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Abstract
Imprecise Bayesianism has been proposed as an alternative to Standard Bayesianism,
partly because of its tools for representing ambiguity. Instead of representing credences via
precise probabilities, a set of probability distributions is used to model belief states.
However, there are criticisms of Imprecise Bayesianism’s update rule. A recent alternative
update rule is Alpha Cut, which evades some of the primary criticisms of Imprecise
Bayesian updating. We compare Alpha Cut with Imprecise Bayesianism and another
alternative update approach called Calibration. We find that Alpha Cut has problems with
respect to ambiguity, coherence, and performance qualities, whereas there are more
promising alternatives.

Keywords: Alpha Cut; decisions under uncertainty; formal epistemology; imprecise Bayesianism; imprecise
probabilities

1. Introduction
Many economists and philosophers want to represent epistemic ambiguity within a
formal framework. For the purposes of this article, we focus on ambiguity in the
sense of lacking information about physical probabilities that are relevant to the
decision problem or epistemic context. This sense of “ambiguity” is prominent in
descriptive as well as normative decision theory, such as in the Ellsberg Paradox
(Ellsberg 1961) and the wider ambiguity aversion literature (Bradley 2024).
Unfortunately, it has proven to be extremely hard to include ambiguity in a theory
of rational decision-making without incurring heavy costs. Many philosophers and
economists regard these costs as worse than being unable to represent ambiguity
(Al-Najjar and Weinstein 2009; Elga 2010).
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There have been a number of theories proposed for representing a rational
agent’s beliefs. One family that shares many details in common are the descendants
of what we shall call “Standard” Bayesianism: the view that a rational agent’s beliefs
must be representable by a unique probability distribution and that this probability
distribution should be updated by conditionalization.1 Standard Bayesianism’s
capacity to represent ambiguity has often been questioned, but its probabilistic
framework is highly attractive, partly because it provides inputs for an appealing
decision theory – maximizing expected payoffs. To what degree can these strengths
be preserved within a theory that can represent ambiguity?

The literature thus far has focused on comparisons of Standard Bayesianism with
Imprecise Bayesianism. The latter uses sets of probability distributions to represent
beliefs. However, Imprecise Bayesianism has its own issues, particularly with
updating. In this article, we examine a recently proposed modification of Imprecise
Bayesianism, called “Alpha Cut”. It has also been called “α-cut” (Cattaneo 2014;
Bradley 2022). This theory maintains the set-based belief representation framework
of Imprecise Bayesianism, but updates by a newly developed rule. Thus, it is prima
facie conceivable that Alpha Cut can retain Imprecise Bayesianism’s tools for
ambiguity representation, while offering a better update rule.

Alpha Cut is one of the most recent implementations of making hierarchical
distinctions among probability distributions in the set (Gärdenfors and Sahlin 1982;
Pearl 1988; Wilson 2001; De Bock and De Cooman 2015; Moral 2019; Omar and
Augustin 2019). This contrasts with the approach of most Imprecise Bayesian
philosophers: to regard each member in the set equally when modelling belief states
or rational decision-making. The hierarchical approach has recently attracted
significant interest in decision theory and formal epistemology, partly due to the
challenges for traditional Imprecise Bayesianism (Hill 2013; Bradley 2017; Lyon
2017; Hill 2019; Lassiter 2019).

We evaluate Alpha Cut to assess (1) the extent to which it avoids problems of
Imprecise Bayesianism and (2) the new problems it introduces. We also compare
Alpha Cut against another approach, which we shall call “Calibration”. We argue
that, at least with respect to the issues we discuss, someone willing to pay the price of
Alpha Cut should view Calibration as a better option.

We begin in section 2 by explaining the desiderata that we shall use for
comparisons. In section 3, we briefly explain Standard Bayesianism and some
criticisms of it that have motivated Imprecise Bayesians. In section 4, we explain
Alpha Cut, then compare it with Imprecise Bayesianism. Finally, in section 5, we
compare Alpha Cut and Calibration. We conclude in section 6 that there is hope for
a theory that has consistently strong ambiguity, coherence and performance
properties, but Alpha Cut is not it.

2. Three Desiderata for Theories
By “theories”, we shall mean a formal model of rational beliefs and reasoning, in
formal epistemology or decision theory. Standard Bayesianism, Imprecise

1As we use the term, Standard Bayesianism includes both “objective” and “subjective” versions of this
theory.
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Bayesianism, Alpha Cut and Calibration will be the theories that we discuss in this
article. There can be considerable variety in different versions of a theory, such as
Standard Bayesianism with strict conditionalization or with Jeffrey
conditionalization.

There are varying intuitions about rationality that make it hard to compare
theories. In general, our approach is to focus on a set of criteria that, while
insufficient for precisely defining a “rational” agent, nonetheless capture desiderata
that many formal epistemologists and decision theorists share. This approach
enables us to make comparisons using a relatively small number of presuppositions
about the answers to controversial debates. Thus, we shall not discuss issues like
epistemic accuracy (Greaves and Wallace 2006; Norton 2021) or unmeasurable sets
(Isaacs et al. 2021; Goodsell and Nebel 2024).

2.1 Ambiguity Representation

Philosophers and economists have distinguished between evidence’s “balance” and
its “weight” (Keynes 1921: Ch. VI). The balance of evidence E tilts towards a
hypothesis H if learning E increases the evidence in favour of H (put another way, if
learning E confirms H). In contrast, the weight of evidence is the total amount of
relevant information that E provides with respect to H (Popper 1958; Davidson and
Pargetter 1987; Franklin 2001; Reiss 2014; Kasser 2015).

To see how these can come apart, consider the hypothesis that a particular coin
toss will land heads. Suppose that, for each subsequent toss, an agent has a prior of
0.5 that the coin will land heads. A random sample of 10 coin tosses, all of which
land heads, can (with suitable background knowledge) be balanced in favour of the
hypothesis that the coin will land heads, but this evidence has low weight.
Conversely, a sample of 1000 tosses, 50% of which landed tails, seems to increase
significantly the weight of evidence with respect to the coin toss landing heads (by
increasing the information about the coin’s bias) even though its balance is neutral
towards the hypothesis that the coin will land heads, given the prior.

We shall say that evidence is more “ambiguous” about a hypothesis insofar as its
weight for that hypothesis is lower. Representing ambiguity is an alleged advantage
of imprecise probabilities (Keynes 1921; Walley 1991; Joyce 2005; Sturgeon 2008;
Peden 2018; Bradley 2019).

A closely related issue is the representation of neutrality. Many have thought that
one should have a completely neutral doxastic attitude towards a hypothesis H when
in a state of complete ambiguity regarding H. But how should that neutrality be
represented in a formal model of beliefs? The traditional Bayesian answers are the
Principle of Indifference and more generally the Maximum Entropy Principle.
However, while these principles can represent neutrality with respect to a partition
of the fundamental possible outcomes, this is at the cost of creating strong beliefs for
or against many other hypotheses (Kyburg 1968).

A connected putative advantage of ambiguity representation is that it enables the
incorporation of ambiguity aversion into decision rules. Ambiguity aversion occurs
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when an agent has a preference against choices with less precise information about
the relevant physical probabilities.2 The classic example is the Ellsberg Paradox,
where many people prefer options with known physical probabilities in two sets of
choices between alternative betting situations, even though there are no Standard
Bayesian probabilities that permit this set of preferences (Ellsberg 1961). Similar
phenomena continue to be studied in experimental psychology and behavioural
economics (Fox and Tversky 1995; Halevy 2007; Ahn et al. 2014; Jia et al. 2020). Due
to the significance of ambiguity aversion in economics and decision theory more
widely, we shall focus on this type of ambiguity in this article. Additionally, for the
purposes of this article, we shall assume that being able to represent ambiguity in an
intuitive way is desirable ceteris paribus, but only ceteris paribus – other
considerations can override this quality when choosing between theories.
Furthermore, while our discussion is relevant to descriptive decision theory, we
shall focus on the normative interpretations of the theories in question.

2.2 Coherence

An agent is synchronically coherent if they avoid accepting any synchronic Dutch
Book, which is a set of bets, given particular beliefs and preferences, that would
result in a guaranteed net loss of payoffs. In the context of this article, “payoffs” are
utility numbers representing a player’s preferences over betting outcomes. An agent
is diachronically coherent if they are such that, when they make plans for a sequence
of decisions, they avoid accepting diachronic Dutch Books – a set of bets and odds,
over a sequence of decisions, that would inevitably lose payoffs. The significance of
diachronic coherence has been debated (Ramsey 1988; Bacchus et al. 1990; Milne
1991; Rowbottom 2007; Williamson 2011; Pettigrew 2020; Gustafsson 2022;
Vineberg 2022). However, as with tools for ambiguity representation, we shall
assume that it is a desirable property of a theory, ceteris paribus.

2.3 Decision-making Performance

Coherence properties for decision rules are possibility results: they prove that a
certain flawed combination of decisions is impossible if a theory is used. Thus, by
themselves, they imply nothing about the overall performance of decision rules in
practice.

Convergence results are more informative. These show that, under certain
conditions, using a theory will lead to beliefs that approach the true physical
probabilities in the long-run. Unfortunately, all the theories we discuss in this article
have roughly equally attractive long-run convergence results.

Instead, one can compare theories with respect to short-run decision-making: an
agent’s choices during the period in which cumulative sample frequencies can have
substantial deviations from the true limiting relative frequencies, due to random
fluctuations. Comparing theories’ short-run decision-making performances via
agent-based modelling was briefly explored by Henry E. Kyburg and Choh Man

2A physical probability distribution is a non-epistemic quantity satisfying the probability axioms, such as
propensities and long-run relative frequencies.

4 William Peden et al.

https://doi.org/10.1017/S026626712510059X Published online by Cambridge University Press

https://doi.org/10.1017/S026626712510059X


Teng (Kyburg and Teng 1999) and it has been pursued recently by refining and
expanding their tests (Radzvilas et al. 2021, 2023, 2024, 2024a).

The focus thus far has been on a decision problem based around sequences of
Bernoulli trials – events that are binomial and exchangeable; we explain Bernoulli
trials in more detail later. The focus on Bernoulli trials makes sense because of the
prominence of exchangeable events in statistics. Furthermore, the relative simplicity
of Bernoulli trials improves the capacity of the agent-based modelling to clearly and
quickly identify the causes of differences in performance. We shall call this decision
problem “the Bernoulli task”. Its crucial traits are shared by many other types of
statistical problems, such as multinomial generalizations of Bernoulli trials. We shall
use this decision problem as the basis for short-run performance comparisons, while
acknowledging that it does not provide an exhaustive comparison across all decision
problems, which are potential topics for further research.

3. Standard Bayesianism
Our main goal in this article is to evaluate theories that are descendants of Standard
Bayesianism. Therefore, we shall not discuss Standard Bayesianism in detail.
Instead, we shall review the relevant results for Standard Bayesianism, to prepare the
ground for later comparisons.

