(w), P ∈ Σn, ān ∈ Dn,
(M;D), w |= φ ∧ � ⇔ (M;D), w |= φ and (M;D), w |= �,
(M;D), w |= φ ∨ � ⇔ (M;D), w |= φ or (M;D), w |= �,

(M;D), w |= φ → � ⇔ (∀v � w)((M;D), v �|= φ or (M;D), w |= �),

(M;D), w |= φ � ⇔ (∃v ≺ w)((M;D), v |= φ and (M;D), w �|= �),

(M;D), w |= ∀xφ ⇔ (∀a ∈ D)((M;D), w |= φ[a/x]),

(M;D), w |= ∃xφ ⇔ (∃a ∈ D)((M;D), w |= φ[a/x]).

In the clauses given above, as well as in the similar places below, like Lemma 2
and Definition 4, we also use the symbols ∀ and ∃ in the defining part to denote
the (classical) quantifiers in the meta-language. We are certain that this creates no
ambiguities.

Note that the assumption of constant domains allows for a simplification of the
clause treating the universal quantifier. The following lemma then spells out the
consequences of our definition for the defined connective ¬.
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Lemma 2. If Σ is a signature, M is a Σ-model, w ∈W , and φ ∈ L∅(Σ ∪D) then we
have

(M;D), w |= ¬φ ⇔ (∀v � w)((M;D), v �|= φ).

The proof is immediate by the definition and is omitted.
We then extend this semantics to arbitrary models by setting that for a Σ-model M,

and for a φ ∈ L∅(Σ), we have M, w |= φ iff (M;D), w |= φ. The following theorem is
then immediate.

Theorem 1. Let Σ,Θ be signatures such that Σ ⊆ Θ, let M be a Θ-model, let w ∈W ,
and let φ ∈ L∅(Σ). Then M, w |= φ iff M � Σ, w |= φ.

Theorem 1 is often referred to as Expansion Property in the literature on abstract
model theory.

Next, we adopt the standard definitions of validity, satisfiability and of seman-
tic consequence relation. In particular, given a signature Σ, a Γ ∪ {φ} ⊆ L∅(Σ),
a Σ-model M, and a w ∈W , we say that (M, w) satisfies Γ, and write M, w |= Γ
iff we have M, w |= � for all � ∈ Γ. Furthermore, we say that φ is a consequence of Γ
and write Γ |= φ iff for every Σ-model M, and every w ∈W , M, w |= Γ implies that
M, w |= φ. In case Γ = {�} for some� ∈ L∅(Σ), we will omit the brackets and simply
write � |= φ, and in case Γ = ∅ we will write |= φ omitting Γ altogether.

Having now both the language and its semantic apparatus in place, we can speak
of the logical system FOBIL of bi-intuitionistic predicate logic. As a model-theoretic
language, FOBIL can be presented as a fragment of classical first-order logic FOCL
by means of an appropriate standard translation along the lines of [15]. On the other
hand, FOBIL can be seen as resulting from intuitionistic predicate logic FOIL by first
restricting its semantics to the constant-domain Kripke models and then adding
as the new connective to the language. An even closer relation exists between FOBIL
and the intuitionistic logic of constant domains CD which can be viewed as the -free
fragment of FOBIL.

2.3. Bi-asimulations. An important semantic concept related to bi-intuitionistic
predicate logic is the notion of first-order bi-asimulation. This notion can be defined
as follows.

Definition 1. Let Σ be a signature, and let M0, M1 be Σ-models. A non-empty relation
A is called a first-order bi-asimulation iff the following conditions are satisfied for all
i, j such that {i, j} = {0, 1}, and for all n ∈ �, all P ∈ Σm, all (maybe non-distinct)
j1, ... , jm ≤ n, all (w)�(ān) ∈Wi × (Di)n and all (v)�(b̄n) ∈Wj × (Dj)n such that
(w)�(ān) A (v)�(b̄n):

A ⊆
⋃
n∈�

((W0 × (D0)n) × (W1 × (D1)n)) ∪ ((W1 × (D1)n) × (W0 × (D0)n)), (type)

(Mi ;Di), w |= P(aj1 , ... , ajm ) ⇒ (Mj ;Dj), v |= P(bj1 , ... , bjm ), (atom)

(∀v0 �j v)(∃w0 �i w)((w0)�(ān) A (v0)�(b̄n) & (v0)�(b̄n) A (w0)�(ān)), (back)

(∀w0 ≺i w)(∃v0 ≺j v)((w0)�(ān) A (v0)�(b̄n) & (v0)�(b̄n) A (w0)�(ān)), (forth)
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(∀b ∈ Dj)(∃a ∈ Di)((w)�(ān)�(a) A (v)�(b̄n)�(b)), (left)

(∀a ∈ Di)(∃b ∈ Dj)((w)�(ān)�(a) A (v)�(b̄n)�(b)). (right)

In the case where we have (w)�(ān) A (v)�(b̄n) in the assumptions of Definition 1,
we will say that the first-order bi-asimulation A is from (w)�(ān) to (v)�(b̄n). Since
we are not going to discuss any other kinds of bi-asimulation relations in this paper,
we will omit in what follows the qualification ‘first-order’ and will simply speak of
bi-asimulations. The following lemma shows that first-order bi-intuitionistic formulas
are preserved under bi-asimulations.

Lemma 3. Let Σ be a signature, let M0, M1 be Σ-models, let n ∈ �, let i, j be such
that {i, j} = {0, 1}, let (w)�(ān) ∈Wi × (Di)n and (v)�(b̄n) ∈Wj × (Dj)n, and let
A be a bi-asimulation between M0 and M1 such that (w)�(ān) A (v)�(b̄n). Then for
every tuple x̄n ∈ Var �=n and every φ ∈ Lx̄n (Σ) it is true that

(Mi ;Di), w |= φ[ān/x̄n] ⇒ (Mj ;Dj), v |= φ[b̄n/x̄n].

Proof. By induction on the construction of φ.
Induction basis. If φ = P(xj1 , ... , xjm ) for some (maybe non-distinct) j1, ... , jm ≤ n

and some P ∈ Σm, then the statement of the Lemma follows from condition (atom)
of Definition 1 and the fact that we have φ[ān/x̄n] = P(aj1 , ... , ajm ) and φ[b̄n/x̄n] =
P(bj1 , ... , bjm ).

