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Abstract
Let D be a division algebra, finite-dimensional over its center, and R = D[t; σ , δ] a skew polynomial ring.
Using skew polynomials f ∈ R, we construct division algebras and maximum rank distance codes consisting of
matrices with entries in a noncommutative division algebra or field. These include Jha Johnson semifields, and the
classes of classical and twisted Gabidulin codes constructed by Sheekey.

1. Introduction

Rank distance codes are important both in coding theory and cryptography. One of the best-known
maximum rank distance (MRD) codes is probably the Gabidulin code [10] which was mentioned already
by Delsarte [8]. In coding theory, MRD codes are well suited to correct errors [6, 31]. In cryptography,
they are used to design public-key cryptosystems, see for instance [9, 12].

MRD codes over general (non-finite) fields, in particular number fields, were already studied in
[2] and later touched on in [34]. Rank metric codes over both cyclic and more general Galois exten-
sions were considered in [3, 31, 32]. Although rank metric codes have been also constructed over finite
principal ideal rings [19] and discretely valued rings [21], to our knowledge they have not yet been
studied over noncommutative rings. In this paper, we also consider MRD codes in Mk(B), where B is a
noncommutative division algebra.

We construct these MRD codes using skew polynomials. Skew polynomials have been successfully
used in constructions of both division algebras (mostly semifields) and linear codes [2, 4, 5, 13, 26–28],
in particular building space-time block codes (STBCs) [29] and MRD codes [33, 34].

Our codes can be seen as generalizations of both the classical and twisted Gabidulin codes in [10],
resp., [33]. We put Sheekey’s construction [34] in a broader context which helps to understand it better
and potentially allows other ways to generalize MRD coding using skew polynomials. The drawback is
that rather early on we have to rigorously restrict the choice of the polynomials f we can employ and
that the construction remains rather theoretical.

Sheekey [34] only considers skew polynomials f ∈ K[t; σ ] with coefficients in cyclic Galois field
extensions for his construction and limits himself to the case that the minimal central left multiple of f
has maximal degree. He misses out on codes (with matrix entries both in a noncommutative division
algebra, and with entries in fields) and algebras that can be obtained by employing skew polynomials with
coefficients in a noncommutative division algebra. He also misses out on constructions using f ∈ D[t; δ].
We construct both new division algebras and MRD codes with entries in a noncommutative division
algebra, and with entries in fields.

The first five Sections of the paper contain the preliminaries (Section 1) and theoretical background
needed to obtain the main results (Sections 2–5). Let D be a division algebra of degree d over its center,
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and f ∈ R = D[t; σ , δ] a monic irreducible skew polynomial with a bound that lies in the center C(R)
of R.

While developing the theory, we point out how the choice of D and the polynomial f has to be
restricted in order to construct both division algebras and MRD codes out of f , a scalar ν ∈ D and a
suitable ρ ∈ Aut(D).

Apart from Section 9, we fix the following general assumptions unless specified otherwise: R =
D[t; σ ], where σ is an automorphism of D of finite order n modulo inner automorphisms, i.e. σ n = iu for
some inner automorphism iu(z) = uzu−1, and F = C ∩ Fix(σ ). Choose ρ ∈ Aut(D), such that F/F′ with
F′ = Fix(ρ) ∩ F is finite-dimensional. Let ν ∈ D×.

Let f ∈ R be monic and irreducible of degree m > 1, and h the minimal central left multiple of f , so
that R/Rh ∼= Mk(B) for some division algebra B (Theorem 3). Let l < k be a positive integer. Define
Sn,m,l(ν, ρ, f ) = {a + Rh | a ∈ P} ⊂ R/Rh with the set P = {d0 + d1t + · · · + dlm−1tlm−1 + νρ(d0)tlm | di ∈
D}. Let La : R/Rf → R/Rf be the left multiplication map La(b + Rf ) = ab + Rf . We have well-defined
maps Sn,m,l(ν, ρ, f ) −→ EndB(R/Rf ) −→ Mk(B), a 	→ La 	→ Ma, where Ma is the matrix representing La

with respect to a right B-basis of R/Rf . The image Cn,m,l = {Ma | a ∈ Sn,m,l(ν, ρ, f )} of Sn,m,l(ν, ρ, h) in
Mk(B) is an F′-linear rank metric code. If Cn,m,l has distance dC = k − l + 1, then Cn,m,l is called a maxi-
mum rank distance code in Mk(B). We will usually deal with the case that deg(h) = dmn, so that B is a
field.

The most general results are contained in Section 6: If P does not contain a polynomial of degree
lm, whose irreducible factors are all similar to f , then Cn,m,l is an F′-linear MRD code in Mk(B) with
minimum distance k − l + 1 (Theorem 19).

Furthermore, let D = (E/C, γ , a) be a cyclic division algebra such that σ |E ∈ Aut(E) and γ ◦ σ |E =
σ |E ◦ γ , and σ n(z) = u−1zu for some u ∈ E. Let f (t) =∑m

i=0 aiti ∈ E[t; σ ] be a monic irreducible polyno-
mial of degree m, such that deg(h) = dmn, and such that all monic fi similar to f lie in E[t; σ ]. Then,
the algebra Sn,m,1(ν, ρ, f ) is a division algebra, if one of the following holds: (i) ν �∈ E and ρ|E ∈ Aut(E);
(ii) ν ∈ E× and ρ|E ∈ Aut(E), such that NE/F

′ (a0)NE/F
′ (ν) �= 1 (Theorem 16). MRD codes are canonically

obtained from the matrices representing the left multiplication of these division algebras.
In Section 7, the nuclei of the algebras and codes are investigated. We give some examples of algebras

obtained from our construction employing f (t) = tn − θ ∈ K[t; σ ] in Section 8.
We conclude with a brief look at the constructions using a differential polynomial f ∈ D[t; δ], where

the center of D is a field of characteristic p, in Section 9.
The fact that we are using f ∈ D[t; σ ], respectively f ∈ D[t; γ ], means we have a larger choice of skew

polynomials to build codes that Sheekey does, who only considers f with coefficients in a cyclic field
extension.

This work is part of the second author’s PhD thesis [35].

2. Preliminaries
2.1. Nonassociative algebras

Let F be a field. We call A an algebra over F if there exists an F-bilinear map A × A → A, (x, y) 	→ x · y,
denoted simply by juxtaposition xy, the multiplication of A. An algebra A is called unital if there
is an element in A, denoted by 1, such that 1x = x1 = x for all x ∈ A. We will only consider unital
algebras. A nonassociative algebra A �= 0 is called a division algebra if for any a ∈ A, a �= 0, the left
multiplication with a, La(x) = ax, and the right multiplication with a, Ra(x) = xa, are bijective. If A
is finite-dimensional as an F-vector space, then A is a division algebra if and only if A has no zero
divisors. The left nucleus of A is defined as Nucl(A) = {x ∈ A | [x, A, A] = 0}, the middle nucleus of A is
Nucm(A) = {x ∈ A | [A, x, A] = 0}, and the right nucleus of A is Nucr(A) = {x ∈ A | [A, A, x] = 0}, where
[x, y, z] = (xy)z − x(yz) is the associator. Nucl(A), Nucm(A), and Nucr(A) are associative subalgebras of
A. Their intersection Nuc(A) = {x ∈ A | [x, A, A] = [A, x, A] = [A, A, x] = 0} is the nucleus of A. Nuc(A)
is an associative subalgebra of A, and x(yz) = (xy)z whenever one of the elements x, y, z is in Nuc(A).
The center of A is C(A) = {x ∈ Nuc(A) | xy = yx for all y ∈ A}.

https://doi.org/10.1017/S001708952300006X Published online by Cambridge University Press

https://doi.org/10.1017/S001708952300006X


482 D. Thompson and S. Pumplün

Let A be a finite-dimensional central simple associative algebra over F of degree d and let F denote
the algebraic closure of F. Then, A ⊗F F ∼= Md(F), so that we can fix an embedding A −→ Md(F) and
view every a ∈ A as a matrix in Md(F). The characteristic polynomial

ma(X) = Xd − s1(a)Xd−1 + s2(a)Xd−2 − · · · + (−1)dsd(a),

of a ∈ A has coefficients in F and is independent of the choice of the embedding. The coefficient NA(a) =
sd(a) is called the reduced norm of a [20]. Let K/F be a cyclic Galois extension of degree d with Galois
group Gal(K/F) = 〈γ 〉 and norm NK/F . Let c ∈ F×. An associative cyclic algebra (K/F, γ , c) of degree
d over F is a d-dimensional K-vector space

(K/F, γ , c) = K ⊕ eK ⊕ e2K ⊕ · · · ⊕ ed−1K,

with multiplication given by the relations ed = c, le = eσ (l), for all l ∈ K. (K/F, γ , c) is a division algebra
for all c ∈ F×, such that cs �∈ NK/F(K×) for all s which are prime divisors of d, 1 ≤ s ≤ d − 1.

2.2. MRD codes

Let K be a field. A code is a set of matrices C ⊂ Mn,m(K). Let L ⊂ K be a subfield, then C is L-linear if
C is a vector space over L. A rank metric code is a code C ⊂ Mn,m(K) equipped with the rank distance
function d(X, Y) = rank(X − Y). Define the minimum distance of a rank metric code C as

dC = min{d(X, Y) | X, Y ∈ C, X �= Y}.
An L-linear rank metric code C satisfies the Singleton-like bound

dimL(C) ≤ n(m − dC + 1)[K:L],

where dimL(C) is the dimension of the L-vector space C [2, Proposition 6].
An L-linear rank metric code attaining the Singleton-like bound is called a maximum rank distance

code or MRD code (for MRD codes over cyclic field extensions see [2]).
If now B is a not necessarily commutative division algebra then more generally, we again define a

code as a set of matrices C ⊂ Mn,m(B). Let B′ ⊂ B be a subalgebra, then C is B′-linear (or simply linear),
if C is a right B′-module.