In our use of the term, Standard Bayesians (1) have credences over a domain and
these credences can be represented by a (finitely or σ) additive probability
distribution and (2) update by strict conditionalization. We shall also define
Standard Bayesians as expected payoff maximizers in their choice behaviour. One
difference from many discussions of Bayesianism in epistemology is that we shall
assume that Standard Bayesians’ credences are distributed over events rather than
statements, because it is more felicitous for using relevant terminology from
statistics.

3.1 Representation

Criticisms of Standard Bayesianism’s representation of ambiguity are numerous,
both in decision theory (Ellsberg 1961; Feduzi 2010; Bradley 2017; Bradley 2019;
Hill 2019) and formal epistemology (Popper 1958; Kyburg 1974; Joyce 2005; Norton
2011). Firstly, Karl Popper’s “Paradox of Ideal Evidence” challenges Standard
Bayesianism’s capacity to represent changes in ambiguity (Popper 1958). In a wide
range of contexts, when a sample frequency is equal to the prior, the reduction in
ambiguity will not be registered by a difference in the posterior. There have been
efforts to develop formal analyses of ambiguity (often in terms of analysing the
weight of evidence) some of which may be consistent with Standard Bayesianism,
but there is no consensus method (Carnap 1962; Kuipers 1976; Davidson and
Pargetter 1987; Runde 1990; Nance 2016; Lassiter 2019).

Secondly, another challenge is representing a neutral doxastic state, which
arguably should occur if ambiguity is maximal. Consider a sequence of 1000 coin
tosses, where the coin’s bias or fairness is unknown. A Standard Bayesian prior can
be neutral in the sense that each coin toss has a 50% probability of landing heads,
but not simultaneously neutral towards every intersection, union or generalization
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of these coin tosses. Since probability assignments to partitions of events will have
consequences for partitions of compounds of those events, Standard Bayesian
agents cannot avoid having strong beliefs even in situations of extreme ambiguity. In
the coin tossing example, a Standard Bayesian who assigns a 0.5 prior to each
individual coin toss landing heads will be almost certain that approximately 500/
1000 of the coin tosses will land heads, despite the highly ambiguous situation.

Overall, ambiguity representation is not a strength of Standard Bayesianism. The
development of all the theories that we subsequently discuss has been partly
motivated by a desire to have a theory that has most or all of Standard Bayesianism’s
virtues, yet with better ambiguity representation properties. In these alternatives,
Standard Bayesian reasoning effectively occurs as a special case that occurs in the
presence of little or no ambiguity.

3.2 Coherence

As is well-known, Standard Bayesianism is synchronically and diachronically
coherent. In the context of this article, the key point to note is that Standard
Bayesianism is sufficient but not necessary for diachronic coherence, as we shall
explain in the next section.

3.3 Performance

Before describing the performance of the most studied Standard Bayesian player in
agent-based models of the Bernoulli task, we provide the broad details of this
decision problem. In the Bernoulli task, a player has a choice of whether and how to
bet on the result of a Bernoulli trial3 after observing a sample of preceding trials. Like
earlier philosophical literature using this decision problem, we shall talk about “coin
tosses”, but with the proviso that, unlike real people with real coins, a player begins
in a state of complete ambiguity with respect to the true values of the biases.

A player of the game does not have any initial information about the coin toss
bias. However, they do know the payoffs and that the Bernoulli task consists purely
of Bernoulli trials. The aim in the decision problem is exclusively to maximize
payoffs in each bet. There is no player interaction, nor additional player goals.

A “game” consists of 4 new observations of coin toss results, followed by a choice
between ch, to bet on heads, ct , to bet on tails, or ca, to abstain from betting. A “test”
consists of a sequence of 1000 games, with a fixed coin bias. We tested players using
coin biases of 0.1, 0.3, 0.5, 0.7 and 0.9, since players’ relative performances vary
among different biases.

Players recall earlier observations. For instance, after 10 games, a player adds
their knowledge of the previous 50 tosses to their 4 new observations when making
their decision in the 11th game. As the test progresses, a player accumulates a
“history” – informally, the history is their net sample of observations of the coin

3A sequence of Bernoulli trials is an ordered set of events with two possible types of outcome (the events
are binomial) such that the probability of a type of outcome on each trial in the sequence is the same (the
events are exchangeable).
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tosses in that particular test. Depending on their choice and the outcome of the coin
toss, they receive a payoff described in Figure 1.

The randomly generated parameter δ takes values in the continuum from 0 to 1. δ
determines how favourable the structure of a game is between heads and tails. When
comparing players in tests, we always use the same sets of δ values and coin toss
sequences.

We provide a more detailed description of the game structure in the Bernoulli
task in Appendix 6.1. We do the same for the payoff structure in Appendix 6.2.

Although there are many ways that a Standard Bayesian might engage with the
Bernoulli task, the literature thus far has focused on the use of beta distributions.
Since beta distributions are a common approach in statistics and decision theory for
addressing reasoning tasks like the Bernoulli task, this choice makes sense. Beta
distributions are a type of prior that can be summarized by a function Beta a; b� �.
The parameters a and b are called “hyperparameters”: they are not probabilities, but
rather numbers for describing the shape of the continuous probability distribution
on the interval of 0; 1� � representing all the possible biases of a coin.

The best-performing Standard Bayesian agent among those investigated so far is
called Stan. They have a flat prior, Beta 1; 1� �, which means that their prior is
equivocal (it leads to equal probability assignments for heads and tails) and soft (the
posteriors rapidly converge to the sample frequency). The priors and posteriors of
beta distributions are conjugate distributions, so as Stan observes more coin tosses,
their credences continue to be beta distributions. We detail Stan in Appendix 6.3.

In games, Stan bets on tails when δ exceeds their credence that the next toss (the
final toss in a particular game) will land heads. Stan will bet heads if δ is less than
their credence in heads. They randomize if δ is equal to their credence.

Stan performs at least as well as any other player thus far examined. For the
specific implementations investigated thus far, Stan performs better than Imprecise
Bayesians (Radzvilas et al. 2024a), better than Dempster–Shafer reasoners
(Radzvilas et al. 2024), and better or as well as players using Calibration
(Radzvilas et al. 2023). We shall discuss the particular criteria for these evaluations
in the next subsection.

4. Alpha Cut and Imprecise Bayesianism
Alpha Cut is a modification of the more well-known Imprecise Bayesian theory
(Wilson 2001; Cattaneo 2008, 2014). It is alleged to have more attractive learning
properties (Bradley 2022). Due to their similarities, we combine our definitions and
discussions of these two theories.

Figure 1. Player Payoff Matrix. ωh and ωt are respectively the
events of the coin landing heads and the coin landing tails.
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4.1 Definition

We provide detailed formal definitions of an Imprecise Bayesian agent and an Alpha
Cut agent in Appendices 6.4 and 6.5. In this section, we provide a general and
informal description of each approach.

Imprecise Bayesians use sets of probability distributions to represent belief states.
We shall call these sets “credal sets”. While credal sets do not have to be convex, we
shall only consider convex credal sets in this article.4 An agent’s “belief interval” for
a hypothesis is a closed interval that is the shortest cover of the range of values
assigned to an event by the probability distributions in the agent’s credal set.
Sometimes, it will be convenient to discuss an agent’s belief in a hypothesis in terms
of a belief interval rather than the credal set.

Regarding updating, we shall define Imprecise Bayesianism narrowly. Where
each probability distribution assigns non-zero prior probability to the evidence (the
statements now assigned probability 1 by the agent) each probability distribution is
strictly conditionalized on the evidence. Probability distributions assigning zero
probability to the evidence are excised from the set (Gilboa and Schmeidler 1993).
We shall refer to this update procedure as “generalized conditioning”.

In contrast, Alpha Cut updates by excising probability distributions from the set
if their prior for the evidence is less than the product of (a) the highest prior assigned
to the evidence by any other probability distribution in the credal set and (b) a
constant α 2 0; 1� �. Alpha Cut is intended to be a generalization of Imprecise
Bayesians’ excision of those probability distributions that assign zero to one’s
evidence: this move might be justified by thinking that such probability distributions
are “unreliable” (Cattaneo 2008; Bradley 2022).5 The role of multiplication by the
highest prior for the evidence in the agent’s credal set is to address the fact that, as
evidence grows over time, it will generally have a lower prior (Bradley 2022). The
meaning of “reliability” in this context needs more clarification by supporters of
Alpha Cut, since it is not supposed to be a more reliable representation of the agent’s
doxastic states, nor a better correspondence of those doxastic states to objective
limiting relative frequencies. However, there are similar approaches to Alpha Cut,
whose advocates have provided deeper explanations of comparable parameters
(Braithwaite 1953; Gärdenfors and Sahlin 1982; Hill 2013; Lyon 2017; Bradley 2017;
Hill 2019; Lassiter 2019).

This process of excising or “cutting” distributions from the credal set is applied
symmetrically. For instance, when considering whether a coin toss will land heads in
the Bernoulli task, an Alpha Cut agent will excise probability distributions in a way
that raises the lower limit of the belief interval for heads. Conversely, their excisions

4Roughly speaking, a convex credal set contains all the probability distributions (in this case, specifically
beta distributions) between its most extreme distributions. For instance, a convex credal set ranging from
Beta 1; 99� � to Beta 99; 1� � also includes Beta 2; 99� �, Beta 50; 50� � and so on. For details, see Appendix 6.4.
Some Imprecise Bayesians think that credal sets should be convex, others see convex sets as useful in some
cases but not required (Levi 1980; Cozman 2012; Troffaes and De Cooman 2014; Bradley 2019; Wheeler
2021).

5However, this justification of Imprecise Bayesians’ excision rule is not unique. If the prior of the evidence
is zero and a probability distribution is a Kolmogorov probability function, then it cannot be used in
generalized conditioning.
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will raise the lower limit of the belief interval for tails if they are considering whether
the coin will land tails.

Why might an imprecise probabilist prefer Alpha Cut to ordinary Imprecise
Bayesian updating? Perhaps the most prominent criticism of Imprecise Bayesianism
involves a phenomenon called “inertia”. If an Imprecise Bayesian agent’s credal set
includes dogmatic probability distributions with respect to a hypothesis (such as
assigning priors ranging from 0 to 1, which is arguably appropriate in situations of
maximal ambiguity) then the agent cannot change their belief state for that
hypothesis, even given evidence that seems intuitively relevant (Levi 1980; Walley
1991). Note that it is the dogmatism that matters for inertia: sets containing
probability distributions assigning all possible values are sufficient but not necessary
for inertia. Therefore, simply avoiding credal sets with belief intervals of 0; 1� � for
hypotheses, as some have suggested (Walley 1991; Rinard 2013; Benétreau-Dupin
2015), does not escape inertia. Other credal sets will also be inert if the distributions
at their limits are dogmatic with respect to a hypothesis (Piatti et al. 2009; Vallinder
2018). For example, a credal set with distributions assigning 0.1 and 0.9 to a
hypothesis H, where those extreme distributions are completely insensitive to
evidence regarding H, will also be inert with respect to H. Moreover, avoiding inertia
via imposing restrictions on credal sets reduces the ambiguity representation
capacities of Imprecise Bayesianism.