Induction step. The cases when φ = � ∧ � and when φ = � ∨ � are straightforward.
We consider the remaining cases:

Case 1. φ = � → �. If (Mj ;Dj), v �|= (� → �)[b̄n/x̄n], then (Mj ;Dj), v �|=
�[b̄n/x̄n] → �[b̄n/x̄n], and hence there exists a v0 �j v such that both (Mj ;Dj), v0 |=
�[b̄n/x̄n] and (Mj ;Dj), v0 �|= �[b̄n/x̄n]. But then, by condition (back), there must
be a w0 �i w such that both (w0)�(ān) A (v0)�(b̄n) and (v0)�(b̄n) A (w0)�(ān).
Now the Induction Hypothesis implies that both (Mi ;Di), w0 |= �[ān/x̄n] and
(Mi ;Di), w0 �|= �[ān/x̄n]. Thus we get that

(Mi ;Di), w �|= (�[ān/x̄n] → �[ān/x̄n]) = (� → �)[ān/x̄n].

Case 2. φ = � �. The case is dual to Case 1.
Case 3. φ = ∀x�. Then we might have x ∈ {x̄n}, but we can always avoid this

inconvenience by choosing an m ≥ 0, and some pairwise distinct j1, ... , jm ≤ n
such that {xj1 , ... , xjm} = FV (∀xφ) ∩ {x̄n}. For this m-tuple, we will have, x /∈
{xj1 , ... , xjm}, and Lemma 1.4 implies that

(∀x�)[b̄n/x̄n] = (∀x�)[bj1/xj1 , ... , bjm/xjm ] = ∀x(�[bj1/xj1 , ... , bjm/xjm ]).

But then we reason as follows. If (Mj ;Dj), v �|= (∀x�)[b̄n/x̄n] = ∀x(�[bj1/xj1 , ... ,
bjm/xjm ]), then we must have (Mj ;Dj), v �|= �[bj1/xj1 , ... , bjm/xjm ][b/x] for
some b ∈ Dj , and hence (Mj ;Dj), v �|= �[bj1/xj1 , ... , bjm/xjm , b/x] by Lemma 1.
Moreover, condition (left) of Definition 1 implies that, for some a ∈ Di we
must have (w)�(ān)�(a) A (v)�(b̄n)�(b). Since also FV (�) ⊆ {xj1 , ... , xjm} ∪
{x}, the Induction Hypothesis is applicable and yields that (Mi ;Di), w �|=
�[aj1/xj1 , ... , ajm/xjm , a/x], whence, further, that (Mi ;Di), w �|= �[aj1/xj1 , ... ,
ajm/xjm ][a/x] by Lemma 1.
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But then it follows (again applying Lemma 1.4) that

(Mi ;Di), w �|= ∀x(�[aj1/xj1 , ... , ajm/xjm ]) = (∀x�)[ān/x̄n].

Case 4. φ = ∃x�. The case is dual to Case 3.

Remark 1. Asimulations had been initially introduced by the first author in studying
the expressive power of intuitionistic propositional logic in [14], and they turned out to be
equivalent to the intuitionistic bisimulations of [10]. In [15], they were adapted to FOIL,
and only a small step was then required to further adapt them to CD; this step was done
in [12, Definition 6.1] which only differs from Definition 4 in that the condition (forth) is
absent. The latter condition first appeared in [1].

Due to the absence of the Boolean, or classical, negation in intuitionistic and bi-
intuitionistic logic, the (bi-)asimulations capture an inclusion of theories at the nodes
of Kripke models that they connect to one another, rather than the coincidence of such
theories. This asymmetry makes it necessary to define (bi-)asimulations as subsets of⋃
n∈�((W0 × (D0)n) × (W1 × (D1)n)) ∪ ((W1 × (D1)n) × (W0 × (D0)n)) rather than

subsets of
⋃
n∈�(W0 × (D0)n) × (W1 × (D1)n); another option, taken up in [1, 10],

would be to define (bi-)asimulations as pairs of binary relations, where one relation
is a subset of

⋃
n∈�(W0 × (D0)n) × (W1 × (D1)n) and the other one a subset of⋃

n∈�(W1 × (D1)n) × (W0 × (D0)n). The asymmetric nature of (bi)-asimulations also
shows itself in the fact that condition (atom) can only be given in the form of an implication
and not as a bi-conditional.

A more detailed discussion of the intuitions behind different conditions in the
asimulation definition can be found in several published articles; we especially recommend
[14, pp. 350–351] and [15, p. 812]. Although the explanations there are given relative to
the intuitionistic logic, all of them are also applicable to the bi-intuitionistic case. A more
general and systematic inquiry into the dependence between the expressive power of a
logic and a form of its characteristic simulation relation can be found in [16], where the
first author basically shows, among other things, that, in the presence of classical ∨ and
∧ in the language, the symmetry of a characteristic simulation is equivalent to a presence
of a connective expressing non-constant and non-monotone Boolean function.

Since we are not treating the general theory of bi-asimulations in this paper, but are
using them instead, as a technical tool, we omit any further details.

Remark 2. It is rather straightforward to show, by combining the arguments given in
[1, 15], that the invariance under bi-asimulations given in Definition 1 defines, for any
given signature Σ, the set of natural standard translations of first-order bi-intuitionistic
formulas into classical first-order logic. Such a proof, however, is beyond the scope of the
present paper.

§3. Interpolation fails in the bi-intuitionistic setting.

3.1. Craig Interpolation Property and Mints’s Counterexample. The Craig Inter-
polation Property, which was initially defined for FOCL, can be considered for FOBIL
without any changes in the original definition. Therefore, we will say that FOBIL has
Craig Interpolation Property (CIP) iff for any signature Σ, and any (φ → �) ∈ L∅(Σ)
such that |= φ → �, there exists a � ∈ L∅(Θφ ∩ Θ�) such that both |= φ → � and
|= � → �. Any such � is then called an interpolant for φ → �.
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Although CIP holds for both FOCL and FOIL, it is known to fail for CD. The
counterexample to CIP for the latter logic was published in [12] and is obtained by
setting

φ := ∀x∃y(P(y) ∧ (Q(y) → R(x))) ∧ ¬∀xR(x),

and

� := ∀x(P(x) → (Q(x) ∨ S)) → S
in the definition for CIP given in the previous paragraph. Under these particular
settings (fixed throughout the remaining part of this paper), we will call φ → �Mints’s
Counterexample to CIP. It was shown in [12] that φ → � is valid in CD, but for no

-free � ∈ L∅(Θφ ∩ Θ�) = L∅({P1, Q1}) both φ → � and � → � are valid in CD.
Since CD is exactly the -free fragment of FOBIL, the arguments of [12] also show

that |= φ → �. These arguments, however, are insufficient to show that φ → � lacks an
interpolant in FOBIL due to the richer language of the latter logic. The main purpose of
the present paper is to close this gap and to show that Mints’s Counterexample works
for FOBIL as well, and that therefore FOBIL lacks CIP. The next subsection contains a
proof of these claims.