A rank metric code C ⊂ Mn,m(B) is a code together with the distance function

d(X, Y) = colrank(X − Y),

for all X, Y ∈ Mn,m(B), where colrank is the column rank of A (the rank of the right B-module generated
by the columns of A). A matrix in Mn,m(B) has column rank at most m; any matrix which attains this
bound is said to have attained full column rank. The minimum distance of a rank metric code C ⊂ Mn,m(B)
is defined as

dC = min{d(X, Y) | X, Y ∈ C, X �= Y}.
To our knowledge, such codes C ⊂ Mn,m(B) have not previously been considered in the literature.

2.3. Skew polynomial rings

In the following, let D be a central simple division algebra of degree d over its center C, σ a ring
endomorphism of D and δ : D → D a left σ -derivation, i.e. an additive map such that δ(ab) = σ (a)δ(b) +
δ(a)b for all a, b ∈ D. The skew polynomial ring D[t; σ , δ] is the set of skew polynomials g(t) = a0 +
a1t + · · · + antn with ai ∈ D, with term-wise addition and multiplication defined via ta = σ (a)t + δ(a)
for all a ∈ D [22]. Define Fix(σ ) = {a ∈ D | σ (a) = a} and Const(δ) = {a ∈ D | δ(a) = 0}. If δ = 0, define
D[t; σ ] = D[t; σ , 0]. If σ = id, define D[t; δ] = D[t; id, δ].

For f (t) = a0 + a1t + · · · + antn ∈ R = D[t; σ , δ] with an �= 0, we define the degree of f as deg(f ) = n
and deg(0) = −∞. A skew polynomial f ∈ R is irreducible if it is not a unit and it has no proper factors,
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i.e if there do not exist g, h ∈ R with 1 ≤ deg(g), deg (h) < deg(f ) such that f = gh [18, p. 2 ff.]. We call
f ∈ R right-invariant if Rf is a left and a right ideal in R, and a two-sided maximal element, if f is right-
invariant and Rf is a nonzero maximal ideal in R (equivalently, if f �= 0 and R/Rf is a simple ring) [18,
p. 13]. Two nonzero skew polynomials f1, f2 ∈ R are similar, written f1 ∼ f2, if R/Rf1

∼= R/Rf2 [18, p. 11].
A skew polynomial f ∈ R is bounded if there exists a nonzero polynomial f ∗ ∈ R such that Rf ∗ is the

largest two-sided ideal of R contained in Rf . The polynomial f ∗ is uniquely determined by f up to scalar
multiplication by elements of D× and is called a bound of f .

If f ∈ R has degree m, then for all g ∈ R of degree l ≥ m, there exist uniquely determined r, q ∈ R
with deg(r) < deg(f ), such that g = qf + r. Let modrf denote the remainder of right division by f . The
skew polynomials Rm = {g ∈ R | deg(g) < m} of degree less that m canonically represent the elements of
the left R-modules R/Rf . Furthermore, Rm together with the multiplication g ◦ h = gh modrf is a unital
nonassociative algebra Sf = (Rm, ◦) over F0 = {a ∈ D | ah = ha for all h ∈ Sf } = Comm(Sf ) ∩ D, called a
Petit algebra. When the context is clear, we simply use juxtaposition for multiplication in Sf . Note that
C(D) ∩ Fix(σ ) ∩ Const(δ) ⊂ F0. For all a ∈ D×, we have Sf = Saf ; thus, without loss of generality we can
assume f is monic when working with Petit algebras Sf . If f has degree 1 then Sf

∼= D.

Lemma 1. Let R be a ring with no zero divisors. For all g ∈ C(R), every right divisor of g in R also
divides g on the left.

Proof. Suppose γ is a right divisor of g. Then, g = δγ for some δ ∈ R. As g lies in the center of R, we
have δg = gδ = δγ δ. This rearranges to 0 = δg − δγ δ = δ(g − γ δ). As R contains no zero divisors and
δ �= 0, it follows that g = γ δ.

2.4. The minimal central left multiple of f ∈ D[t; σ ]

From now on let, σ be an automorphism of D of finite order n modulo inner automorphisms, i.e. σ n = iu

for some inner automorphism iu(z) = uzu−1. Then, the order of σ |C is n. W.l.o.g., we choose u ∈ Fix(σ ).
Let R = D[t; σ ] and define F = C ∩ Fix(σ ). R has center

C(R) = F[u−1tn] =
{

k∑
i=0

ai(u
−1tn)i | ai ∈ F

}
∼= F[x]

with x = u−1tn [18, Theorem 1.1.22]. All polynomials f ∈ R are bounded.
For any f ∈ R = D[t; σ ] with a bound in C(R), we define the minimal central left multiple mclm(f )

of f in R to be the unique polynomial of minimal degree h ∈ C(R) = F[u−1tn] such that h = gf for some
g ∈ R, and such that h(t) = ĥ(u−1tn) for some monic ĥ(x) ∈ F[x]. Define Eĥ = F[x]/(ĥ(x)). If f has nonzero
constant term, then f ∗ ∈ C(R) [11, Lemma 2.11]). From now on, we assume that f has nonzero constant
term and denote by h ∈ C(R), h(t) = ĥ(u−1tn), the minimal central left multiple of f . Then, h equals the
bound of f up to a scalar multiple from D. If f is irreducible in R, then ĥ(x) is irreducible in F[x]. If
ĥ ∈ F[x] is irreducible, then f = f1 · · · fr for irreducible fi ∈ R such that fi ∼ fj for all i, j ([23], cf. [36]).

Lemma 2. Let f ∈ R.

(i) If f ∈ R is irreducible, then every g ∈ R similar to f has h as its minimal central left multiple.
(ii) Suppose that ĥ ∈ F[x] is irreducible. Then, f = f1 · · · fr for irreducible fi ∈ R such that fi ∼ fj for

all i, j.

This follows easily from [7, p. 9, Corollary 2] and [18, Theorem 1.2.9].
The quotient algebra R/Rh has center C(R/Rh) ∼= F[x]/(ĥ(x)), cf. [11, Lemma 4.2]. Define Eĥ =

F[x]/(ĥ(x)). Suppose that ĥ(x) �= x and that ĥ is irreducible in F[x]. Then, h generates a maximal two-
sided ideal Rh in R [18, p. 16] and R/Rh is simple over its center Eĥ.
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Theorem 3 [23]. Let f ∈ R = D[t; σ ] be monic and irreducible of degree m > 1 with minimal central
left multiple h(t) = ĥ(u−1tn). Then„ Nucr(Sf ) is a central division algebra over Eĥ of degree s = dn/k,
where k is the number of irreducible factors of h in R, and

R/Rh ∼= Mk(Nucr(Sf )).

In particular, this means deg(ĥ) = dm
s

, deg(h) = km = dnm
s

, and

[Nucr(Sf ) : F] = s2 · dm

s
= dms.

Moreover, s divides gcd(dm, dn). If f is not right-invariant, then k > 1 and s �= dn.

We know that [Sf : F] = [Sf : C][C : F] = d2m · n. Since Nucr(Sf ) is a subalgebra of Sf , comparing
dimensions we obtain that

d2mn = [Sf : F] = [Sf : Nucr(Sf )] · [Nucr(Sf ) : F] = k · dms,

that is [Sf : Nucr(Sf )] = k.
If f is not right-invariant which is equivalent to Sf being not associative, which in turn is equivalent

to k > 1, then s �= dn looking at the degree of h. Note that deg(h) = dnm is the largest possible degree
of h.

All of the above applies in particular to the special case that D is a finite field extension K of C of
degree n, and σ ∈ Aut(K) has order n. Then, R = K[t; σ ] has center C(R) = F[tn] = {∑k

i=0 ai(tn)i | ai ∈
F} = F[x] where F = Fix(σ ) [18, Theorem 1.1.22].

3. Constructing sets of matrices employing irreducible f∈ D[t; σ ]

Let R = D[t; σ ] be as in Section 2.3 and f ∈ R be an irreducible monic polynomial of degree m > 1 with
nonzero constant term and minimal central left multiple h(t) = ĥ(u−1tn). Let

Ef = {z(t) + Rf | z(t) = ẑ(u−1tn) ∈ F[u−1tn]} ⊂ R/Rf .

Together with the multiplication (x + Rf ) ◦ (y + Rf ) = (xy) + Rf for all x, y ∈ F[u−1tn], Ef becomes an
F-algebra.

Lemma 4. (i) For each z(t) = ẑ(u−1tn) ∈ F[u−1tn] with ẑ ∈ F[x], we have z ∈ Rf if and only if z ∈ Rh. (ii)
(Ef , ◦) is a field isomorphic to Eĥ.

Proof. (i) As h = gf for some g ∈ R, each z ∈ Rh also lies in Rf .
Conversely, let z(t) = ẑ(u−1tn) ∈ F[u−1tn] with ẑ ∈ F[x] be such that z ∈ Rf . By the Euclidean division

algorithm in F[x], there exist unique q̂(x), r̂(x) ∈ F[x] such that ẑ = q̂ĥ + r̂, where deg(r̂) < deg(ĥ) =
s or r̂ = 0. If r̂ �= 0, then r̂ = ẑ − q̂ĥ, i.e. we found q(t) = q̂(u−1tn), r(t) = r̂(u−1tn) ∈ F[u−1tn], such that
r(t) = z(t) − q(t)h(t) ∈ Rf . Let r̂′(x) = r−1

0 r̂(x) ∈ F[x], where r0 ∈ F× is the leading coefficient of r̂(x),
then r′(t) = r̂′(u−1tn) is monic by definition.