One feature of Alpha Cut is that it can generate intervals that are inconsistent. In
the context of the Bernoulli trial, the upper probability for heads is not equal to 1
minus the lower probability for tails, nor is the lower probability for heads equal to 1
minus the upper probability for tails. The same applies,mutatis mutandis, to the cut
credal set used for an Alpha Cut agent’s beliefs about the coin landing tails.

We discuss existing AlphaCut responses to this issue in the last part of this section.
However, one possible modification is best explained now. We shall use “MLAC”
(Maximum Likelihood Alpha Cut) to refer to a rule that uses the observed sample
mean for selecting auniquebelief interval for an event, analogous to thebelief intervals
of an Imprecise Bayesian. In the context of the Bernoulli trial, this rule requires
choosing to use the heads belief interval if the coin toss history so far has amajority of
heads observations, the tails belief interval if the coin toss history so far has amajority
of tails observations, and randomizing between the two if the coin toss history is
equally balanced. Thus, an MLAC player effectively uses the sample mean for a
maximum likelihood estimate-based choice of among their Alpha Cut intervals. We
further define MLAC in Appendix 6.6. We report the results forMLAC-Optimist in
Figure 3. MLAC has not previously been investigated in the literature, but we found
that it has some interesting and distinctive performance properties.

In what follows, we first consider performance in the Bernoulli task, because
Alpha Cut does not have any novel problems in this respect. Next, we consider its
ambiguity representation properties, where its strengths and weaknesses are mixed.
Finally, we consider its coherence properties, where it has very significant problems.

4.2 Performance

An Imprecise Bayesian or Alpha Cut agent cannot use expected payoff
maximization as a general decision rule, since their expectations will generally
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not be unique. Thus, an imprecise probability decision rule is necessary to test their
performance in the Bernoulli task. In previous research using the Bernoulli task, the
Optimist rule was consistently the best performer among imprecise probability
decision rules, regardless of the player type (Radzvilas et al. 2023, Radzvilas et al.
2024, 2024a). We provide full details of this rule in Appendix 6.8. Informally, an
Optimist player in our agent-based model sums their maximum and minimum
expected payoffs, but weighs their maximum expected payoffs by 3=4 and their
minimum expected payoffs by 1=4; this is one way of implementing the Hurwicz
criterion (Hurwicz 1951). The Imprecise Bayesian Optimist player is called IB-
Optimist and the Alpha Cut Optimist player is called AC-Optimist. Their credal set
ranges from Beta 99; 1� � (biased towards heads) to Beta 1; 99� � (biased towards tails).
We refer to IB as a generic Imprecise Bayesian player: a player with this initial credal
set, but considered independently of the Optimist decision rule. This enables us to
refer to what is true of any Imprecise Bayesian’s learning behaviour with this credal
set, regardless of their decision rule.

One feature of IB’s performances in the Bernoulli task is known as the Ambiguity
Dilemma (Radzvilas et al. 2024a, 2024b). Imprecise Bayesianism’s putative ability to
represent differences in ambiguity depends on the difference between belief
intervals and additive credences. For example, in the Bernoulli task, Stan starts with
a credence of 0.5. After acquiring a sample of 50 tosses, 25 of which land heads, Stan
has learnt more about the physical probabilities (the coin bias). Yet their credence is
still 0.5. This is an instance of Popper’s Paradox of Ideal Evidence. Some Imprecise
Bayesians6 argue that the width of the belief interval for a hypothesis can represent
ambiguity, at least in problems like the Bernoulli task; equivalently, the degree of
divergence among the credal set’s credences for the hypothesis in question is
supposed to measure (or at least indicate) ambiguity (Walley 1991; Joyce 2005).

TheAmbiguity Dilemma is that these tools for representing ambiguity come at the
cost of comparatively weak performance in the Bernoulli task. Regardless of the
decision rule used, IB is outperformed on the Bernoulli task by Stan, even if IB uses
non-inert sets that only somewhat represent the extreme ambiguity in the Bernoulli
task. Some versions of IB can match Stan for some biases, but all are outperformed
given at least one bias none outperforms Stan overall (Radzvilas et al. 2024a). Since
Alpha Cut is a faster update rule than Imprecise Bayesians’ generalized conditioning
rule, onemight expect that they can close this gap and escape theAmbiguityDilemma.

We set α at 0.75. This value for AC-Optimist is a balance between two
considerations. On the one hand, higher α results in faster convergence, which is a
key selling point of Alpha Cut. On the other hand, higher α reduces the difference
between Alpha Cut and approaches like Standard Bayesianism and maximum
likelihood estimation (which, in the Bernoulli task, simply estimates that the coin
bias is the sample frequency) thus reducing Alpha Cut’s tools to represent
ambiguity. In the limit, if α � 1, an Alpha Cut belief interval would no longer
represent differences in ambiguity after the first observation, since the credal set’s
minimum probability would simply become equal to the maximum probability.
However, this problem and similar issues only arise once α is 1 or arbitrarily close to
1. Thus, since α should not be too high or too low, we investigated α � 0:75.

6Not all Imprecise Bayesians agree (Bradley and Steele 2014b).
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We created graphs of players’ average profits (payoff) per game in the 1000 tests.
The important performance differences are large enough to be clear by visual
inspection. We report these results in Figures 2 and 3. We also made comparisons
using methods from some earlier studies in this literature (Radzvilas et al. 2021,
Radzvilas et al. 2024a) but we found no significant differences in these that were not
reflected in the graphs, so we simply report the latter.

To perform the tests, we used Python (version 3.12.4) with the statsmodels
econometrics and statistics library (Seabold and Perktold 2010). One script
generated exchangeable coin-toss outcomes; a second produced δ values; the
remaining scripts computed individual game payoffs and averaged the net profits of
each player across tests. All tests were executed on an Ubuntu Linux server (64-core/
128-thread Intel Xeon @ 1.3 GHz, 128 GB RAM).

As can be seen in Figures 2 and 3, there is no statistically significant difference in
performance between AC-Optimist and IB-Optimist. Therefore, the use of Alpha
Cut updating does not solve the Ambiguity Dilemma: AC-Optimist’s greater
capacity to represent ambiguity comes at the cost of performing less well than Stan.
Like IB-Optimist, the performance gap of AC-Optimist would be worse if they used a
wider credal set, but this wider credal set would better represent the extreme
ambiguity in the Bernoulli task.

This result is surprising, since Alpha Cut is designed to have a faster rate of
convergence than Imprecise Bayesianism, but there is an explanation. Although
AC-Optimist tends to have narrower belief intervals for the events than IB-
Optimist in early games, it does so by boosting the lower interval for a toss landing
heads and the lower interval for that toss landing tails. The result is that, when the
coin toss has an extreme bias, AC-Optimist misses reliable information that Stan
detects and uses.

For example, given any belief about the probability of coin landing heads ρ, the
expected payoff from betting on heads is ρ 1� δ� � � 1� ρ� � �δ� � � �δ� ρ, while
the expected payoff from betting on tails is ρ δ � 1� � � 1� ρ� � δ� � � δ � ρ. Assume
that ρ � 0:9 and δ � 0:7. The expected payoff from betting on heads is 0:2, while
the expected payoff from betting on tails is �0:2. Hence, an expected payoff-
maximizing player who knew the true bias would choose to bet on heads under
these conditions.

We now imagine a possible second game in a test, assuming that 8=9 coin tosses
(approximately 0.9 of coin tosses) have landed heads in the test so far. Stan’s
posterior for heads can be found by adding this coin toss history of 8 heads tosses
and 1 tails toss to the values from their Beta 1; 1� � probability distribution as
follows: 1� 8� �= 1� 1� 9� � 	 0:8181. (All of our approximations in this article's
examples are to four decimal places, but our tests are far more precise.)
Substituting this value for 0.9 in the calculations in the preceding paragraph, one
can see that Stan’s expected payoffs are 0.1181 for betting on heads and �0:1181
for betting on tails. In contrast, with respect to heads, the IB-Optimist player has a
maximum credence for heads of 99� 8� �= 99� 1� 9� � 	 0:9817 and a minimum
credence of 1� 8� �= 99� 1� 9� � 	 0:0826. The maximum/minimum values for
tails can be found by subtracting the heads minimum/maximum values from 1. IB-
Optimistmultiplies their expected payoffs for betting heads and for betting tails by
3=4 for the maximum expected payoff and 1=4 for the minimum expected payoff,
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Figure 2. Bayesian Players: Stan (top) and IB-Optimist (bottom). The graphs show the average profit per
game (y-axis) against number of games (x-axis). The solid lines are the averages. The confidence intervals
around the lines are calculated at the 0.95 level. Numbers adjacent to the lines mark the coin bias.
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Figure 3. Optimists: AC (top) and MLAC (bottom). The graph format is the same as Figure 2.
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then sums each action’s payoff. Given that δ � 0:7, the expected payoff for betting on
heads is 0:75 �0:7� 0:9817� � � 0:25 �0:7� 0:0826� � 	 0:0569, while the expected
payoff from betting on tails is 0:75 0:7 � 0:0826� � � 0:25 0:7 � 0:9817� � 	 0:3926.
Consequently, while Stan and a player who knew the true bias would bet on heads,
IB-Optimist would bet on tails.

AC-Optimist differs from IB-Optimist in that the minimum credence for heads is
α � 0:75 multiplied by their maximum credence for heads. This product is
approximately 0:7363, and likewise for tails to obtain approximately 0:6881. The
approximate expected payoffs are 0:2204 for heads and 0:5601 for tails. Therefore,
despite their differences, AC-Optimist’s behaviour in this particular game is the
same as IB-Optimist’s, with the same relative underperformance. In general, both
players perform as well as Stan given a non-extreme bias, but do worse given an
extreme bias.

Meanwhile, MLAC-Optimist has an interesting inversion of AC-Optimist’s
performance. It closes the gap with Stan for extreme biases, but performs poorly as
the coin bias approaches 0.5. This occurs because MLAC-Optimist’s update rule
makes them shift quickly towards high confidence in the most frequently observed
value. Given an extreme bias, this behaviour tends to be advantageous, since their
belief intervals strongly tend to include the true bias. However, if the coin bias is 0.7
or 0.3, MLAC-Optimist tends to be overconfident in early samples. For instance, in
the preceding example, MLAC-Optimist would use the heads interval,
approximately 0:7363; 0:9817� �, leading to overconfidence if the true bias is 0.7
or lower. Given a 0.5 bias, this overconfidence leads to particularly strong
misalignment of belief intervals and coin biases, becauseMLAC-Optimist’s learning
rule is effectively slanted towards extreme coin toss biases. Moreover, randomizing
between the heads interval and the tails interval when the sample frequency is 0.5,
rather than using some form of equivocal belief state, results in costly bold decisions
until the observations are sufficiently numerous thatMLAC-Optimist’s intervals are
both close to 0.5. In sum, MLAC-Optimist does not eliminate the Ambiguity
Dilemma for Alpha Cut: their overall performance is still below that of Stan.

