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Abstract Quaternionic automorphic representations are one attempt to generalize to other groups the
special place holomorphic modular forms have among automorphic representations of GL2. Here, we use
‘hyperendoscopy’ techniques to develop a general trace formula and understand them on an arbitrary
group. Then we specialize this general formula to study quaternionic automorphic representations
on the exceptional group G2, eventually getting an analog of the Eichler–Selberg trace formula for
classical modular forms. We finally use this together with some techniques of Chenevier, Renard and
Täıbi to compute dimensions of spaces of level-1 quaternionic representations. On the way, we prove a
Jacquet–Langlands-style result describing them in terms of classical modular forms and automorphic
representations on the compact-at-infinity form Gc

2.
The main technical difficulty is that the quaternionic discrete series that quaternionic automorphic

representations are defined in terms of do not satisfy a condition of being ‘regular’. A real representation
theory argument shows that regularity miraculously does not matter for specifically the case of
quaternionic discrete series.

We hope that the techniques and shortcuts highlighted in this project are of interest in other
computations about discrete-at-infinity automorphic representations on arbitrary reductive groups
instead of just classical ones.
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1. Introduction

1.1. Context

This work first develops an ‘explicit’ trace formula (1) to study so-called quaternionic

automorphic representations in general and then specializes it to describe level-1,
discrete, quaternionic automorphic representations on G2. Let Q1(k) be the set of such

representations of weight k counted with multiplicity. For each k > 2, we give a formula,

(11), for |Q1(k)| in terms of counts of automorphic representations on the compact-at-
infinity inner form Gc

2 that were calculated by Chenevier and Renard in [CR15] (In case

the use of counts on Gc
2 is bothersome, Section 9.4 also gives a relatively short closed-

form formula, though this is less conceptually enlightening). We also give a Jacquet–

Langlands-style result (Corollary 8.2.1) describing all elements ofQ1(k) in terms of certain
automorphic representations on Gc

2 and certain pairs of classical modular forms.

Quaternionic automorphic representations are one way to generalize to other groups

the special place holomorphic modular forms have among automorphic representations
of GL2. Just like holomorphic modular forms, they are characterized by their infinite

component being in a particular nice class of discrete series representations: the

quaternionic discrete series of [GW96]. Just like modular forms, they also have many
unexpected applications and connections to other areas of mathematics. For example,

they have a nice theory of Fourier expansions with interesting arithmetic content – this

was described for G2 in [GGS02] and generalized to all exceptional groups in [Pol20].

They also somehow appear in certain string theory computations involving black holes
– see the end of chapter 15 in [FGKP18] for example. Quaternionic forms have been

studied a lot by Pollack: See [Pol21] for an introductory article on them and [Pol18] for

good exposition specifically on G2-quaternionic forms.
We study discrete, quaternionic representations in general using the trace formula:

Arthur’s invariant trace formula, as in [Art89], lets us analyze automorphic representa-

tions with infinite component contained in a fixed discrete series L-packet. However,
quaternionic discrete series appear in L-packets with nonquaternionic members and

therefore cannot be isolated within the packet without further techniques. A previous

work, [Dal22], uses the stabilization of the trace formula to abstractly isolate members of

the L-packet and prove general asymptotic bounds. Here, we demonstrate that the same
techniques suffice for computing more explicit information.

As one technical point of interest, there is a particular miracle about quaternionic

discrete series that crucially underpins the result. A priori, quaternionic discrete series
are not regular, implying that there may not be a compact test function at infinity

whose trace picks out exactly a quaternionic discrete series without also picking up some

unwanted contributions from nontempered representations. This would preclude the use of
easy trace formula arguments. However, it turns out that specifically quaternionic discrete

series don’t get entangled in this way, even though other members of their L-packet do.

The proof is a computation in real representation theory.
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Applying these generalities to G2 lets us develop an ‘Eicher–Selberg’-style trace formula
for quaternionic discrete series there. The counts of level-1 forms and Jacquet–Langlands-

style results come from computations with it. The level-1 computation in particular also

relies heavily on powerful shortcuts developed in [CR15] and [Täı17] to get exact counts
of level-1 automorphic representations on classical groups.

This work can be be compared to the much more difficult aforementioned papers of

Chenevier, Renard and Täıbi counting level-1 representations with arbitrary discrete

series at infinity on classical groups. Those avoided needing our real representation theory
miracle by using the extremely powerful endoscopic classification of [Art13] which, in

essence, gave a finer decomposition of the trace formula than pure stabilization. In

particular, it allowed the isolation of summands in the trace formula that did not contain
any contributions from automorphic representations with nontempered local components

through a far more complicated inductive procedure. Unfortunately, there is no endoscopic

classification currently available for G2.
The methods here should be able to also compute averages of Hecke eigenvalues. We also

hope that the computation highlights enough general methods and shortcuts to be helpful

for people interested in doing explicit computations with discrete-at-infinity automorphic

representations whenever an endoscopic classification might either be unavailable or be
too complicated to use. See the end of Section 3.3 for some comments on this. In particular,

a very similar method, albeit with more complicated computation at infinity, should be

able to ‘quickly’ count the quaternionic forms on type D4 studied by Martin Weissman
in [Wei06].

1.2. Summary

We start with the case of general groups with quaternionic discrete series at infinity.

Section 2 discusses quaternionic discrete series and their properties, culminating in

Proposition 2.3.3 showing that they satisfy a property of being ‘trace-distinguishable’.
This is used in Theorem 3.1.1 to show that the spectral side of Arthur’s invariant trace

formula can be made equal to the trace of any desired finite-place test function against

the space of all quaternionic representations of a fixed weight.
The second part of Section 3 uses ‘hyperendoscopy’ from [Fer07] to simplify the

geometric side and develops an expression (1) for this trace that is explicit up to

computing endoscopic transfers and orbital integrals. We conclude with some remarks
on how to do the necessary computations and outline how they simplify in the special

case of level-1 on G2. This special case of G2 then takes up the rest of the paper.

Specifically, after some setup work in Section 4, we work out what formula (1) reduces

to in the unramified case for G2 in Section 5 using a computation of the endoscopy of G2.
Instead of using formula (1) directly, we compare its application to G2 to its application

to the compact real form Gc
2 to construct a formula for IG2

spec involving just I
Gc

2
spec- and

IHspec-terms. Here, H is the endoscopic group SL2×SL2/±1 of G2.

Section 6 then tells us which exact I
Gc

2
spec- and IHspec-terms appear by computing

endoscopic transfers at infinity. The difficult part of this computation is pinning down

various signs coming from transfer factors. We present a shortcut to make it more
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manageable. The final result should be thought of as an ‘Eichler–Selberg’ trace formula
for quaternionic automorphic representations on G2. As a last piece of the puzzle, Section

7 uses results about level-1 forms from [CR15] to reduce counts of forms on H to counts

of classical modular forms.
Section 8 uses all these formulas to characterize representations in Qk(1) with k > 2

in terms of automorphic representations on Gc
2 and certain pairs of classical modular

forms. We substitute in values for the I
Gc

2
spec-terms from [CR15] and present a final table

of dimensions: table 1, in Section 9. Finally, building off an impressive undergraduate

thesis [Sul13] of Sullivan, we give a relatively simple closed-form formula for the Gc
2-term

and present the resulting closed-form formula for |Qk(1)| in Section 9.4.

1.3. Notation

Here is a list of notation used throughout:

The group G2

• G2 is the standard exceptional Chevalley group defined over Z.
• Gc

2 is the unique inner form of G2 over Q. Recall that (Gc
2)R is the compact real

form.
• αi,εi,λi are particular roots and coroots of G2 defined in Section 4.1.
• sλ is the simple reflection associated to root or coroot λ.
• ρ is half the sum of the positive roots of G2.
• Vλ is the finite-dimensional representation of G2 of highest weight λ.
• K is a choice of maximal compact subgroup SU(2)×SU(2)/±1 of G2(R).
• K∞ is the product of maximal compact subgroups G2(Zp) over all p.
• Ω= ΩC is the Weyl group of G2.
• ΩR is the Weyl group of K as a subset of Ω.
• H will often refer to the specific endoscopic group SL2×SL2/±1 of G2.
• Qk(1) is the set of discrete, quaternionic automorphic representations of G2 of

weight k and level 1 (see Section 4.2).
• πk is the weight k quaternionic discrete series of G2 (see Section 4.2).

General groups

• G∞ =ResFQ G(R) for G a reductive group over number field F. Since most groups
here are over Q, G∞ is usually G(R).