3.2. Refuting CIP. Our proof is an improvement on the proof given in [12]; it uses
many of the same ideas albeit their application to this case requires several adjustments
and a slight generalization.

We start by setting Σ := {P1, Q1}. We will describe two particular Σ-models and a
bi-asimulation relation between them, and then we will show how to extend them to
models satisfying φ and failing �, respectively. The rest of the argument will then be
exactly as in [12].

We start with the definitions of the building blocks for our models (repeating [12,
Definition 7.1]).

Definition 2. 1. A quasi-partition (A,B,C ) is defined by the following conditions:
(a) A ∪ B ∪ C = N;
(b) A,B,C are pairwise disjoint;
(c) |A| = |C | = �;
(d) |B | ∈ {∅, �}.

2. A relation � on the set of all quasi-partitions is defined by

(A,B,C ) � (D,E, F ) ⇔ [A ⊆ D ∧ F ⊆ C ].

We immediately fix the following corollary to Definition 2.

Corollary 1. For any quasi-partitions (A,B,C ) and (D,E, F ), if (A,B,C ) �
(D,E, F ), then A ∪ B ⊆ D ∪ E.

Proof. If (A,B,C ) � (D,E, F ), then F ⊆ C ; in other words, N \ (D ∪ E) ⊆ N \
(A ∪ B). Therefore, by contraposition, A ∪ B ⊆ D ∪ E.

We now fix two special quasi-partitions v = (v1, v2, v3) = (3N, 3N + 1, 3N + 2) and
w = (w1,w2,w3) = (2N, ∅, 2N + 1). Our (fixed till the end of the present section)
Σ-models M1 and M2 are then as follows.

Definition 3. The structures M1 and M2 are such that:

1. W1 =W2 =W is the set of all quasi-partitions.
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2. ≺2:=�, and, for all (A,B,C ), (D,E, F ) ∈W , we have (A,B,C ) ≺1 (D,E, F )
iff (A,B,C ) � (D,E, F ) and

(v � (A,B,C ) & |B ∩ v2| = �) ⇒ |E ∩ v2| = �.

3. D1 = D2 = N.
4. Vi(P, (A,B,C )) = A ∪ B , Vi(Q, (A,B,C )) = A for all (A,B,C ) ∈W , and i ∈

{1, 2}.
5. I1 = I2 = ∅.

We now show that M1, M2 are Σ-models that can be extended to models verifying
φ and falsifying �, respectively.

Lemma 4. M1 and M2 are Σ-models.

Proof. The extensions of Q are monotonic relative to � (hence also relative to ≺i for
i ∈ {1, 2}) by definition of Vi . The extensions of P are monotonic relative to � (and
thus also relative to ≺i for i ∈ {1, 2}) by Corollary 1.

The relation ≺2=� is clearly a pre-order on W. We show that ≺1 is a pre-order on
the same set.

Reflexivity. Let (A,B,C ) ∈W . We have (A,B,C ) ≺1 (A,B,C ), since both
(A,B,C ) � (A,B,C ) and

(v � (A,B,C ) & |B ∩ v2| = �) ⇒ |B ∩ v2| = �

are trivially satisfied.
Transitivity. Let (A,B,C ), (D,E, F ), (G,H, I ) ∈W be such that (A,B,C ) ≺1

(D,E, F ) and (D,E, F ) ≺1 (G,H, I ). Then we must have both (A,B,C ) � (D,E, F )
and (D,E, F ) � (G,H, I ), and thus (A,B,C ) � (G,H, I ).

On the other hand, we must have both:

(v � (A,B,C ) & |B ∩ v2| = �) ⇒ |E ∩ v2| = � (1)

and

(v � (D,E, F ) & |E ∩ v2| = �) ⇒ |H ∩ v2| = �. (2)

But then we reason as follows:

v � (A,B,C ) (premise), (3)

|B ∩ v2| = � (premise), (4)

|E ∩ v2| = � (by (1), (3) and (4)), (5)

v � (D,E, F ) (by (3) and (A,B,C ) � (D,E, F )), (6)

|H ∩ v2| = � (by (2), (5) and (6)). (7)

Thus we have shown that both (A,B,C ) � (G,H, I ) and

(v � (A,B,C )&|B ∩ v2| = �) ⇒ |H ∩ v2| = �,

whence (A,B,C ) ≺1 (G,H, I ) also follows.

We pause to state another corollary we need towards our main lemma (Lemma 7).
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Lemma 5. For arbitrary (A,B,C ), (D,E, F ) ∈W , the following statements hold:

1. v ≺1 (A,B,C ) iff v � (A,B,C ) and |B ∩ v2| = �.
2. If both v ≺1 (A,B,C ) and v ≺1 (D,E, F ), then

(A,B,C ) ≺1 (D,E, F ) ⇔ (A,B,C ) � (D,E, F ).

3. If both (A,B,C ) � (D,E, F ) and (D,E, F ) � (A,B,C ), then (A,B,C ) =
(D,E, F ).

Proof. (Part 1). We have v ≺1 (A,B,C ) iff v � (A,B,C ) and

(v � v & |v2 ∩ v2| = �) ⇒ |B ∩ v2| = �,

but, since the premise of the latter conditional is trivially true, it holds iff |B ∩ v2| = �.
(Part 2). By definition, (A,B,C ) ≺1 (D,E, F ) implies (A,B,C ) � (D,E, F ). In the

other direction, if (A,B,C ) � (D,E, F ) and, additionally, v ≺1 (D,E, F ), then we
must have, by Part 1, that |E ∩ v2| = �. But then also the conditional

(v � v&|v2 ∩ B | = �) ⇒ |E ∩ v2| = �

must be trivially true, whence also (A,B,C ) ≺1 (D,E, F ) follows.
(Part 3). If both (A,B,C ) � (D,E, F ) and (D,E, F ) � (A,B,C ) then we have both

A = D andC = F . NowB = E follows by the fact that (A,B,C ), (D,E, F ) are quasi-
partitions.

In case we have (A,B,C ) � (D,E, F ) but (A,B,C ) �= (D,E, F ), we will write
(A,B,C ) 
 (D,E, F ).

