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Abstract. Let ���;H�� be a unitary highest weight representation of the con-
nected Lie group G and g its Lie algebra. Then g contains an invariant closed con-
vex cone Wmax such that, for each X 2W0

max, the selfadjoint operator i � d���X� is
bounded from above. We show that for each such X, the space H1� of smooth vec-
tors for the action of G on H� coincides with the set D1�d���X�� of smooth vectors
for the generally unbounded operator d���X�.
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0. Introduction. Let ���;H�� be a unitary highest weight representation of the
®nite-dimensional connected Lie group G and g its Lie algebra. Then g contains an
invariant closed convex cone Wmax such that, for each X 2W 0

max, the selfadjoint
operator i � d���X� is bounded from above. In this note we show that, for each such
X, the space H1� of smooth vectors for the action of G on H� coincides with the set
D1ÿd���X�� of smooth vectors for the generally unbounded operator d���X�. This
result greatly facilitates the determination of the space of smooth vectors and hence
of the distribution vectors for highest weight representations.

Our result has been motivated by the following problem. Suppose that we have
realized the representation ���;H�� in a space of holomorphic functions on a com-
plex domain D with values in some ®nite dimensional complex vector space V (cf.
[1], [2], [3], [4] and [12, Chapter XII]). Then the action of G and of its Lie algebra g
extend naturally to the space Hol�D;V� of all holomorphic V-valued functions on D.
Now the characterization from above implies, in particular, that the space Hÿ1� of
distribution vectors can be described as

P
n2N d���X�n:H�. If, in addition, X is con-

tained in the center of a maximal compactly embedded subalgebra, then the action
of X on Hol�D;V� is quite simply given by some sort of Euler operator and the
result described in this paper can be used to obtain a direct analytic characterization
of the elements of the space Hÿ1� considered as a space of V-valued holomorphic
functions on D.

The description of the smooth and therefore the distribution vectors of a highest
weight representation is an essential step towards the determination of theH-invariant
distribution vectors for a given closed subgroup H of G. A question that is particu-
larly interesting, and still open, is the case in which �G;H� is a symmetric pair.

1. Basic concepts and de®nitions.

Definition 1.1. (a) Let g be a ®nite dimensional real Lie algebra. For a sub-
algebra a � g we write Inn�a� :� head ai � Aut�g� for the corresponding group of
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inner automorphisms. A subalgebra a � g is said to be compactly embedded if Inn�a�
has compact closure.

(b) Let t � g be a compactly embedded Cartan subalgebra and recall that there
exists a unique maximal compactly embedded subalgebra k containing t (cf. [5,
A.2.40]).

(c) Associated to the Cartan subalgebra tC in the complexi®cation gC is a root
decomposition as follows. For a linear functional � 2 t�C we set

g�C :� fX 2 gC : �8Y 2 tC��Y;X� � ��Y�Xg

and we shall write � :� f� 2 t�C n f0g : g�C 6� f0gg for the set of roots. Then
gC � tC �

L
�2� g�C, ��t� � iR, for all � 2 �, and g�

C
� gÿ�C , where X7!X denotes

complex conjugation on gC with respect to g. Put X � :� ÿX
(d) A root � is said to be compact if g�C � kC and non-compact otherwise. We

write �k for the set of compact and �p for the set of non-compact roots. If
g � r� --- s is a k-invariant Levi decomposition, then we set

�r :� f� 2 �: g�C � rCg and �s :� f� 2 �: g�C � sCg

Recall that � � �r _[�s is a disjoint decomposition (cf. [12, De®nition VII.2.4]). If
� 2 �s, then we write �� for the uniquely determined element in the one-dimensional
space �g�C; gÿ�C � � tC satisfying �� ��� � 2.

(e) A positive system �� of roots is a subset of � for which there exists a regular
element X0 2 it with �� � f� 2 �:��X0� > 0g:We say that a positive system �� is k-
adapted if the set ��p :� �p \�� of positive non-compact roots is invariant under
the Weyl group Wk :� NInn�k��t�=ZInn�k��t� acting on t. We recall from [8, Proposition
II.7] (cf. also [12, Proposition VII.2.14]) that there exists a k-adapted positive system
if and only if zg

ÿ
z�k�� � k. In this case we say that g is quasihermitian. Note that a

simple real Lie algebra is quasihermitian if and only if it is either compact or her-
mitian.

(f) We associate to a positive system �� the convex cones

Cmin :� conefi�X�;X��:X� 2 g�C; � 2 ��p g

and Cmax :� �i��p �? � fX 2 t: �8� 2 ��p �i��X� � 0g.