• GS,GS are more generally the standard upper- and lower-index notation for
G(AS),G(AS) – leaving out the places in S or only including the places in S,
respectively.

• Ω(G) is the absolute Weyl group of G.
• ΩR(G) is the subset of the Weyl group of G∞ with respect to an elliptic maximal

torus (if one exists) generated by elements of G∞.
• KG is a maximal compact subgroup of G∞.
• K∞

G for unramified G is the product of chosen hyperspecial subgroups at all finite
places.

• ρG is half the sum of the positive roots of G.
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• [G(F )],[G(F )]ss,[G(F )]st,[G(F )]ell are the (semisimple, stable, elliptic) conjugacy
classes of G(F ).

Real test functions

• ϕπ for π a discrete series representation of G∞ is the pseudocoefficient defined in
the corollary to Proposition 4 in [CD90].

• Πdisc(λ) is the discrete series L-packet corresponding to dominant weight λ.
• ηλ is the Euler–Poincaré function from [CD90] for Πdisc(λ). We normalize it to be

the average of the pseudocoefficients for π ∈Πdisc(λ) instead of their sum.

Trace formula

• AR(G), ARdisc(G) is the set of (discrete) automorphic representations on G.
• ARur(G) for G unramified is the space of unramified automorphic representations

of G.
• mdisc(π),mcusp(π) are the multiplicities of automorphic representation π in the

discrete (cuspidal) subspace.
• IGspec,I

G
geom,I

G
disc are the distributions from Arthur’s invariant trace formula on G.

• SG = SG
geom is the stable distribution defined in Theorem 3.2.1.

Miscellaneous

• 1S is the indicator function of set S.
• 1G is the trivial representation on group G.
• Sk(1) is the set of normalized, classical, cuspidal eigenforms on GL2 of level 1 and

weight k.

2. Quaternionic discrete series

2.1. Discrete series

2.1.1. Parametrization. For this section, let G be a reductive group over R and K

a maximal compact of G(R). Assume G has elliptic torus T so that G(R) has discrete

series. Without loss of generality, T ⊆ K. Recall the notation from [Dal22, §2.2.1] to
discuss discrete series. In particular, recall the two parametrizations of discrete series on

G(R):

πG
λ,ω = πG

ω(λ+ρG)

for λ a dominant (but possibly irregular) weight of T and ω a Weyl-element that

takes a chosen ΩG dominant chamber into a chosen ΩK -dominant one. Note that πG
λ,ω

has infinitesimal character λ+ ρG. Recall that ω(λ+ ρG) is called the Harish–Chandra

parameter of this discrete series.

2.1.2. Their pseudocoefficients. Recall from the corollary on page 213 in [CD90]

the notion of pseudocoefficients ϕπ for discrete series π. They are defined by their traces
against standard modules ρ:

trρ(ϕπ) =

{
1 ρ= π

0 ρ standard, σ �= π
.
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Here, a standard module is a parabolic induction of a discrete series or limit of discrete
series.

Note. By the Langlands classification, every irreducible representation has a character

formula writing it as a linear combination of standard modules in the Grothendieck group.
By linearity of trace, if σ is an irreducible representation, then trσ(ϕπ) is the coefficient

of π in its character formula.

Recall also the Euler–Poincaré functions ηλ that we normalize to be the average of

pseudocoefficients over an L-packet of infinitesimal character λ+ρG. For a quick summary

of relevant properties of these functions in the notation used here, see [Dal22, §2.2.2].

2.2. Trace distinguishability

A priori, the trace against ϕπ may be nonzero for certain nontempered representations

in addition to just π. This could make ϕk unusable as a test function to pick out just

automorphic representations π with π∞ = π. We analyze when this happens.

Definition. Call discrete series π on group G(R) trace-distinguishable if for all unitary

representations σ of G(R)

trσ(ϕk) =

{
1 σ = πk

0 else
.

To motivate this definition, the Paley–Weiner theorem of [CD90] shows that ϕπ is the

only compactly supported function that could have the property of isolating π in the

unitary dual in this way – there are none if π isn’t trace-distinguishable.

Proposition 2.2.1. Let discrete series π on G(R) have Harish–Chandra parameter ξ.

Define

Sξ = {α ∈ ΦG : 〈ξ,α∨〉= 1},

where ΦG is the set of roots of (G,T ) for T elliptic. Then π is trace-distinguishable if and

only if π contains no noncompact roots.

Proof. The following proof was described to me by David Vogan. Choose simple roots

so that ξ is dominant. By the same argument of Vogan described in [Dal22, lem. 6.3.1],

trσ(ϕπ) = 0 unless trσ(ηξ−ρG
) �= 0 for ηξ−ρG

the Euler–Poincaré function at infinitesimal
character ξ. If σ is unitary, this is only possible if σ has nonzero (g,K)-cohomology with

respect to the irreducible finite-dimensional representation of infinitesimal character ξ.

By the main classification result of [VZ84], the only representations that do so are the
discrete-series packet Πλ(ξ−ρG) and certain cohomological inductions Aq(λ) for θ-stable

parabolic subalgebras q of g and λ a character of the Levi algebra l associated to q (see,

for example, [AJ87, §2.1] for a definition of Aq(λ)). It therefore suffices to show that none
of these except π itself have π appearing in their character formulas.

The only nontrivial case to check is that of nondiscrete-series Aq(λ). Theorem 8.2 in

[AJ87] provides its character formula and shows that the discrete series that appear are
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exactly those with Harish–Chandra parameters of the form λ+ωρl, where ω ranges over
the Weyl group of l. For each ω, pick a set of simple roots of l so that ωρl is dominant.

Then for simple root α of l,

〈λ+ωρl,α〉= 〈ωρl,α〉= 1.

In particular, if π appears in the character formula for Aq(λ), then there is a choice of

simple roots of l that are in Sξ.

Finally, since λ is regular, for any root α of G, |〈λ,α∨〉| ≥ 1. Therefore, Sξ needs to
be a subset our simple roots chosen to make λG-dominant. Let lξ be the associated

Levi subalgebra. If π appears in the character formula for Aq(λ), the above gives that

l⊆ lξ. Therefore, if Sξ has no noncompact roots, then l is compact, so our condition on l

implies that Aq(λ) is discrete series (see, for example, the bottom of [AJ87, pg. 272]) and

therefore equal to π. In total, π cannot appear in other character formulas completing

one direction.
In the other direction, if Sξ has a noncompact root, then this can be used to construct

a rank-1 Levi subalgebra l that isn’t compact. Pick corresponding q, and choose chamber

for l so that λ is l-dominant. Then π will appear in the character formula of Aq(λ−ρl)

which isn’t discrete series.

2.3. Quaternionic discrete series

Quaternionic discrete series are a special class of discrete series picked out in [GW96].

We recall some needed definitions and properties:

Definition. Call G(R) quaternionic if K is isogenous to a group of the form SU2(R)×L

(that has the same rank as G).

Definition. If G(R) is quaternionic, call discrete series π quaternionic if its minimal K

type lifts to a representation of the form V �1L on SU2(R)×L. Let the weight of π be

(dimV −1)/2.

By looking at extended root diagrams:

Lemma 2.3.1. Group G(R) is quaternionic if and only if there is a choice of simple
roots of (G(R),T ) such that there is a is unique noncompact simple root that is also the

unique simple root not perpendicular to the highest root.

Then, by Blattner’s formula for minimal K -types:

Lemma 2.3.2. Let G have quaternionic discrete series with simple roots chosen as in the

previous lemma. Then all quaternionic discrete series have Harish–Chandra parameter of
the form nβ′+ρG for n ∈ Z≥0 and β′ the highest root.

Miraculously, almost all quaternionic discrete series are trace distinguishable:

Proposition 2.3.3. Let π be a quaternionic discrete series of G(R) with infinitesimal

character not equal to ρG. Then π is trace-distinguishable.
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Proof. If λ = nβ′ + ρG as in Lemma 2.3.2, then Sλ from Proposition 2.2.1 is a subset

of the simple roots chosen in Lemma 2.3.2. Since β′ is not perpendicular to the unique

noncompact simple root and n > 1, Sλ can only contain compact roots.

3. Trace formula

Let G be a reductive group over number field F such that G∞ is quaternionic.

Definition. A quaternionic automorphic representation on G is an automorphic repre-
sentation π such that π∞ is quaternionic.

In this section, we construct an ‘explicit’ trace formula for studying almost all

quaternionic automorphic representations.