Lemma 6. Fix a surjective f : N → v2, and let �1 :W → P (N) and �2 :W → {0, 1}
be defined as follows for all (A,B,C ) ∈W :

�1(A,B,C ) := {n | f(n) ∈ A},

�2(A,B,C ) :=

{
1, if w 
 (A,B,C ),
0, otherwise.

Then �1, �2 are monotonic relative to �, and hence also relative to ≺i for all i ∈ {1, 2}.
Furthermore, we define thatM′

1 := (M1;R1 �→ �1) andM′
2 := (M2;S0 �→ �2). Then

both M′
1, v |= φ and M′

2,w �|= �.

Proof. We deal with the monotonicity claims first. As for �1, if (A,B,C ) �
(D,E, F ), and n ∈ �1(A,B,C ), then f(n) ∈ A ⊆ D, hence also n ∈ �1(D,E, F ). As
for �2, if (A,B,C ) � (D,E, F ) and �2(A,B,C ) = 1, then w 
 (A,B,C ), hence also
w 
 (D,E, F ) and �2(D,E, F ) = 1.

It remains to show the satisfaction claims for the extended models.
(M′

1, v |= φ). Assume that (A,B,C ) ∈W is such that v ≺1 (A,B,C ). Then, by
Lemma 5.1, we have v � (A,B,C ) and |B ∩ v2| = �. So we choose any n ∈ B ∩ v2

and any m ∈ N such that f(m) = n. Then f(m) /∈ A, and hence m /∈ �1(A,B,C ); in
other words, (M′

1;N), (A,B,C ) �|= R(m), whence (M′
1;N), (A,B,C ) �|= ∀xR(x) and,

by Expansion Property, M′
1, (A,B,C ) �|= ∀xR(x). Since the ≺1-successor to v was

chosen arbitrarily, it follows, by Lemma 2, that M′
1, v |= ¬∀xR(x).

Next, if n ∈ N, then consider f(n) ∈ v2. Clearly, we have (M′
1;N), v |= P(f(n)). If

now (A,B,C ) ∈W is such that v ≺1 (A,B,C ) and (M′
1;N), (A,B,C ) |= Q(f(n)),
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then f(n) ∈ A, thus also n ∈ �1(A,B,C ) and, therefore, (M′
1;N), (A,B,C ) |= R(n).

We have shown that (M′
1;N), v |= Q(f(n)) → R(n). Summing up, we get that

(M′
1;N), v |= P(f(n)) ∧ (Q(f(n)) → R(n)) for arbitrary n ∈ N, therefore also

(M′
1;N), v |= ∀x∃y(P(y) ∧ (Q(y) → R(x))) and M′

1, v |= ∀x∃y(P(y) ∧ (Q(y) →
R(x))) by Expansion Property.

(M′
2,w �|= �). Assume that n ∈ N and that (A,B,C ) ∈W is such that w � (A,B,C )

and (M′
2;N), (A,B,C ) |= P(n). Then two cases are possible:

Case 1. w = (A,B,C ). Then n ∈ w1 ∪ w2 = w1 so that (M′
2;N), (A,B,C ) |= Q(n),

whence also (M′
2;N), (A,B,C ) |= Q(n) ∨ S.

Case 2. w 
 (A,B,C ). Then (M′
2;N), (A,B,C ) |= S, therefore also (M′

2;N),
(A,B,C ) |= Q(n) ∨ S.

Summing up, we have shown that (M′
2;N),w |= P(n) → (Q(n) ∨ S) for arbitrary

n ∈ N, whence it follows that (M′
2;N),w |= ∀x(P(x) → (Q(x) ∨ S)) and, after

applying Expansion Property, that M′
2,w |= ∀x(P(x) → (Q(x) ∨ S)). However, we

also have M′
2,w �|= S by definition of �2, and therefore � fails at (M′

2,w).

Next, we define a particular bi-asimulation A between M1 and M2 such that we
have v A w. The definition looks as follows (cf. [12, Definition 7.3]).

Definition 4. Relative to the models M1 and M2 given in Definition 3, the relation A is
defined as follows:

1. A ⊆
⋃
k≥0[(W × N

k) × (W × N
k)];

2. Given any (A,B,C ), (D,E, F ) ∈W , any n ≥ 0 and ān, b̄n ∈ N
n we have

(A,B,C )�(ān) A (D,E, F )�(b̄n), iff the following conditions hold:
(a) Binary relation [ān �→ b̄n] defines a bijection.
(b) If 1 ≤ k ≤ n and ak ∈ A then bk ∈ D.
(c) If 1 ≤ k ≤ n and ak ∈ B , then bk ∈ D ∪ E.

Again, we start by pointing out some easy, but important consequences of our
definition:

Corollary 2. For any (A,B,C ), (D,E, F ) ∈W , any n ≥ 0, and any ān, b̄n ∈ N
n, if

we have (A,B,C )�(ān) A (D,E, F )�(b̄n), then, for every 1 ≤ k ≤ n, we have

bk ∈ F ⇒ ak ∈ C.

Proof. Indeed, in the assumptions of the corollary we get the following chain of
valid implications:

bk ∈ F ⇒ bk /∈ D ∪ E (by F ∩ (D ∪ E) = ∅)

⇒ ak /∈ A ∪ B (by (A,B,C )�(ān) A (D,E, F )�(b̄n))

⇒ ak ∈ C (by {ān} ⊆ N and A ∪ B ∪ C = N).

Corollary 3. For any (A,B,C ), (D,E, F ) ∈W , any n ≥ 0, and any ān, b̄n ∈ N
n, we

have both (A,B,C )�(ān) A (D,E, F )�(b̄n) and (D,E, F )�(b̄n) A (A,B,C )�(ān) iff
the following conditions hold:

1. Binary relation [ān �→ b̄n] defines a bijection.
2. For all 1 ≤ k ≤ n it is true that ak ∈ A iff bk ∈ D.
3. For all 1 ≤ k ≤ n it is true that ak ∈ C iff bk ∈ F .
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Proof. The (⇒)-part follows from Corollary 2 and condition 2(b) of Definition 4.
For the (⇐)-part, we observe that if [ān �→ b̄n] defines a bijection, then [b̄n �→ ān]

also defines a bijection. The satisfaction of condition 2(b) of Definition 4 in both
directions is then an immediate consequence of condition 2 of the Corollary, and as for
Condition 2(c), we get that, if 1 ≤ k ≤ n and ak ∈ B , then ak /∈ C , whence bk /∈ F by
condition 3 of the Corollary. Therefore, bk ∈ D ∪ E. Similarly, if bk ∈ E, then bk /∈ F ,
whence ak /∈ C by condition 3 of the Corollary. But then ak ∈ A ∪ B

We can now make the crucial step towards our main result:

Lemma 7. The relation A, given in Definition 4, is a bi-asimulation between M1 and
M2, as given in Definition 3, and we have v A w.

