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Abstract

Background: Electronic Health Records (EHR) analysis is pivotal in advancing medical
research. Numerous real-world EHR data providers offer data access through exported datasets.
While enabling profound research possibilities, exported EHR data requires quality control and
restructuring for meaningful analysis. Challenges arise in medical events (e.g., diagnoses or
procedures) sequence analysis, which provides critical insights into conditions, treatments, and
outcomes progression. Identifying causal relationships, patterns, and trends requires a more
complex approach to datamining and preparation.Methods:This paper introduces EHRchitect –
an application written in Python that addresses the quality control challenges by automating
dataset transformation, facilitating the creation of a clean, formatted, and optimized MySQL
database (DB), and sequential data extraction according to the user’s configuration. Results: The
tool creates a clean, formatted, and optimized DB, enabling medical event sequence data
extraction according to users’ study configuration. Event sequences encompass patients’medical
events in specified orders and time intervals. The extracted data are presented as distributed
Parquet files, incorporating events, event transitions, patient metadata, and events metadata. The
concurrent approach allows effortless scaling for multi-processor systems. Conclusion:
EHRchitect streamlines the processing of large EHR datasets for research purposes. It facilitates
extracting sequential event-based data, offering a highly flexible framework for configuring event
and timeline parameters. The tool delivers temporal characteristics, patient demographics, and
event metadata to support comprehensive analysis. The developed tool significantly reduces the
time required for dataset acquisition and preparation by automating data quality control and
simplifying event extraction.

Introduction

While Electronic Health Records (EHR) systems have proven invaluable in improving patient
care coordination and administrative efficiency, their primary focus has traditionally been on
clinical and financial aspects of healthcare delivery [1]. Consequently, EHR systems may not
always be optimally configured for large-scale research, resulting in limitations when
accommodating diverse and complex requirements [2]. To overcome these limitations,
numerous sophisticated tools and methodologies have been developed for health records data
analysis. Many of them rely on statistical methods and machine learning (ML) models [3]. ML
has been applied for many different tasks, including data collection, management, and analysis
in both public health and clinical research [4], summarizing and visualizing data [5], quality of
ambulatory care [6], and surgery complications [7]. Effective utilization of analytical tools
necessitates an accurately curated data source, which may be hard to achieve for EHR data,
considering its incomplete nature. This leads to the need for extensive EHR data preprocessing
efforts before applying analytical methodologies and computational models, entailing a
substantial investment of time. Furthermore, considering the constant increase in EHR data, it is
imperative to ensure that the preprocessing procedures are replicable to uphold the integrity of
research outcomes [8,9]. Given the frequent utilization of ML and artificial intelligence (AI)
approaches within the healthcare domain, there is a demand for systematic and reproducible
approaches to EHR data preprocessing.

When assessing data selection tasks for specific research purposes, it is essential to note that
researchers rarely focus on a single medical event, such as a diagnosis or procedure. More
commonly, patient cohorts that follow a sequence of events are given consideration. For
example, patients who have experienced a disease, followed by various types of treatment, and
observed outcomes over a defined period. Integrating this sequence of events with time
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constraints and additional inclusion or exclusion criteriamakes the
data selection process particularly challenging.

Commercial EHR data repositories like TriNetX, Cosmos Epic,
and IBM MarketScan offer curated medical data and accompany-
ing analytical tools. Furthermore, most platforms primarily deliver
basic descriptive statistics for essential cohorts. For instance,
Cosmos Epic offers a suite of tools for investigators, such as the
Slicer Dicer tool for cohort selection, but lacks suitable options for
event sequence selection [10]. TriNetX has a query builder that is
quite flexible and allows temporal relationships between events to
be built. However, there are no integrated ML tools to run the
modeling on the resulting cohort. Few EHR systems provide an
export of the selected data as raw tables, requiring an additional
data cleaning and preparation process (e.g., TriNetX). Thus,
despite the availability of curated data, there is a lack of flexibility
regarding advanced data selection tools and state-of-the-art
analytical tools application.