3.1. Spectral side

The previous discussion on quaternionic discrete series shows:

Theorem 3.1.1. Let G∞ have quaternionic discrete series, and let π0 be a quaternionic

discrete series of G∞ with infinitesimal character not equal to ρG. Then

Ispec(ϕπ0
⊗f∞) =

∑
π∈ARdisc(G2)

mdisc(π)δπ∞=π0
trπ∞(f∞)

=
∑

π∈ARcusp(G2)

mcusp(π)δπ∞=π0
trπ∞(f∞).

Proof. The statement for discrete representations is the same argument as [Dal22, prop.
6.3.3] after we know Proposition 2.3.3 that these quaternionic discrete series are trace-

distinguishable. Since π∞ = π0 is necessarily discrete series for the nonzero terms, the

main result of [Wal84] shows that mcusp(π) =mdisc(π).

Note. Of course, this theorem holds more generally for π0 an arbitrary trace-

distinguishable discrete series.

3.2. Geometric side/the hyperendoscopy formula

3.2.1. Notation. We will need to recall some extra notation related to general

reductive group H over F to understand the geometric side

• Ωc
H is the Weyl group generated by compact roots at infinity.

• d(H∞) is the size of the discrete series L-packets of H∞. Alternatively, d(H∞) =
|ΩH |/|Ωc

H |.
• k(H∞) is the size of the group K= ker(H1(R,Tell)→H1(R,G∞)) that appears in

the theory of endoscopy for G∞.
• q(H∞) = dim(H∞/K∞ZH∞) where K∞ is a maximal compact subgroup of H∞.
• H∗

∞ is the quasisplit inner form of H∞.
• H̄∞ is the compact form. If H∞ has an elliptic maximal torus, this is inner.
• e(H∞) is the Kottwitz sign (−1)q(H

∗
∞)−q(H∞).
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• [H :M ] = [H :M ]F = dim(AM/AG), where A� is the maximal F -split torus in the
center of �. We call this the index of M in H.

• τ(H) is the Tamagawa number of H.
• MotH is the Gross motive for H.
• L(MotH) is the value of the corresponding L-function at 0 (or residue of the pole).
• ιH(γ) = ιHF (γ) for γ ∈H(F ) is the number of connected components of Hγ that

have an F -point.

3.2.2. Preliminaries. Let π0 be a quaternionic discrete series on G∞. We will use

the hyperendoscopy formula of [Fer07] to compute Igeom(ϕπ0
⊗ f∞). We need to apply

the general case of [Dal22, Thm. 4.2.3] since G might have endoscopy without simply

connected derived subgroup. We use notation from [Dal22, §3,4] to discuss endoscopy and

hyperendoscopy. See [KS99] for a full reference to the theory of endoscopy and [Lab11]

for a course-notes-style introduction.
Let η be the Euler–Poincaré function for the L-packet Πdisc(λ) that conatins π0. Let

HEell(G) be the set of nontrivial hyperendoscopic paths for G. Then, in the notation of

[Dal22, §4],

IG2
geom(ϕπ0

⊗f∞) = IG2
geom(ηk⊗f∞)+

∑
H∈HEell(G2)

ι(G,H)IH̃geom(((η−ϕπ0
)⊗f∞)H̃),

where the H̃ are choices of z -pair paths when they are needed.

3.2.3. Telescoping. Next, an unpublished result of Kottwitz summarized in [Mor10,

§5.4] and proved by other methods in [Pen19] stabilizes Igeom(ϕ⊗ f∞) when ϕ satisfies
a technical property of being stable-cuspidal (as EP-functions are but pseudocoefficients

are not):

Theorem 3.2.1. Let ϕ be stable cuspidal (e.g., an EP-function, but not a pseudocoeffi-
cient) on G∞ and f∞ a test function on G(A∞). Then

IGgeom(ϕ⊗f∞) =
∑

H∈Eell(G)

ι(G,H)SH̃
geom((ϕ⊗f∞)H̃),

where Eell(G) is the set of elliptic endoscopic groups for G and the H̃ are z-extensions if

necessary. The transfers (ϕ⊗f∞)H̃ depend on choices of measures for G and H.
The Sgeom terms are defined by their values on Euler–Poincaré functions:

SH
geom(ηλ⊗f∞) =

∑

M∈Lcusp(H)

(−1)[H:M ] |ΩM,F |
|ΩH,F |

τ(M)

×
∑

γ∈[M(Q)]st,ell∞

|ιM (γ)|−1 e(M̄γ,∞)

vol(M̄γ,∞/AM̄γ,∞)

k(M∞)

k(H∞)
ΦH

M (γ,λ)SO∞
γ ((f∞)M ),

choosing Tamagawa globally measure on all centralizers. The volume on M̄γ,∞ is

transferred from that on Mγ,∞ in the standard way for inner forms so that the entire

term doesn’t depend on a choice of measure at infinity.
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There’s an alternating sign in the hyperendoscopy formula: If H is a hyperendoscopic
path, then −ι(G,H)ι(H,H) = ι(G,(H,H)) for H any endoscopic group of H. Here, (H,H)

represents the concatenation and H is overloaded to also refer to the last group in H.

In particular, substituting in the stabilization telescopes the hyperendoscopy formula.

3.3. Final formula and usage notes

3.3.1. Formula. Telescoping together with Theorem 3.1.1 produces the final formula
for quaternionic discrete series π0 of G∞ that has infinitesimal character not equal to ρG:∑

π∈ARdisc(G)

mdisc(π)δπ∞=π0
trπ∞(f∞)

= SG
geom(η⊗f∞)+

∑
H∈Eell(G)

H �=G

ι(G,H)SH̃
geom((ϕπ0

⊗f∞)H̃). (1)

The right side can be evaluated with Theorem 3.2.1.

We recall

ι(G,H) = |Λ(H,H,s,η)|−1 τ(G)

τ(H)
,

where Λ(H,H,s,η) is the image in Out(Ĥ) of the automorphisms of the endoscopic
quadruple.

While getting a formula in terms of the distributions Sgeom on smaller endoscopic

groups comes immediately from stabilization, the above telescoping argument seems to

be necessary to get explicit formulas for the Sgeom when using a test factor at infinity
that is just cuspidal instead of a stable cuspidal.

3.3.2. Usage. There are two possible methods to compute terms here. If we were

interested in working with more general groups or at more general level, something

like method 1 would have been necessary. However, our application case of level-1
representations on G2 allows us to use the much easier method 2. Method 2 in fact

does not even need an explicit expansion for Sgeom.

Method 1:
We can try calculate the Sgeom terms directly from their formula in Theorem 3.2.1.

We will need to choose Euler–Poincaré measure at M̄γ times canonical measure for the

orbital integrals (canonical measure is the same for all inner forms). This adds an extra

factor of

d(M̄γ,∞)
L(MotMγ

)

e(M̄γ,∞)2rank(Mγ,∞)

by [ST16, lem. 6.2]. Since d(H∞) = 1 and volEP (H∞/AH∞) = 1 for H compact, this

expands the terms in Equation (1) as
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SH
geom(ηλ⊗f∞) =

∑
M∈Lcusp(H)

(
(−1)[H:M ] |ΩM,F |

|ΩH,F |

)(
τ(M)

k(M∞)

k(H∞)

)
×

∑
γ∈[M(Q)]st,ell∞

2−rank(Mγ,∞)ΦH
M (γ,λ)

(
L(MotMγ

)|ιM (γ)|−1SO∞
γ ((f∞)M )

)
,

where the stable orbital integrals are now computed using canonical measure on
centralizers.

The hardest terms here are the stable orbital integrals, the L-values and the characters

Φ. The constant terms (f∞)M are explicit integrals.

The L-values may be computed as products of values of Artin L-functions by explicitly
describing the motives from [Gro97]. The terms Φ can be reduced to linear combinations

of traces of γ against finite-dimensional representations of G by the algorithm on [Art89,

pg. 273]. These can be computed by the Weyl character formula and its extension to
irregular elements stated in, for example, [CR15, prop. 2.3].

The stable orbital integrals unfortunately cause far more difficulty. For specific groups,

including our eventual application case of G2, they are computed and listed in tables
in [GP05, pg. 159]. First, they are interpreted as orbital integrals on compact-at-infinity

form Gc by endoscopic transfer. The spectral side of the trace formula on Gc is then

possible to compute, allowing the orbital integrals to be solved for once the coefficients in

terms of L-values are known. Alternatively, [CT20] uses another trick, inputting vanishing
results for small weight automorphic representations to solve for unstable orbital integrals

in the resulting system of linear equations.