Returning to Alpha Cut, an Alpha Cut player must consider multiple events in
the Bernoulli task in order to make decisions. In a betting problem where they were
applying Alpha Cut to their belief in just one event, they would learn faster.
However, the Bernoulli task is already a simple problem; simplifying it would limit
the interest of the performance results. Moreover, it seems that this dramatic
dilution of their rule’s convergence properties as the number of events relevant to a
decision increases would also be present in decision problems with many relevant
events, such as typical choice situations in business or policy. An implication is that
the potentially dramatic effects of Alpha Cut on the learning rate in single event-
based reasoning problems that have generally been studied so far can be reduced
when an Alpha Cut agent considers a wider range of events.

Of course, with more convergent initial credal sets (for instance, a credal set
ranging from Beta 2; 1� � to Beta 1; 2� �) AC-Optimist would perform better in the
Bernoulli task and analogous problems. Yet this performance improvement would
be at the cost of a less adequate representation of ambiguity. The initial credal sets
we considered already go beyond players’ background knowledge of the physical
probabilities. This is the essence of the Ambiguity Dilemma: better ambiguity
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representation comes at a performance cost, better performance comes at an
ambiguity representation cost.

To sum up, Alpha Cut does not escape the Ambiguity Dilemma, because it has
very similar results to Imprecise Bayesianism in the Bernoulli task.MLAC-Optimist
closes the gap with Stan given extreme biases, but with offsetting costs of poor
performance with 0.3, 0.5 and 0.7 coin biases. Thus, the performance side of the
Ambiguity Dilemma is not improved by these approaches. In the next section, we
shall turn to the ambiguity representation side of the Ambiguity Dilemma.

4.3 Representation

Imprecise Bayesians can use the divergence of credal sets to represent ambiguity, at
least in many situations (Walley 1991). Inertia limits the scope of this
representation, because a vacuous credal set (in the context of the Bernoulli
trials, a set that contains all beta distributions) is a maximally divergent credal set
with respect to its probabilities for each event, yet using it to represent ambiguity
prevents learning, apart from any learning that is required for deductive
consistency. For instance, in the Bernoulli task problem, an Imprecise Bayesian
player with a maximally divergent initial credal set (arguably what is the appropriate
representation of the ambiguity in the Bernoulli task, given the absence of
background knowledge in favour of any particular coin bias) is just as uncertain
about the coin bias after observing 100 tosses, all landing heads, as they were before
observing any tosses – a belief interval of 0; 1� � in each case. In contrast, Alpha Cut
updaters can make free use of vacuous credal sets while still learning, as Seamus
Bradley has illustrated in detail (Bradley 2022).

One advantage that Alpha Cut advocates themselves have not yet noted is that,
unlike using a highly divergent but non-inert credal set to represent maximal
ambiguity (we shall call this a “wide set” for short) the use of Alpha Cut to avoid
inertia avoids the problem that even a wide set will have strong probabilities for or
against some hypotheses, despite the absence of evidence. For example, unless
probability distributions assigning 0 and probability distributions assigning 1 are
included in the credal set (so the set is vacuous rather than merely wide) an
imprecise probability agent in the Bernoulli task will be certain that “All the coin
tosses land heads” is false over an infinite domain of coin tosses (Zabell 1996). Even
if that bullet might be bitten, there is a following bullet that is tougher: the imprecise
probability agent will be certain, a priori, that at least one coin toss will land heads in
such an infinite sequence. Even for those who think that there are some a priori
justified beliefs or that all beliefs are partly a priori would presumably stop short of
regarding this sort of a priori belief as justified. Thus, only by using a vacuous initial
credal set can an Imprecise Bayesian or Alpha Cut agent’s belief intervals reflect the
initial ambiguity across all the hypotheses, and of these two theories only Alpha Cut
agents can learn in the Bernoulli task given vacuous credal sets.

Nonetheless, despite these strengths, we shall argue that Alpha Cut introduces a
new assortment of problems for representing ambiguity via divergent credal sets.
Given these problems, it is debatable whether Alpha Cut actually has net advantages
for ambiguity representation.
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4.3.1 Local inertia
The points we make in the remainder of this section are independent of the
Optimist decision rule. To emphasize this independence, we shall discuss a generic
Alpha Cut player, AC, just as we earlier referred to a generic Imprecise Bayesian
player as IB.

Imagine a version of the Bernoulli task where, unlike in our tests, the coin bias is
1. Thus, although players do not know it, they will only observe samples that
uniformly consist of heads tosses. Suppose that AC has a vacuous credal set at the
start of a test, so that their belief states are maximally ambiguous. Suppose they
observe 200 tosses, all of which land heads. Intuitively, these observations are very
strong evidence that the coin is very biased towards heads. For example, Stan will
have a credence of approximately 0.9951 that the next coin will be heads given such
observations. Part of Alpha Cut’s raison d’être is to enable learning with imprecise
probabilities in such situations. After their first observation of heads, AC’s belief
interval becomes 1� � 0:75� �; 1� � � 0:75; 1� �. Given that the coin always lands heads,
AC-Optimist’s upper probability distribution will always assign a probability of 1 to
heads, while their lower probability distribution will always assign 1� � α� � � 0:75,
and so their belief interval will be unchanged after the next 199 (or more)
observations.7

There are multiple aspects to this problem. From the perspective of formal
epistemology, the problem of local inertia is that an Alpha Cut agent fails to update
despite apparently relevant evidence. A consequence is that AC’s belief intervals fail
to track the apparent reduction in ambiguity, aside from the switch to a 0.75 lower
limit after the initial observations. From the perspective of decision theory, the
problem is that an Alpha Cut agent will be insufficiently sensitive to information
that can be reliably used to guide decisions in the Bernoulli task if they become
“stuck” in local inertia.

This local inertia problem only occurs with uniformly heads (or tails) samples.
Given any heterogeneity, the belief interval converges asymptotically to the sample
frequency. However, the problem is not specific to the Bernoulli task. For example, a
multinomial decision problem, featuring Dirichlet priors rather than beta priors,
would raise similar problems for Alpha Cut.

What if the initial credal set is wide but non-vacuous? This avoids the previously
mentioned local inertia problem, albeit at the cost of losing vacuous credal sets’
capacities for ambiguity representation. Unfortunately, a less serious but still
paradoxical short-run version of the same problem occurs. Suppose that AC’s initial
credal set is the same as in our tests (the convex set with Beta 99; 1� � and Beta 1; 99� �
as its extrema) so that AC’s belief interval is 0:01; 0:99� �. As in our example with a
0; 1� � initial interval, we assume that the coin bias is 1. After observing their initial
sample of 4 uniformly heads tosses, the new interval is approximately
0:75 0:9904� �; 0:9904� � � 0:7428; 0:9904� �. So far, so good: a uniformly heads
sample has pushed the interval towards confidence in heads.

Things do not remain good. Even after 293 total heads tosses, the lower limit has
risen only very slightly, to approximately 0.7481. The upper limit also rises marginally to

7Throughout our discussion of local inertia, we focus here on AC’s belief state with respect to heads.
Similar anomalous learning behaviour occurs with respect to the bias towards tails.
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approximately 0.9975. After 293 uniformly heads observations, generalized
conditioning intervals become narrower than those from cutting, so AC uses
generalized conditioning intervals, like IB. Thus, almost all of the 293 observations are
virtually irrelevant to the belief interval. The result is very non-convergent learning. By
contrast, Stan has posterior for heads of approximately 0.9966 given 293 heads tosses,
which is very close to the true coin bias of 1. Intuitively, there is a large difference in the
ambiguity concerning heads given 1 coin toss landing heads and given 293 tosses
landing heads, but this large difference is not represented by AC’s belief intervals. The
cause of the problem is that, in the Bernoulli task, AC revises their beliefs in early games
by changes in the upper limit of their interval for an event, but their upper limit has little
further that it can rise, even if they observe quite large uniform samples.

The problem of local inertia does not prove that Alpha Cut is unworkable, but it
does show how Alpha Cut introduces new problems for ambiguity representation
that are not present in Imprecise Bayesianism. Local inertia is particularly troubling
for Alpha Cut when the initial credal set is vacuous. This is ironic, because learning
with these sets is supposed to be a strength of Alpha Cut.

4.3.2 The unit sample problem
We call the following problem the “unit sample problem”. Although unit samples do
not occur in our tests, simple calculations enable them to be explored, so we can see
how players change their belief states after observing just one coin toss.

One selling point of imprecise probabilities for ambiguity representation is to avoid
strong beliefs based on minimal evidence. Consider Stan’s Beta 1; 1� � prior. While this
prior implies a neutral credence for the outcomes of each of the 5000 individual tosses
in a test (a 0.5 credence for heads and a 0.5 credence for tails) it implies credences that
are strongly biased with respect to particular relative frequencies of tosses in a test. For
instance, Stan is almost certain that the overall distribution of heads tosses in a test
will be close to 2500/5000, rather than close to 0/5000 or 5000/5000. In contrast, AC
(like IB) is initially very uncertain whether the frequency will be close to 50/5000 (i.e.
1% of 5000) or 4950/5000 (i.e. 99% of 5000) or somewhere in between.

Next, we suggest an intuition: as part of avoiding strong beliefs based on minimal
evidence, you cannot conclude that a coin is unfair because you saw a single toss
land heads. More generally, you should only reject a probability distribution on the
basis of your total evidence if the total evidence is improbable (its prior is less than
0.5) given that probability distribution. IB trivially satisfies these intuitions in the
Bernoulli task, since they never remove probability distributions from their credal
set in this decision problem.8 In the Bernoulli task, an Imprecise Bayesian will not
reason as if they are thinking “I have observed this coin land once and it landed
heads, so it’s not a fair coin”.9

In contrast, after just one heads observation, AC’s belief interval in heads jumps
to approximately 0:75� � 0:9901� �; 0:9901� � � 0:7426; 0:9901� �. The jump is odd, but

8Note that Stan also does not excise any probability distributions in the Bernoulli task, but instead
conditionalizes using their initial beta distribution.

9Imprecise Bayesian agents also satisfy the intuition in other decision problems, because (as we have
defined them) they only excise a probability distribution from their credal set if their evidence has a
probability of 0 given that distribution.
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we assume that supporters of Alpha Cut are already willing to endorse such an
initial jump, at least given α � 0:75. A deeper problem is AC excises probability
distributions if the latter’s priors for heads are less than 0.75 even if the prior is
greater than or equal to 0.5. Hence, AC with α � 0:75 reasons as if they think “I
have observed one coin toss and it landed heads, so this coin is unfair” and even
effectively reasons “I have observed one coin toss and it landed heads, so this coin is
not just moderately (less than 0.75) biased towards heads.”

For example, consider the beta distribution Beta 70; 30� �. This implies a prior of
70= 70� 30� �= 0.7 that the first toss in a test will land heads. Yet this beta
distribution is excised from AC’s credal set if the first toss lands heads and α � 0:75.
Thus, even though heads is more probable than not according to such probability
distributions, they are excised from the credal set by Alpha Cut.

The problem is not rejection of probability distributions as such. Even Bayesians
must do that if the prior probability of their observations is zero. So do classical
statisticians; we shall later explain how they avoid the unit sample problem. The
problem is the rejection of a uniform distribution (and even more counterintuitive
excisions) given a unit sample, which seems an inapposite reflection of the minimal
information that such a sample provides.

How low does α have to be to avoid the unit sample problem? In the Bernoulli
task, uniform distributions are excised from the set given a single observation
if α > 0:505.