Along with commercial solutions, a wide range of open-source
software tools complements their commercial counterparts,
designed to undertake a spectrum of data preprocessing tasks.
Notable examples include growthcleanr [11] and ActiveClean [12],
which excel in data cleaning and formatting, albeit without the
capacity to filter data in line with specific study configurations,
often resulting in the delivery of all initial records regardless of the
target events. This limitation may pose challenges in handling
extensive datasets containing millions of patient records.
Conversely, FIDDLE [13], METRE [14], MIMIC-IV-Data-
Pipeline [15], and MIMIC-Extract [16] focus on a limited set of
medical parameters, generating simplified tables conducive to ML
model usage. While these tools permit the accumulation of time
series data for selected medical parameters, they cannot
accommodate diverse event sequences, such as post-interventional
medication treatment followed by an outcome occurrence. Other
tools, like EHR-QC [17] and mosaicQA [18], specialize in data
quality control and offer comprehensive services, including data
standardization, preprocessing, and quality reporting. Although
these software tools effectively fulfill their designated roles, they do
not provide the flexibility to configure medical event sequences or
selectively extract pertinent records, thereby failing to reduce the
dataset complexity for downstream analysis.

This paper describes EHRchitect, the software tool engineered
to streamline the automation of patient data preprocessing and
selection according to the medical event sequences. It achieves this
by creating a structured MySQL database optimized for data
retrieval and selection, along with program modules dedicated to
event sequence processing as configured by the user. Data selection
configuration is facilitated by a JSON (JavaScript Object Notation)
file [19] adhering to a specific format. EHRchitect output
comprises files encapsulating patient records for each event, event
transitions completed with time-related attributes, and patient and
event metadata. It allows a significant reduction of the initial data
set, effortless access to patient data corresponding to any event of
interest, and subsequently engaging in statistical analyses or
constructing ML models.

Methods

EHRchitect was developed using Python programing language
(version 3.9) utilizing such libraries as pandas (version 2.1.4),
SQLAlchemy (version 2.0.28), and sshtunnel (version 0.4.0). Our
tool can be used across Windows (version 10 or 11 Home or
Professional Edition) or Linux (tested on Rocky Linux version 8.10)

operating systems on a local computer or remote server. It can
connect to a remote or local server compatible withMySQL (version
8.0 or higher). Running the application necessitates a Python
environment with libraries mentioned in the requirements.txt file
stored in the project. Due to the multiprocessing approach, the most
efficiency can be achieved by running EHRchitect on a computer
with at least eight cores processor and a local MySQL server with
version 8.0 or higher. Computational resource consumption (e.g.
CPU time or RAM volume) depends on the amount of data and
selection criteria.

Data source

EHRchitect works with remote and local datasets as long as they
adhere to the specified structure. Our program uses a raw dataset to
create a new database on an existingMySQL server with credentials
set up in the program configuration file. Raw data transformation
requires the data to be a set of CSV (comma-separated values) files
with a compatible data structure [20] archived in a ZIP file
(Figure 1). In the case of remote data set storage, EHRchitect
facilitates the downloading of the necessary archive via a provided
HTTP URL. Before uploading data to a MySQL database, it
undergoes deduplication, date format standardization, and data
transformation. Furthermore, the program imports the General
Equivalence Mapping table [21] to translate codes from ICD-10
(International Classification of Diseases, 10th Revision) [22] to
ICD-9 (International Classification of Diseases, 9th Revision) [23].
Following the completion of the database setup, EHRchitect
generates a JSON file containing the host IP address and
credentials, enabling seamless data access during the subsequent
program usage.