They can also be computed directly from unstable orbital integrals: [Kot77] and [Täı17]
use Bruhat–Tits theory to do this for GL3 and some classical groups respectively. Either

way, all currently known methods are not fully general and extremely complicated.

Method 2:
Fortunately, there is a much simpler way to compute for our desired application of

level-1 representations on G2. Recalling that IG
c
2 is known from [CR15], we can compare

the expansions (1) for G2 and Gc
2. The term for SG2 a appears in the expansion for IG

c
2

and can therefore be solved for and substituted in the expansion for IG2 . In total, we get
a formula

IG2 = IG
c
2 +corrections,

where the corrections are in terms of SH for smaller endoscopic H.
In the next section, we will see that there aren’t actually that many H appearing.

Finally, Section 7 will show that the terms for these H are easily computed through

another trick in the case of level-1. Method 2 also gives in Section 8 a Jacquet–Langlands-

style result comparing quaternionic representations on G2 to representations on Gc
2.

Note. We comment on possible extensions of method 2. The comparison to a compact
form would work for any group with a form that is compact at infinity and unramified at

all finite places. These appear in types, G2,B3,D4,B4,F4,B7,D8,B8 and E8 as enumerated

in [Gro96].
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Being able to easily count the endoscopic terms spectrally is more rare and requires
some kind of recursive expansion down to only terms of Lie type An

1 . This in particular

works out for type D4, so level-1 forms on type D4 should be countable analogously to

method 2.
In another direction, plugging in other unramified test functions could compute counts

weighted by Hecke eigenvalues. These would be in terms of the same weighted counts on

Gc
2 and certain other weighted counts of classical modular forms that are determined by

combinatorial formulas for unramified transfers as explained in [Dal22, §5.4].

4. G2 computation setup

From now on, we specialize to G = G2 and discuss how to apply the previous theory to

count |Qk(1)|.

4.1. Root system of G2

4.1.1. Roots. We use notation from [LS93] to specify the root system of G2. Let K

be the maximal compact SU(2)×SU(2)/±1 of G2(R), and choose a maximal torus T (R)
that is inside K. Make a choice of simple roots of G2(R) that are noncompact; in this
case determining a unique dominant chamber with respect to both G2 and K. Let β be

the highest root of G2 with respect to the choice of simple roots and note that it is long.

We now give explicit coordinates. As a mnemonic convention, roots indexed 1 will be
short and roots indexed 2 will be long. Figure 1 displays all the roots and shades our

choices of dominant Weyl chambers for both G2 and K. The compact roots at infinity

are the four along the εi-coordinate axes.
If the roots of the short and long SU2 are 2ε1 and 2ε2 respectively, then the simple

roots of G2 are

(short) α1 =−ε1+ ε2, (long) α2 = 3ε1− ε2.

The other positive roots are

(short) 2ε1 = α1+α2, ε1+ ε2 = 2α1+α2,

(long) 2ε2 = 3α1+α2, 3ε1+ ε2 = 3α2+2α2.

The fundamental weights are

λ1 = 2α1+α2, λ2 = 3α1+2α2.

Of course β = λ2.

The Weyl group is generated by simple reflections

sα1

(
2ε1
2ε2

)
=

(
ε1+ ε2
3ε1− ε2

)
, sα2

(
2ε1
2ε2

)
=

(
−ε1+ ε2
3ε1+ ε2

)
.

Finally,

ρK = ε1+ ε2 = 2α1+α2,

ρG = 4ε1+2ε2 = 5α1+3α2.
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Figure 1. Character lattice, roots and choices of dominant chamber for G2.

4.1.2. Coroots. Coroots will follow the opposite mnemonic: Coroots indexed 1 are
long, and coroots indexed 2 are short.

Since G2 has trivial center, X∗(T ) is the root lattice, which is exactly

X∗(T ) = {aε1+ bε2 : a,b ∈ Z,a+ b ∈ 2Z}.

Let (δ1,δ2) be the dual basis to (2ε1,2ε2): that is, (δi,εj) = 1/21i=j . Then

X∗(T ) = {aδ1+ bδ2 : a,b ∈ Z,a+ b ∈ 2Z}.

Since ε1 and ε2 are perpendicular,

(2ε1)
∨ = 2δ1,

(2ε2)
∨ = 2δ2.

More generally, the Weyl action gives

(α∨
1 ,2ε1) =−1, (α∨

1 ,2ε2) = 3,

(α∨
2 ,2ε1) = 1, (α∨

2 ,2ε2) =−1,
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so we get simple coroots

α∨
1 =−δ1+3δ2,

α∨
2 = δ1− δ2.

This reproduces that the coroot lattice is X∗(T ), implying that G2 is simply connected.

For completeness,

λ∨
1 = δ1+3δ2,

λ∨
2 = δ1+ δ2.

4.2. Quaternionic discrete series for G2

The quaternionic discrete series on G2 of weight k for k ≥ 2 lies in the L-packet

ΠG2

disc((k−2)β).

The members of this L-packet have Harish–Chandra parameters:

(k−2)β+ρG, sα1
((k−2)β+ρG), sα2

((k−2)β+ρG).

As in [GGS02], the quaternionic member is the one with minimal K -type λB = 2kε2. We
know that the discrete series π(ω,λ) has minimal K -type

λB = ω(λ+2ρG)−2ρK

by the Blattner formula [Kna01, Thm. 9.20]. Therefore, the weight-k quaternionic discrete

series πk is specifically π(sα2
,(k−2)β) – computing, sα2

fixes ρK so

sα2
(λ+2ρG)−2ρK = sα2

(λ+2ρG−2ρK) = sα2
(λ+2β) = sα2

(kβ) = 2kε2.

This is the discrete series with Harish–Chandra parameter

λk,H := sα2
((k−2)β+ρG).

Call it πk and its pseudocoefficient ϕk.
Theorem 3.1.1 then gives that for k > 2,

|Qk(1)|= Ispec(ϕk⊗1K) (2)

if we choose measures so that volG2(Ẑ) = 1. Note again that this heavily depends on the
miracle of Proposition 2.3.3 and a similar result does not hold either for pseudocofficients

for the other members of Πdisc((k−2)β) or for the Euler–Poincaré function.

Note. Theorem 3.1.1 for just the case of G2 can be produced much more easily by the

computation in [Mun20] of the A-packets of infinitesimal character (k−2)β+ρG for k > 2.
Mundy found that πk appears in all of them. Therefore, trace-distinguishability follows

immediately from [AJ87, Lemma 8.8] that a given discrete series appears in the character

formula of exactly one element of such an A-packet.
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5. Groups contributing and related constants

5.1. Elliptic endoscopy of G2

The elliptic endoscopic groups of G2 are G2, PGL3 and SO4. This is stated in a thesis
[Alt13] but not fully explained, so we fill in some details here for reader convenience.

We use notational conventions for endoscopy as in [Dal22, §3]. We compute the possible

endoscopic pairs (s,ρ).
Since G2 has trivial center, the cohomology condition on s is always satisfied so we

don’t bother checking it. Trivial center further gives that the isomorphism class of the

pair only depends on s through its centralizer. Next, we note a result that we thank a
referee for pointing out:

Lemma 5.1.1. Let G be a split, adjoint and simply connected group over number field

F. Then all its endoscopic groups are split.

Proof. Since G is simply connected, there is an L-embedding LH ↪→ LG. Since G is split,

there is a projection LG � Ĝ. By inspecting the reconstruction of LH from (s,ρ), the

image of LH in Ĝ is connected if and only if ρ is trivial.

However, since Ĝ also has trivial center, s is fixed by ρ which implies that the image of
LH in Ĝ is the centralizer of s. It is therefore necessarily connected since s is semisimple

and Ĝ is simply connected.

In particular, ρ is always trivial and we can always find a valid s for any possible

centralizer Ĥ. The possible elliptic Ĥ with trivial ρ are G2,SL3 and SL2 × SL2/{±1}
corresponding to split endoscopic groups G2,PGL3, and SL2×SL2/{±1}. In each of these

cases, Λ = 1.
If a group contributes to the stabilization applied to our test function, then by the

fundamental lemma, it needs to be unramified away from infinity. By formulas for

transfers of pseudocoefficients (see [Dal22, lem. 5.6.1]), it also needs to have an elliptic
maximal torus at infinity. The only groups contributing are therefore the G2 and the

SL2×SL2/{±1}.