Proof. We check the satisfaction of the conditions given in Definition 1 by A.
Condition (type) holds by Definition 4.1. Condition (atom) for P and Q follows from
Definition 4.2(b) and (c). It is also clear that for any w, v ∈W we have w A v, so that
A is non-empty, and, in particular, v A w holds. We check the remaining conditions in
more detail:

Condition (back). Let i, j be such that {i, j} = {1, 2}, let (A,B,C ), (D,E, F ) ∈W ,
and let, for some n ≥ 0, ān, b̄n ∈ N

n. Assume, moreover, that we have (A,B,C )�(ān) A
(D,E, F )�(b̄n), and that some (G,H, I ) ∈W is such that (D,E, F ) ≺j (G,H, I )
(hence, in particular, (D,E, F ) � (G,H, I )). We have to consider two cases, since
B can be either empty or infinite.

Case B1. |B | = �. Then consider the triple (J,K,L) such that:

J = (A \ {ān}) ∪ [b̄n �→ ān](G);

K = (B \ {ān}) ∪ [b̄n �→ ān](H );

L = (C \ {ān}) ∪ [b̄n �→ ān](I ).

We will show that (J,K,L) ∈W and that we have (A,B,C ) ≺i (J,K,L),
(J,K,L)�(ān) A (G,H, I )�(b̄n), and (G,H, I )�(b̄n) A (J,K,L)�(ān). We break
down the demonstration of this statement into the following series of claims:

Claim B 1.1. J ∪K ∪ L = N.
Indeed, we know that

[b̄n �→ ān](G) ∪ [b̄n �→ ān](H ) ∪ [b̄n �→ ān](I ) = [b̄n �→ ān](G ∪H ∪ I )
= [b̄n �→ ān](N) = {ān}

since (G,H, I ) ∈W and, therefore,G ∪H ∪ I = N. On the other hand, we know that

(A \ {ān}) ∪ (B \ {ān}) ∪ (C \ {ān}) = (A ∪ B ∪ C ) \ {ān}
= N \ {ān}

since (A,B,C ) ∈W and, therefore, A ∪ B ∪ C = N. Adding the two equalities
together, we get that

J ∪K ∪ L = (N \ {ān}) ∪ {ān} = N,

as desired.
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Claim B1.2. J, K, and L are infinite.
Indeed, A, B, and C are infinite, {ān} is finite, and the following inclusions hold:

A \ {ān} ⊆ J, B \ {ān} ⊆ K, C \ {ān} ⊆ L.

Claim B1.3. J, K, and L are pairwise disjoint.
Indeed, take J and K, for example. By definition, we have that J ∩K is equal to

((A \ {ān}) ∪ [b̄n �→ ān](G)) ∩ ((B \ {ān}) ∪ [b̄n �→ ān](H )).

By application of distributivity laws, we further get that

J ∩K = ((A \ {ān}) ∩ (B \ {ān}))∪
∪ ((A \ {ān}) ∩ [b̄n �→ ān](H ))

∪ ((B \ {ān}) ∩ [b̄n �→ ān](G))

∪ ([b̄n �→ ān](G) ∩ [b̄n �→ ān](H )).

Next, we know that (A,B,C ) ∈W and, therefore, A ∩ B = ∅, which implies that
(A \ {ān}) ∩ (B \ {ān}) = ∅.

Moreover, we have

(A \ {ān}) ∩ [b̄n �→ ān](H ) ⊆ (A \ {ān}) ∩ {ān} = ∅.

By a parallel argument, we can see that also (B \ {ān}) ∩ [b̄n �→ ān](G) = ∅.
Finally, we observe that b̄n �→ ān is a bijection, and (G,H, I ) ∈W and, therefore,

G ∩H = ∅, whence it follows that [b̄n �→ ān](G) ∩ [b̄n �→ ān](H ) = ∅.
Summing up, we see that all the four sets in the union defining J ∩K are empty and

that we have that J ∩K = ∅. The other cases are similar.
Claim B1.4. (J,K,L) ∈W .
By Claims B1.1–3.
Claim B1.5. (A,B,C ) � (J,K,L).
Indeed, if a ∈ A, and a /∈ {ān}, then a ∈ J by definition of J. Otherwise we have

both a ∈ A and a = ak for some 1 ≤ k ≤ n, but then bk ∈ D by (A,B,C )�(ān) A
(D,E, F )�(b̄n). Next, note that (D,E, F ) � (G,H, I ) implies that D ⊆ G , which
means that bk ∈ G . But the latter means that a = ak ∈ [b̄n �→ ān](G) ⊆ J . Since a ∈ A
was chosen arbitrarily, we have shown that A ⊆ J .

Next, if a ∈ L, then either a ∈ C \ {ān} ⊆ C , or a ∈ [b̄n �→ ān](I ). In the latter case,
a = ak for some 1 ≤ k ≤ n, and also bk ∈ I . Since (D,E, F ) � (G,H, I ) implies that
I ⊆ F , we get that bk ∈ F , but the latter means, by (A,B,C )�(ān) A (D,E, F )�(b̄n)
and Corollary 2, that ak ∈ C . Since a ∈ L was chosen arbitrarily, we have shown that
L ⊆ C .

Claim B1.6. (v � (A,B,C ) & |B ∩ v2| = �) ⇒ |K ∩ v2| = �.
We observe that if B ∩ v2 is infinite, then so is (B \ {ān}) ∩ v2, given that {ān} is

finite. But since, according to our definition of K, we have (B \ {ān}) ⊆ K , K ∩ v2

must be infinite, too.
Claim B1.7. (A,B,C ) ≺i (J,K,L).
By Claims B1.5 and B1.6.
Claim B1.8. (J,K,L)�(ān) A (G,H, I )�(b̄n), and (G,H, I )�(b̄n) A (J,K,L)�(ān).
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Indeed, for any given 1 ≤ k ≤ n, we have ak ∈ J iff ak ∈ [b̄n �→ ān](G) iff bk ∈ G ,
since b̄n �→ ān defines a bijection. Similarly, we have ak ∈ L iff ak ∈ [b̄n �→ ān](I ) iff
bk ∈ I . But then our Claim follows from Corollary 3.

The correctness of our construction for Case B1 of condition (back) now follows
from Claims B1.4, B1.7, and B1.8.

