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On the Coarse Geometry of James Spaces

Gilles Lancien, Colin Petitjean, and Antonin Procházka

Abstract. In this note we prove that the Kalton interlaced graphs do not equi-coarsely embed into
the James space J nor into its dual J∗. It is a particular case of a more general result on the non-
equi-coarse embeddability of the Kalton graphs into quasi-re�exive spaces with a special asymptotic
structure. his allows us to exhibit a coarse invariant for Banach spaces, namely the non-equi-coarse
embeddability of this family of graphs,which is very close to but diòerent from the celebrated property
Q of Kalton. We conclude with a remark on the coarse geometry of the James tree space JT and of its
predual.

1 Introduction

In a fundamental paper on the coarse geometry of Banach spaces [14],N.Kalton intro-
duced a property ofmetric spaces that he named propertyQ. In particular, its absence
served as an obstruction to coarse embeddability into re�exive Banach spaces. his
property is related to the behavior of Lipschitzmaps deûned on a particular family of
metric graphs thatwewill denote ([N]k , dk

K)k∈N. Wewill recall the precise deûnitions
of these graphs and of property Q in Section 2.2. Let us just say, vaguely speaking for
themoment, that a Banach space X has property Q if for every Lipschitzmap f from
([N]k , dk

K) to X, there exists a full subgraph [M]k of [N]k , with M an inûnite subset
of N, on which f satisûes a strong concentration phenomenon. It is then easy to see
that if a Banach space X has propertyQ, then the family of graphs ([N]k , dk

K)k∈N does
not equi-coarsely embed into X (see the deûnition in Section 2.1). One of the main
results in [14] is that any re�exive Banach space has property Q. It then readily fol-
lows that a re�exive Banach space cannot contain a coarse copy of all separablemetric
spaces, or equivalently does not contain a coarse copy of the Banach space c0. In fact,
with a strengthening of this argument, Kalton proved an even stronger result in [14]:
if a separable Banach space contains a coarse copy of c0, then there is an integer k
such that the dual of order k of X is non-separable. In particular, a quasi-re�exive
Banach space does not contain a coarse copy of c0. However, Kalton proved that the
most famous examples of a quasi-re�exive space, namely the James space J and its
dual J∗, fail property Q.

hemain purpose of this paper is to show that, although they do not obey the con-
centration phenomenon described by propertyQ, neither J nor J∗ equi-coarsely con-
tains the family of graphs ([N]k , dk

K)k∈N (Corollary 5.3). his provides a coarse invari-
ant, namely “not containing equi-coarsely the Kalton graphs”, that is very close to but
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diòerent from property Q. his could allow us to ûnd obstructions to coarse embed-
dability between seemingly close Banach spaces. Our result is actually more general.
We prove in heorem 4.1 that a quasi-re�exive Banach space X such that X admits an
equivalent p-asymptotically uniformly smooth norm and X∗ admits an equivalent
q-asymptotically uniformly smooth norm (see the deûnition in Section 3) for some
conjugate p and q in (1,∞), does not equi-coarsely contain the Kalton graphs.

We conclude this note by showing that if the James tree space JT or its predual
coarsely embeds into a separable Banach space X, then there exists k ∈ N so that the
dual of order k of X is non-separable. his slightly extends [14,heorem 3.5].

2 Metric Notions

2.1 Coarse Embeddings

Let M,N be twometric spaces and let f ∶M → N be amap. We deûne the compression
modulus ρ f and the expansion modulus ω f as follows. For t ∈ [0,∞), we set

ρ f (t) = inf {dN( f (x), f (y)) ∶ dM(x , y) ≥ t} ,
ω f (t) = sup{dN( f (x), f (y)) ∶ dM(x , y) ≤ t} .

We adopt the convention sup(∅) = 0 and inf(∅) =∞. Note that for every x , y ∈ M,

ρ f (dM(x , y)) ≤ dN( f (x), f (y)) ≤ ω f (dM(x , y)) .

We say that f is a coarse embedding if ω f (t) < ∞ for every t ∈ [0,+∞) and limt→∞
ρ f (t) =∞.