5.2. Endoscopic constants and normalizations

5.2.1. The ι. Let H = SL2×SL2/±1, and let Gc
2 be the unique nonsplit inner form

of G2 over Q which is compact at infinity. Then,

ι(Gc
2,H) = ι(G2,H) = |Λ(H,H,s,η)|−1 τ(G)

τ(H)
= 1 · 1

2
,

ι(Gc
2,G2) = 1,

by Kottwitz’s formula for Tamagawa numbers (note that ker1(Q,ZH) = ker1(Q,{±1})
= 1).

5.2.2. The transfer factors. We also need to fix transfer factors at all places for

both G2 and Gc
2 to compute transfers. The computations in [Täı17] demonstrate how

to do so explicitly. First, they can be chosen consistently by fixing a global Whittaker
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datum. The corresponding local Whittaker datum determines the local transfer factors
on G2 as in [KS99]. Since G2 is defined over Z, we can choose global data that are

unramified/admissible at all finite places with respect to the G2(Zp) so we can use the

fundamental lemma at all finite places as in [Hal93, §7]. By [Kal18, §4.4], the Whittaker
datum on G2 also gives compatible local transfer factors on Gc

2 (note that G2 is simply

connected for applying Theorem 4.4.1). These allow us to use the fundamental lemma at

finite places since transfer factors there stay the same as our choices for G2.

We need to know two things about the Archimedean transfer factors. First, Whittaker
normalization lets us use the formulas for discrete transfer from [She10] on both G2 and

Gc
2. Note here that G

c
2 is in particular a pure inner form since G2 is adjoint. This formula

is stated in a slightly easier to use form in [Lab11, §IV.3] for our case of ρG−ρH ∈X∗(T )
(the inv(π(1),π(w)) of Shelstad is the κ · ε term of Labesse).

Second, we need to know which element of Πdisc((k−2)β) our Archimedean Whittaker

datum makes Whittaker-generic. This will have to be π(k−2)β,1 since our choice of
dominant Weyl chamber has all simple roots noncompact and is the only possible such

choice up to ΩK (see the discussion before Lemma 4.2.1 in [Täı17]. In fact, there is only

one possible conjugacy class of Whittaker datum at infinity by considerations explained

there).

5.2.3. The stabilizations. We fix canonical measure at finite places so that the

fundamental lemma directly gives 1H
K∞

G2

= 1K∞
H
. Recall that EP-functions and pseudo-

coefficients are defined depending on measure so we don’t need to fix measure at infinity.

Then, Equation (1) gives

IG2(ϕπG2
(sα2

,(k−2)β)⊗1K∞
G2

)

= SG2(ηG2

(k−2)β ⊗1K∞
G2

)+
1

2
SH((ϕπG2

(sα2
,(k−2)β))

H ⊗1K∞
H
). (3)

A simple case of the discrete transfer formula in [Lab11, §IV.3] computes that

(η
Gc

2

(k−2)β)
G2 = ηG2

(k−2)β (note that ΩR(G
c
2)\ΩC(G

c
2) is trivial so κ is too), so

IG
c
2(η

Gc
2

(k−2)β ⊗1K∞
Gc

2

) = SG2(ηG2

(k−2)β ⊗1K∞
G2

)+
1

2
SH((η

Gc
2

(k−2)β)
H ⊗1K∞

H
).

Since type A1 ×A1 has no nontrivial centralizer of full semisimple rank, all elliptic

endoscopy of SL2×SL2/± 1 is nonsplit. Therefore, it is ramified at some prime, so the

transfers of 1K∞
H

vanish, implying that SH = IH on our test functions. Substituting one
stabilization into another finally gives

IG2(ϕπG2
(sα2

,(k−2)β)⊗1K∞
G2

) = IG
c
2(η

Gc
2

(k−2)β ⊗1K∞
Gc

2

)

− 1

2
IH((η

Gc
2

(k−2)β)
H ⊗1K∞

H
)+

1

2
IH((ϕπG2

(sα2
,(k−2)β))

H ⊗1K∞
H
) (4)

under canonical measure at finite places.
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This is our realization of method 2. There are three steps remaining to get counts:

1. Compute the transfers of EP-functions to H.

2. Write the resulting IH(ηλ ⊗ 1KH
) terms in terms of counts of level-1, classical

modular forms.

3. Look up values for the Gc
2-term from [CR15].

6. Real endoscopic transfers

Let H again be the one endoscopic group we care about: SL2×SL2/{±1}. We want to

compute (ϕπG2
(sα2

,(k−2)β))
H and (η

Gc
2

(k−2)β)
H . By the choices of transfer factors in Section

5.2.2, we may do so by the formulas in [Lab11, §IV.3].
As a choice for computation that doesn’t affect the final result, we realize the roots of H

as 2ε1 and 2ε2. Orient X∗(T ) by setting the first quadrant in ε1 and ε2 to be H -dominant.

The Weyl elements Ω(G,H) that send the G-dominant chamber to an H -dominant one
are {1,sα1

,sα2
}.

6.1. Root combinatorics

Since ρG−ρH ∈X∗(T ), [Lab11, §IV.3] gives the transfer of the pseudocoefficient of the
quaternionic discrete series to H :

(ϕπG2
(sα2

,(k−2)β))
H =

κH(s−1
α2

)ηH(k−2)β+ρG−ρH
−κH(sα1

s−1
α2

)ηHsα1
((k−2)β+ρG)−ρH

−ηHsα2
((k−2)β+ρG)−ρH

(5)

for some signs κH(·).
We compute that ρH = ε1+ ε2. Then

(k−2)β+ρG−ρH = (k−2)(3ε1+ ε2)+(3ε1+ ε) = 3(k−1)ε1+(k−1)ε2.

In addition,

sα1
ρG = 5ε1+ ε2, sα1

β = β,

sα2
ρG = ε1+3ε2, sα2

β = 2ε2,

so

sα1
((k−2)β+ρG)−ρH = (k−2)(3ε1+ ε2)+(4ε1) = (3k−2)ε1+(k−2)ε2

and

sα2
((k−2)β+ρG)−ρH = (k−2)(2ε2)+(2ε2) = 2(k−1)ε2.

6.2. Endoscopic characters

6.2.1. Setup. It remains to compute the κ terms in Equation (5). These signs depend

in a very complicated way on the realization of H and the exact transfer factors chosen.

We will therefore use an indirect trick to compute them more easily.
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Let ψH be a (discrete in our case) L-parameter for H(R) and ψG the composition with
LH ↪→ LG2. Then we have an identity of traces over L-packets:

SΘψH
(fH) =

∑
π∈ΠψG

〈sH,π〉Θπ(f),

where fH is a transfer of f, Θπ is the Harish–Chandra character, SΘψH
is the stable

character corresponding to the L-packet, ΠψG
is the L-packet corresponding to the L-

parameter, and 〈sH,π〉 is shorthand for a sign depending on π and the choice of Whittaker

data. This sign comes from pairing an element sH of the centralizer of ψG determined by
H with a character associated to π through the Whittaker datum. See [Kal16, §1] for an
exposition of how this works in general.

If π on G2 is discrete series, Labesse’s formula tells us that we can choose

(ϕG2
π )H =

∑
λ

ε(λ,π)ηHλ

for some signs ε that depend on the transfer factor and some set of weights λ that only
depends on the infinitesimal character of π.

Let ψλ be the L-parameter corresponding to weight-μ discrete series on H. Plugging

this formula for ϕG2
π into the trace identity for ψλ gives that

ε(λ,π) =
∑
μ

ε(μ,π)SΘψλ
(ηHμ ) =

∑
π′∈ΠψG

〈sH,π′〉Θπ′(ϕG2
π ) =

{
〈sH,π〉 π ∈ΠψG

0 else
,

where ψG is the pushforward of ψλ. The last equality is the definition of pseudocoefficient
since all π in a packet for an L-parameter should be tempered. This computation shows

that ψλ is required to push forward to the parameter for π and that ε(λ,π) = 〈sH,π〉.