The problem of ambiguity representation under these conditions is not specific
to the Bernoulli task, nor to high values of α. For example, given a die instead of a
coin (so that a uniform prior is a credence of 1/6) and Dirichlet priors instead of beta
priors, an Alpha Cut player using α � 0:5 will reject the uniform distribution based
on a unit sample. One can see the generalization of the problem by imagining a
lottery of unknown bias or fairness. By increasing the number of lottery tickets in
the game, one can always ensure that an Alpha Cut agent will reject the uniform
distribution. The result is in deep conflict with how some supporters of Alpha Cut
have described its selection: a uniform distribution is not “wrong” (to use Seamus
Bradley’s phrase for what Alpha Cut eliminates (Bradley 2022: 17)) with respect to a
unit sample, yet it is still cut given a wide range of prima facie suitable α values.

A defender of Alpha Cut might argue that a reinterpretation solves this problem.
Rather than “excising” probability distributions (such as those assigning a uniform
distribution) on the basis of “unreliability” or being “wrong”, one is instead
“selecting” probability distributions that perform best in predicting the relevant
outcome. On this interpretation, the Alpha Cut agent’s judgement is not that
uniform distributions are “more wrong” or “unreliable” given a unit sample, but
simply that their performance has not (yet) warranted including them in the
updated credal set.

However, this interpretation clouds the relationship between credal sets and
beliefs. The epistemological worry is that, according to many imprecise probabilists,
an agent should not believe that the coin is biased based on a single observation,
given the austere epistemic context of the Bernoulli task. Suppose, for the sake of
argument, that on the proposed reinterpretation of Alpha Cut excisions, it is
rational for them to disregard uniform distributions for the purpose of making bets
in the Bernoulli task. How do the concomitant belief intervals relate to AC’s belief
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state? If they are identical, then the epistemological problem is still present. If they
are different, then why is AC not betting in accordance with their belief states? We
cannot discuss the various responses that an Alpha Cut supporter might have, but at
the very least, much more clarification and development is needed to make this
response work.

Alternatively, a defender of Alpha Cut could consider modifying α to fit the
number of possible outcomes in a particular decision problem. Provided that α is
sufficiently low, uniform distributions are not excised based on a unit sample.
Unfortunately, setting α in this contextual way would conflict with other desiderata
for α, such as adjusting α to an agent’s “taste for epistemic risk”, including a taste for
faster updating than generalized conditioning (Bradley 2022: 24). It would also
remove the option of adjusting α based on the stakes, as has been suggested in some
related views (Braithwaite 1953; Hill 2013; Bradley 2017; Hill 2019) and it would
require slower convergence in some decision problems, including the Bernoulli task.

Neither the unit sample problem, nor the local inertia problem discussed in the
previous subsection, occurs for Imprecise Bayesianism. Hence, Alpha Cut’s escape
from classic inertia comes at a cost in terms of ambiguity representation. While not
quite a poisoned chalice, Alpha Cut’s offer to an Imprecise Bayesian seeking an
inertia-free update rule is a mixed bag.

4.4 Coherence

An Imprecise Bayesian agent’s chosen betting odds, given any imprecise probability
decision rule, are synchronically coherent. However, they may or may not be
diachronically coherent depending on their decision rule. Diachronic coherence
conflicts with some other desiderata that Imprecise Bayesians have held, such as
allowing for ambiguity aversion (Bradley 2015, 2018; Bradley and Steele 2016; Neth
2023). Nonetheless, generalized conditioning is only diachronically incoherent
when combined with some imprecise probability decision rules.

In contrast, Alpha Cut agents are at risk of diachronic incoherence given any of
the prominent imprecise probability decision rules. Supporters of Alpha Cut
updating are already aware of this fact. Seamus Bradley suggests three possible
responses (Bradley 2022: 25) which we shall address one-by-one. Before continuing,
we emphasize that throughout what follows in our discussion of Alpha Cut’s
diachronic properties, the topic is extensive form sequences of decisions, where the
agent makes a choice at each decision moment in the sequence, rather than normal
form sequences of decisions, where the agent makes a one-time choice whether to
accept a package of decisions conditional on different events. This distinction is
important because some aspects of choice behaviour, such as remembering past
decisions, will be relevant in what follows, but only apply for extensive form
sequences of decisions.

The first response we shall discuss is that if α is sufficiently low in a particular
decision problem then an Alpha Cut agent can at least sometimes avoid diachronic
incoherence. Bradley points out that there is a positive correlation between α and
incoherence in decision problems investigated so far. This functional relationship is
also theoretically plausible, because as α tends to 1, Alpha Cut differs more from
Imprecise Bayesianism (which can be diachronically coherent) and tends more
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towards maximum likelihood estimation (which is frequently diachronically
incoherent if used to determine credences).

As Bradley notes, it is an open question whether it is always possible to avoid
incoherence in a particular decision problem by choosing a sufficiently low value for
α. However, the performance results in the Bernoulli task suggest a troubling
interaction between keeping α low enough to obtain diachronic coherence and
keeping α high enough to avoid exacerbating the Ambiguity Dilemma, since Alpha
Cut players learn faster as α is higher. This is also a factor to consider if one explores
Bradley’s second response, which seems to be that one may be able to find trade-offs
between coherence and the advantages of higher α values.

The third response suggested by Bradley requires the most discussion. He raises
the possibility of rejecting the idea that, if an agent regards each step in a sequence of
choices over time as acceptable, then they must regard the total sequence as
acceptable. This sort of move has been explored extensively (Schick 1986; Elga 2010;
Bradley 2015; Rinard 2015; Mahtani 2018). The idea is that, if the road to an Alpha
Cut agent being diachronically incoherent is paved with attractive choices, just as
the road to hell is paved with good intentions, then a rational decision-maker should
look beyond each individual paving stone and consider the overall road.
Consequently, Bradley proposes rejecting what has been called the “package
principle”. We shall call the position he favours “sequence holism”.

We cannot cover all the intricacies in the debates on the package principle versus
sequence holism. However, we shall note an issue that has not yet been addressed by
sequence holists. It was first raised, in a different context, by Peter J. Hammond
(Hammond 1988). Suppose that, at each decision moment in the sequence of some
particular decision problem, an agent cares about their past choices, in order to
construct sequences that they consider satisfactory. Sequence holists say that the
agent should use some special decision rule to incorporate the past choices into their
present decision-making. Yet the agent could also take past choices into account by
having preferences about the combinations of past choices and present choices. If
they do the latter, then Hammond has further arguments leading towards Standard
Bayesianism. Perhaps these steps can be resisted, but any sequence holist should
specify exactly which steps in Hammond’s reasoning they reject.

A further problem for sequence holism concerns assumptions about memory.
First, note that the diachronic coherence of Standard Bayesianism does not
presuppose that they can recall their past decisions. Provided that a Standard
Bayesian’s credences stay the same except for any alterations required by
conditionalization, they cannot be subject to a diachronic Dutch Book, even if
they have forgotten their past decisions.

In contrast, if one is applying a sequence holist decision rule, then one must
remember one’s past decisions. Otherwise, the agent does not necessarily know how
their present decision relates to their overall decisions in a sequence. Hence, in
comparison to a Standard Bayesian agent, a sequence holist must make stronger
assumptions about the reliability of an agent’s memory in order to be sure of
diachronic coherence. In the case of long-term decisions or those where the agent’s
memory is weakened (such as by alcohol consumption or jet lag) these assumptions
may be highly unrealistic.
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A defender of sequence holist decision rules might think assuming recall of past
choices is just one of many unrealistic assumptions that we often make in decision
theory, such as stable preferences, perfect calculation abilities, and so on. However,
our point is not that this assumption proves that sequence holist decision rules are
fundamentally and universally flawed. Instead, it is just to show that diachronic
coherence via these rules requires stronger assumptions than maximizing expected
payoffs using Standard Bayesianism. These assumptions must be taken into account
when evaluating whether sequence holism is an adequate defence of Alpha Cut
against the charge of diachronic incoherence.

A more fundamental issue for decision making when using Alpha Cut concerns
synchronic coherence. Both Imprecise Bayesianism (given some decision rules) and
Standard Bayesianism are insensitive to how a decision problem is presented. For
example, in the Bernoulli task, IB’s credal set when they are deciding whether to bet
on heads (ch) is identical to their credal set when they are deciding whether to bet on
tails (ct). The same is true of Stan’s credences.

In contrast, an Alpha Cut player’s reasoning violates act-state independence – the
assumption that whether states of the world occur is (stochastically) independent of
the decision-maker’s actions. Act-state independence can sometimes function as a
mere modelling technique to increase tractability. However, in the Bernoulli task, it
is a prerequisite of an accurate conception of the problem, because the coin toss
results are entirely independent of players’ choices. An agent who thinks that states
(rather than just payoffs) in the tests can vary with their choices has a fundamental
misconception about what they are doing and what is happening. In the decision
problem as we have formulated it, this delusion does not harm AC-Optimist, but it
would be possible to reformulate the decision problem such that AC-Optimist (or
any Alpha Cut player) would either have to stop using Alpha Cut updating or be
synchronically incoherent.

To illustrate how the decision problem’s assumption of act-state independence is
violated by the beliefs of Alpha Cut players, we provide an example where AC-
Optimist’s reasoning in a game is contrasted with Stan’s reasoning in an equivalent
game, before summarizing the key feature of Alpha Cut that causes the violation. In
any test, Stan’s initial beta distribution is Beta 1; 1� � for coins landing heads and
Beta 1; 1� � for coins landing tails. Suppose that, at the beginning of the test, AC-
Optimist’s initial credal set is the convex set with extrema of Beta 99; 1� � and
Beta 1; 99� �, as in our tests. Meanwhile, after 4 observations, with 3 tosses landing
heads and 1 toss landing tails, AC-Optimist has pre-cut belief intervals of
approximately 0:0385; 0:9808� � for heads and approximately 0:0192; 0:9615� � for
tails. Stan now has Beta 4; 2� �, implying posteriors of approximately 0.6667 for heads
and approximately 0:3333 for tails.

We now slightly alter the Bernoulli task. We imagine that players consider
betting on heads and tails separately (but simultaneously) with the added option to
put separate bets on both in the same game. Players choose to abstain if and only if
they reject both offers.

Next, we stipulate the price in this example: 0.6. Stan’s expected payoffs in both
the decision whether to bet on heads and the decision whether to bet on tails are
approximately 0:0667 for heads and�0:0667 for tails. Hence, Stan chooses to bet on
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heads in the first part of their decision and to not bet on tails in the second part of
their decision.

Using Alpha Cut with α � 0:75, the belief intervals are approximately
0:7356; 0:9808� � for heads and approximately 0:7211; 0:9615� � for tails.
AC-Optimist regards the expectations both for betting heads and for betting
tails as positive. Given that δ � 0:6, their expected payoffs are 0:75 0:9808�
0:4� � � 0:0192 �0:6� �� � 0:25 0:7356 0:4� � � 0:2644 �0:6� �� � � 0:3195 for betting
on heads and 0:75 0:0385 �0:4� � � 0:9615 0:6� �� � � 0:25 0:2789 �0:4� � � 0:7211�
0:6� �� � 0:5014 for betting on tails. Therefore, AC-Optimist buys both the heads
ticket and the tails ticket.