In the following we assume that g is a quasihermitian Lie algebra, t � g is a
compactly embedded Cartan subalgebra, and � is the corresponding system of roots.

Definition 1.2. Let �� � � be a positive system.
(a) For a gC-module V and � 2 t�C we set V� :� fv 2 V : �8X 2 tC�X:v � ��X�vg:

This space is called the weight space of weight � and � is said to be a weight of V if
V� 6� f0g. We write PV for the set of weights of V.

(b) Let V be a gC-module and v 2 V� a tC-weight vector. We say that v is a pri-
mitive element of V (with respect to ��) if g�C:v � f0g holds for all � 2 ��.

(c) A gC-module V is called a highest weight module with highest weight � (with
respect to ��) if it is generated by a primitive element of weight �.

(d) A highest weight module V is said to be unitarizable if there exists a unitary
representation ��;H� of the simply connected Lie group G with L�G� � g such that
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V is isomorphic to the gC-module HK of K-®nite vectors in H (cf. [8, Section III]),
where K � exp k. In this case ��;H� is called a unitary highest weight representation
of G.

2. Estimates and smooth vectors for highest weight representations. Let L��� be a
unitary highest weight module with respect to �� and highest weight �. We recall
from [10] that such a highest weight module exists essentially only for k-adapted
positive systems).

We write H� for the Hilbert space completion of L��� and �� for the unitary
representation of the corresponding simply connected group G on H�. If H!� denotes
the subspace of analytic vectors of the representation ���;H��, then L���,!H! is an
embedding of gC-modules. As the theory of holomorphic representations shows, the
representation of G on H� extends to a holomorphic representation of the maximal
Ol'shanskiõÆ semigroup S � G exp�iW0

max� on H� (cf. [10, Section 4] or [12, Chapter
XI]). Let X0 2 iW0

max. Then [7, Proposition A.5] shows that

H! �
[
t>0

���exp tX0�:H:

From the representation theory of the group R one now gets

H! � D!ÿd��X0�
� � nv 2 H: �9t > 0�

X1
n�0

tn

n!
kd��X0�n:vk <1

o
;

that is, H! coincides with the space of analytic vectors for the selfadjoint operator
d��X0�.

In this note we shall see that this characterization carries over to the space of
smooth vectors. We shall show that

H1 � D1ÿd��X0�
�

:�
\
n2N

Dÿd��X0�n
�
:

Both characterizations yield quite explicit descriptions of the space of smooth
and analytic vectors in terms of the weight decomposition. Let P� :� PL��� � t�C
denote the set of weights of the gC-module L���, L��� �P�2P� L���� the corre-
sponding weight space decomposition, and write v �P� v� for the corresponding
decomposition of an element of v 2 H�. We note that kvk2 �P� kv�k2. Since
W0

max � Ad�G�:�W0
max \ t� (cf. [11, Lemma II.10]), we may without loss of generality

assume that X0 2 i�t \W0
max� � iC0

max. Then

d��X0�:v �
X
�

��X0�v�

and therefore

D1ÿd��X0�
� � fv 2 H: �8n 2 N�

X
�

j��X0�jnkv�k2 <1g;
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so that

D!ÿd��X0�
� � fv 2 H: �9t > 0�

X
�

et��X0�kv�k2 <1g:

Lemma 2.1. For X 2 z�k� the space D1ÿd��X�� is K-invariant.
Proof. For g 2 G and X 2 g we have d�

ÿ
Ad�g�:X� � ��g�d��X���g�ÿ1; hence

D1ÿd��Ad�g�:X�� � ��g�:D1ÿd��X��:
The lemma is a direct consequence of this observation. &

Lemma 2.2. Let X0 2 iC0
max. Then, for each Y 2 t, there exist C;D > 0 such that

for all � 2 P� we have j��Y�j � Cj��X0�j �D.

Proof. First we recall that

P� � conv�Wk:�� ÿ cone���p � �2:1�

(cf. [9, Proposition 2.3]). Let C1 > 0 be such that j��Y�j � C1j��X0�j � C1��X0�
holds, for all � 2 ��p , and hence for all � 2 cone���p �. For � � �0 ÿ �,
�0 2 conv�Wk:��, � 2 cone���p � we then obtain ��X0� � ��0 ÿ ���X0� � j��X0�j � C2,
where C2 � max jhWk:�;X0ij. Now

j��Y�j � j�0�Y�j � j��Y�j � max jhWk:�;Yij � C1��X0� � C3 � C1�j��X0�j � C2�;

and this proves the lemma. &

Lemma 2.3. For each Y 2 t and X0 2 iC0
max we have D1ÿd��X0�

� � D1ÿd��Y��:
Proof. We choose C;D > 0 according to Lemma 2.2. For v �P� v�

2 D1ÿd��X0�
�
we then haveX
�

j��Y�jnkv�k2 �
X
�

�Cj��X0�j �D�nkv�k2

�
X
�

Xn
k�0

n

k

� �
CkDnÿkj��X0�jkkv�k2

�
Xn
k�0

n

k

� �
CkDnÿkX

�

j��X0�jkkv�k2 <1:

&

Proposition 2.4. If X0;X1 2 iC0
max, then D1

ÿ
d��X0�

� � D1ÿd��X1�
�
:

Proof. This is an immediate consequence of Lemma 2.3. &

According to Proposition 2.4, we may further assume that the element
X0 2 iC0

max is contained in iz�k�. In this case the following lemma provides some
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additional information. In the following we shall write Z� :� ÿZ for elements
Z 2 gC, where Z7!Z is the complex conjugation with respect to the real form g. We
extend the map Z7!Z� to an antilinear involutive antiautomorphism D 7!D� of the
enveloping algebra U�gC�.

Lemma 2.5. If X0 2 i
ÿ
C0

max \ z�k��, then for each Y 2 k we have
D1ÿd��X0�

� � D1ÿd��Y��:
Proof. In view of k � Ad�K�:t, the assertion follows from Lemma 2.3 and

Lemma 2.1. &

Lemma 2.5 implies in particular that

H1 �
\
Y2gC

D1ÿd��Y�� � D1ÿd��X0�
� \ \

�2��p

\
Y2g�

C

D1ÿd��Y��:
Now we deal with the di�erent types of root spaces. Let � 2 �� and

g��Z� :� spanRfZÿ Z�; i�Z� Z��g � t � g:

Then Wmax \ g��Z� is an elliptic cone with interior points. Since �� is a trace class
representation of the maximal semigroup S � G exp�iW0

max� (cf. [10]), the restriction
to the subgroup G��Z� :� hexp g��Z�i � G decomposes as a direct sum of holo-
morphic representations of the semigroup S��Z� :� G��Z� exp

ÿ
i�W0

max \ g��Z��
�

with ®nite multiplicities (cf. [12, Theorem III.3.21]). Furthermore each highest
weight � occurring in L��� is contained in P�, and from (2.1) we conclude that for
each Y 2 iCmax

��Y� � suphWk:�;Yi: �2:2�

For Z 2 g�C, � 2 ��p , we further have

�Z�;Z� � i�iZ;Z� 2 iCmin � iCmax: �2:3�

Now the condition � 2 ÿ�iCmin�? that is necessary for unitarizability (cf. [10] or [12,
Chapter IX.2]) and (2.1) together imply that

���Z�;Z�� � 0; �2:4�

for all � 2 P�.

Lemma 2.6. For each Z 2 g�C there exists Y 2 it such that


 :� ÿZ�Zÿ ZZ� � Y�Z�;Z� 2 U�gC�

is central in Uÿg��Z�C�. For � 2 ��p we can choose Y 2 iCmax and for � 2 ��r we can
even choose Y 2 iCmax \ z�k�. Moreover we have


 � �1� Y��Z�;Z� ÿ 2Z�Z � �Yÿ 1��Z�;Z� ÿ 2ZZ�:
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Proof. It is clear that �tC;
� � f0g. Furthermore we have

�Z;
� � ÿ�Z;Z��Zÿ Z�Z;Z�� � �Z;Y��Z�;Z� � Y
�
Z; �Z�;Z��

� ��Z�;Z�;Z�� 2Z�Z�;Z� ÿ ��Y�Z�Z�;Z� ÿ ���Z�;Z��YZ
� ���Z�;Z��Z� ÿ2ÿ ��Y��Z�Z�;Z� ÿ ���Z�;Z���Y;Z� ÿ ���Z�;Z��ZY
� ���Z�;Z��Z� ÿ2ÿ ��Y��Z�Z�;Z� ÿ ���Z�;Z����Y�Zÿ ���Z�;Z��ZY
� ���Z�;Z��ÿ1ÿ ��Y��Z� Z

�ÿ
2ÿ ��Y���Z�;Z� ÿ ���Z�;Z��Y�:

For this expression to vanish it is necessary and su�cient that

���Z�;Z��ÿ1ÿ ��Y�� � 0 and
ÿ
2ÿ ��Y���Z�;Z� � ���Z�;Z��Y: �2:5�

If ���Z�;Z�� 6� 0, then we put Y � 1
2

�� 2 R�Z�;Z�. Note that ��Y� � 1, which
means that �Z�;Z� � ���Z�;Z��Y and hence that (2.5) is satis®ed. For � 2 ��p we
further see that �� 2 iCmax follows from (2.3).