6.2.2. The trick. Now, we are ready to compute the signs. Instead of doing the

hard work of figuring out how the transfer factor directly affects the signs in Labesse’s

formulation, we will use the key fact that ε(λ,π)= 〈sH,π〉=1 whenever π is the Whittaker-

generic member of its L-packet. Therefore, in Labesse’s formula for the generic member
π1,(k−2)β ,

(ϕπG2
(1,(k−2)β))

H = ηH(k−2)β+ρG−ρH
+κH(sα1

)sgn(sα1
)ηHsα1

((k−2)β+ρG)−ρH

+κH(sα2
)sgn(sα2

)ηHsα2
((k−2)β+ρG)−ρH

,

all the coefficients need to be 1. The allows to solve

κH(sα1
) = κH(sα2

) =−1

for our choice of transfer factors. Right-ΩR-invariance of Labesse’s κ then also gives that

κH(sα1
sα2

) =−1.
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6.3. Final formulas for transfers

Therefore, our final transfer is

(ϕπG2
(sα2

,(k−2)β))
H =−ηH3(k−1)ε1+(k−1)ε2

+ηH(3k−2)ε1+(k−2)ε2
−ηH2(k−1)ε2

. (6)

Transfers from Gc
2 are easier. Here, ΩR(G

c
2)\ΩC(G

c
2) is trivial so the average value of κ is

1. Averaging Labesse’s formula as in [Dal22, cor. 5.1.5] therefore gives

(η
Gc

2

(k−2)β)
H = ηH3(k−1)ε1+(k−1)ε2

−ηH(3k−2)ε1+(k−2)ε2
−ηH2(k−1)ε2

. (7)

7. The H = SL2×SL2/±1 term

Here, we compute the terms IH(ηλ ⊗ 1KH
) for Euler–Poincaré functions ηλ. Any λ =

aε1+ bε2 is a weight of H if a+ b is even. Note first that

IH(ηHλ ⊗1KH
) =

∑
π∈ARdisc(H)

trπ∞(ηHλ )trπ∞(1KH
) =

∑
π∈ARdisc(H)

π unram.

trπ∞(ηHλ ),

by Arthur’s simple trace formula and using our choice of canonical measure at finite

places.

To move forward, we need to understand automorphic reps on H by relating them to
other groups. Consider the sequence

1→±1→ SL2×SL2 →H → 1.

It induces on local or global F

1→±1→ SL2×SL2(F )→H(F )→ F×/(F×)2 → 1,

using that H1(F,±1) = F×/(F×)2 and H1(F,SL2) = 1 for the F we care about (the R
case of the second equality comes from the determinant exact sequence on GL2). The

image of SL2×SL2(F ) is the connected component H(F )0.

Note. As pointed out by a referee, we may also think of H as (GL2×GL2)
det/Z, where

the superscript det signifies that the two coordinates have the same determinant and the

Z is the center of GL2 embedded diagonally. Then, since Gm has trivial cohomology,
H(F ) = (GL2(F )×GL2(F ))det/F×. This suggests an alternate way to perform the

ensuing computations that may be conceptually clearer.

7.1. Cohomological representations of H(R)

Next, we recall that the infinite trace measures an Euler characteristic against (h,KH,∞)-

cohomology:

trπ∞(ηHλ ) = χ(H∗(h,KH,∞,π∞⊗Vλ)),

where h is the Lie algebra of H∞ and Vλ is the finite-dimensional representation of weight

λ of H0
∞ pulled back to H∞. Using the definition from [BW00, §5.1],

H∗(h,KH,∞,π∞⊗Vλ) =H∗(h,K0
H,∞,π∞⊗Vλ)

KH,∞/K0
H,∞,
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it suffices to consider the π∞ whose restrictions to H0
∞ contain a component that

is cohomological when pulled back to [SL2 × SL2](R). By Frobenius reciprocity and
semisimplicity of inductions, these are exactly the irreducible constituents of IndH∞

H0
∞
π′

for π′ cohomological of H0
∞.

Next, H0
∞ is index 2 in H∞. Pick h ∈ H∞−H0

∞, and let π′(h) be the representation

γ 
→ π′(h−1γh). Define character

χ :H∞ 
→H∞/H0
∞ � {±1}.

As noted in the proof of Lemma 2.5 in [LL79], there are two cases for H0
∞-representations

π′:

1. π′ �= π′(h): Then IndH∞
H0

∞
π′ is irreducible and ResH∞

H0
∞
IndH∞

H0
∞
π′ = π′⊕π′(h).

2. π′ = π′(h): Then IndH∞
H0

∞
π′ =V ⊕(V ⊗χ) for some irreducible V. Also, ResH∞

H0
∞
IndH∞

H0
∞
π′

= π′⊕π′

Recalling a standard result, the cohomological representations of SL2(R) with respect
to λ are:

• A discrete series L-packet {πλ,1, πλ,s} (where ΩSL2
= {1,s}),

• The trivial representation 1SL2
if λ= 0.

By the Künneth rule, cohomological representations of SL2×SL2(R) are exactly products

of those on SL2(R). Those of H0
∞ are exactly those of SL2×SL2(R) that are trivial on

±1 – in other words, with λ= aε1+ bε2 and a+ b even.
Consider such λ. There are three cases of inductions to consider to compute the

cohomological representations of H∞. Note that conjugation by h ∈ H∞ −H0
∞ swaps

the two members of a discrete-series L-packet of an embedded SL2 factor and fixes the
trivial representation.

• a,b �= 0: We look at the inductions of products of discrete series. This is case (1)
so the 4 products pair up in sums that are 2 members of an L-packet. These are
of course πH

λ,1 and πH
λ,s, where s is a length-1 element of ΩH :

πH
λ,1|H0

∞
= (πaε1,1�πbε2,1)⊕ (πaε1,s�πbε2,s),

πH
λ,s|H0

∞
= (πaε1,1�πbε2,s)⊕ (πaε1,s�πbε2,1).

• Without loss of generality, a = 0,b �= 0: We also need to consider inductions of
1�πbε2,�. This is case (1), and both induce to a single irreducible σH

λ :

σH
λ |H0

∞
= (1�πbε2,1)⊕ (1�πbε2,s).

• a = b = 0: In addition to both the above, we need to consider the induction of
1SL2

�1SL2
. This is case (2). This trivial representation induces to 1H∞ ⊕χ on

H∞. Both factors are cohomological.

Grothendieck group relations stay true restricted to H0
∞, so we can compute traces

against ηλ. Recall that in SL2(R)

1= I−π0,1−π0,s,

where I is some parabolically induced representation with trivial trace against ηSL2
0 .
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First, by our normalization

trπH
λ,1

(ηHλ ) = trπH
λ,s

(ηHλ ) = 1/2.

Next, working in H0
∞ and for λ= bε2,

1�πλ,� = (I−π0,1−π0,s)�πλ,� = I�πλ,�−π0,1�πλ,�−π0,s�πλ,�,

so

σH
λ = 1�πλ,1+1�πλ,s = I� (πλ,1+πλ,s)−πH

0+λ,1−πH
0+λ,s,

implying

trσH
λ
(ηHλ ) =−1.

Finally,

1�1= (I−π0,1−π0,s)� (I−π0,1−π0,s)

= I� I− I� (π0,1+π0,s)− (π0,1+π0,s)� I+πH
0+0,1+πH

0+0,s,

so

tr1(η
H
λ ) = 1.

Since ηλ is supported on H0
∞, we similarly have

trχ(η
H
λ ) = 1.

In total, our H -term becomes a count

IH(ηHλ ⊗1KH
) =

∑
π∈ARdisc,ur(H)

mH
disc(π)w

H(π∞), (8)

where wH is a weight

wH(π∞) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 π∞ not cohomological of weight λ

1/2 π∞ one of the πH
λ,∗

−1 π∞ = σH
λ

1 π∞ trivial or χ and λ= 0

.

Call the cohomological cases type I, II and III in order.

7.2. Reduction to modular form counts

We now recall two results from [CR15]. Consider central isogeny G→ G′ of semisimple
algebraic groups over Z. If π′ = π′

∞ ⊗ π′∞ is an unramified, discrete automorphic

representation of G′, let R(π′) be the set of unitary, admissible representations π =

π∞⊗π∞ of G(A) that satisfy:

• π∞ is unramified with set of Satake parameters c∞(π∞) induced from that of π′∞

through TG
G′ : Ĝ′ → Ĝ.

• π∞ is a constituent of the restriction of π′
∞ through G(R)→G′(R).

Note that the size of R(π′) is the number of constituents of the restriction π′
∞|G(R).
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Theorem 7.2.1 [CR15, prop. 4.7]. Let π be an automorphic representation of G. Then

mG
disc(π) =

∑
π′:π∈R(π′)

mG′

disc(π
′)[π∞,π′

∞],

where [π∞,π′
∞] is the multiplicity of π∞ in π′

∞|G(R).

We will apply this with G=H and G′ =PGL2×PGL2. Make similar definitions of type

I, II and III for representations of [PGL2×PGL2](R). Type I on PGL2×PGL2 restricts
to the sum over a discrete L-packet on H∞. Type II and III on PGL2 ×PGL2 have

irreducible restrictions. These restrictions partition the cohomological representations of

H except for χ so

mH
disc(π∞⊗π∞) =

∑
c∞(π′∞)∈(TH

G′ )
−1(c∞(π∞))

mG′

disc(π
′
∞⊕π′∞)

when π∞ ⊆ π′
∞|H∞ and the multiplicity is 0 when π∞ = χ. Now, we sum over the

constituents of π′
∞|H∞ and the possible values of c∞(π∞), noting that TH

G′ is surjective.