Case B2. B = ∅. In this case, we partition C \ {ān} into two disjoint infinite sets C1

and C2, and define (J,K,L) as follows:

J = (A \ {ān}) ∪ [b̄n �→ ān](G);

K = C1 ∪ [b̄n �→ ān](H );

L = C2 ∪ [b̄n �→ ān](I ).

We will demonstrate the analogues of all the claims that we have made in the previous
case.

Claim B2.1. J ∪K ∪ L = N.
Again, we know that

[b̄n �→ ān](G) ∪ [b̄n �→ ān](H ) ∪ [b̄n �→ ān](I ) = [b̄n �→ ān](G ∪H ∪ I )
= [b̄n �→ ān](N) = {ān}

since (G,H, I ) ∈W and, therefore,G ∪H ∪ I = N. On the other hand, we know that

(A \ {ān}) ∪ C1 ∪ C2 = (A \ {ān}) ∪ (C \ {ān})

= (A ∪ C ) \ {ān} = N \ {ān}

since (A,B,C ) ∈W and B = ∅ and, therefore, A ∪ C = N. Adding the two equalities
together, we get that

J ∪K ∪ L = (N \ {ān}) ∪ {ān} = N,

as desired.
Claim B2.2. J, K, and L are infinite.
Indeed, A, C1, and C2 are infinite, {ān} is finite, and the following inclusions hold:

A \ {ān} ⊆ J, C1 ⊆ K, C2 ⊆ L.

Claim B2.3. J, K, and L are pairwise disjoint.
Indeed, take J and K, for example. By definition, we have that

J ∩K = ((A \ {ān}) ∪ [b̄n �→ ān](G)) ∩ (C1 ∪ [b̄n �→ ān](H ))

⊆ ((A \ {ān}) ∪ [b̄n �→ ān](G)) ∩ ((C \ {ān}) ∪ [b̄n �→ ān](H )).

By application of distributivity laws, we further get that

J ∩K ⊆ ((A \ {ān}) ∩ (C \ {ān}))∪
∪ ((A \ {ān}) ∩ [b̄n �→ ān](H ))

∪ ((C \ {ān}) ∩ [b̄n �→ ān](G))

∪ ([b̄n �→ ān](G) ∩ [b̄n �→ ān](H )).

Next, we know that (A,B,C ) ∈W and, therefore, A ∩ C = ∅, which implies that
(A \ {ān}) ∩ (C \ {ān}) = ∅.
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Moreover, we have

(A \ {ān}) ∩ [b̄n �→ ān](H ) ⊆ (A \ {ān}) ∩ {ān} = ∅.

By a parallel argument, we can see that also (C \ {ān}) ∩ [b̄n �→ ān](G) = ∅.
Finally, we observe that b̄n �→ ān is a bijection, and (G,H, I ) ∈W and, therefore,

G ∩H = ∅, whence it follows that [b̄n �→ ān](G) ∩ [b̄n �→ ān](H ) = ∅.
Summing up, we see that all the four sets in the union extending J ∩K are empty

and that we have that J ∩K = ∅. The other cases are similar.
Claim B2.4. (J,K,L) ∈W .
By Claims B2.1–3.
Claim B2.5. (A,B,C ) � (J,K,L).
The argument for A ⊆ J is exactly the same as in Case B1. To see that L ⊆ C , note

that L = C2 ∪ [b̄n �→ ān](I ) ⊆ (C \ {ān}) ∪ [b̄n �→ ān](I ), so that the argument used
for Case B1 is applicable also here.

Claim B2.6. (v � (A,B,C ) & |B ∩ v2| = �) ⇒ |K ∩ v2| = �.
The claim holds trivially since |B ∩ v2| = � is falsified by the assumption of

Case B2.
Claim B2.7. (A,B,C ) ≺i (J,K,L).
By Claims B2.5 and B2.6.
Claim B2.8. (J,K,L)�(ān) A (G,H, I )�(b̄n), and (G,H, I )�(b̄n) A (J,K,L)�(ān).
Again the claim follows by the argument used for Claim B1.8 of Case B1.
Condition (forth). Let i, j be such that {i, j} = {1, 2}, let (A,B,C ), (D,E, F ) ∈W ,

and let, for some n ≥ 0, ān, b̄n ∈ N
n. Assume, moreover, that we have (A,B,C )�(ān) A

(D,E, F )�(b̄n), and that some (J,K,L) ∈W is such that (J,K,L) ≺i (A,B,C ) (hence,
in particular, (A,B,C ) � (J,K,L)). Again, we have to consider two cases, since E can
be either empty or infinite.

Case F1. |E| = �. Then consider the triple (G,H, I ) such that:

G = (D \ {b̄n}) ∪ [ān �→ b̄n](J );

H = (E \ {b̄n}) ∪ [ān �→ b̄n](K);

I = (F \ {b̄n}) ∪ [ān �→ b̄n](L).

We will show that (G,H, I ) ∈W and that we have (G,H, I ) ≺j (D,E, F ),
(J,K,L)�(ān) A (G,H, I )�(b̄n), and (G,H, I )�(b̄n) A (J,K,L)�(ān). We break
down the demonstration of this statement into our usual series of eight claims.
The arguments, for the most part, just dualize the arguments given for Case B1 of
condition (back), but we spell them out nonetheless.

Claim F1.1. G ∪H ∪ I = N.
Indeed, we know that

[ān �→ b̄n](J ) ∪ [ān �→ b̄n](K) ∪ [ān �→ b̄n](L) = [ān �→ b̄n](J ∪K ∪ L)

= [ān �→ b̄n](N) = {b̄n}

since (J,K,L) ∈W and, therefore, J ∪K ∪ L = N. On the other hand, we know that

(D \ {b̄n}) ∪ (E \ {b̄n}) ∪ (F \ {b̄n}) = (D ∪ E ∪ F ) \ {b̄n}
= N \ {b̄n}

https://doi.org/10.1017/S1755020322000296 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020322000296


628 GRIGORY K. OLKHOVIKOV AND GUILLERMO BADIA

since (D,E, F ) ∈W and, therefore, D ∪ E ∪ F = N. Adding the two equalities
together, we get that

G ∪H ∪ I = (N \ {b̄n}) ∪ {b̄n} = N,

as desired.
Claim F1.2. G, H, and I are infinite.
Indeed, D, E, and F are infinite, {b̄n} is finite, and the following inclusions hold:

D \ {b̄n} ⊆ G, E \ {b̄n} ⊆ H, F \ {b̄n} ⊆ I.