As r′(t) = r̂′(u−1tn) ∈ Rf , too, there exists a(t) ∈ R such that r′(t) = a(t)f (t). Thus, r′(t) ∈ F[u−1tn] is
a monic polynomial of degree less than s which is right divisible by f . This contradicts the defini-
tion of h as the minimal central left multiple of f . Thus, we conclude that r = 0 and z = qh ∈ Rh, as
required. (ii) Ef is a commutative associative ring with identity 1 + Rf . Define the map G : Ef → Eĥ,
G(z + Rf ) = z + Rh for all z ∈ F[u−1tn]. G is well-defined and surjective. For all x, y ∈ F[u−1tn], we
have G(x + Rf ) + G(y + Rf ) = (x + Rh) + (y + Rh) = (x + y) + Rh = G(x + y + Rf ), G(1 + Rf ) = 1 +
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Rh, and G(x + Rf )G(y + Rf ) = (x + Rh)(y + Rh) = xy + Rh = G(xy + Rf ), yielding that G is an isomor-
phism. To check injectivity, we note that G(x + Rf ) = 0 + Rh if and only if x ∈ Rh. By Lemma 4 (i), this
implies x ∈ Rf and so x + Rf = 0 + Rf .

Let B = Nucr(Sf ) and k be the number of irreducible factors of h(t) in R.

Lemma 5. The left R-module R/Rf is a right B-module of rank k via the scalar multiplication R/Rf ×
B −→ R/Rf , (a + Rf )(z + Rf ) = az + Rf for all z ∈ F[u−1tn] and a ∈ R. We can identify R/Rf with Bk

via a canonical basis.

Proof. Since the Petit algebra Sf = R/Rf with its multiplication ab = ab modr f is a nonassociative
unital algebra with right nucleus B, R/Rf is a right B-module via the given scalar multiplication. As
R/Rf is a vector space of dimension d2mn over F, R/Rf is free of rank k over B.

Let ν ∈ D× and ρ ∈ Aut(D), and define F′ = Fix(ρ) ∩ F. We assume in the following that F/F′ is
finite-dimensional. Let s be the degree of B over Eĥ. We assume f is not right-invariant, i.e. k > 1.

Let l < k = dn/s be a positive integer. Define the set Sn,m,l(ν, ρ, f ) = {a + Rh | a ∈ P} ⊂ R/Rh, where

P = {d0 + d1t + · · · + dlm−1t
lm−1 + νρ(d0)t

lm | di ∈ D} ⊂ D[t; σ ].

Sn,m,l(ν, ρ, f ) is a vector space over F′ of dimension d2nml[F : F′]. R/Rf is a right B-module of rank k,
as shown above. Let La : R/Rf → R/Rf be the left multiplication map La(b + Rf ) = ab + Rf . Then, La

is B-linear, as we have a(xα) = (ax)α for all α ∈ B, a, x ∈ R/Rf , and therefore, La(xα) = La(x)α for all
α ∈ B. Thus, La ∈ EndB(R/Rf ) and

R/Rh ∼= Mk(B) ∼= EndB(Bk) = EndB(R/Rf )

by Theorem 3. Hence, we have well-defined maps

L : Sn,m,l(ν, ρ, f ) → EndB(R/Rf ), a 	→ La,

λ : Sn,m,l(ν, ρ, f ) → Mk(B), a 	→ La 	→ Ma,

where Ma is the matrix representing La with respect to a B-basis of R/Rf . We denote the image of
Sn,m,l(ν, ρ, h) in Mk(B) by

Cn,m,l = {Ma | a ∈ Sn,m,l(ν, ρ, f )}.
The code C = Cn,m,l is F′-linear by construction, and a generalized rank metric code. If C has minimum
distance dC, the Singleton-like bound canonically generalizes to the bound

dimF
′(C) ≤ k(k − dC + 1)[B : F′],

with [B : F′] = s[F : F′]. If dC = k − l + 1, then dimF
′ (Sn,m,l(ν, ρ, f )) = d2nml/dms[B : F′] = d2mnl

[F : F′] = lk[B : F′] = lkdms[F : F′]. Thus, if dC = k − l + 1, then C attains this bound and C is a
maximum rank distance code in Mk(B).

We will usually deal with the case that deg (h) = dmn, so that B = Eĥ is a field, s = 1, and Cn,m,l ⊂
Mdn(Ef ). Note that if l = 1 and dC = k, this generalized Singleton-like bound is achieved trivially: we
obtain examples of MRD codes in Mk(B). This arises when we look at division algebras Sn,m,1(ν, ρ, f )
and the matrices representing their left multiplication, cf. Remark 17 and Corollary 18.

4. The rank of the matrix that corresponds to the element a + Rh

Let R = D[t; σ ] be as in Section 3, and f ∈ R be an irreducible monic polynomial of degree m > 1
with minimal central left multiple h. Let B = Nucr(Sf ). We have deg(ĥ) = km and R/Rh ∼= Mk(B) as Eĥ-
algebras by Theorem 3. Let 
 : R/Rh → Mk(B), 
(a + Rh) = Ma, be this isomorphism. For Ma ∈ Mk(B),
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consider the right B-linear map LMa : Mk(B) → Mk(B), LMa : X 	→ MaX. Then, we obtain the following
generalization of [34], Proposition 7 (which was only proved for f with coefficients in a finite field, i.e.
for the special case that deg(h) = nm is maximal):

Theorem 6. Let deg(h) = km. Then Ma ∈ Mk(B) and

dimB(im(LMa )) = k2 − k

m
deg(gcrd(a, h)), colrank(Ma) = k − 1

m
deg(gcrd(a, h))

for all a + Rh ∈ R/Rh. In particular, if deg(h) = dmn, then Ma ∈ Mn(Eĥ), and

rank(Ma) = dn − 1

m
deg(gcrd(a(t), h(t)).

Proof. For each Ma ∈ Mk(B), define Annr(Ma) = {N ∈ Mk(B) | MaN = 0}. Then, Annr(Ma) is the kernel
of the endomorphism LMa : Mk(B) → Mk(B). By the Rank-Nullity Theorem for free right B-modules of
finite rank [16, ch. IV, Cor. 2.14], it follows that

k2 = dimB(im(LMa )) + dimB(Annr(Ma)).

We conclude that dimB(im(LMa )) = k2 − dimB(Annr(Ma)). Now for each b + Rh, MaMb = 0 if and only
if 
(a + Rh)
(b + Rh) = 0. As 
 is multiplicative, this is true if and only if 
((a + Rh)(b + Rh)) = 0.
This means (a + Rh)(b + Rh) = 0. Hence, it is clear that Annr(Ma) ∼= Annr(a), where

Annr(a) = {b + Rh ∈ R/Rh | (a + Rh)(b + Rh) = 0 + Rh},
so dim(Annr(Ma)) = dim(Annr(a)). Let γ = gcrd(a, h) so h = δγ for some δ ∈ R. As h ∈ C(R) and R
is a domain, we also have h = γ δ by Lemma 1. Let b ∈ R be the unique element such that a = bγ .
Then, gcrd(b, δ) = 1, else γ is not the greatest common right divisor of a and h.Let v ∈ R. By the left
Euclidean division algorithm, there exist unique u, w ∈ R such that v = δu + w where deg(w) < deg(δ)
and gcld(w, δ) = 1. It follows that av = aδu + aw = bγ δu + bγ w = bhu + bγ w, and therefore, av +
Rh = bγ w + Rh. Suppose bγ w ≡ 0modrh. As gcrd(b, δ) = 1, there exist c, d ∈ R such that cb + dδ = 1,
so cbγ + dδγ = γ . As δγ = h, this implies cbγ ≡ γ : modrh. Hence, γ w ≡ cbγ w ≡ 0 : modrh. However,
deg(w) < deg(δ) so deg(γ w) < deg(γ δ) = deg(h); due to this, γ w ≡ 0 : modrh implies that γ w = 0. As
γ �= 0 and R is a domain, we conclude that w = 0.Hence, (a + Rh)(v + Rh) = 0 + Rh if and only if v = δu
where deg(u) < deg(γ ). As δ is uniquely defined by a and h, every element of Annr(a) is determined by
u ∈ R such that deg(u) < deg(γ ). Thus,

Annr(a) = {v + Rh ∈ R/Rh | (a + Rh)(v + Rh) = 0 + Rh}
= {δu | u ∈ R, deg(u) < deg(γ )}∼= Rdeg(γ ) = {g ∈ R | deg(g) < deg(γ )}.

As {1, t, . . . , tdeg(γ )−1} is a D-basis for the free left D-module Rγ , it follows that dimD(Annr(a)) =
deg(γ ), so dimF(Annr(a)) = deg(γ )d2n. Since dimEĥ

(B) = s2 = d2n2/k2 and [Eĥ : F] = km/n, we obtain
dimF(B) = d2mn/k. Hence, we get

dimB(Annr(a)) = deg(γ )d2nk

d2mn
= deg(γ )k

m
,

and so

dimB(im(LA)) = k2 − dimB(Annr(Ma)) = k2 − k

m
deg(γ ).

Let ci, respectively ri, denote the columns, and rows of Ma and xi denote the columns of X. Computing
the matrix using dot product notation, we have

MaX =
⎛⎜⎝ r1 · x1 . . . r1 · xk

...
. . .

...

rk · x1 . . . rk · xk

⎞⎟⎠
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The ith column of MaX is equal to ⎛⎜⎝r1 · xi

...

rk · xi

⎞⎟⎠= c1λ1 + · · · + ckλk

for some λj ∈ B. Hence, the dimension of the right B-module generated by the ith column of MaX
is exactly the column rank of Ma. As there are k columns of MaX, it follows that dimB(im(LMa )) =
k colrank(Ma).