They have effectively paid 0:6� 0:6 � 1:2 as their overall stake. While they have
secured a payoff of 1, this prize will be less than their stake of 1:2, and concomitantly
they are guaranteed a sure loss of 0.2. Thus, AC-Optimist’s choice behaviour in the
modified Bernoulli task is synchronically incoherent.

The Optimist rule plays no essential role in this example.10 Instead, the key
feature in AC-Optimist that leads to this behaviour is the violation of act-state
independence: when AC-Optimist is thinking about betting on heads, the Alpha Cut
rule raises their expected payoffs relative to an equivalent IB player. This boost is
proportional to α. However, this boost is also applied when AC-Optimist considers
whether to bet on tails. To avoid such sequences of decisions resulting from their
decision rule, an Alpha Cut player must recall past decisions, as we discussed earlier.

Therefore, coherence must be regarded as a tangled nest of problems for Alpha
Cut, even if no thorn is fatal in itself for Alpha Cut’s appeal. Diachronic incoherence
problems are avoidable, but only insofar as it is reasonable to assume that past
decisions in a sequence can be remembered by the Alpha Cut agent.

Suppose that a supporter of Alpha Cut is willing to accept either diachronic
incoherence or sequence holism. In the next section, we shall detail how there is
already an update rule that (1) uses imprecise probabilities, (2) leads to a similar
situation with respect to diachronic coherence, and (3) avoids many of the problems
of Alpha Cut, without introducing novel problems, at least in the context of the
Bernoulli task.

5. Calibration
In this section, we shall compare Calibration with Alpha Cut. The key figures in the
Calibration literature are Henry E. Kyburg and Jon Williamson. Kyburg developed
an imprecise probability theory, Evidential Probability, based on rules for
transforming information about physical probabilities into measures of evidential
support (Kyburg and Teng 2001). He thought that these measures of evidential
support should determine interval-valued imprecise credences (Kyburg 2006). In
contrast, Williamson uses these intervals alongside the Maximum Entropy Principle
to constrain the choice of a probability distribution for credences (Wheeler and
Williamson 2011; Williamson 2013). Williamson’s theory is one version of
Objective Bayesianism.

10Hurwicz criterion rules are diachronically incoherent, but the example is one of synchronic
incoherence.
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5.1 Definition

By “Calibration” (the term is Williamson’s) we shall mean the use of Kyburg’s rules
for determining interval-valued probabilities, which are employed by both Kyburg
and Williamson in their wider formal epistemologies. The applications of
Calibration that we shall discuss are fairly simple and do not require the full
formal machinery that Kyburg and Williamson have developed. Thus, in this
subsection, we shall only outline the general philosophical details. We provide a full
formal specification of Calibration, in the context of the Bernoulli task, in
Appendix 6.7.

Suppose that our only evidence regarding whether some individual thing is a G is
that it is an F and that r% of F are G. A quite common claim by epistemologists,
including Kyburg, is that our evidential support for the hypothesis that it is a G is at
least sometimes measurable by r%, ceteris paribus. Inferences from (a) statistics
regarding a population and the premise that an individual (or set of individuals) is a
member of that population to (b) hypotheses about that individual have variously
been called “direct inference”, “the statistical syllogism” or “the proportional
syllogism” (Carnap 1962; Seidenfeld 1979; Levi 1980; Stove 1986; Franklin 2001).
Since our knowledge of the relevant statistic is often imprecise, r can also take values
such as intervals, both when our statistical information is interval-valued (e.g. that
the proportion is somewhere in 0:7; 0:9� �) and when an interval is an approximation
of a qualitative natural language expression (e.g. 0:99; 1� � for “almost all”). For
example, if all you know about the colour of a particular swan’s plumage is that
about 0:6; 0:7� � of swans are white, then that is how much your evidence supports
the swan being white.

Of course, our statistical evidence often provides conflicting information. If you
also knew that 0:999; 1� � Australian swans are non-white (black or black-necked
swans) and that the bird is an Australian swan, then it is intuitively rational to use
the statistics about Australian swans instead of swans in general. This is an example
of a “defeater” statistic.

Similarly, given statistics about the proportion of red balls in an urn and the
proportion of selections of red balls from that urn, it makes sense to dismiss the
former information if neither statistic for these proportions is a subinterval of the
other. In general, in Kyburg’s system, information about a joint physical probability
distribution takes precedence over marginal information when they conflict.

Finally, suppose we have exhausted the extent to which these criteria (which
Kyburg makes formally precise and mechanical) can exclude statistical information.
Kyburg’s final rule generates an interval-valued probability, which, roughly
speaking, is the narrowest cover of those intervals that (a) are not subintervals of
each other and (b) are each proper subintervals of all other surviving intervals. For
example, if the surviving intervals are 0; 1� �, 0:1; 0:9� �, 0:3; 0:5� � and 0:6; 0:7� �, then
the Calibration interval is 0:3; 0:7� �.

Calibration updating resembles Bayesian statistical reasoning when the
background information about physical probabilities is highly informative, but
classical statistical reasoning when the background information about physical
probabilities is meagre (Kyburg and Teng 2001). In the austere epistemic context of
the Bernoulli task, Calibration involves the use of confidence intervals to generate
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Calibration intervals and thus uses a tool from classical statistics. However, unlike
ordinary classical statistics, these intervals are interpreted as imprecise single-case
probabilities for coins landing heads and for coins landing tails. Williamson makes
the further step of using such intervals as part of determining Bayesian credences.
We shall provide further details of the specific implementation of Calibration in the
Bernoulli task after briefly discussing the general coherence properties of
Calibration updating.11

5.2 Coherence

Agents updating via Calibration can be synchronically coherent (Wheeler and
Williamson 2011). Firstly, they can use certain imprecise probability decision rules
with this property (Kyburg 1990: Ch. 14). Secondly, they can use what Williamson
has called “empirically based subjectivism” where an agent chooses some arbitrary
credence function whose values fall within the agent’s Calibration intervals for each
event in the function’s domain (Williamson 2007). Thirdly, they can use
Williamson’s version of Objective Bayesianism, where the choice of credence
function is almost entirely constrained by the Maximum Entropy Principle
(Williamson 2010). Any of these approaches to decision-making will result in
synchronic coherence.

In contrast, Calibration updating is diachronically incoherent, unless some
special moves such as sequence holism are made. The reasons are the same as for
Alpha Cut: any update rule that is not equivalent to conditionalization (as in
Standard Bayesianism) or generalized conditioning using some decision rules (as in
Imprecise Bayesianism) is vulnerable to a diachronic Dutch Book (Pettigrew 2020).
While Calibration corresponds to conditionalization or generalized conditioning in
some special cases, there are also infinitely many possible situations where they
diverge.

However, Calibration fundamentally does no worse than Alpha Cut with respect
to the desideratum of diachronic coherence. Moreover, unlike Alpha Cut, a
Calibration agent does not require recall of previous decisions to avoid synchronic
Dutch Books, although sequence holism is also apparently an option for Calibration.
Overall, Calibration seems somewhat better than Alpha Cut with respect to
synchronic and diachronic coherence, but more investigation is needed to

11An anonymous referee raises the point that Calibration derives imprecise probabilities from beliefs
about statistical probabilities and hence only provides non-vacuous intervals (intervals narrower than 0; 1� �)
if agents have non-vacuous beliefs about statistical parameters. This restriction on informative epistemic
probabilities could be seen as a disadvantage relative to Standard Bayesianism or Imprecise Bayesianism, if
one thinks that there are cases where non-vacuous belief intervals or credences are justified yet no non-
vacuous statistical probabilities can be rationally accepted. Alternatively, some epistemologists, such as
evidentialists, might see this restriction as an advantage, because it limits precision in belief states to cases of
precision in one’s evidence (Peden 2024). Since inertia is not a feature of Calibration, vacuous intervals
in situations of extremely exiguous evidence are not fatal to subsequent learning (Peden 2024). The
epistemological debates involved are important to the overall evaluation of Calibration, but beyond the
scope of this article, where we confine our attention to theories’ ambiguity representation capacities,
coherence properties, and performance in the Bernoulli task.
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determine whether Calibration is compatible with sequence holism and similar
imprecise probability strategies for avoiding diachronic incoherence.

5.3 Performance

Calibration’s performance on the Bernoulli task has been previously studied
(Radzvilas et al. 2023). In this subsection, we just compare the summary results with
those for Imprecise Bayesianism, then for Standard Bayesianism, and finally for
Alpha Cut.

Calibration players in the Bernoulli task have a parameter γ, which is their
significance level for choosing which coin bias estimates to reject and which to
tentatively accept. In the Bernoulli task, they perform best with a very high
significance level of 0.5. While Calibration supporters would almost never use such a
high significance level in science, it is consistent with their theory to use it for a
decision problem like the Bernoulli task. Thus, we shall discuss only Calibration
players’ results for γ � 0:5 and all of our discussions below assume this
significance level.

Starting with a maximally wide estimate of the coin bias (a vacuous confidence
interval, ranging from 0 to 1, apparently representing the strong ambiguity at the
start of the Bernoulli task) a Calibration-Optimist player and players with equivalent
choices can match Stan’s performance. Interestingly, no other theory has yet
produced this result. The reason is that, within the context of the Bernoulli task,
Calibration-Optimist behaves very similarly to Stan, with a high significance level
having similar effects to a flat prior and the Optimist decision rule closing much of
the remaining gap, leaving only statistically insignificant (estimated at a 0.05
significance level) differences in their choice behaviour. Other Calibration players
do not do as well, except some that make identical choices to Calibration-Optimist
(Radzvilas et al. 2023).

Calibration players perform better in the Bernoulli task than an IB player
whenever the decision rule is held constant. For example, Calibration-Optimist
performs better than the IB-Optimist player (Radzvilas et al. 2023). Thus,
Calibration offers a wider set of tools for representing ambiguity (since it does not
feature inertia) yet it also escapes the performance dimension of the Ambiguity
Dilemma.

Comparing Calibration-Optimist and AC-Optimist, only the former can match
Stan in the Bernoulli task. (The results for Calibration-Optimist are approximately
identical to the results for Stan in Figure 2.) In the case of MLAC-Optimist, this
player closes the gap with Calibration-Optimist given an extreme coin bias, but
performs worse with 0.3, 0.7 or 0.5 biases. Perhaps there are some decision problems
where Alpha Cut does better than Calibration in terms of short-run performance,
but none have yet been discovered.

One important distinction between (1) the performance results for Imprecise
Bayesian players and Alpha Cut players explored so far and (2) the performance
results for Calibration players is that the latter begin with maximally imprecise
intervals of 0; 1� �, whereas the former begin with non-vacuous credal sets. Since no
player initially has even approximate background knowledge of the coin biases, it
seems that the 0; 1� � interval is the more fitting representation of the ambiguity in
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players’ initial evidence. At least using the Optimist decision rule and γ � 0:5, the
Ambiguity Dilemma is resolved entirely: Calibration-Optimist performs approxi-
mately as well as any other player in the Bernoulli task, even when their initial
interval is the completely vacuous 0; 1� �.12 Thus, Calibration offers imprecise
probabilists a stronger theory than Alpha Cut with respect to performance, even
when starting from an apparently more faithful representation of the ambiguity in
the Bernoulli task.