Next, let (M i)i∈I be a family ofmetric spaces. We say that the family (M i)i∈I equi-
coarsely embeds into ametric spaceN if there exist twomaps ρ,ω∶ [0,+∞)→ [0,+∞)
andmaps f i ∶M i → N for i ∈ I such that
(i) limt→∞ ρ(t) =∞,
(ii) ω(t) <∞ for every t ∈ [0,+∞),
(iii) ρ(t) ≤ ρ f i (t) and ω f i (t) ≤ ω(t) for every i ∈ I and t ∈ [0,∞).

2.2 The Kalton Interlaced Graphs and Property Q

For k ∈ N andM an inûnite subset of N, we put [M]≤k = {S ⊂ M ∶ ∣S∣ ≤ k}, [M]k =
{S ⊂M ∶ ∣S∣ = k}, [M]ω = {S ⊂M ∶ S is inûnite}, and [M]<ω = {S ⊂M ∶ S is ûnite}.
We always list the elements of somem in [N]<ω or in [N]ω in increasing order,mean-
ing that if we write m = (m1 ,m2 , . . . ,m l) or m = (m1 ,m2 ,m3 , . . . ), we tacitly as-
sume that m1 < m2 < ⋅ ⋅ ⋅. Note that [M]≤k and [M]<ω contain the empty sequence,
denoted ∅.
For m = (m1 ,m2 , . . . ,mr) ∈ [N]<ω and n = (n1 , n2 , . . . , ns) ∈ [N]<ω , we write

m ≺ n, if r < s ≤ k and m i = n i , for i = 1, 2, . . . , r, and we write m ⪯ n if m ≺ n or
m = n. hus, m ⪯ n if m is an initial segment of n.
Following Kalton [14], for M ∈ [N]ω , we equip [M]k with a graph structure by

declaring m ≠ n ∈ [M]k adjacent if and only if

n1 ≤ m1 ≤ n2 ⋅ ⋅ ⋅ ≤ nk ≤ mk or m1 ≤ n1 ≤ m2 ⋅ ⋅ ⋅ ≤ mk ≤ nk .
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For any m, n ∈ [M]k , the distance dk
K(m, n) is then deûned as the shortest path dis-

tance in the graph [M]k .

Remark 2.1 We do not make a reference to M in our notation dk
K, because the

distance dk
K is independent of the set M. By this, we mean that ifM and L are two

inûnite subsets of N and m, n both belong to [M]k and [L]k , then the shortest paths
from m to n in [M]k and in [L]k have the same lengths. In particular, [M]k is a
metric subspace of [L]k whenever M ∈ [L]ω .

he above remark is intuitively clear, but one could argue that it needs a justiûca-
tion for distances larger than 1. In any case, it is an immediate consequence of the
following explicit formula for the distance, which we will also use in the proof of
Proposition 4.3.

Proposition 2.2 Let k ∈ N andM ∈ [N]ω . hen dk
K(n,m) = d(n,m) for all n,m ∈

[M]k where d(n,m) = sup{∣ ∣n ∩ S∣ − ∣m ∩ S∣∣ ∶ S interval of N}.

Proof It is easily seen that d is a metric on [M]k . Since dk
K is a graph metric on

[M]k , in order to show dk
K = d, it is enough to verify that dk

K(n,m) = 1 if and only if
d(n,m) = 1 and that d is a graph metric.
For A ⊂ N, let us denote 1A ∶ N→ {0, 1} the indicator function of A and let us ûrst

observe the following fact.

Fact For every n,m ∈ [M]k ,

d(n,m) = max
i
F(i) −min

i
F(i),

where F(i) = Fn ,m(i) = ∑i
j=1 1n( j) − 1m( j) (and F(0) = 0).

Indeed, we have for any interval S = [a, b] that

∣S ∩ n∣ − ∣S ∩m∣ =∑
j∈S

( 1n( j) − 1m( j)) = F(b) − F(a − 1).

In particular,maxS ∣ ∣S∩n∣− ∣S∩m∣∣ ≤ max F−min F. On the other hand if S = [a, b]
is such that {F(a − 1), F(b)} = {max F ,min F}, then ∣ ∣S ∩ n∣ − ∣S ∩ m∣∣ ≥ max F −
min F, which ûnishes the proof of the fact.