All of the above applies in particular to the special case that K/F is a field extension and σ ∈ AutF(K)
of finite order n, R = K[t; σ ] and C(R) = F[tn] ∼= F[x]. Let f ∈ R be a monic irreducible polynomial
of degree m > 1, B = Nucr(Sf ), and h(t) = ĥ(tn) its minimal central left multiple, deg(ĥ) = km. Then,

 : R/Rh → Mk(B), 
(a + Rh) = Ma is an Ef -algebra isomorphism. For each Ma ∈ Mk(B), we have the
endomorphism LMa : Mk(B) → Mk(B) by LMa : X 	→ MaX. Analogously to Theorem 6, we can prove:

Theorem 7 (for fnite fields and thus deg(h) = nm maximal, cf. [34], Proposition 7). Suppose that
deg(h) = km, then for all a + Rh ∈ R/Rh we have

dimB(im(LMa )) = k2 − k

m
deg(gcrd(a, h)), colrank(Ma) = k − 1

m
deg(gcrd(a, h)).

In particular, if deg(h) = mn then Ma ∈ Mn(Eĥ) and rank(Ma) = n − 1
m
deg(gcrd(a, h)).

This generalizes [34, Remark 6].

5. Using the norm of D(t; σ ) to investigate f

5.1. The algebra (D(x), σ̃ , ux)

Let C/F be a finite cyclic field extension of degree n with Gal(C/F) = 〈σ 〉. Let D be a finite-dimensional
division algebra of degree d with center C and suppose that σ extends to a C-algebra automor-
phism of D that we call σ , too. Let R = D[t; σ ] as in Section 3. Then, there exists u ∈ D× such that
σ n = iu and σ (u) = u. These two relations determine u up to multiplication with elements from F× [25,
Lemma 19.7].

The quotient algebra (D, σ , a) = D[t; σ ]/(tn − a)D[t; σ ], where f (t) = tn − a ∈ D[t; σ ] with d ∈ F×, is
called a generalized cyclic algebra. The special case where D = C yields the cyclic algebra (C/F, γ , a)
[18, p. 19].

Let D(t; σ ) = {f /g | f ∈ D[t; σ ], g ∈ C(D[t; σ ])} be the ring of central quotients of D[t; σ ]. Let σ̃

denote the extension of σ to D(x) that fixes x [14, Lemma 2.1]. Then, C(D(t; σ )) = Quot(C(D[t; σ ])) =
F(x), x = u−1tn, is the center of D(t; σ ), where Quot(U) denotes the quotient field of an integral domain
U. More precisely, D(t; σ ) ∼= (D(x), σ̃ , ux) is a generalized cyclic algebra of degree dn over its center
F(x) and a division algebra [14, Theorems 2.2, 2.3].

Let N be the reduced norm of (D(x), σ̃ , ux).

Lemma 8. Let f ∈ R. If N(f ) is irreducible in F[x], then f is irreducible in R.

Proof. If f = gp for g, p ∈ R then N(f ) = N(g)N(p) is reducible in F[x], since both N(g) and N(p) lie
in F[x], which immediately yields the assertion.

From now on, we assume that
D = (E/C, γ , a) is a cyclic division algebra over C of degree d,

σ |E ∈ Aut(E) such that γ ◦ σ = σ ◦ γ and u ∈ E.
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Then, σ |E has order n. Write m = kn + r for some 0 ≤ r < n. Let f =∑m
i=0 aiti ∈ R be a polynomial such

that a0 �= 0 and h ∈ R be the minimal central left multiple of f in R.

Theorem 9 [36]. For f ∈ E[t; σ ] ⊂ D[t; σ ], we have

N(f (t)) = NE/F(a0) + · · · + (−1)dr(n−1)NE/F(am)NE/C(u)mxdm.

Theorem 10. Suppose that deg(h) = dmn.

(i) [36, Theorem 14 (i)] If ĥ is irreducible in F[x], then f is irreducible in R.
(ii) [36, Theorem 14 (ii)] If f is irreducible, then N(f ) is irreducible in F[x].
(iii) If f ∈ E[t; σ ], then N(f ) = (−1)dr(n−1)NE/F(am)NE/C(u)mĥ and

NE/F(a0) = (−1)dr(n−1)NE/F(am)NE/C(u)mh0,

if h0 denotes the constant term of ĥ.

Proof. (iii) By Theorem 9, we have deg(N(f )) = dmn in R. N(f ) is a two-sided multiple of f in R;
therefore, the bound f ∗ of f divides N(f ) in R. Since (f , t)r = 1, f ∗ ∈ C(R) and therefore f ∗ equals h up
to some factor in F×. Thus, h(t) = ĥ(u−1tn) must divide N(f ) in R. Write N(f ) = g(t)h(t) for some g ∈ R.
Comparing degrees in R, we obtain degN(f ) = deg(g(t)) + dmn = dmn, which implies deg(g) = 0, i.e.
g(t) = a ∈ A×. This implies that N(f ) = ah(t) = aĥ(u−1tn). Comparing highest coefficients of N(f ) and
aĥ yields that a = (−1)dr(n−1)NE/F(am)NE/C(u)m by Theorem 9, so that comparing constant terms we get
that NE/F(a0) = (−1)dr(n−1) NE/F(am)NE/C(u)mh0, if h0 is the constant term of ĥ(x).

Theorem 11. Let f ∈ E[t; σ ] ⊂ R be monic and irreducible of degree m. Let deg(ĥ) = dm and suppose
that all the monic polynomials similar to f lie in E[t; σ ]. If g is a monic divisor of h in R of degree lm,
then

NE/F(g0) = NE/F(a0)l.

Proof. We know that h(t) = ĥ(u−1tn), with ĥ(x) irreducible in F[x], since f is irreducible. Thus, h is a
t.s.m. element in Jacobson’s terminology [18] and the irreducible factors f1(t), . . . , fk(t) of any decom-
position of h(t) are all similar and are all similar to f , as f must be one of them by the definition of h.
Now, g(t) is a monic divisor of h. Thus, we can decompose g(t) into a product of irreducible factors and
up to similarity the irreducible factors of g will be the same as suitably chosen irreducible factors of h
by [18, Theorem 1.2.9.]. Hence, w.l.o.g. g = f1f2 · · · fl, where the fi are irreducible in R and fi is similar
to f for all i = 1, 2, . . . , l [18, Theorem 1.2.19]. Thus by Lemma 2, the minimal central left multiple of
each fi is equal to h. Since f is monic, we may assume w.l.o.g. that all fi are monic. By Theorem 10 and
since all fi ∈ E[t; σ ] by our assumption, this implies that NE/F(fi(0)) = (−1)dm(n−1)NE/C(u)mh0 = NE/F(a0).
As the constant term of g is equal to

∏l
i=1 fi(0), we see that

NE/F(g0) =
l∏

i=1

NE/F(fi(0)) = [(−1)dm(n−1)NE/C(u)mh0]l

= (−1)ldm(n−1)NE/C(u)lmhl
0 = NE/F(a0)l.

We are not able to say if the assumptions on the fi’s in the above result are empty or trivial.

5.2. The algebra (K(x)/F(x), σ̃ , x)

Let K/F be a cyclic field extension of degree n with Gal(K/F) = 〈σ 〉, R = K[t; σ ] and x = tn. We now
look at the cyclic algebra (K(x)/F(x), σ̃ , x) (this case corresponds to D = C in the previous Section).
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Let N be the reduced norm of (K(x)/F(x), σ̃ , x) over F(x) (cf. also [18, Proposition 1.4.6]). We have
σ̃ |K = σ , and N is a nondegenerate form of degree n. Let f =∑m

i=0 aiti ∈ R be a polynomial of degree
m such that a0 �= 0 and h ∈ R be the minimal central left multiple of f in R. Then N(f (t)) = NK/F(a0) +
· · · + (−1)m(n−1)NK/F(am)xm [36, Theorem 3].

Theorem 12. Suppose that deg(h) = mn.

(i) [36, Theorem 6 (i)] If ĥ is irreducible in F[x], then f is irreducible in R.
(ii) [36, Theorem 6 (ii)] If f is irreducible, then N(f ) is irreducible in F[x].
(iii) NK/F(a0) = (−1)m(n−1)h0, if h0 denotes the constant term of ĥ.

Theorem 12 (iii) is proved analogously as Theorem 10 (iii).

Theorem 13 (cf. [34, Theorem 5] for finite fields, the proof is the same). Suppose that f is not right-
invariant. If deg(h) = mn and g is a monic divisor of h(t) in R of degree ml, then

NK/F(g0) = NK/F(a0)l.

6. Division algebras and MRD codes employing f ∈ R

6.1. The case that f ∈ D[t; σ ]

Let f ∈ R = D[t; σ ] be a monic polynomial of degree m. Let ρ ∈ Aut (D), ν ∈ D and F′ = Fix(ρ) ∩ F
where F = C ∩ Fix(σ ). Let b(t), c(t) ∈ Rm = {g ∈ R | deg(g) < m} and b0 be the constant term of b(t).
Then, the multiplication defined via

b(t) ◦ c(t) = (b(t) + νρ(b0)tm)c(t) modrf ,

makes Rm into a non-unital nonassociative ring (Rm, ◦). When the context is clear, we will drop the ◦
notation and simply use juxtaposition. (Rm, ◦) is an algebra over F′.

Example 14. If f (t) = t − c ∈ D[t; σ ] for some c ∈ D, ν �= 0, then (Rm, ◦) has the multiplication

a ◦ b = (a + νρ(a)t)b) modrf

= ab + νρ(a)σ (b)t modrf

= ab + νρ(a)σ (b)c,

for all a, b ∈ D. This generalizes the algebras studied in [30]. If R = K[t; σ ] for some finite field extension
K/F; this is the multiplication of Albert’s twisted semifields [1]. If F/F′ is finite and (Rm, ◦) is not a
division algebra, a ◦ b = 0 for some nonzero a, b ∈ D, if and only if ab = −νρ(a)σ (b)c. Taking norms of
both sides and canceling ND/F

′ (ab) on both sides, we obtain that ND/F
′ (−νc) = (−1)d2n[F : F

′
]ND/F

′ (νc) = 1.