EHRchitect data structure accommodates core data objects
such as patient, encounter, diagnosis, procedure, medication,
laboratory result, and vital signs. Patient and encounter records are
determined by unique identifiers, which are mandatory and not
nullable across all tables except those with medical code metadata.
The patient table contains demographic fields like sex, race,
ethnicity, marital status, and birth and death dates in a text format.
All date fields across the DB have the format “YYYYMMDD.”
Encounter information is encompassed in the Encounter table and
characterized by encounter type, start and end dates, and the
patient’s ID linked to the encounter. Tables Diagnoses,
Medication, LabResult, VitalSign, and Procedure contain patient
records with the information according to the table name and have
common columns “code,” “date,” and “code_system.” Laboratory
results and vital signs are additionally characterized by the
numerical or text value, or both, and these values’ measurement
unit. Eachmedication recordmay optionally have the route, brand,
and strength.

Study configuration

Utilizing a clean and formatted DB, EHRchitect allows data to be
selected according to user configuration. The study configuration
file determines the arrangement of medical events within a
chronological sequence. This file adheres to a predefined
hierarchical structure and needs to be stored in JSON format.
Using this configuration file, the program selects data according to
all determined inclusion, exclusion, and temporal requirements. It
delivers resulting records with metadata and temporal character-
istics in the form of distributed Parquet file [24] (Figure 2.).

The configuration file contains a study description defined at
the root by the parameters title, output directory path, and the
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study timeframe. Each study must contain at least one event group.
Every event group must include a numerical identifier for defining
their chronological order, a list of events, and, optionally, a time
limitation for these events. Each event must fall within a category,
such as diagnosis, procedure, laboratory result, medication, or vital
sign, and optionally specify a list of codes. Additionally, we have
introduced a special event, denoted as patient death, which falls
under the “patient” category and is assigned the code “DEATH.”

Each configuration object has mandatory parameters. Every
studymust include at least one event group. Each event groupmust
have a chronological order number and at least one event. Event
groups will be searched in ascending order of their numbers. Every
event within the group must be assigned a category. Event codes
are optional. The search will encompass all records within the

designated category and time interval if no codes were defined.
Additional optional parameters provide the flexibility to define the
study’s overall timeframe, specify criteria for subsequent event
searches, establish event exclusion and inclusion conditions, and
explore intervals where events are absent.

For instance, if a study objective is to identify the impact of
amoxicillin treatment within the first week after the severe burn
wound (SBW) on the sepsis appearance within the following
month during 2010–2020 years, we must create a configuration
involving three event groups: first for the SBW, second one for the
amoxicillin treatment, and the third one for the sepsis outcome
(Figure 3). In this configuration, the SBW as the first event group is
assigned group number of one and does not have any time
restrictions. SBW events may be characterized by the diagnosis

Figure 1. EHRchitect database preparation pipeline. Comma-separated values (CSV) files with raw data packed in a ZIP archive are downloaded using the URL the user provides.
Each CSV file is transformed to the EHRchitect database format, along with data cleaning and transformation. The program creates a new MySQL database using MySQL server
credentials provided by the user, and uploads transformed data with the following optimization.

Figure 2. EHRchitect data extraction pipeline. The User describes a study in a JavaScript Object Notation file and passes it to the program. EHRchitect selects data according to
all determined inclusion and exclusion criteria and time restrictions and delivers the resulting records with metadata and temporal characteristics in distributed Parquet files.
Configuration file describes a study as a sequence of events with specified time constraints. Each event is determined by a list of codes (e.g., ICD-10, RxNorm) and a category
(e.g., diagnosis, medication.
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ICD-10 codes “T31.7,” “T31.8,” or “T31.9.” The treatment group is
assigned group number two and one-week time intervals,
indicating that its events will be searched within one week after
the SBW event. The treatment group will have two events:
amoxicillin treatment and its absence. Amoxicillin may be defined
by RxNorm (Prescription Normalized Naming System) code
“723.” Treatment absence is defined similarly as presence but with
an additional Boolean parameter “negation” set to True. The last
event group with the number of three contains one event with
sepsis definition through the diagnosis ICD-10 code “A41.9” and
the time interval of one month.