It is clear that dk
K(n,m) = 1 if and only ifmax F −min F = 1. hus, it only remains

to prove that d is a graph metric. Now given n,m in [M]k such that d(n,m) ≥ 2, we
are looking for ℓ ∈ [M]k ∖ {m, n} such that d(m, n) = d(n, ℓ) + d(ℓ,m). Without
loss of generality, we will assume that max Fn ,m > 0. Notice that the sets argmax(F)
and argmin(F) are disjoint. We select inductively {a1 < ⋅ ⋅ ⋅ < ap} ⊂ argmax(F) and
{b1 < ⋅ ⋅ ⋅ < bq} ⊂ argmin(F) (with p ≥ 1 and q ≥ 0) with the following properties:

● a1 = min argmax(F);
● for i ≥ 1, b i = min({n > a i} ∩ argmin(F)), if this is not empty;
● a i+1 = min({n > b i} ∩ argmax(F)), if this set is not empty.
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Notice that {a1 , . . . , ap} ⊂ n ∖ m and {b1 , . . . , bq} ⊂ m ∖ n. Notice also that either
p = q or p = q + 1. In the latter case, we deûne bp ∶= r for some r such that r > ap
and F(r − 1) > F(r). Such r must exist, since F(max{nk ,mk}) = 0. Also, we have
r ∈ m ∖ n. We will set

ℓ = n ∪ {b1 , . . . , bp} ∖ {a1 , . . . , ap}.

It is clear that ℓ ∈ [M]k . We also have max Fℓ ,m = max Fn ,m − 1 and min Fℓ ,m =
min Fn ,m . Indeed, the point ℓ is constructed in such a way that when Fn ,m attains its
maximum for the ûrst time (going from the le�), Fℓ ,m is reduced by one and stays
reduced by 1 until the next time theminimumof Fn ,m is attained (or until the point r)
where this reduction is corrected back, and so on. hus d(ℓ,m) = d(n,m) − 1. Also,
since the sets {a1 , . . . , ap} and {b1 , . . . , bp} are interlaced, we have Fn ,m − 1 ≤ Fℓ ,m ≤
Fn ,m . herefore, since Fn ,m = Fn ,ℓ + Fℓ ,m , we have that 0 ≤ Fn ,ℓ ≤ 1, and so ûnally
d(n, ℓ) = 1, since it is clear that n ≠ ℓ. ∎

Note that if X is a Banach space and f ∶ ([M]k , dk
K)→ X is amapwith ûnite expan-

sion modulus ω f , then ω f (1) is actually the Lipschitz constant of f as dk
K is a graph

distance on [M]k .
In [14] the property Q is deûned in the setting ofmetric spaces. For homogeneity

reasons, its deûnition can be simpliûed for Banach spaces. Let us recall it here.

Deûnition 2.3 Let X be a Banach space. We say that X has propertyQ if there exists
C ≥ 1 such that for every k ∈ N and every Lipschitz map f ∶ ([N]k , dk

K) → X, there
exists an inûnite subset M of N such that

∀ n,m ∈ [M]k , ∥ f (n) − f (m)∥ ≤ Cω f (1).

he following proposition should be clear from the deûnitions. We will however
include its short proof.

Proposition 2.4 Let X be a Banach space. If X has property Q, then the family of
graphs ([N]k , dk

K)k∈N does not equi-coarsely embed into X.

Proof LetC ≥ 1 be given by the deûnition of propertyQ. Aiming for a contradiction,
assume that the family ([N]k , dk

K)k∈N equi-coarsely embeds into X. hat is, there
are maps fk ∶ ([N]k , dk

K) → X and two functions ρ,ω∶ [0,+∞) → [0,+∞) such that
limt→∞ ρ(t) =∞ and

∀k ∈ N ∀t > 0 ρ(t) ≤ ρ fk(t) and ω fk(t) ≤ ω(t) <∞.