Thus, if F/F′ is finite and ND/F
′ (νc) �= (−1)d2n[F : F

′
] then (Rm, ◦) is a division algebra.

From now on for the rest of the paper, we again assume that f is an irreducible monic polynomial
of degree m > 1, (f , t)r = 1, and that h is the minimal central left multiple of f . Let F/F′ be finite-
dimensional, and

P = {d0 + d1t + · · · + dlm−1t
lm−1 + νρ(d0)t

lm | di ∈ D} ⊂ D[t; σ ].

Theorem 15. Let l = 1. Then:

(i) Let b(t) ∈ Rm with constant coefficient b0. If b(t) + νρ(b0)tm ∈ P is reducible in R, then b(t) is
not a left zero divisor in (Rm, ◦).
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(ii) If ν = 0, then (Rm, ◦) is a division algebra over F′, which for m ≥ 2 is a Petit algebra.
(iii) If P does not contain any polynomial similar to f , then (Rm, ◦) is a division algebra over F′.

Note that f may be right-invariant.

Proof. Suppose that there are b(t) = b0 + b1t + · · · + bm−1tm−1, c(t) ∈ Rm, such that

b(t) ◦ c(t) = (b(t) + νρ(b0)tm)c(t)modrf = 0.

Then, there exists g ∈ Rm such that (b(t) + νρ(b0)tm)c(t) = g(t)f (t). Since f is irreducible and of degree m,
while deg(c) < m, f must be similar to an irreducible factor of b(t) + νρ(b0)tm, because of the uniqueness
of an irreducible decomposition in R up to similarity. But b(t) + νρ(b0)tm has degree at most m, so f is
similar to b(t) + νρ(b0)tm. Thus, b(t) + νρ(b0)tm must have degree m and be irreducible as well. Hence
if b(t) + νρ(b0)tm is not similar to f then b(t) + νρ(b0)tm is not a left zero divisor in (Rm, ◦). This happens
for instance, if ν = 0 or if b(t) + νρ(b0)tm is reducible. Moreover, (Rm, ◦) is a division algebra if P does
not contain any polynomial similar to f .

We are again not able to say if the assumptions on the fi’s in the following result are empty or trivial.

Theorem 16. Let D = (E/C, γ , a) be a cyclic division algebra over C of degree d such that σ |E ∈ Aut(E)
and γ ◦ σ |E = σ |E ◦ γ . Suppose that σ n(z) = u−1zu with u ∈ E.

Let f (t) =∑m
i=0 aiti ∈ E[t; σ ] ⊂ D[t; σ ] be monic and irreducible, and let deg(h) = dmn. Suppose that

all monic fi similar to f lie in E[t; σ ]. Then, (Rm, ◦) is a division algebra over F′, if one of the following
holds: (i) ν �∈ E and ρ|E ∈ Aut(E). (ii) ν ∈ E× and ρ|E ∈ Aut(E), such that

NE/F
′ (a0)NE/F

′ (ν) �= 1.

Note that our global assumption that σ n(z) = u−1zu for all z ∈ D, so that σ n(e) = u−1eu = e for all
e ∈ E, forces (σ |E)n = id.

Proof. By Theorem 15, (Rm, ◦) is a division algebra, if the set P with l = 1 does not contain any
polynomial similar to f . All polynomials similar to f are irreducible factors of h(t), so (Rm, ◦) is a division
algebra, if P does not contain any irreducible factor of h(t). Suppose that P contains an irreducible factor
g of h with constant term g0. Then, g has degree m as it is similar to f . Let gmtm be its highest coefficient,
so that g−1

m g is a monic divisor of h.
By Theorem 10 and since g ∈ E[t; σ ] by assumption, this implies

NE/F(g0g
−1
m ) = (−1)m(n−1)h0 = NE/F(a0),

and in particular, that g0 and gm are both nonzero. Since g ∈ P, we also have gm = νρ(g0). Suppose
ν �∈ E and ρ(E) ⊂ E. Since the coefficients of the fi all lie in E, we have gm �= νρ(g0) which yields a
contradiction. Hence, there is no divisor g of h in P and S is a division algebra. Suppose that ν ∈ E× and
ρ(E) ⊂ E. Substituting gm = νρ(g0) into the above equation yields

NE/F(g0) = NE/F(a0)NE/F(νρ(g0)).

Applying NF/F
′ to both sides implies that

NE/F
′ (g0) = NF/F

′ (NE/F(a0))NE/F
′ (νρ(g0)).

Now NE/F
′ (ρ(g0)) = NE/F

′ (g0), so we can cancel the nonzero term NE/F
′ (g0) to obtain 1 = NE/F

′ (a0)
NE/F

′ (ν).

Remark 17. Let S = Sn,m,1(ν, ρ, f ) = {a + Rh | a ∈ P}. We can use C(S) ⊂ Mk(B) to define a multipli-
cation on Bm. As dimF(D) = d2n and dimF(B) = d2mn/k, there exists an F-vector space isomorphism
between Dm and Bk. Similarly, there exists an isomorphism G : Vf → Bk, G(a + Rf ) = a. Define ∗ : Bk ×
Bk → Bk by
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a ∗ b = Ma · b

for all a, b ∈ Bk, where Ma ∈ C(S) is the representation of the map La(t)+νρ(a0)tm ∈ EndB(R/Rf ) induced by
G. (Each a ∈ Rm corresponds to a map La(t)+νρ(a0)tm . As EndB(R/Rf ) ∼= Mk(B) and dim(Rm) = dim(C(S)),
there is a canonical bijection between La(t)+νρ(a0)tm and Ma.) As Ma represents La ∈ EndB(R/Rf ), (Bk, ∗)
is isomorphic to R/Rf equipped with the multiplication (a + Rf )(b + Rf ) = La(t)+νρ(a0)tm (b + Rf ). Thus,
(Rm, ◦) and (Bk, ∗) are isomorphic algebras and Sn,m,1(ν, ρ, f ) is the same algebra as (Rm, ◦).

If l = 1, we write S(ν, ρ, f ) = Sn,m,1(ν, ρ, f ) for (Rm, ◦). S(ν, ρ, f ) is a division algebra if and only if
every matrix in Cn,m,1 has full column rank. It then canonically defines an F′-linear MRD code in Mk(B),
B = Nucr(Sf ). Therefore, we obtain from all of the above results:

Corollary 18. Let D = (E/C, γ , a) be a cyclic division algebra over C of degree d such that σ |E ∈ Aut(E)
and γ ◦ σ = σ ◦ γ . Suppose that σ n(z) = u−1zu with u ∈ E.

Let f =∑m
i=0 aiti ∈ R be monic and irreducible of degree m. Then, B is a division algebra over Eĥ

and S(ν, ρ, f ) defines an F′-linear MRD code in Mk(B) with minimum distance k, if one of the following
holds:

(i) ν = 0. Then, S(ν, ρ, f ) is a (unital) Petit algebra.
(ii) P does not contain any polynomial similar to f .
(iii) Suppose ρ|E ∈ Aut(E), f =∑m

i=0 aiti ∈ E[t; σ ] ⊂ R, deg(h) = dmn, all the monic polynomials
similar to f lie in E[t; σ ], and one of the following holds:
(a) ν �∈ E,
(b) NE/F

′ (ν)NE/F
′ (a0) �= 1. Then, we get an F′-linear MRD code in Mdn(Eĥ) with minimum

distance dn.

The case ν = 0 produces the MRD codes which are associated with the unital Petit algebras. They
can be viewed as generalized Gabidulin codes.

More generally, we can also construct MRD codes for l > 1. Let f ∈ R not be right-invariant, and let
l < k be a positive integer.

Theorem 19. Suppose that P does not contain any polynomial of degree lm, whose irreducible factors
are all similar to f . Then, the set Sn,m,l(ν, ρ, f ) defines an F′-linear MRD code in Mk(B) with minimum
distance k − l + 1. In particular, if deg(h) = dmn, then this code is an F′-linear MRD code in Mdn(Eĥ)
with minimum distance dn − l + 1.

We are not able to say if the assumption on P can be satisfied in this general setup. It is satisfied in
the case considered in [34, Theorem 7].

Proof. We have to show that the minimum column rank of the matrix corresponding to a nonzero
element in Sn,m,l(ν, ρ, f ) is k − l + 1. By Theorem 6, this is equivalent to finding an element g ∈ A such
that the greatest common right divisor of g and h has degree at most (l − 1)m. Suppose towards a con-
tradiction that there exists g ∈ A such that deg(gcrd(g, h)) = lm; since deg(g) ≤ lm, it follows that g must
be a divisor of h. As any divisor of h is a product of irreducible polynomials similar to f , g must be a
product of polynomials similar to f . This contradicts our assumption, so any matrix has rank at least
k − l + 1.

Theorem 20 (for f ∈ K[t; σ ], K a finite field, this is [34, Theorem 7]). Let f =∑m
i=0 aiti ∈ E[t; σ ] ⊂ R =

D[t; σ ] be monic irreducible, and let deg(h) = dmn. Suppose that all monic fi similar to f lie in E[t; σ ].
Then, Sn,m,l(ν, ρ, f ) defines an F′-linear MRD code in Mdn(Eĥ) with minimum distance dn − l + 1, if one
of the following holds:
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(i) ν = 0
(ii) ν �∈ E and ρ|E ∈ Aut(E).
(iii) ν ∈ E, ρ|E ∈ Aut(E) and NE/F

′ (ν)NE/F
′ (a0)l �= 1.