This gives

Corollary 7.2.2.∑
π∈ARdisc,ur(H)

mH
disc(π)w

H(π∞) =
∑

π∈ARdisc,ur(G′)

mG′

disc(π)w
G′
(π∞),

where wG′
is the weight

wPGL2×PGL2(π∞) =

⎧⎪⎨⎪⎩
1 π∞ type I

−1 π∞ type II

1 π∞ type III

that only differs from wH by multiplying the type I case by two.

Let Sk(1) be the set of normalized, level-1, weight-k cuspidal (new)eigenforms. If λ =

aε1+ bε2, then type I representations on PGL2×PGL2 correspond to pairs in Sa+2(1)×
Sb+2(1). Type II is a single form times the trivial representation, and type III is only the
trivial representation.

7.3. Final formula for SH

Therefore, if

Sk = |Sk(1)|,

we get:

IH(ηHaε1+bε2 ⊗1KH
) = (Sa+2−1a=0)(Sb+2−1b=0), (9)
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using canonical measure at finite places. By a classical formula ([DS05, Thm. 3.5.2], for

example),

Sa+2 =

⎧⎪⎨⎪⎩
0 a+2 = 2 or a+2 odd


a+2
12 �−1 a+2≡ 2 (mod 12)


a+2
12 � else

.

8. A Jacquet–Langlands-style result

8.1. First form

Generalizing Equation (4) slightly and substituting in Equations (6) and (7) gives

IG2(ϕπk
⊗f∞) = IG

c
2(η

Gc
2

(k−2)β ⊗f∞)− IH(ηH(3k−3)ε1+(k−1)ε2
⊗ (f∞)H)

+ IH(ηH(3k−2)ε1+(k−2)ε2
⊗ (f∞)H) (10)

for any unramified function f∞ (we use here that (Gc
2)

∞ = (G2)
∞). This will let us

describe the set Qk(1) for k > 2 in terms of certain representations of Gc
2 and H.

Choose π= πk⊗π∞ ∈Qk(1). Since π
∞ is unramified, it can be described by a sequence

of Satake parameters: For each prime p, a semisimple conjugacy class cp(π
∞) ∈ [Ĝ2]ss

(note that G2 is split so we don’t need to worry about the full Langlands dual and see

[ST16, §3.2] for full background).
The endoscopic datum for H also gives an embedding Ĥ ↪→ Ĝ2 (noting again that

everything is split) whose image contains a chosen maximal torus and therefore induces

a map

TG2

H : [Ĥ]ss � [Ĝ2]ss.

The fibers of this map are ΩG2
-orbits of conjugacy classes in H and have size 3 at G2-

regular elements.

Proposition 8.1.1. Let k > 2 and π∞ an unramified representation of (G2)
∞. Then

mG2

disc(πk⊗π∞) =m
Gc

2

disc(V(k−2)β ⊗π∞)− 1

2
|SH(π∞,(3k−3)ε1+(k−1)ε2)|

+
1

2
|SH(π∞,(3k−2)ε1+(k−2)ε2)|.

Recall here that Vλ is the finite-dimensional representation of Gc
2 with highest weight λ.

Also, SH(π∞,λ) is the multiset of π∞⊗π∞
1 ∈ ARdisc(H) with multiplicity such that

• π∞ ∈ΠH
disc(λ),

• For all p, cp(π
∞
1 ) ∈ (TG2

H )−1(cp(π
∞)).

Proof. This is a standard Jacquet–Langlands-style argument. Through the Satake

isomorphism, each fp can be thought of as a function [Ĝ2]ss → C through fp(cp(π)) =

trπp
(fp). It is in fact a Weyl-invariant regular function on a maximal torus in Ĝ2.

The full version of the fundamental lemma (see the introduction to [Hal95],
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for example) shows that

fH
p (cp) = fp(T

G2

H (cp))

for all cp ∈ Ĥ.

There are only finitely many sequences cp(π
∞
1 ) and TG2

H (cp(π
∞
1 )) for π∞

1 the unramified
finite component of an automorphic representation either:

• of G2 with infinite part πk,
• of Gc

2 with infinite part V(k−2)β ,
• or of H with infinite part in Πdisc((3k−3)ε1+(k−1)ε2) or Πdisc((3k−2)ε1+(k−

2)ε2).

Therefore, we can choose an f∞ that is 0 on all of these sequences cp(π
∞
1 ) except 1

on exactly the sequence cp(π
∞) (this reduces to finding Weyl-invariant polynomials on

(C×)2 that take specified values on certain Weyl orbits). The result follows from plugging
this f∞ into Equation (10), noting that the wH from Equation (8) is always 1/2 in the

relevant cases.

8.2. In terms of modular forms

We can use the argument from Section 7.2 to reduce the H -multiplicity terms to PGL2-

multiplicity ones.

First, we have a map on conjugacy classes

TH
PGL2×PGL2

: [ ̂PGL2×PGL2]ss � [Ĥ]ss.

Since the first group is SL2×SL2(C), the fibers of this map are of the form {c,− c} for

some c ∈ [SL2×SL2(C)]ss. Composing then gives map

TG2

PGL2×PGL2
: [ ̂PGL2×PGL2]ss � [Ĝ2]ss.

This allows us to define SPGL2×PGL2(π∞,λ) analogous to SH(π∞,λ) for all λ= aε1+ bε2
with both a and b even. For indexing purposes, set it to be empty when a and b aren’t
even.

Formula (9) also gives us that SH(π∞,aε1+ bε2) = ∅ when a and b aren’t both even.

Recall from §7.2 that the restriction of discrete series πPGL2×PGL2

λ to H(R) has as
components the two members of the L-packet ΠH

disc(λ). Therefore, a similar analysis using

Theorem 7.2.1 shows that

|SH(π∞,λ)|= 2|SPGL2×PGL2(π∞,λ)|.

Finally, PGL2 is a quotient of GL2 by a central torus with trivial Galois cohomology, so

automorphic representations on PGL2 are just those on GL2 with all components having

trivial central character. Recalling injection

ι : [SL2×SL2(C)]ss ↪→ [GL2×GL2(C)]ss,

this gives:
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Corollary 8.2.1. Let k > 2 and π∞ an unramified representation of (G2)
∞. Then

mG2

disc(πk⊗π∞) =m
Gc

2

disc(V(k−2)β ⊗π∞)−|SGL2×GL2(π∞,(3k−3)ε1+(k−1)ε2)|
+|SGL2×GL2(π∞,(3k−2)ε1+(k−2)ε2)|.

Recall here that Vλ is the finite-dimensional representation of Gc
2 with highest weight λ.

Also, SGL2×GL2(π∞,λ) is the set of π∞⊗π∞
1 ∈ ARdisc(GL2×GL2) such that

• π∞ is the discrete series πGL2×GL2

λ ,

• For all p, cp(π
∞
1 ) = ι(c′p) for some c′p ∈ (TG2

PGL2×PGL2
)−1(cp(π

∞)). Here ι is the
map [SL2×SL2(C)]ss ↪→ [GL2×GL2(C)]ss.

Of course, since all infinite factors in sight are discrete series, we may again replace the

mdisc by mcusp using [Wal84].
Note of course that SGL2×GL2(π∞,aε1+bε2)= ∅ unless both a and b are even. Therefore,

we can interpret this as, for k > 2:

• If k is even: Qk(1) is the corresponding set of representations transferred from
Gc

2 in addition to representations transferred from pairs of cuspidal eigenforms in
S3k(1)×Sk(1).

• If k is odd: Qk(1) is the corresponding set of representations transferred from
Gc

2 except for representations that are also transferred from pairs of cuspidal
eigenforms in S3k−1(1)×Sk+1(1).

Results for level > 1 would be a lot more complicated since formula (4) would have

many further hyperendoscopic terms and the comparison to GL2×GL2 would not work
as nicely.

9. Counts of forms

9.1. Formula in terms of IG
c
2

To get counts instead of a list, combining formulas (2),(10) and (9) gives that

|Qk(1)|= IG
c
2(η

Gc
2

λ ⊗1K∞
Gc

2

)− (S3k−1−13k−3=0)(Sk+1−1k−1=0)

+(S3k−13k−2=0)(Sk−1k−2=0), (11)

where Sk as before represents the count of classical modular forms of weight k.