5.4 Representation

Like Alpha Cut, a vacuous initial interval is insufficient for inertia in Calibration
(Kyburg and Teng 2001; Peden 2024). However, they differ with respect to the local
inertia problem. Suppose that players only observe uniform samples (all heads or all
tails) in the entirety of a test or the first part of a test. Given a vacuous initial credal
set, AC (an Alpha Cut agent with α � 0:75 and the same initial credal set as the
Imprecise Bayesian players in the Bernoulli task) becomes stuck with a 0:75; 1� �
interval toward heads. Given a non-vacuous credal set, such as that used in our
Bernoulli task tests, AC becomes highly insensitive to evidence in the early part of
the test.

What happens with Calibration players given uniform samples? In brief, they
have faster learning rather than slower learning when samples are uniform.

For instance, given 292 heads results out of 292 tosses, a Calibration player with
γ � 0:5 has an interval of approximately 0:9953; 1� �, which is very similar to Stan’s
posterior of approximately 0.9966. This confidence interval is actually narrower
than the confidence interval given a sample report of 146/292 tosses landing heads
(a 50-50 sample) which is approximately 0:4786; 0:5214� �. By comparison, AC’s
intervals at α � 0:75 for heads are approximately 0:7481; 0:9975� � given 292/292
heads tosses and 0:4688; 0:625� � given 146/292 heads tosses. In general, there is no
local inertia problem for Calibration players, because given the background
information of the Bernoulli task, confidence interval estimation revises quickly
with uniform samples. This faster convergence is due to the lower error probabilities
when samples are uniform.13 Therefore, Calibration intervals seem to represent the
ambiguity given large and uniform samples more intuitively than Alpha Cut
intervals.

The unit sample problem also does not arise for Calibration players. The problem
for Alpha Cut was that if α exceeded the probability of an event given a uniform
distribution, then a unit sample would be sufficient to excise a uniform distribution
from the Alpha Cut agent’s belief interval. Perhaps worse, even if the event’s prior
according to other probability distributions was over 0.5, these distributions could
still be excised from the belief interval.

12That is not to say that there are no reasons why someone might object to Calibration-Optimist. For
instance, the Optimist rule is diachronically incoherent.

13Error probabilities are the risks of a mistake in an inference, given the assumptions of a test. In the
context of the Bernoulli task, where the inference is a confidence interval estimation, the error probabilities
for Calibration players are given by the significance level γ.
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In contrast, Calibration avoids the unit sample problem for fundamental reasons.
In the Bernoulli task and similar problems, a Calibration agent only excises a
physical probability distribution from their interval-valued estimate if the likelihood
of their observations given that distribution is less than 1� γ. Even with the highest
possible γ value in the Bernoulli task, 0.5, a uniform distribution is not rejected
given a unit sample, since the likelihood of a unit sample’s toss outcome will always
be 0.5 given a uniform distribution.14 In general, if a physical probability
distribution is outside the confidence interval, then the data must have a likelihood
of less than 0.5 given that distribution. A further consequence is that there is no
analogue to Alpha Cut’s potential excision of probability distributions that assign
priors to the evidence that are greater than 0.5 but less than α.

To illustrate, the confidence interval given solely the observation of a single heads
toss is 0:25; 1� � if γ = 0.5. For more familiar significance levels, the confidence
intervals are 0:025; 1� � if γ = 0.05 and 0:005; 1� � if γ � 0:01. Which of these is the
best representation of ambiguity is debatable and perhaps there is no objective
answer – the point is merely that the unit sample problem does not occur.

What about if the problem is not binomial? Here, Calibration players using
confidence interval estimation can employ the Bonferroni correction developed by
Olive Jean Dunn (Dunn 1961). (There are other methods, but we shall only discuss
this approach.) Assume a problem identical to the Bernoulli task, except with q
decision-relevant states. For instance, in tossing a six-sided die instead of a coin,
q � 6 instead of q � 2. The Bonferroni correction effectively requires dividing γ by
q to determine the significance level. This procedure means that, no matter q’s value,
a uniform distribution that assigns 1=q to each possible outcome will not be rejected
by a unit sample. A fortiori, distributions assigning higher likelihoods than the
uniform distribution’s likelihood are also not rejected. To illustrate, given only the
observation of a six-sided die roll landing on a 3, the confidence interval for the
proportion of 3s among the die tosses, given an original significance level of
γ � 0:5, adjusted by the Bonferroni correction, is approximately 0:0833; 1� �, which
is consistent with the uniform distribution probability of 1=6 	 0:1667.

Thus, the unit sample problem does not occur for Calibration. A consequence of
the unit sample problem is that, while Alpha Cut must adjust α in a particular
decision problem to avoid the unit sample problem, Calibration only has to adjust γ
by a technique like the Bonferroni correction, which is already part of the classical
statistics methodology that they use in problems like the Bernoulli task.

Considering this section on Calibration as a whole, if one is willing to pay Alpha
Cut’s price in diachronic decision-making, then Alpha Cut seems to have no
advantages over Calibration. Alternatively, if one wants to stick to Standard
Bayesianism or Imprecise Bayesianism because of diachronic coherence or some
other desideratum, then one can consistently reject both Alpha Cut and Calibration.
Our only proviso on the latter point is that Calibration performs better than
Imprecise Bayesianism with respect to the Ambiguity Dilemma and also with
respect to inertia. Yet there are also differences between Calibration and Imprecise
Bayesianism that arguably count in favour of the latter’s representation of ambiguity

14If γ > 0:5, then Calibration reasoning becomes inconsistent in the Bernoulli task, because both an
estimate and a contrary estimate can pass the significance level.
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(Seidenfeld 1978, 2007) and Imprecise Bayesianism’s diachronic coherence
properties seem more promising than those of Calibration (Peden 2024).
Consequently, we evaluate Calibration favourably only in comparison to Alpha
Cut, and only regarding the criteria of ambiguity, coherence, and performance, as
conceived in this article.

6. Conclusion
Our examination of Alpha Cut has found that, while it has advantages over
traditional Imprecise Bayesianism in the special case of inertia, it also brings a
significant number of new paradoxes.15 Additionally, anyone willing to bite the
bullet on these paradoxes for Alpha Cut can find a more robust alternative in the
Calibration family of formal epistemologies.

Of the theories that we have considered, Calibration seems to be in the strongest
position with respect to ambiguity representation. It avoids inertia even with
vacuous initial belief intervals. Uniquely among non-Standard Bayesian theories
investigated so far, Calibration can also avoid the Ambiguity Dilemma.

Calibration does less well than Imprecise Bayesianism or Standard Bayesianism
with respect to coherence. While Calibration agents can be synchronically coherent,
Calibration is diachronically incoherent, barring some unexplored approach such as
combining it with sequence holism. Furthermore, we have explained how sequence
holism makes stronger assumptions about an agent’s faculty of memory than some
alternatives, such as maximizing expected payoffs using Standard Bayesianism.

Surveying the literature on the Bernoulli task and related issues as a whole, it is
interesting that no single theory can improve on Standard Bayesianism with respect
to ambiguity representation without also incurring costs in coherence, performance
or both. Standard Bayesianism, with suitable priors, can perform extremely well in
the Bernoulli task. Its coherence strengths are well-known. Insofar as it has a
weakness on the criteria we discuss, it is with respect to ambiguity representation, at
least in the eyes of many formal epistemologists and decision theorists.

A pessimistic diagnosis of our discussions and results would be to conjecture a
fundamental tension between two or more of the desiderata of ambiguity
representation, coherent decision-making and performance in the Bernoulli task.16

While we have no proof of such an inescapable problem, we have no disproof either.
It is not clear how any of the theories we discuss can satisfy all three desiderata
without fundamental changes. However, as soon as one considers what such
fundamental changes might look like, one steps into frontier debates in formal
epistemology and decision theory, such as the requirements of rationality in a
sequence of decisions (Bradley and Steele 2014a; Pettigrew 2020; Neth 2023) and the
proper relationship between evidence and belief (Sturgeon 2008; Vallinder 2018;
Peden 2024). These formidable conceptual challenges suggest that, if there is a
fundamental tension, formal epistemology and decision theory are not yet close to
being able to prove its existence.

15Comparable paradoxes have been documented in other areas of imprecise probability theory (Gong and
Meng 2021).

16We thank an anonymous referee for suggesting a version of this explanation.
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Additionally, there are viable explanations of our results that are more optimistic.
It is possible that some form of hybridization or pluralism is necessary to develop a
consistently better theory. For example, at least based on the issues we have
discussed, Calibration seems to have very strong properties for ambiguity
representation, while Standard Bayesianism has the most attractive overall
properties for coherence. This contrast suggests the possibility of combining
these very different theories.

For instance, Calibrationist might use Standard Bayesian reasoning as a proxy for
decision-making. Essentially, the Calibrationist agent would construct a Standard
Bayesian agent (presumably one with beliefs and preferences that are similar to the
Calibrationist agent’s) and act “as if” they were this Standard Bayesian agent. Even
the Ellsberg Paradox preferences might be accommodatable into such a theory, if
Richard Bradley is correct about their compatibility with Standard Bayesianism
(Bradley 2016) which is significant given the Ellsberg Paradox’s influence on many
imprecise probabilists.

Alternatively, Standard Bayesians might use Calibration to represent evidence
(perhaps conceived in terms of reliable error probabilities) and related concepts like
ambiguity, but view these as not fully determining an agent’s credences. These
Calibration intervals may be used to guide, though not determine, the Standard
Bayesian’s choice of prior. For instance, Stan’s posteriors are often close to
Calibration players’ intervals, especially intervals estimated using high significance
levels.

These two alternative hybridizations are similar in most respects, with the
principal difference being what is regarded as the belief states – the Calibration
intervals or the Standard Bayesian probabilities. Certain common elements, such as
similarities between the Calibration intervals and the Standard Bayesian credences,
may be quantifiable. In general, it seems possible in principle to combine
Calibration and Standard Bayesianism in various ways, but no proposal has been
investigated in any detail yet. There would be important questions to answer, such
as how ambiguity representation and Standard Bayesian credences (under their
normal interpretation or as proxy credences for a Calibration agent) could diverge
in a rational agent.

Therefore, although we have focused on problems for Alpha Cut, we do not think
that pessimism is warranted. Particular aspects of the problems we discuss seem to
be surmountable by particular theories; the persistent challenge has only been
developing a unified theory that does everything that various economists,
philosophers and other theorists have wanted. Moreover, our results do not
directly imply problems for some similar theories to Alpha Cut, such as those
explored by Brian Hill and Richard Bradley (Hill 2013, 2019; Bradley 2017). Many
possibilities are unexplored in decision theory and formal epistemology. These
subjects thus seem to still be on the road to developing a theory with consistently
attractive properties with respect to ambiguity, coherence and performance.
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Technical Appendix
6.1 States and observation histories

The set of decision-relevant states is Ω :� ωh;ωtf g where ωh is the state where the
coin lands heads and ωt is the state where it lands tails. A typical element of Ω will
be denoted ωi. The set of observation histories is S :� S [ s with a typical element s,
where S :� ΩT is the set of non-empty histories that can be generated by T ≥ 1 coin
tosses and s � ; is the “no observation” history. The counting function
κ : S ! Z ≥ 0 is such that, for any history s 2 S, κ s� � :� n t 2 T : s� �t � ωh� �,
where n 
� � denotes the cardinality of the set. For any history s 2 S, n s� � 2 0;T� �.