The proof is straightforward.

6.2. The case R = K[t; σ ]

Let f =∑m
i=0 aiti ∈ R = K[t; σ ] be an irreducible monic polynomial of degree m with minimal cen-

tral left multiple h. Suppose throughout this section that F/F′ is a finite field extension, ν ∈ K, and
ρ ∈ Aut(K). Let 1 < l < k and Sn,m,l(ν, ρ, f ) = {a + Rh | a ∈ P} ⊂ R/Rh, where P = {d0 + d1t + · · · +
dlm−1tlm−1 + νρ(d0)tlm | di ∈ K}. Then, we obtain the following results:

Theorem 21. Let l = 1.

(i) Let b(t) ∈ Rm with constant coefficient b0. If b(t) + νρ(b0)tm ∈ P is reducible in R, then b(t) is
not a left zero divisor in S(ν, ρ, f ).

(ii) If ν = 0, then S(ν, ρ, f ) is a division algebra over F′, a unital Petit algebra.
(iii) If P does not contain any polynomial similar to f , then S(ν, ρ, f ) is a division algebra over F′.

The proof is analogous to the one of Theorem 15. Note that f may be right-invariant here. Using
Theorems 10 and 13, we obtain (for finite fields, cf. [34], the proof is analogous):

Theorem 22. Suppose that deg(h) = mn. Then, S(ν, ρ, f ) is a division algebra over F′ if

NK/F
′ (a0)NK/F

′ (ν) �= 1.

Corollary 23. B = Nucr(Sf ) is a division algebra and the left multiplication of the algebra S(ν, ρ, f )
defines an F′-linear MRD code in Mk(B) with minimum distance k, if one of the following holds:

(i) ν = 0.
(ii) P does not contain any polynomial similar to f .
(iii) deg(h) = mn and ν ∈ K such that NK/F

′ (ν) �= 1/NK/F
′ (a0). In this case, the algebra S(ν, ρ, f )

defines an F′-linear MRD code in Mn(Eĥ) with minimum distance n.

Note that the condition on f in (iii) is satisfied for all f if gcd(m, n) = 1 or if n is prime.
We now look at the case that 1 < l < k and also assume that f is not right-invariant.

Theorem 24 (for finite fields, cf. [34, Theorem 7]). If deg(h) = mn, then the set Sn,m,l(ν, ρ, f ) defines an
F′-linear MRD code in Mn(Eĥ) with minimum distance n − l + 1 for any ν ∈ K such that

NK/F
′ (ν) �= 1/NK/F

′ (a0)l.

Note that k = n here since deg(h) = mn.

Corollary 25. The set Sn,m,l(ν, ρ, h) defines an F′-linear MRD code in Mn(Eĥ) with minimum distance
n − l + 1, if one of the following holds:

(i) deg(h) = mn and ν = 0,
(ii) n is prime or gcd(m, n) = 1, and 1 �= NK/F

′ (ν)NK/F
′ (a0)l

(iii) deg(h) = mn and NK/F
′ (ν) �∈ (F′×)l.
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The codes Sn,m,l(0, ρ, h) generalize the Gabidulin codes constructed in [10] that go back to [8].
Note that NK/F

′ (ν) �∈ (F′×)l implies NK/F
′ (ν) �= NK/F

′ (a0)l for any f . Thus, (ii) implies (iii) above.

Theorem 26. Suppose that P does not contain any polynomial of degree lm, whose irreducible factors
are all similar to f . Then the set Sn,m,l(ν, ρ, f ) defines an F′-linear MRD code in Mk(B) with minimum
distance k − l + 1. In particular, if deg(h) = mn then Sn,m,l(ν, ρ, f ) defines an F′-linear MRD code in
Mn(Eĥ) with minimum distance n − l + 1.

Proof. We have to show that the minimum column rank of the matrix corresponding to a nonzero
element in Sn,m,l(ν, ρ, f ) is k − l + 1. By Theorem 7, this is equivalent to finding an element g ∈ P such
that the greatest common right divisor of g and h has degree at most (l − 1)m. Suppose towards a
contradiction that deg(gcrd(g, h)) = lm; since deg(g) ≤ lm, it follows that g must be a divisor of h.

As any divisor of h is a product of irreducible polynomials similar to f , g must be a product of
polynomials similar to f . This contradicts our assumption, so any matrix has rank at least k − l + 1.

7. Nuclei

Let M=M(A) = {La | a ∈ A} ⊆ EndF(A) be the spread set of an F-algebra A, where La is the left
multiplication map in A. We define the left and right idealizers of M as

Il(M) = {� ∈ EndF(A) | �M⊆M}, respectively, Ir(M) = {� ∈ EndF(A) |M� ⊆M}.
The centralizer of M is defined as Cent(M) = {� ∈ EndF(A) | �M = M� ∀M ∈M}. We call
Z(M) = Il(M) ∩ Cent(M) the center of M.

Theorem 27 (cf. [34, Proposition 5] for finite fields). Let A be a unital division algebra and M be the
spread set of A. Let M∗ be the spread set associated with the opposite algebra Aop. Then

Nucl(A) ∼= Il(M), Nucm(A) ∼= Ir(M), Nucr(A) ∼= Cent(M∗), C(A) ∼= Z(M).

The proof from [34] holds verbatim in our general setting.
The above results can now be applied to determine the nuclei and center of the non-unital algebras

S = Sn,m,l(ν, ρ, f ).
In the following, let R = D[t; σ ]. We use the assumptions on D, respectively K, and σ from

Section 6.
Let f ∈ R be an irreducible monic polynomial of degree m, and let h be the minimal central left

multiple of f . We assume throughout that f is not right-invariant, so that k > 1.

Remark 28. The algebras Sn,m,l(0, ρ, f ) are unital Petit algebras and hence have left nucleus Nucm(S) =
D, and their right nucleus {g ∈ Rm | fg ∈ Rf } is the eigenspace of f . If Sn,m,l(0, ρ, f ) is not associative, then
{d ∈ D | dg = gd for all g ∈ S} is their center [26].

Theorem 29. Let R = D[t; σ ] and deg(h) = dmn. Suppose l ≤ dn/2, n > 1 and lm > 2. Let S =
Sn,m,l(ν, ρ, f ) and M be the image of S in EndEf (R/Rf ), that means the corresponding rank metric code
lies in Mn(Eĥ). If ν �= 0, we have

(i) Il(M) ∼= {g0 ∈ D | g0ν = νρ(g0)} ⊂ D (in particular, Il(M) ∼= Fix(ρ) if ν ∈ C),
(ii) Ir(M) ∼= Fix(ρ−1 ◦ σ lm) ⊂ D,
(iii) Cent(M) ∼= Eĥ, Z(M) ∼= F′.
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If ν = 0, we have

(iv) Il(M) ∼= D, Ir(M) ∼= D,
(v) Cent(M) ∼= Eĥ, Z(M) ∼= F.

Much of the proof works identically to the proof of [34, Theorem 9]. We sketch the proof to highlight
the main differences in this more general case. The lm = 2 case has to be considered separately, and we
have only been able to solve that for F =R.

Proof. Let M= {La ∈ EndEf (R/Rf ) | a ∈ P} be the image of S in EndEf (R/Rf ) ⊂ EndF(R/Rf ). In the
following, we identify each element in M with the element g ∈ S that induces it. Analogously to the
proof of [34, Theorem 9], {g ∈ Il(M) | deg(g) ≤ lm} = {g0 ∈ D | g0ν = νρ(g0)}. If ν = 0, then 1 ∈M so
Il(M) ⊂M so all g ∈ Il(M) have degree at most lm. Consider ν �= 0. To check there are no elements g ∈
Il(M) of degree higher than lm, we follow the approach of [34, Theorem 9] and consider gt mod ĥ(u−1tn).
Recalling deg(h) = dm, we have h(t) = (u−1tn)dm + · · · = u−dm(tn + h′

dm−1t(dm−1)n + · · · + h′
0) so

gt mod h(t) =
(

dmn−1∑
i=0

gi−1t
i

)
− gdmn−1u

dm

(
dm−1∑
j=0

h′
jt

nj

)
.

As g ∈ Il(M), this implies gt mod h ∈M, so for all i ∈ {lm + 1, . . . , dmn − 1}, we have

gi−1 =
{

0 for i �≡ 0 mod n

gdmn−1udmh′
i/n for i ≡ 0 mod n

(1)

where h′
i/n = 0 if i/n is not an integer. We will show that gdmn−1 = 0 and thus deg(g) ≤ lm − 1. As lm > 2,

this follows verbatim from [34, Theorem 9].
The same holds for Ir(M) following Sheekey’s proof with the appropriate amendments made for

D[t; σ ]. The results for Cent(M) and Z(M) hold verbatim from [34, Theorem 9].

Corollary 30. Let R = D[t; σ ] and deg(h) = dmn. Suppose n > 1, m > 2 and S = Sn,m,1(ν, ρ, f ) with
ν �= 0 be a division algebra. Then,

(i) Nucl(S) ∼= {g0 ∈ D | g0ν = νρ(g0)} ⊂ D, so in particular Nucl(S) = Fix(ρ) ⊂ D, if ν ∈ C.
(ii) Nucm(S) ∼= Fix(ρ−1 ◦ σ m) ⊂ D.
(iii) C(S) = Fix(ρ) ∩ F = F′.
(iv) dimF

′Nucr(S) = dimF
′ (Eĥ) = deg(ĥ)[F : F′] = [F : F′]dm.