Substituting in the formulas for Sk, for k > 2:

|Qk(1)|= IG
c
2(ηλ⊗1K∞

Gc
2

)

+

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩


k
4 �

(

 k
12�−1

)
k ≡ 2 (mod 12)


k
4 �


k
12� k ≡ 0,4,6,8,10 (mod 12)

−
(

 3k−1

12 �−1
)(


k+1
12 �−1

)
k ≡ 1 (mod 12)

−
(

 3k−1

12 �−1
)

k+1

12 � k ≡ 5,9 (mod 12)

−
 3k−1
12 �
k+1

12 � k ≡ 3,7,11 (mod 12)

.
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9.2. Computing IG
c
2

The group Gc
2(R) is compact, so the IG

c
2 term takes a very simple form: L2(Gc

2(Q)\Gc
2(A))

decomposes as a direct sum of automorphic representations and the EP-functions ηλ are

just scaled matrix coefficients of the finite-dimensional representations Vλ with highest

weight λ on Gc
2(R). Therefore,

IG
c
2(ηλ⊗1K∞

Gc
2

) =
∑

π∈AR(Gc
2)

1π∞=Vλ
trπ∞(1K∞

Gc
2

),

which is just counting the number of unramifed automorphic reps of Gc
2 that have infinite

component Vλ.

For reader convenience, we now explain in detail an argument well known to experts.
Since unramified representations have one-dimensional spaces of K∞-fixed vectors, taking

K∞
Gc

2
invariants sends each such π to a linearly independent copy of Vλ that together span

the Vλ-isotypic component of

L2(Gc
2(Q)\Gc

2(A)/K
∞
Gc

2
) = L2(Gc

2(Z)\Gc
2(R))⊆ L2(Gc

2(R)).

By Peter–Weyl, L2(Gc
2(R)) has Vλ-isotypic component V ⊕dimVλ

λ . In fact, this component
for both the left and right actions is the same subspace. Therefore, the number of copies

of Vλ ⊆ L2(Gc
2(Z)\Gc

2(R)) is dim
(
V

Gc
2(Z)

λ

)
by a dimension count.

Summarizing:

IG
c
2(ηλ⊗1K∞

Gc
2

) = dim
(
V

Gc
2(Z)

λ

)
. (12)

A PARI/GP 2.5.0 program in the online appendix to [CR15] computes this for all λ by

pairing the trace character of Vλ|G2(Z) with the trivial character.
An explicit paper formula for this computation is more-or-less written out in an honors

thesis of Steven Sullivan [Sul13]. Sullivan writes out the traces of all 16 conjugacy classes

in Gc
2(Z) against V(k−2)β as polynomials of k with coefficients that are sums of kth

powers of 7th, 8th and 12th roots of unity. This gets a polynomial expression for the

trace character pairing and therefore IG
c
2(ηλ⊗1K∞

Gc
2

) in cases (mod 168). Simplifications

in Mathematica give a reasonable closed-form version in Section 9.4.
It is important to note here that getting the explicit descriptions and sizes of

the conjugacy classes in Gc
2(Z) was nontrivial and required some trickery in both

Sullivan’s and Chenevier-Täıbi’s computations. This step would be an obstacle to any

generalizations.

9.3. Table of counts

Table 1 gives values of |Qk(1)| for k = 3 to 52 produced by formula (11) and [CR15]’s
table for formula (12). The lowest-weight example is bolded, although this work does not

rule out the existence of an example with weight 2 or weight 1 (as defined by [Pol20,

§1.1]).
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Table 1. Counts of discrete, quaternionic automorphic representations of level 1 on G2.

k |Qk(1)| k |Qk(1)| k |Qk(1)| k |Qk(1)| k |Qk(1)|
3 0 13 5 23 76 33 478 43 1792
4 0 14 13 24 126 34 610 44 2112
5 0 15 8 25 121 35 637 45 2250
6 1 16 23 26 175 36 807 46 2619
7 0 17 17 27 173 37 849 47 2790
8 2 18 37 28 248 38 1037 48 3233
9 1 19 30 29 250 39 1097 49 3447
10 4 20 56 30 341 40 1332 50 3938
11 1 21 50 31 349 41 1412 51 4201
12 9 22 83 32 460 42 1686 52 4780

9.4. Explicit formula

For the reader’s amusement, we build off the work of [Sul13] to present a closed-form

formula for |Qk(1)| that fits in a few lines:

|Qn+2(1)|=
1

12096

1

120
(n+1)(3n+4)(n+2)(3n+5)(2n+3)+

1

216

1

6
(n+1)(n+2)(2n+3)

+
5

192

1

8

{
(n+2)(3n+4) n= 0 (mod 2)

−(n+1)(3n+5) n= 1 (mod 2)
+

1

18

{
2n
3 +1 n= 0 (mod 3)

−
n
3 �−1 n= 1,2 (mod 3)

+
1

32

⎧⎪⎨⎪⎩
3n
2 +10 n= 0 (mod 4)

6
n
4 �−4 n= 1 (mod 4)

−2
n
4 �−2 n= 2,3 (mod 4)

+
1

24

⎧⎪⎨⎪⎩
3
n

6 �+5 n= 0,1 (mod 6)

3
n
6 �−2 n= 2,3 (mod 6)

3
n
6 �+3 n= 4,5 (mod 6)

+
1

7

⎧⎪⎨⎪⎩
1 n= 0 (mod 7)

−1 n= 4 (mod 7)

0 n= 1,2,3,5,6 (mod 7)

+
1

4

⎧⎪⎨⎪⎩
1 n= 0 (mod 8)

−1 n= 5 (mod 8)

0 n= 1,2,3,4,6,7 (mod 8)

+

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩


n+2
4 �

(

n+2

12 �−1
)

n= 0 (mod 12)


n+2
4 �
n+2

12 � n= 2,4,6,8,10 (mod 12)

−
(

 3n+5

12 �−1
)(


n+3
12 �−1

)
n= 11 (mod 12)

−
(

 3n+5

12 �−1
)

n+3

12 � n= 3,7 (mod 12)

−
 3n+5
12 �
n+3

12 � n= 1,5,9 (mod 12)

.
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269–344. MR 3621432

[VZ84] D. A. Vogan, Jr. and Gregg J. Zuckerman, ‘Unitary representations with
nonzero cohomology’, Compositio Math. 53(1) (1984), 51–90. MR 762307

[Wal84] N. R. Wallach, ‘On the constant term of a square integrable automorphic form’,
in Operator Algebras and Group Representations, Vol. II (Neptun, 1980), Monogr.
Stud. Math., vol. 18 (Pitman, Boston, MA, 1984), 227–237. MR 733320

[Wei06] M. H. Weissman, ‘D4 modular forms’, Amer. J. Math. 128(4) (2006), 849–898.
MR 2251588

https://doi.org/10.1017/S1474748023000476 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748023000476

	1 Introduction
	1.1 Context
	1.2 Summary
	1.3 Notation

	2 Quaternionic discrete series
	2.1 Discrete series
	2.1.1 Parametrization
	2.1.2 Their pseudocoefficients

	2.2 Trace distinguishability
	2.3 Quaternionic discrete series

	3 Trace formula
	3.1 Spectral side
	3.2 Geometric side/the hyperendoscopy formula
	3.2.1 Notation
	3.2.2 Preliminaries
	3.2.3 Telescoping

	3.3 Final formula and usage notes
	3.3.1 Formula
	3.3.2 Usage


	4 G2 computation setup
	4.1 Root system of G2
	4.1.1 Roots
	4.1.2 Coroots

	4.2 Quaternionic discrete series for G2

	5 Groups contributing and related constants
	5.1 Elliptic endoscopy of G2
	5.2 Endoscopic constants and normalizations
	5.2.1 The ι
	5.2.2 The transfer factors
	5.2.3 The stabilizations


	6 Real endoscopic transfers
	6.1 Root combinatorics
	6.2 Endoscopic characters
	6.2.1 Setup
	6.2.2 The trick

	6.3 Final formulas for transfers

	7 The H = SL2 SL2 / 1 term
	7.1 Cohomological representations of H(R)
	7.2 Reduction to modular form counts
	7.3 Final formula for SH

	8 A Jacquet–Langlands-style result
	8.1 First form
	8.2 In terms of modular forms

	9 Counts of forms
	9.1 Formula in terms of IG2c
	9.2 Computing IG2c
	9.3 Table of counts
	9.4 Explicit formula