6.2 Choices and payoffs

The set of each player’s possible choices isC :� ch; ct; caf g, where ch is the choice to bet
on ωh, ct is the choice to bet on ωt , and ca is the choice to abstain from betting. A
typical element of C will be denoted cj. Players’ payoffs are represented by a von
Neumann–Morgenstern utility function u : C × Ω ! �1; 1� �, such that
u ch;ωh� � � 1 � δ, u ch;ωt� � � �δ, u ct;ωt� � � δ, u ct;ωh� � � δ � 1, u ca;ωh� � �
u ca;ωt� � � 0, where δ � U 0; 1� � is the randomly selected price in a particular game.

6.3 Stan

The beliefs of the Standard Bayesian agent, Stan, can be represented with a model
MSB :� Ω; S;Θ; p; f

� �
, where Ω is the set of states, S is the set of observation

histories, Θ :� x 2 R : x 2 0; 1� �f g is the set of possible coin biases towards ωh with
a typical element θ, p : S ! Δ

� Θ� � is the credence function representing Stan’s
beliefs about coin biases, and f : p

� �
× S ! Δ

� Ω� � is the aggregate credence
function representing Stan’s beliefs about decision-relevant states.

Stan knows that each coin toss is a Bernoulli trial (a binomial event in an
exchangeable sequence) and that the coins tosses’ probabilities have a binomial
distribution. Thus, Stan’s beliefs can be conveniently modelled with a beta
distribution Beta a; b� � as a probability density function p s� � where, for each θ 2 Θ,

p θjs� � � θa�1 1 � θ� �b�1
B a; b� � ; where B a; b� �

�
Z

1

0
θ0a�1 1� θ0� �b�1dθ0 is the Beta function: (1)

After T observations, Stan’s evidence is a non-empty history s 2 S. This agent
updates their credence in each coin bias θ 2 Θ by revising the prior credence
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p θjs� � 2 0; 1� � via Bayes’ rule:

p θjs� � � p θjs� �p sjθ� �
p s� � : (2)

The Bayes’ rule can be reformulated using a counting function κ for each history
s 2 S and every coin bias θ 2 Θ as

p θjs� � � p θjκ s� �;T� � � p θjs� �p κ s� �;Tjθ� �
p κ s� �;T� � � θa�κ s� ��1 1 � θ� �b�T�κ s� ��1

B a� κ s� �; b� T � κ s� �� � : (3)

The aggregate belief function f is such that, given s, the prior beliefs in ωh and ωt
can be defined as

f ωhjp; s
� � � Z

1

0
θp θjs� �dθ � a

a� b
; (4)

f ωtjp; s
� � � 1 � f ωhjp; s

� � � b
a� b

: (5)

The posterior beliefs in ωh and ωt given any history s 2 S can be defined as

f ωhjp; s
� � � Z

1

0
θp θjκ s� �;T� �dθ � a� κ s� �

a� b� T
; (6)

f ωtjp; s
� � � 1 � f ωhjp; s

� � � b� T � κ s� �
a� b� T

: (7)

Stan’s prior beliefs are represented by a beta distribution Beta 1; 1� �. Stan always
chooses an action cj 2 C, such that, given any history s 2 S,

cj 2 argmax
ck2C

Eu ckjp; s
� �� �

; where Eu ckjp; s
� � � X

ωi2Ω
f ωijp; s
� �

u ck;ωi� �: (8)

6.4 Imprecise Bayesian

An Imprecise Bayesian agent’s beliefs in the Bernoulli task can be represented with a

belief model MIB :� Ω; S;Θ; P; f̂
n o

, where Ω is the set of states, S is the set of

observation histories, P is the credal set, and f̂ : P × S ! Δ
� Ω� � is the aggregate

belief function. The credal set P is a set of functions where each function p 2 P is the
credence function, as defined in Appendix 6.3. We assume that the set P is convex,
which means that, for any pair p; p0 2 P and any parameter λ 2 0; 1� �, there exists a
credence function p00 2 P, such that λp θjs� � � 1 � λ� �p0 θjs� � � p00 θjs� � for
each θ 2 Θ.

After observing any history s 2 S, the Imprecise Bayesian agent updates
each prior assigned by each credence function p 2 P according to Bayes’ rule, as
defined in Section 6.3. The aggregate belief function f̂ assigns, to each credence
function-observation history combination p; s

� � 2 P × S, an aggregate belief
f̂ p; s
� � 2 Δ

� Ω� � on Ω, where the marginal beliefs about ωh and ωt can be defined
as
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f̂ ωhjp; s
� � � a� κ s� �

a� b� T
; (9)

f̂ ωtjp; s
� � � b� T � κ s� �

a� b� T
: (10)

Since P is convex, the Imprecise Bayesian agent’s aggregate beliefs about each

ωi 2 Ω given any s 2 S can be defined as an interval ΦωijP;s :� φmin
ωijP;s;φ

max
ωijP;s

h i
,

where φmin
ωijP;s :� minp2P f̂ ωijp; s

� �� 	
is the minimum and φmax

ωijP;s :�
maxp2P f̂ ωijp; s

� �� 	
is the maximum aggregate belief in ωi given P and s.

An Imprecise Bayesian agent’s belief system about events ωh and ωt can be
defined as a set of intervals ΦP;s :� ΦωhjP;s;Φωt jP;s

� �
, where ΦωijP;s is a typical

element of ΦP;s.

6.5 Alpha Cut

At each decision moment, the Alpha Cut agent rules out beliefs about each event
ωi 2 Ω that fall below a dynamic (i.e. changing with changing beliefs) belief
threshold that is defined by the agent’s parameter α 2 0; 1� � and their highest degree
of belief in ωi that the agent holds given the credal set P and the observed history s. A
set of the agent’s beliefs about any event ωi 2 Ω given any convex credal set P and
any history s 2 S can be defined as

Φωijα;P;s :�
ΦωijP;s if φmin

ωijP;s ≥ αφmax
ωijP;s;

αφmax
ωijP;s;φ

max
ωijP;s

h i
otherwise :

(
(11)

An Alpha Cut belief system about events ωh and ωt can be defined as a set of
intervals Φα;P;s :� Φωhjα;P;s;Φωt jα;P;s

� �
, where Φωijα;P;s is a typical element of Φα;P;s.

6.6 Maximum Likelihood Alpha Cut

Given an Alpha Cut Φα;P;s, a Maximum Likelihood Alpha Cut player selects a
unique interval using the observed history s. In the context of the Bernoulli trial, if
the relative frequency of heads in observed tosses is greater than 0.5, then the player
uses the interval for ωh. If this relative frequency is less than 0.5, then the player uses
the interval for ωt . If the relative frequency is 0.5, then the player makes a random
selection (that is, chooses according to a uniform probability distribution) between
using the interval for ωh or using the interval for ωt .

6.7 Calibration

A Calibration player’s beliefs in the Bernoulli task can be represented with a belief
model MCal :� Ω; S;Γ; f �

� �
, where Ω is the set of states, S is the set of observation

histories, Γ is the set of considered significance levels with a typical element γ, and
f � : Ω × Γ × S ! P 0; 1� �� � is a function which assigns, to every state-significance
level-observation history combination ωi; γ; s� � 2 Ω × Γ × S, a Clopper–Pearson
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interval f � ωi; γ; s� � :� φmin
ωi;γ;s;φ

max
ωi;γ;s

� �
. The upper and lower bounds of this interval

can be derived using the regularized incomplete beta function Ix a; b� � :� B x;a;b� �
B a;b� � .

Given ωh and any significance level γ 2 Γ,

φmin
ωh;γ;s :� I�1γ

2
κ s� �;T � κ s� � � 1� �; (12)

φmax
ωh;γ;s :� I�11�γ

2
κ s� � � 1;T � κ s� �� �; (13)

and, given ωt and any significance level γ 2 Γ,

φmin
ωt ;γ;s :� I�1γ

2
T � κ s� �; κ s� � � 1� �; (14)

φmax
ωt ;γ;s :� I�11�γ

2
T � κ s� � � 1; κ s� �� �: (15)

A Calibration player’s belief system can be represented as a set of intervals
Φγ;s :� Φωh;γ;s;Φωt ;γ;s

� �
, where Φωi;γ;s :� φmin

ωi;γ;s;φ
max
ωi;γ;s

� �
is a typical element

of Φγ;s.

6.8 The Optimist Decision rule

The Optimist rule can be simultaneously defined for the Imprecise Bayesian, Alpha
Cut, Calibration and Maximum Likelihood Alpha Cut players that use it. Given any
belief system Φ� :� Φωh�;Φωt�

� � 2 ΦP;s;Φα;P;s;Φγ;s

� �
, the maximum expected

payoffs of actions ch and ct can be defined as

Emax
u chjΦ�� � :� u ch;ωh� �φmax

ωh� � u ch;ωt� � 1 � φmax
ωh�

� �
; where φmax

ωh�

2 Φωh� and Φωh� 2 Φ�; (16)

Emax
u ctjΦ�� � :� u ct;ωh� � 1 � φmax

ωt�
� �� u ct;ωt� �φmax

ωt� ; where φmax
ωt�

2 Φωt� and Φωt� 2 Φ�; (17)

while the minimum expected payoffs of actions ch and ct can be defined as

Emin
u chjΦ�� � :� u ch;ωh� �φmin

ωh� � u ch;ωt� � 1 � φmin
ωh�

� �
; where φmin

ωh�

2 Φωh� and Φωh� 2 Φ�; (18)

Emin
u ctjΦ�� � :� u ct ;ωh� � 1 � φmin

ωt�
� �� u ct;ωt� �φmin

ωt� ; where φmin
ωt�

2 Φωt� and Φωt� 2 Φ�; (19)

Choosing ca yields a payoff 0 in every state of the world, and so its maximum and
minimum expected payoffs given any belief system Φ� 2 ΦP;s;Φα;P;s;Φγ;s

� �
can be

defined as

Emax
u cajΦ�� � � Emin

u cajΦ�� � � 0: (20)

We can now define the Optimist rule using the preceding terms. It is a particular
implementation of the Hurwicz criterion (Hurwicz 1951). The Optimist rule
requires assigning a weight of 3=4 to each action’s maximum expected payoffs and
1=4 to the action’s minimum expected payoffs. Given any belief system
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Φ� 2 ΦP;s;Φα;P;s;Φγ;s

� �
, a player using the Optimist rule chooses an action cj 2 C,

such that

cj 2 argmax
ck2C

3
4
Emax
u ckjΦ�� � � 1

4
Emin
u ckjΦ�� �


 �
: (21)
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