Theorem 31. Let R = K[t; σ ] and deg(h) = mn. Suppose l ≤ n/2, n > 1 and lm > 2. Let S = Sn,m,l(ν, ρ, f )
with ν �= 0 and M be the image of S in EndEf (R/Rf ), so that the corresponding rank metric code lies in
Mn(Eĥ). Then,

(i) Il(M) ∼= Fix(ρ) ⊂ K, Ir(M) ∼= Fix(ρ−1 ◦ σ lm) ⊂ K,
(ii) Cent(M) ∼= Eĥ, Z(M) ∼= F′. If ν = 0, we have
(iii) Il(M) ∼= K, Ir(M) ∼= K,
(iv) Cent(M) ∼= Eĥ, Z(M) ∼= F.

Again, the proof is analogous to the one of [34], Theorem 9 (it does not use the fact that for finite
fields the right nucleus of Sf is Eĥ, it only uses that R/Rh has center Eĥ).

Corollary 32. Let R = K[t; σ ] and deg(h) = mn. Suppose that n > 1, m > 2 and that S = (S(ν, ρ, f ), ◦)
is a division algebra with ν �= 0. Then,

(i) Nucl(S) = Fix(ρ) ⊂ K,
(ii) Nucm(S) = Fix(ρ−1 ◦ σ m) ⊂ K,
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(iii) C(S) = Fix(ρ) ∩ F = F′.
(iv) dimF

′Nucr(S) = dimF
′ (Eĥ) = deg(ĥ)[F : F′] = [F : F′]m.

Theorems 29, 31 and Corollaries 30, 32 generalize [34, Theorem 9, Corollary 1] which were proved
for semifields.

8. Examples of division algebras and an MRD code when f(t) = tn − θ ∈ K[t; σ ]

8.1. K = F(θ )

Let K = F(θ ) be an extension of prime degree n. Let f (t) = tn − θ ∈ K[t; σ ]. We now compute the rank
metric code associated with the F′-algebra Sn,n,1(ν, ρ, f ). Note that f (t) = t3 − θ ∈ K[t; σ ] is irreducible if
and only if θ �= σ 2(z)σ (z)z for all z ∈ K. If F contains a primitive nth root of unity, then f (t) is irreducible
if and only if θ �= σ n−1(z) · · · σ (z)z for all z ∈ K.

We assume that f is irreducible. Define h(t) = (tn − θ )(tn − σ (θ )) · · · (tn − σ n−1(θ )) = (tn)n + · · · +
(−1)nNK/F(θ ), then h(t) = mclm(f ): as tn − σ i(θ ) ∈ K[tn], the factors of h(t) all commute and h(t) ∈
K[tn]. Since σ (h(t)) = (tn − σ (θ )) · · · (tn − σ n−1(θ ))(tn − θ ) = h(t), we know that h(t) ∈ Fix(σ )[t] = F[t]
so h(t) ∈ F[t] ∩ K[tn] = F[tn] = C(R). Hence h(t) = ĥ(tn) with ĥ(x) = xn + (−1)nNK/F(θ ) ∈ F[x]. Thus f
divides h both from the left and the right by Lemma 1.

As n is prime, the minimal central left multiple of f must have degree n in F[x] by Theorem 3;
thus, h(t) = mclm(f ), and hence, ĥ(x) = xn + (−1)nNK/F(θ ) also is an irreducible polynomial in F[x].
As a field, Ef = {z + Rf | z ∈ F[tn]} is generated by {1 + Rf , tn + Rf , t2n + Rf , . . . , tn(n−1) + Rf } = {1 +
Rf , θ + Rf , θ 2 + Rf , . . . , θ n−1 + Rf } over F. As K is generated by {1, θ , . . . , θ n−1}, there is a canonical
isomorphism Ef −→ K, x + Rf 	→ x.

It is clear that {1 + Rf , t + Rf , . . . , tn−1 + Rf } is an Ef -basis for R/Rf . Let a = a0 + a1t + · · · +
an−1tn−1 + νρ(a0)tn ∈ S(ν, ρ, h). In order to determine Ma, we consider how Laiti acts on the basis elements
of R/Rf . As left multiplication is distributive, i.e. La+b(x) = La(x) + Lb(x), it follows that La =∑n

i=0 Laiti ,
where an = νρ(a0). For each i, we have:

Laiti (1 + Rf ) =ait
i + Rf = (ti + Rf )(σ n−i(ai) + Rf )

Laiti (t + Rf ) =ait
i+1 + Rf = (ti+1 + Rf )(σ n−i−1(ai) + Rf )

...
...

Laiti(t
n−i + Rf ) =ait

n + Rf = aiθ + Rf = (1 + Rf )(aiθ + Rf )

Laiti(t
n−i+1 + Rf ) =ait

n+1 + Rf = aixθ + Rf = (t + Rf )(σ (ai)θ + Rf )

...
...

Laiti(t
n−1 + Rf ) =ait

i−1θ + Rf = (ti−1 + Rf )(σ n−i+1(ai)θ + Rf ).

Thus, the matrix representing Laiti is given by

Maiti =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 σ n−i(ai) 0 · · · 0
0 0 · · · 0 0 σ n−(i+1)(ai) · · · 0
...

. . .
. . .

...

0
. . . σ (am)

aiθ
. . . 0

0 σ n−1(ai)θ
...

. . .
. . .

...

0 0 · · · σ n−(i−1)(ai)θ 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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As Ma =∑n
i=0 Maiti , we obtain Ma = (mi,j)i,j where

mi,j =

⎧⎪⎨⎪⎩
σ n+1−i(a0) + σ n+1−i(νρ(a0))θ for i = j,

σ n+1−i(ai−j) for i > j,

σ n+1−i(an+i−j)θ for i < j.

This yields Cn,n,1 = {Ma | ak ∈ K for k = 0, 1, . . . , n − 1} ⊂ Mn(K) as the matrix spread set of the
n2[F : F′]-dimensional F′-algebra Sn,n,1(ν, ρ, f ). The algebra associated with this spread set is a divi-
sion algebra if NK/F

′ (θ )NK/F
′(ν) �= 1 (Theorem 22). In that case, the spread set will be an MRD code. In

particular, for ν = 0 this condition is satisfied for any irreducible f (t) = tn − θ . This is the well known
result that for irreducible f , the Petit algebra Sf is a division algebra and so are all its isotopes. For n > 2
and ν �= 0, Corollary 32 yields

Nucl(S) = Nucm(S) = Fix(ρ) ⊂ K, C(S) = F′, dimF
′Nucr(S) = [F : F′]m.

8.2. Real division algebras of dimension 4

Over a finite field F, all division algebras of dimension 4 over F which have F as their center and
a nucleus of dimension 2 over F can be constructed as algebras Sn,m,1(ν, ρ, f ) for suitable parameters
[34]. Let us now look at some real division algebras we obtain with our construction. If ν = 0, then
any choice of an irreducible f ∈C[t; ] will yield an algebra isotopic to a real Petit division algebra. If
ν �= 0, any choice of irreducible f ∈C[t; ] where NC/R(a0) �= 1/NC/R(ν) also yields a division algebra
(Theorem 22).

Let b ∈R and f (t) = t2 − bi ∈C[t; ]. Then, h(t) = ĥ(t2), ĥ(x) = x2 + b2 ∈R[x], is the minimal cen-
tral left multiple of f , as h(t) = t4 + b2 = (t2 + bi)(t2 − bi). For all b > 0, f (t) = t2 − bi is irreducible in
C[t; ].

For every irreducible f (t) = t2 − bi, and ν ∈C such that NC/R(ν) �= 1
b2 , we obtain a four-dimensional

real division algebra S2,2,1(ν, ρ, f ) and an MRD code given by its matrix spread set

C2,2,1 =
{(

z0 + νρ(z0)bi z1bi
z1 z0 + νρ(z0)bi

)
| z0, z1 ∈C

}
,

where ρ is either the identity or the complex conjugation.
As mentioned in Theorem 7, [34, Theorem 9] uses results to deal with the case when lm = 2 that are

valid over finite fields, but can be extended to R =C[t; ], for instance for f (t) = t2 − i:

Theorem 33. Let f (t) = t2 − i ∈C[t; ]. Suppose S = S2,2,1(ν, ρ, f ) is a division algebra for some ν �= 0
and ρ ∈ AutR(C). Then,

(i) Nucl(S) = Nucm(S) = Fix(ρ),
(ii) C(S) =R,
(iii) dimR(Nucr(S)) = dimR(R[t2]) = 2.

Proof. We have h(t) = t4 + 1 ∈R[t2]. Suppose g + Rh ∈ Il(M) for some g(t) = g0 + g1t + g2t2 +
g3t3 ∈ R. Then, ga ∈ S(ν, ρ, h) for all a ∈ S. Direct and laborious computation yields g2 = 0, g3 = −g1ν,
and νρ(g0a0 + g1νa1) = g0νρ(a0) + g1a1. This is satisfied for all a0, a1 ∈C if and only if νρ(g0) = g0ν

and g1 = νρ(g1ν).
If ρ = id, it follows that either g1 = 0 or NC/R(ν) = 1; as S is a division algebra, Theorem 13 (or [34,

Theorem 4]) forces g1 = 0 and so g = g0 for some g0 ∈C. Thus Il(M) =C.If ρ = , then g1 = ν2g1 so
either g1 = 0 or ν = ±1. As NC/R(ν) �= 1 [34, Theorem 4], this forces g1 = 0 so g = g0 for some g0 ∈R.
In this case, Il(M) =R.
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The computations for Ir(M) follow analogously and Cent(M) and Z(M) follow from the proof of
[34, Theorem 4]. We obtain the final result on the nuclei using Theorem 27 to relate the idealizers and
centralizer of M to the nuclei of the algebra S.