Claim F1.3. G, H, and I are pairwise disjoint.
Indeed, take G and H, for example. By definition, we have that G ∩H is equal to

((D \ {b̄n}) ∪ [ān �→ b̄n](J )) ∩ ((E \ {b̄n}) ∪ [ān �→ b̄n](K)),

By application of distributivity laws, we further get that

G ∩H = ((D \ {b̄n}) ∩ (E \ {b̄n}))∪
∪ ((D \ {b̄n}) ∩ [ān �→ b̄n](K))

∪ ((E \ {b̄n}) ∩ [ān �→ b̄n](J ))

∪ ([ān �→ b̄n](J ) ∩ [ān �→ b̄n](K)).

Next, we know that (D,E, F ) ∈W and, therefore, D ∩ E = ∅, which implies that
(D \ {b̄n}) ∩ (E \ {b̄n}) = ∅.

Moreover, we have

(D \ {b̄n}) ∩ [ān �→ b̄n](K) ⊆ (D \ {b̄n}) ∩ {b̄n} = ∅.

By a parallel argument, we can see that also (E \ {b̄n}) ∩ [ān �→ b̄n](J ) = ∅.
Finally, we observe that ān �→ b̄n is a bijection, and (J,K,L) ∈W and, therefore,

J ∩K = ∅, whence it follows that [ān �→ b̄n](J ) ∩ [ān �→ b̄n](K) = ∅.
Summing up, we see that all the four sets in the union defining G ∩H are empty

and that we have that G ∩H = ∅. The other cases are similar.
Claim F1.4. (G,H, I ) ∈W .
By Claims F1.1–3.
Claim F1.5. (G,H, I ) � (D,E, F ).
Indeed, if b ∈ G , then either b ∈ D \ {b̄n} ⊆ D, or b ∈ [ān �→ b̄n](J ). In the

latter case, b = bk for some 1 ≤ k ≤ n, and also ak ∈ J . Since (J,K,L) � (A,B,C )
implies that J ⊆ A, we get that ak ∈ A, but the latter means, by (A,B,C )�(ān) A
(D,E, F )�(b̄n), that bk ∈ D. Since b ∈ G was chosen arbitrarily, we have shown that
G ⊆ D.

Next, if b ∈ F , and b /∈ {b̄n}, then b ∈ I by definition of F. Otherwise we have
both b ∈ F and b = bk for some 1 ≤ k ≤ n, but then ak ∈ C by (A,B,C )�(ān) A
(D,E, F )�(b̄n) and Corollary 2. Now, note that (J,K,L) � (A,B,C ) implies that
C ⊆ L, which means that ak ∈ L. But the latter means that b = bk ∈ [ān �→ b̄n](L) ⊆
I . Since b ∈ F was chosen arbitrarily, we have shown that F ⊆ I .

Claim F1.6. (v � (G,H, I ) & |H ∩ v2| = �) ⇒ |E ∩ v2| = �.
We observe that if H ∩ v2 is infinite, then so is (E \ {b̄n}) ∩ v2, given that H =

(E \ {b̄n}) ∪ [ān �→ b̄n](K) and [ān �→ b̄n](K) is finite. But thenE ∩ v2 must be infinite,
too.
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Claim F1.7. (G,H, I ) ≺j (D,E, F ).
By Claims F1.5 and F1.6.
Claim F1.8. (J,K,L)�(ān) A (G,H, I )�(b̄n), and (G,H, I )�(b̄n) A (J,K,L)�(ān).
Indeed, for any given 1 ≤ k ≤ n, we have bk ∈ G iff bk ∈ [ān �→ b̄n](J ) iff ak ∈ J ,

since ān �→ b̄n defines a bijection. Similarly, we have bk ∈ I iff bk ∈ [ān �→ b̄n](L) iff
ak ∈ L. But then our Claim follows from Corollary 3.

The correctness of our construction for Case 1 of condition (forth) now follows from
Claims F1.4, F1.7, and F1.8.

Case F2. E = ∅. In this case, we partition D \ {b̄n} into two disjoint infinite sets
D1 and D2. Additionally, in case both D ∩ v1 and D ∩ v2 are infinite (which means
that (D \ {b̄n}) ∩ v2 and (D \ {b̄n}) ∩ v1 are infinite, too), we ensure that we have
(D \ {b̄n}) ∩ v2 ⊆ D1 and (D \ {b̄n}) ∩ v1 ⊆ D2. Then we define (G,H, I ) as follows:

G = D1 ∪ [ān �→ b̄n](J );

H = D2 ∪ [ān �→ b̄n](K);

I = (F \ {b̄n}) ∪ [ān �→ b̄n](L).

We will demonstrate our usual eight claims in some detail again, even though the
arguments mostly dualize the proofs given for the respective claims in Case B2 of
condition (back) (Claim F2.6 being, perhaps, the only exception to this rule).

Claim F2.1. G ∪H ∪ I = N.
Again, we know that

[ān �→ b̄n](J ) ∪ [ān �→ b̄n](K) ∪ [ān �→ b̄n](L) = [ān �→ b̄n](J ∪K ∪ L)

= [ān �→ b̄n](N) = {b̄n}
since (J,K,L) ∈W and, therefore, J ∪K ∪ L = N. On the other hand, we know that

(F \ {b̄n}) ∪D1 ∪D2 = (F \ {b̄n}) ∪ (D \ {b̄n})

= (F ∪D) \ {b̄n} = N \ {b̄n}
since (D,E, F ) ∈W and E = ∅ and, therefore,D ∪ F = N. Adding the two equalities
together, we get that

G ∪H ∪ I = (N \ {b̄n}) ∪ {b̄n} = N,

as desired.
Claim F2.2. G, H, and I are infinite.
Indeed, D1, D2, and F are infinite, {b̄n} is finite, and the following inclusions hold:

D1 ⊆ G, D2 ⊆ H, F \ {b̄n} ⊆ I.
Claim F2.3. G, H, and I are pairwise disjoint.
Indeed, take G and I, for example. By definition, we have that

G ∩ I = ((F \ {b̄n}) ∪ [ān �→ b̄n](L)) ∩ (D1 ∪ [ān �→ b̄n](J ))

⊆ ((F \ {b̄n}) ∪ [ān �→ b̄n](L)) ∩ ((D \ {b̄n}) ∪ [ān �→ b̄n](J )).

By application of distributivity laws, we further get that

G ∩ I ⊆ ((F \ {b̄n}) ∩ (D \ {b̄n}))∪
∪ ((F \ {b̄n}) ∩ [ān �→ b̄n](J ))
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∪ ((D \ {b̄n}) ∩ [ān �→ b̄n](L))

∪ ([ān �→ b̄n](J ) ∩ [ān �→ b̄n](L)).