hus, for every k ∈ N, there exists an inûnite subset Mk of N such that

diam( f ([Mk]k)) ≤ Cω(1).
Since diam([Mk]k) = k, this implies that for all k ∈ N, ρ(k) ≤ Cω(1). his contra-
dicts the fact that limt→∞ ρ(t) =∞. ∎

A concrete bi-Lipschitz copy of themetric spaces ([N]k , dk
K) in c0 is given by the

following proposition.
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Proposition 2.5 Let (sn)∞n=1 be the summing basis of c0, that is sn = ∑n
i=1 e i , where

(e i)∞i=1 is the canonical basis of c0. For k ∈ N, deûne fk ∶ ([N]k , dk
K) → c0 by fk(n) =

∑k
i=1 sn i . hen

1
2
dk
K(n,m) ≤ ∥ fk(n) − fk(m)∥∞ ≤ dk

K(n,m)

for all n,m ∈ [N]k .

Proof Since dk
K = d, one can show (as in the Fact in the proof of Proposition 2.2)

that dk
K(n,m) = max( fk(n)− fk(m))−min( fk(n)− fk(m)). he result then follows

easily, sincemin( fk(n) − fk(m)) ≤ 0 ≤ max( fk(n) − fk(m)) for all n,m ∈ [N]k . ∎

Remark 2.6 We already explained that c0 cannot coarsely embed into any Banach
space with property Q (in particular into any re�exive Banach space) and that Kalton
even showed with additional arguments that if c0 coarsely embeds into a separable
Banach space X, then one of the iterated duals of X has to be non-separable. An
inspection of his proof shows that the uniformly discretemetric spaces

Mk = {
k

∑
i=1

sn i × 1A ∶ (n1 , . . . , nk) ∈ [N]k ,A ∈ [N]ω} ⊂ c0

do not equi-coarsely embed into any Banach space X such that X(r) is separable for
all r. Here, the notation sn × 1A stands for the pointwisemultiplication of elements in
ℓ∞ when they are seen as functions on N. Seeheorem 6.1 for more on this subject.

Studying further the property Q in [14], Kalton exhibited non-re�exive quasi-
re�exive spaces with the property Q but showed that J and J∗ fail property Q. It is
worth noticing that a theorem of Schoenberg [22] implies that L1 coarsely embeds
into L2, and therefore L1 provides a simple example of a non-re�exive Banach space
with property Q. Let us mention that a very simple concrete formula for the embed-
ding of L1 into L2 is given in [20, Corollary 3.1].

We conclude this section with two propositions that we state here for future refer-
ence. We start with a classical version of Ramsey’s theorem.

Proposition 2.7 ([10, Corollary 1.2]) Let (K , d) be a compact metric space, k ∈ N
and f ∶ [N]k → K. hen for every ε > 0, there exists an inûnite subset M of N such that
d( f (n), f (m)) < ε for every n,m ∈ [M]k .

For a Banach space X, we call tree of height k in X any family (x(n))n∈[N]≤k ,
with x(n) ∈ X. hen if M ∈ [N]ω , (x(n))n∈[M]≤k will be called a full subtree of
(x(n))n∈[N]≤k . A tree (x∗(n))n∈[M]≤k in X∗ is called weak∗-null if for any n =
(n1 , . . . , n j) ∈ [M]≤k−1 ∖ {∅}, the sequence (x∗(n1 , . . . , n j , t))t>n j ,t∈M is weak∗-null
and the sequence (x∗t )t∈M is also weak∗-null.

he next proposition is based on a weak∗-compactness argument and will be cru-
cial for our proofs. Although the distance considered on [N]k is diòerent, the proof
follows the same lines as [3, Lemma 4.1]. We therefore state it now without further
detail.
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Proposition 2.8 Let X be a separable Banach space, k ∈ N, and let f ∶ ([N]k ,
dk
K) → X∗ be a Lipschitz map. hen there exist M ∈ [N]ω and a weak∗-null tree

(x∗(m))m∈[M]≤k in X∗ with ∥x∗m∥ ≤ ω f (1) for all m ∈ [M]≤k ∖ {∅} and so that

∀n ∈ [M]k , f (n) = x∗∅ +
k

∑
i=1

x∗(n1 , . . . , n i) = ∑
m⪯n

x∗(m).