Patient records selection

In the initial step, the algorithm identifies all patients whomeet the
criteria of the first event group. Subsequently, these patients are

divided into multiple subgroups that are processed concurrently.
Subsequent data selection is carried out in individual processes for
each group of patients. Simultaneously, each interaction with the
SQL server within each process occurs in a distinct thread.

The study configuration encompasses various temporal
parameters that influence the search for data records. At the
highest level, the study time frame describes the restriction of the
search period for all events in the study. Within each event group,
the “period” parameter sets the search time boundaries for events
within that group. If the period is not explicitly defined, events
within the group are searched throughout all time following the
events of the preceding event group. Additionally, each event can
include an optional “period” parameter that overrides the search
time interval for the event specifically. The number of events is
controlled by the “match_mode” parameter that can take on two
values: “all_matches,” the default, which incorporates all records

{  "name": "Amoxicillin impact on sepsis after SBW", period:{ "min_d": "01-01-2010", "max_d": “31-12-2020”},
"event_groups": [ 

{ "event_group": 1, "name": "Burn",
"events": [ {"name": "Severe burn wound","id": "sbw","category": "diagnosis", "codes": ["T31.7","T31.8","T31.9"] } ] 

},
{ "event_group": 2, "name": "Treatment",

"period": {"min_t": 0,"max_t": 7,"unit": "day"},
"events": [ {"name": "Amoxicillin treatment","id": "amtr","category": "medication","codes": ["723"]},

{"name": "No Amoxicillin treatment","id": "noamtr","category": "medication","codes": ["723"],"negation": 
true} ] },

{ "event_group": 3, "name": "Outcome",
"period": {"min_t": 0,"max_t": 1,"unit": "month"},
"events": [ {"name": "Sepsis","id": "seps","category": "diagnosis","codes": ["A41.9"]} ] }

]}

(A)

(B)

Figure 3. Study configuration example. A – an example of a study schema. The study explores an amoxicillin treatment impact on sepsis outcomes among patients with severe
burn wounds (SBW). SBW is defined through a set of ICD-10 codes (“T31.7,” “T31.8,” “T31.9”). Amoxicillin is defined through the RxNorm code “723.” Sepsis is defined through the
ICD-10 code (“A41.9”). Study temporal parameters: Amoxicillin should be prescribed within seven days after the SBW. The outcome should appear within one month after the
treatment or after the SBW in the not-treated cohort. Records from the 2010-2020 years only are considered. B – the study configuration file.
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satisfying the configuration into the outcome, and “first_match,”
which includes only the chronologically first record for each
patient.

Each event has a range of optional parameters, offering
flexibility in record selection according to the researcher’s
requirements. These parameters enable a search with all possible
subcodes of the event codes, a patient cohort selection that did not
experience specific events within a designated time interval, and
the establishment of complex exclusion and inclusion criteria for
the event.

EHRchitect supports multiple code systems corresponding to
various medical events, specifically ICD-10, ICD-9, LOINC
(Logical Observation Identifiers Names and Codes) [25],
RxNorm, CPT (Current Procedural Terminology) [26], HCPCS
(Healthcare Common Procedure Coding System) [27], and
SNOMED (Systematized Nomenclature of Medicine) [28].
Considering the transition from ICD-9 to ICD-10 code systems
in October 2015, the tool automates the mapping of ICD-10 codes
to their ICD-9 counterparts using the General Equivalence
Mapping table version from 201821 while requesting the data to
provide a comprehensive dataset. All result data records for events
defined with ICD-10 codes include ICD-9 records as well but with
ICD-10 labels.

Output description

The output of EHRchitect is a collection of Parquet files. These files
contain event metadata, patient metadata, event records, and event
transition records. The metadata is consolidated within a single
file, while the event and transition records are stored across
multiple distributed Parquet files.