Next, we know that (D,E, F ) ∈W and, therefore, D ∩ F = ∅, which implies that
(D \ {b̄n}) ∩ (F \ {b̄n}) = ∅.

Moreover, we have

(F \ {b̄n}) ∩ [ān �→ b̄n](J ) ⊆ (F \ {b̄n}) ∩ {b̄n} = ∅.

By a parallel argument, we can see that also (D \ {b̄n}) ∩ [ān �→ b̄n](L) = ∅.
Finally, we observe that ān �→ b̄n is a bijection, and (J,K,L) ∈W and, therefore,

J ∩ L = ∅, whence it follows that [ān �→ b̄n](J ) ∩ [ān �→ b̄n](L) = ∅.
Summing up, we see that all the four sets in the union extending G ∩ I are empty

and that we have G ∩ I = ∅. The other cases are similar.
Claim F2.4. (G,H, I ) ∈W .
By Claims F2.1–3.
Claim F2.5. (G,H, I ) � (D,E, F ).
The argument for F ⊆ I is exactly the same as in Case 1. To see that G ⊆ D, note

that G = D1 ∪ [ān �→ b̄n](J ) ⊆ (D \ {b̄n}) ∪ [ān �→ b̄n](J ), so that the argument used
for Case F1 is applicable also here.

Claim F2.6. (v � (G,H, I ) & |H ∩ v2| = �) ⇒ |E ∩ v2| = �.
Since we suppose thatE = ∅, it will suffice to show that assuming both v � (G,H, I )

and |H ∩ v2| = � will lead us to a contradiction. Indeed, if v � (G,H, I ), then, in
particular, v1 ⊆ G , so that |G ∩ v1| = �. But we have G = D1 ∪ [ān �→ b̄n](J ) and
[ān �→ b̄n](J ) is finite; therefore, both v1 ∩D1, and its superset, v1 ∩D, must be infinite.

If also |H ∩ v2| = �, then a parallel argument shows that also v2 ∩D2 and v2 ∩D
are infinite.

But, since both v1 ∩D and v2 ∩D are infinite, we must have, by the choice of D1

and D2, that v2 ∩ (D \ {b̄n}) ⊆ D1. On the other hand, D2 ⊆ (D \ {b̄n}) implies that
D2 = D2 ∩ (D \ {b̄n}).

Therefore,

v2 ∩D2 = v2 ∩ (D \ {b̄n}) ∩D2 ⊆ D1 ∩D2 = ∅.

Since we have H = D2 ∪ [ān �→ b̄n](K), and [ān �→ b̄n](K) is clearly finite, the set
H ∩ v2 can be at most finite, which is a contradiction.

Claim F2.7. (G,H, I ) ≺j (D,E, F ).
By Claims F2.5 and F2.6.
Claim F2.8. (J,K,L)�(ān) A (G,H, I )�(b̄n), and (G,H, I )�(b̄n) A (J,K,L)�(ān).
Again the claim follows by the argument used for Claim F1.8 of Case F1.
Condition (left). Let i, j be such that {i, j} = {1, 2}, let (A,B,C ), (D,E, F ) ∈W ,

and let, for some n ≥ 0, ān, b̄n ∈ N
n. Assume, moreover, that we have (A,B,C )�(ān) A

(D,E, F )�(b̄n), and that b ∈ N. If b = bk for some 1 ≤ k ≤ n, then we set a := ak .
Otherwise, given that b /∈ {b̄n}, we choose any a ∈ C \ {ān}. We can do this since
C is infinite and {ān} is finite. In both cases we get that (A,B,C )�(ān)�(a) A
(D,E, F )�(b̄n)�(b) by definition of A.

Condition (right). Let i, j be such that {i, j} = {1, 2}, let (A,B,C ), (D,E, F ) ∈W ,
and let, for some n ≥ 0, ān, b̄n ∈ N

n. Assume, moreover, that we have (A,B,C )�(ān) A
(D,E, F )�(b̄n), and that a ∈ N. If a = ak for some 1 ≤ k ≤ n, then we set b := bk .
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Otherwise, given that a /∈ {ān}, we choose any b ∈ D \ {b̄n}. We can do this since
D is infinite and {b̄n} is finite. In both cases we get that (A,B,C )�(ān)�(a) A
(D,E, F )�(b̄n)�(b) by definition of A.

At this point, it only remains to reap the fruits of the tedious work towards the host
of previous lemmas and corollaries:

Theorem 2. FOBIL fails CIP.

Proof. Indeed, we have |= φ → � and Θφ ∩ Θ� = Σ. If now � ∈ L∅(Σ) is such that
both |= φ → � and |= � → �, then, by Lemma 6, we must have both M′

1, v |= � and
M′

2,w �|= �. We also have Mi = M′
i � Σ for i ∈ {1, 2} and, therefore, by Expansion

Property, we get that M1, v |= � and M2,w �|= �. On the other hand, we know, by
Lemma 7, that the relation A, given in Definition 4, is a bi-asimulation between
M1 and M2 and that we have v A w. Therefore, M1, v |= � implies, by Lemma 3,
that M2,w |= �. The obtained contradiction shows that no interpolant exists for
φ → �.

Remark 3. Note that Lemma 5.1–2 implies that the submodels generated by v and w in
M1 and M2, respectively, are exactly the models M1 and M2 as given in [12, Definition
7.2]. Moreover, the proof of Lemma 7 re-uses the constructions given in the proof of [12,
Lemma 7.2] except for the part treating condition (forth) of Definition 1. However, the
arguments showing the correctness of these constructions had to be given anew, since
the models M1 and M2 are not bi-intuitionistically equivalent to the models of [12,
Definition 7.2].

Thus our main construction in this paper is, in a very precise sense, just an extension
of the main construction given in [12, Section 7].

§4. Conclusion. In this article we have refuted the Craig Interpolation Property
for predicate bi-intuitionistic logic, showing how different the situation is from
the propositional case that was solved positively in [9]. We proved that Mints’s
counterexample [12] for predicate intuitionitic logic with constant domains also did
the work in the present context. It is clear that, although we allowed constants in
our presentation, their role is purely technical, and that due to the nature of Mints’s
counterexample, we have also disproved CIP for the purely relational variant of FOBIL.
The present work still leaves some related open questions, such as the status of the Beth
definability property in the bi-intuitionistic setting. For the time being, we have left
these and other similar matters as topics for future research.
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