Example 34. If f (t) = t2 − i, we obtain division algebras S for all ν ∈C such that NC/R(ν) �= 1. If
ν �= 0 and S is a division algebra, then C(S) =R and dimRNucr(S) = 2. Since therefore Nucr(S) is a
two-dimensional division algebra over R, Nucr(S) is an Albert isotope of C and can be found in the
classification in [15, Theorem 1]: it must beC, C( , ), C(1+L(v) , ), C( ,1+L(v) ), or C(1+L(v) ,1+L(w) ), with u, v ∈C

suitably chosen.
If additionally ρ = id, then Nucl(S) = Nucm(S) =C, and if ρ = then Nucl(S) = Nucm(S) =R. Note

that the four-dimensional algebras in the first class are all isotopes of nonassociative quaternion
algebras.

9. Constructing algebras and codes using irreducible f∈ R = D[t; δ]

We now consider the same constructionusing differential polynomial rings. Let C a field of characteristic
p and D be a finite-dimensional division algebra with center C. Let R = D[t; δ], where δ is a derivation of
D, such that δ|C is algebraic with minimum polynomial g(t) = tpe + c1tpe−1 + · · · + cet ∈ F[t] of degree pe,
with F = C ∩ Const(δ). (This includes the special case where d = 1, that is R = K[t; δ], and δ is an alge-
braic derivation with minimum polynomial g.) Then, g(δ) = idd0 is an inner derivation of D. W.l.o.g. we
choose d0 ∈ F, so that δ(d0) = 0 [18, Lemma 1.5.3]. Then, C(D[t; δ]) = F[x] = {∑k

i=0 ai(g(t) − d0)i | ai ∈
F} with x = g(t) − d0. The two-sided f ∈ R are of the form f (t) = uc(t) with u ∈ D and c(t) ∈ C(R) [18,
Theorem 1.1.32]. All polynomials f ∈ R are bounded.

For every f ∈ R, the minimal central left multiple of f in R is the unique polynomial of minimal
degree h ∈ C(R) = F[x] such that h = gf for some g ∈ R, and such that h(t) = ĥ(g(t) − d0) for some monic
ĥ(x) ∈ F[x]. The bound f ∗ of f is the unique minimal central left multiple of f up to some scalar.

From now on, let f ∈ R = D[t; δ] be a monic irreducible polynomial of degree m > 1 and let h(t) =
ĥ(g(t) − d0) be its minimal central left multiple. Then, ĥ(x) is irreducible in F[x] and h generates a
maximal two-sided ideal Rh in R [18, p. 16]. We have

C(R/Rh) ∼= F[x]/F[x]ĥ(x)

[17, Proposition 4], and deg(h) = pedeg(ĥ). Define Eĥ = F[x]/F[x]ĥ(x) and let k be the number of
irreducible factors of h in R.

Theorem 35 [23]. Nucr(Sf )is a central division algebra over Eĥ of degree s = dpe/k, and

R/Rh ∼= Mk(Nucr(Sf )).

In particular, this means that deg(ĥ) = dm
s

, deg(h) = km = dpem
s

, and

[Nucr(Sf ) : F] = s2 · dm

s
= dms.

Moreover, s divides gcd(dm, dpe). If f is not right-invariant, then k > 1 and s �= dpe.

The proof is analogous to the one of Theorem 3. In particular, [Sf : F] = [Sf : C]pe = d2m · pe.
Comparing dimensions, we obtain again that [Sf : Nucr(Sf )] = k, and if f is not right-invariant, k > 1.

For each z(t) = ẑ(g(t) − d0) ∈ F[g(t) − d0] with ẑ ∈ F[x], we have z ∈ Rf if and only if z ∈ Rh. Let

Ef = {z(t) + Rf | z(t) = ẑ((g(t) − d0)) ∈ F[(g(t) − d0)]} ⊂ R/Rf .

Together with the multiplication (x + Rf ) ◦ (y + Rf ) = (xy) + Rf for all x, y ∈ F[(g(t) − d0)], Ef is a field
extension of F of degree deg (ĥ) isomorphic to Eĥ. Let B = Nucr(Sf ), then B has degree s over Eĥ, and
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R/Rf is a free right B-module of dimension k via R/Rf × B −→ R/Rf , (a + Rf )(z + Rf ) = az + Rf . We
assume f is not right-invariant which yields k > 1.

For ρ ∈ Aut(D) define F′ = Fix(ρ) ∩ F. We assume that F/F′ is finite-dimensional. Let ν ∈ D and
1 ≤ l < k = dpe/s. Define the set Spe,m,l(ν, ρ, f ) = {a + Rh | a ∈ P} ⊂ R/Rh, where

P = {a0 + a1t + · · · + alm−1t
lm−1 + νρ(a0)tlm | ai ∈ D} ⊂ D[t; δ].

Spe,m,l(ν, ρ, f ) is a vector space over F′ of dimension d2pem[F : F′]. We identify each element of
Spe,m,l(ν, ρ, f ) with a map in EndB(R/Rf ) as follows: For each a ∈ Spe,m,l(ν, ρ, f ), let La : R/Rf → R/Rf
be the left multiplication map La(b + Rf ) = ab + Rf . Let Ma be the matrix in Mk(B) representing La

with respect to a B-basis of R/Rf and denote the image of S = Spe,m,l(ν, ρ, f ) in Mk(B) by

Cpe ,m,l = {Ma | a ∈ Spe,m,l(ν, ρ, f )}.
For l = 1, this construction again yields algebras over F′: define a multiplication on the F′-vector

space Rm = {g ∈ R | deg(g) < m} via

a(t) ◦ b(t) = (a(t) + νρ(a0)t
m)b(t) modr(f ).

For m > 1, (Rm, ◦) is isomorphic to S(ν, ρ, f ) = Spe,m,1(ν, ρ, f ). Therefore, we also denote (Rm, ◦) by
S(ν, ρ, f ) = Spe,m,1(ν, ρ, f ).

Example 36. Let R = D[t; δ] and f (t) = t + c for some c ∈ D. For ν ∈ D× and ρ ∈ Aut(D),
Spe,1,1(ν, ρ, f ) = (D, ◦) has the multiplication

x ◦ y = (x + νρ(x)t)y) : modrf = xy + νρ(x)yt + νρ(x)δ(y) : modrf

= xy + νρ(x)(δ(y) − yc)

for all x, y ∈ D.

Theorem 37. Let f ∈ D[t; δ] be irreducible and deg(h) = km. For all a + Rh ∈ R/Rh,

dimB(im(LMa )) = k2 − k

m
deg(gcrd(a, ĥ(g(t) − d0))),

colrank(Ma) = k − 1

m
deg(gcrd(a, ĥ(g(t) − d0)).

In particular, if deg(h) = dmpe then Ma ∈ Mpe (Eĥ) and

rank(Ma) = dpe − 1

m
deg(gcrd(a, ĥ(g(t) − d0))).

Thus, Spe,m,1(ν, ρ, f ) is a division algebra if and only if there are no divisors of h in Spe,m,1(ν, ρ, f ).
More generally for l > 1, the above result means:

Theorem 38. Suppose that P does not contain any polynomial of degree lm, whose irreducible factors
are all similar to f . Then, the set Spe,m,l(ν, ρ, f ) defines an F′-linear MRD code in Mk(B) with minimum
distance k − l + 1. In particular, if deg(h) = dmpe, then this code is an F′-linear MRD code in Mdpe(Eĥ)
with minimum distance dpe − l + 1.

Corollary 39. Suppose that l = 1.

(i) If a(t) + νρ(a0)tm ∈ P is reducible, then a(t) is not a left zero divisor of (Rm, ◦).
(ii) If ν = 0 then (Rm, ◦) is a division algebra over F′, which for m ≥ 2 is a Petit algebra.
(iii) If P does not contain any polynomial similar to f , then (Rm, ◦) is a division algebra over F′.

The proofs are all identical to their analogues where f ∈ D[t; σ ].
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Remark 40. One can also use the reduced norm N of the central simple algebra D(t; δ) in this setting:
given a central simple algebra D with a maximal subfield E and R = D[t; δ], take the ring of central
quotients D(t; δ) = {f /g | f ∈ R, g ∈ C(R)} of R. It has center C(D(t; δ)) = Quot(C(R)) = F(x), where x =
g(t) = d0. Let δ̃ be the extension of δ to D(x) such that δ̃ = idt|D(x). Then, D(t; δ) is a central simple F(x)-
algebra, more precisely D(t; δ) ∼= (D(x), δ̃, d0 + x), i.e. D(t; δ) is a generalized differential algebra.

Let N be the reduced norm of D(t; δ). For all f ∈ R, N(f ) ∈ F[x] and f divides N(f ). Let ω : D → Md(E)
be the left regular representation of D. For any f ∈ R of degree m, N(f ) = ±det(ω(am))pe

xdm + . . . . In
particular, N(f ) has degree dm [36]. As the bound of f has degree dm in F[x], it follows that N(f ) is
equal to the bound of f . Thus if deg(ĥ) = dm, we conclude that ĥ(x) = ±N(f ).

There is more work to be done, for example, to determine the constant term of N(f (t)). This may lead
to criteria on how to obtain division algebras using our construction. Additionally, the nuclei of both
the algebras and the codes need to be calculated. For instance, consider the special case where d = 1,
i.e. R = K[t; δ] for some field extension K/F. If f (t) = a0 + a1t + · · · + amtm ∈ R = K[t; δ] has degree m,
then N(f (t)) = (−1)m(pe−1)ape

m xm + . . . [36, Thm 18(ii)] Thus,

N(f (t)) = ape

m xm + . . .

To find the constant term of N(f ) is difficult. It is possible to compute special cases though, for example,
for f (t) = g(t) + a ∈ K[t; δ], N(f (t)) = (x + a)pe [36].

Acknowledgement. We would like to thank J. Sheekey for several helpful discussions on the subject, and the referee, whose
comments greatly improved our paper.
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