The patient metadata file contains a unique patient identifier,
date of birth, date of death, sex, race, and ethnicity. The event
metadata file contains the event identifier, event name, code,
category, code description, and event group name. Each event file
includes patient identifiers, event identifiers, event codes, and the
corresponding dates discovered for these patients. Transition files
include patient identifiers, source events, and destination events,
along with the time elapsed in days between these two events.

Results

EHRchitect reduces the researcher’s time and effort on EHR data
preparation and selection. A dedicated DB optimized for a search
by specific parameters provides a stable data source with
guaranteed results reproducibility. Flexible study configuration
allows complex event sequence logic with different levels of
temporal restrictions and inclusion and exclusion criteria.
Changing study parameters or data selection conditions requires
only configuration changes without rewriting SQL requests or
programing code. The result files delivered by the program contain
comprehensive details regarding events and patient metadata,
event order, and temporal attributes, enhancing the depth of data
analysis.

Our program is an open-source program that is available on
GitHub [20]. It has been applied across various research domains,
including organ transplantation [29], burn wound management,
and cancer treatment [30]. Most recently, EHRrcitecht was used in
a study to evaluate patient outcomes depending on specific
pulmonary embolism treatment [31]. The study’s setup is reflected
in the configuration file shown in Figure 4. This study categorized

events of interest into three event groups: pulmonary embolism
(PE), intervention, and outcome.

Pulmonary embolism was identified using the ICD-10
diagnosis code “I26.” The intervention comprised three events:
thrombectomy or catheter-directed thrombolysis (any of CPT
codes “37187,” “37188,” “37212,” “37213,” “37214”), pulmonary
artery embolectomy (CPT code “1006322”), and thrombolytics
(any of RxNorm codes “259280,” “40028,” “76895,” “8410”). The
outcomes group included six events: recurrent PE (ICD-10 code
“I26”), stroke (ICD-10 code “I63.9”), patient death, other
embolisms (ICD-10 code “I74”), gastrointestinal bleeding (any
of ICD-10 codes “K92.0,” “K92.1,” “K92.2”), and intracerebral
hemorrhage (ICD-10 code “I61” or “I62”). Patient death was
classified as a specific event, determined by a reserved keyword
“DEATH,” and verified using the patient’s date of death. The study
was conducted with specific temporal conditions: only patients
who underwent any intervention events within three days of the PE
diagnosis were included. Outcomes were tracked for up to one year
after the intervention, except for recurrent PE, defined as any PE
event occurring at least ten days after the intervention. We selected
the first occurrence of relevant codes, including subcodes for each
event in the sequence. Additional exclusion criteria were applied to
enhance study quality and precision. Patients with any record of
the designated outcomes before the initial PE event were excluded.
Additionally, those treated with thrombolytics within 30 days prior
to PE diagnosis were also excluded. Each intervention event was
further refined by applying the outcome exclusion criteria.
Exclusion criteria for events were specified using the “exclude”
parameter (Figure 5). The full configuration file is available in the
supplementary material.

The output of the study configuration processing by
EHRchitect is a set of tables containing patient records
corresponding to each event group, transitions between events,
and metadata for both patients and events. For this specific case,
the resulting tables, which include metadata, PE events, inter-
ventions, and transitions between them, are shown in Figure 6.

The initial dataset included 2,224 patients with 5,817,500
records of prescribed drugs, 1,511,170 records of diagnosis, and
1,267,792 records of different procedures. Running EHRchitect on
this data and described configuration utilizing a computer with 63
CPUs and 516 gigabytes of RAM, we received the result dataset
within 23 minutes. The result included 460 patients who
underwent PE, 339 of which had a following intervention, and
268 patients within the intervention group, who experienced any of
the predefined outcomes. Combining all results in one table, we
received a table with 615 patient records, including demographic
parameters, event descriptions, and time intervals between events.
This data enabled statistical analysis at multiple levels, including
codes, events, and event groups. With demographic information
available, we could compare different intervention cohorts
statistically, calculate odds ratios, and assess treatment effects
based on the defined outcomes.