If ���Z;Z��� � 0, then we choose Y 2 iCmax with ��Y� � 2, which is possible for
� 2 ��r because iCmax is the dual cone �?

p of ��p . Since z�k� intersects the interior of
the cone Cmax, we even see that Y can be chosen in iz�k�. It is clear that (2.5) is
satis®ed in this case. This shows that in any case a suitable choice for Y yields
�
;Z� � 0. Hence �
;Z�� � �Z;
��� � �Z;
�� � 0 follows from


� � ÿZ�Zÿ ZZ� � �Z�;Z��Y� � ÿZ�Zÿ ZZ� � Y�Z�;Z� � 
:

Thus �
; tC � CZ� CZ�� � f0g and therefore 
 is central in U�CZ� CZ� � tC�.
For the last statement we note that


�ÿZ�Zÿ ZZ� � Y�Z�;Z� � �Z�;Z� ÿ 2Z�Z� Y�Z�;Z� � �1� Y��Z�;Z� ÿ 2Z�Z

and


�ÿZ�Zÿ ZZ� � Y�Z�;Z� � �Z;Z�� ÿ 2ZZ� � Y�Z�;Z� � �Yÿ 1��Z�;Z� ÿ 2ZZ�:

Remark 2.7. We note that for non-compact simple roots we ®nd a choice of Z
with �Z�;Z� � ��, where �� ��� � 2. Then Y�Z�;Z� � 1

2
��2: If � is compact simple, then

a suitable choice of Z leads to �Z�;Z� � ÿ �� and we get Y�Z�;Z� � ÿ 1
2

��2:

The strategy to obtain estimates for the elements in the root spaces will be to
analyze the irreducible subrepresentations for G��Z�, respectively S��Z�, quite expli-
citly, and then show that the result we are heading for holds for this reduced case.

If v �P� v� 2 H� is a vector decomposed according to the weight decomposi-
tion, then Z:v �P� Z:v� is the weight decomposition of Z:v and similarly for Z�:v.
Hence

kZ:vk2 �
X
�

kZ:v�k2;

so that we shall need estimates of the type
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kZ:v�k2 � C�Z; ��kv�k2 and kZ�:v�k2 � C��Z; ��kv�k2:

The following lemma shows that, for � 2 ��p , it su�ces to obtain estimates for the
action of Z�.

Lemma 2.8. For a weight vector v� 2 L���� and Z 2 g�C, � 2 ��p , we have
kZ:v�k2 � kZ�:v�k2:

Proof. In view of (2.4), we have

kZ:v�k2 ÿ kZ�:v�k2 � h�Z�Zÿ ZZ��:v�; v�i � h�Z�;Z�:v�; v�i � ���Z�;Z��kv�k2 � 0:

&

The following exact formula will be the key to the speci®c estimates.

Lemma 2.9. For any weight vector v� 2 ker d��Z� and v� � �Z��n:v� we have

kZ:v�k2 � 1

2

�ÿ
1� ��Y�����Z�;Z�� ÿ ÿ1� ��Y�����Z�;Z���kv�k2

and

kZ�:v�k2 � 1

2

�ÿ
��Y� ÿ 1

�
���Z�;Z�� ÿ ÿ1� ��Y�����Z�;Z���kv�k2:

Proof. According to Lemma 2.6 and Z:v� � 0, we have


:v� � �1� Y��Z�;Z�:v� �
ÿ
1� ��Y�����Z�;Z��v�:

For v� � �Z��n:v� we now obtain from the fact that 
 commutes with Z

2kZ:v�k2 � 2hZ�Z:v�; v�i � h
ÿ�1� Y��Z�;Z� ÿ


�
:v�; v�i

�
�ÿ
1� ��Y�����Z�;Z�� ÿ ÿ1� ��Y�����Z�;Z���kv�k2

and

2kZ�:v�k2 � 2hZZ�:v�; v�i � h
ÿ�Yÿ 1��Z�;Z� ÿ


�
:v�; v�i

�
�ÿ
��Y� ÿ 1

�
���Z�;Z�� ÿ ÿ1� ��Y�����Z�;Z���kv�k2:

&

Lemma 2.10. For each n 2 N, Z 2 g�C, � 2 �p, and Y as in Lemma 2.6, there
exists a polynomial P with non-negative coe�cients such that for any tC-weight vector
v� 2 L���� we have

kZn:v�k2 � P
ÿj��Y�j�kv�k2:

SMOOTH VECTORS 475

https://doi.org/10.1017/S0017089500030135 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500030135


Proof. Let Z 2 g�C and � 2 ��p . To prove the lemma we have to estimate the
expressions kZn:v�k2 and k�Z��n:v�k2 because, in the statement of the lemma, it is
not assumed that � is a positive root.