Discussion

Integrating ML and AI in healthcare is becoming increasingly
prevalent. A key requirement for many approaches is access to a
well-curated and preprocessed dataset, particularly those
targeting specific patient cohorts. While tools such as growth-
cleanr [11] and ActiveClean [12] offer data cleaning and quality
control functionalities, they are often limited to single-table data.
This may work well for a small dataset packed in a single file, but
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it might become difficult to apply these tools to a dataset
distributed throughout many files, encapsulating millions of
records of different types (diagnoses, medications, vital signs,
etc.). In contrast, EHRchitect adopts a more comprehensive
approach by incorporating various data types and centralizing
information in a MySQL DB to serve as a unified research data
source.

An alternative EHR datamining and analysis approach involves
using large clinical data platforms such as TriNetX, Cosmos, and
IBM Watson. These platforms offer access to millions of patients’
data and built-in analysis tools. However, the primary challenges of
this approach are the high costs and the limitations of the available
analytical tools.While exporting data from some of these platforms

could potentially overcome the analytical limitations, researchers
are left with raw datasets that require verification and formatting.
EHRchitect was explicitly developed to address this issue,
providing functionality to clean and preprocess datasets for
further analysis. Although our software does not offer a direct
connection to the existing EHR platforms, it has a built-in
capability to operate with the datasets exported from TriNetX or
with any other datasets compatible with our program data
structure. Due to the EHRchitect’s flexible and modular
architecture and open source code, it is relatively easy for anyone
to adapt it to new data sources. Minor adaptations like field names
or formats can be handled with minimal effort, while more
complex differences may require custom transformation logic.

{"name": "Pulmonary Embolism Study",
"levels": [{"level": 0, "name": "Pulmonary Embolism",

"events": [{"name": "Pulmonary Embolism","id": "pemb",
"category": "diagnosis", "include_subcodes": true,"codes": ["I26"]}]},

{"level": 1, "name": "Intervention","match_mode": "first_match",
"period": {"min_t": 0,"max_t": 3,"unit": "day"},
"events": [{"name": "Thrombectomy OR Catheter Directed-Thrombolysis","id": "thromect",

"category": "procedure","codes": ["37187","37188","37212","37213","37214"]},
{"name": "Pulmonary artery embolectomy", "id": "embolectomy",
"category": "procedure","codes": ["1006322"]},
{"name": "Thrombolytics", "id": "thrombolytics",
"category": "medication","codes": ["259280","40028","76895","8410"]}]},

{"level": 2,"name": "Outcome","match_mode": "first_match",
"period": {"min_t": 0,"max_t": 1,"unit": "year"},
"events": [{"name": "Pulmonary Embolism","id": "out_pemb",

"category": "diagnosis","include_subcodes": true,"codes": ["I26"],
"period": {"min_t": 10,"max_t": 365,"unit": "day"}},
{"name": "Stroke","id": "out_stroke",
"category": "diagnosis","include_subcodes": true,"codes": ["I63.9"]},
{"name": "Patient death","id": "out_death",
"category": "patient","codes": ["DEATH"]},
{"name": "Other Embolism","id": "out_oemb",
"category": "diagnosis","include_subcodes": true,"codes": ["I74"]},
{"name": "GI Bleed","id": "out_gibleed",
"category": "diagnosis","include_subcodes": true,"codes": ["K92.0","K92.1","K92.2"]},
{"name": "ICH","id": "out_ich",
"category": "diagnosis","include_subcodes": true,"codes": ["I61","I62"]}]}]}

(A)

(B)

Figure 4. The pulmonary embolism treatment research. A. Schematic research configuration. B. Example of the EHRchitect configuration file for the research.
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Akey advantage of EHRchitect is its ability to extract event data in
a defined chronological order using a JSON file that encapsulates the
entire study configuration. This file accommodates any number of
events, each with unique criteria such as event category,
chronological order, event negation, etc. Users can impose multiple
time constraints across different levels of the study utilizing the
parameter “period” with a different measurement scale: days,
months, and years. The hierarchical organization of study

configuration – ranging from specific codes at the most detailed
level to event groups at a broader level – facilitates analysis at
different scales. However, using a JSON format for study
configuration may pose a learning curve, particularly for individuals
unfamiliar with the format. Understanding this, we are working on a
web interface to streamline the study configuration process andmake
itmore accessible. This interface will enable users to configure studies
intuitively, enhancing the overall user experience and accessibility.

{"name": "Pulmonary Embolism Study",
"levels": [

{"level": 0, "name": "Pulmonary Embolism",
"events": [

{"name": "Pulmonary Embolism", "id": "pemb",
"category": "diagnosis", "include_subcodes": true,
"codes": ["I26"],
"exclude": {

"events": [
{"name": "Previous outcome cases","id": "pe_excl_out",
"category": "diagnosis","include_subcode": true,
"codes": ["I26","I63.9","I74","K92.0","K92.1","K92.2","I61","I62"]},
{"name": "Previous Thrombolytics","id": "pe_excl_thrombolytics",
"category": "medication","codes": ["259280","40028","76895","8410"],
"period": {"min_t": -30,"max_t": -1,"unit": "day"}}

]}
]},

…
}

Figure 5. Description of exclusion criteria in the configuration file. All exclusion criteria are described as events under the “exclude” object in the parent event they should be
allied. If the period is absent, as in the “Previous outcome cases” event, the exclusion is applied to the entire period before the parent event.

Figure 6. Result tables. A. The patients metadata table contains the demographic parameters of all patients across the study. B. The events metadata table describes the study
events. C. Each event group includes patient records selected according to its description. D. The transition table shows patient records of the consequent events that satisfied
time conditions. Columns with the siffix “_0” report the start event. Columns with the suffix “_1” report the finish event. Column “t_0” contains a number of days between the start
and finish events. All tables are linked by the “patient_id” parameter. Event records are identified by the “event_id” and “code” fields.
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The data selection process following the study configuration
outputs results as a set of Parquet files. We chose the Parquet
format due to its higher efficiency than traditional column-
oriented formats like CSV and TSV and its suitability for
distributed data processing [32]. Although Parquet files are not
supported by standard text editors or tools like MS Excel, they are
compatible with a wide range of cloud data storage platforms,
including Azure, Snowflake, AWS, and software like Tableau and
Power BI. Additionally, Parquet files can be easily processed using
common libraries of leading programing languages in data science,
such as pandas and polars in Python and arrow in R, along with
frameworks like Hadoop and Spark, making them an ideal choice
for large-scale data analysis [33].

Although utilizing a MySQL DB offers significant advantages,
including optimized data selection, rapid searches by medical
codes and dates, and research reproducibility, it also presents
certain challenges. Most significant among these is the complexity
of MySQL server setup and maintenance. These tasks can be a
significant barrier for researchers without technical expertise or
adequate support, potentially leading to disengagement from our
program. Furthermore, using MySQL may be excessive for smaller
datasets with less than a thousand patients, as more straightfor-
ward solutions like CSV files could be more efficient. To address
these issues, we plan to develop an alternative option that utilizes
flat files instead of a relational database.

Conclusion

EHRchitect is a software tool that automates a routine data
preparation process and medical event sequence data extraction. It
streamlines the transformation process, automating the creation of
a well-organized and optimized MySQL database, thus simplifying
data extraction for medical event sequences based on user-defined
study configurations. These event sequences are carefully curated,
providing insights into patients who have experienced medical
events specified by the user order and time intervals. The study’s
extracted data is efficiently presented as distributed Parquet files,
encompassing a comprehensive dataset of events, event transitions,
patient metadata, and event metadata. EHRchitect offers scal-
ability, making it suitable for multi-processor systems by enabling
concurrent data transformation and selection.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1017/cts.2025.55.
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