Since L��� decomposes as an orthogonal direct sum of highest weight modules
L���Z;� for the Lie algebra g��Z�C, we only have to prove the estimates for such
modules and have to check that the polynomials obtained are independent of the
highest weight � of such a submodule. We let v� 2 ker d��Z� and v� � �Z��m:v�.

We ®rst assume that � 2 ��p;s and recall that in this case Y � 1
2

�� � 1
2 �Z�;Z� if Z

is normalized such that ���Z�;Z�� � 2 (Remark 2.7). From � 2 �ÿN0� and
�� ��� � 2 we conclude with (2.4) that �� ��� � �� ��� � 0; hence j�� ���j � j�� ���j. Thus
Lemma 2.9 gives

2kZ�:v�k2 �
ÿ
2� j�� ���j�j�� ���jkv�k2 � ÿ2� j�� ���j�2kv�k2: �2:6�

Inductively this leads to

k�Z��n:v�k2 � 1

2n

Yn
j�1

ÿ
2ÿ ÿ�� ��� ÿ 2�jÿ 1���2kv�k2 � 1

2n
ÿ
2nÿ �� ����2nkv�k2;

and so we have an estimate of the type

k�Z��n:v�k2 � P1

ÿj��Y�j�kv�k2;
where P1 is a polynomial of degree 2n with non-negative coe�cients.

Using Lemma 2.8 and (2.6), we get 2kZ:v�k2 �
ÿ
2� j�� ���j�2kv�k2 and, induc-

tively, this also leads to an estimate of the form

kZn:v�k2 � P2

ÿj��Y�j�kv�k2:
Now we consider the case where ���Z�;Z�� � 0; i.e., � 2 ��r . We choose Y 2 z�k�
(Lemma 2.6). Then �Z�;Z� is central in g (cf. [12, Section VII.2]), so that
���Z�;Z�� � ���Z�;Z�� holds, for all � 2 P�. Moreover � 2 P� and (2.1) show that
��Y� � ��Y� � ��Y�. Therefore

j��Y� ÿ ��Y�j � ��Y� ÿ ��Y� � ��Y� ÿ ��Y�:

Hence

kZ�:v�k2 � 1

2

�ÿ
��Y� ÿ 1

�
���Z�;Z�� ÿ ÿ1� ��Y�����Z�;Z���kv�k2

� ���Z
�;Z��
2

ÿ
��Y� ÿ ��Y� ÿ 2

�kv�k2
� j���Z

�;Z��j
2

ÿ
��Y� ÿ ��Y� � 2

�kv�k2
� j���Z

�;Z��j
2

ÿj��Y�j � j��Y�j � 2
�kv�k2:

Now the same arguments as for � 2 ��p;s apply and show that the inequalities
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k�Z��n:v�k2 � P3

ÿj��Y�j�kv�k2; kZn:v�k2 � P4

ÿj��Y�j�kv�k2
hold for polynomials P3, P4 with non-negative coe�cients. &

Theorem 2.11. For each X0 2 iW0
max we have H1� � D1

ÿ
d��X0�

�
:

Proof. Since W0
max � Ad�G�:C0

max ([11, Lemma II.10]), we may without loss of
generality assume that X0 2 iC0

max. Further Proposition 2.4 shows that we may even
assume that X0 2 iC0

max \ iz�k�. Then Lemma 2.5 shows that for each Y 2 k we have
D1ÿd��X0�

� � D1ÿd��Y��: It remains to show that, for each � 2 �p and Z 2 g�C, we
have D1ÿd��X0�

� � D1ÿd��Z��:
Using Lemma 2.2, we ®nd C;D > 0 with j��Y�j � Cj��X0�j �D, for all � 2 P�.

Thus we see from Lemma 2.10 that for v �P� v� 2 D1
ÿ
d��X0�

�
we get

kZn:vk2 �
X
�

kZn:v�k2 �
X
�

P
ÿj��Y�j�kv�k2

�
X
�

P
ÿ
Cj��X0�j �D

�kv�k2 <1:
We conclude that Dÿd��X0�

� � Dÿd��Z��. This completes the proof. &
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