3 Uniform Asymptotic Properties of Norms and
Related Estimates

We recall the deûnitions that will be considered in this paper. For a Banach space
(X , ∥ ⋅ ∥), we denote by BX the closed unit ball of X and by SX its unit sphere. he
following deûnitions are due to V. Milman [19], and we adopt the notation from [13].
For t ∈ [0,∞), we deûne

ρX(t) = sup
x∈SX

inf
Y

sup
y∈SY

(∥x + ty∥ − 1) ,

where Y runs through all closed subspaces of X of ûnite codimension. hen the norm
∥ ⋅ ∥ is said to be asymptotically uniformly smooth (AUS) if

lim
t→0

ρX(t)
t

= 0.

For p ∈ (1,∞), it is said to be p-asymptotically uniformly smooth (p-AUS) if there
exists c > 0 such that for all t ∈ [0,∞), ρX(t) ≤ ctp .

We will also need the dual modulus deûned by

δ
∗
X(t) = inf

x∗∈SX∗
sup
E

inf
y∗∈SE

(∥x∗ + ty∗∥ − 1) ,

where E runs through all ûnite-codimensional weak∗-closed subspaces of X∗. he
norm of X∗ is said to be weak∗ asymptotically uniformly convex (in short AUC∗) if
δ
∗
X(t) > 0 for all t in (0,∞). If there exists c > 0 and q ∈ [1,∞) such that for
all t ∈ [0, 1] δ∗X(t) ≥ ctq , we say that the norm of X∗ is q-AUC∗. he following
proposition is elementary.

Proposition 3.1 Let X be a Banach space. For any t ∈ (0, 1), any weakly null sequence
(xn)∞n=1 in BX and any x ∈ SX , we have

lim sup
n→∞

∥x + txn∥ ≤ 1 + ρX(t).

For any weak∗-null sequence (x∗n)∞n=1 ⊂ X∗ and any x∗ ∈ X∗ ∖ {0}, we have

lim sup
n→∞

∥x∗ + x∗n∥ ≥ ∥x∗∥( 1 + δ∗X(
lim sup ∥x∗n∥

∥x∗∥ )) .

We will also need the following reûnement (see [18, Proposition 2.1]).
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Proposition 3.2 Let X be a Banach space. hen the bidual norm on X∗∗ has the
following property. For any t ∈ (0, 1), any weak∗-null sequence (x∗∗n )∞n=1 in BX∗∗ , and
any x ∈ SX , we have

lim sup
n→∞

∥x + tx∗∗n ∥ ≤ 1 + ρX(t).

Let us now recall the following classical duality result concerning these moduli
(see, for instance, [8, Corollary 2.3] for a precise statement).

Proposition 3.3 Let X be a Banach space. hen ∥ ⋅ ∥X is AUS if and only if ∥ ⋅ ∥X∗ is
AUC∗.

If p, q ∈ (1,∞) are conjugate exponents, then ∥ ⋅ ∥X is p-AUS if and only if ∥ ⋅ ∥X∗ is
q-AUC∗.

We conclude this sectionwith a list of a few classical properties ofOrlicz functions
and norms that are related to these moduli. A map φ ∶ [0,∞) → [0,∞) is called an
Orlicz function if it is continuous, non-decreasing, convex, and so that φ(0) = 0 and
limt→∞ φ(t) = ∞. he Orlicz norm ∥ ⋅ ∥ℓφ , associated with φ is deûned on c00, the
space of ûnitely supported sequences, as follows:

∀x = (xn)∞n=1 ∈ c00 , ∥x∥ℓφ = inf { r > 0,
∞
∑
n=1

φ(xn/r) ≤ 1} .

he following lemma is immediate from the deûnition.

Lemma 3.4 Let φ ∶ [0,∞)→ [0,∞) be an Orlicz function and p ∈ [1,∞).
(i) If there exists C > 0 such that φ(t) ≤ Ctp , for all t ∈ [0, 1], then there exists A > 0

such that ∥x∥ℓφ ≤ A∥x∥ℓp , for all x ∈ c00.
(ii) If there exists c > 0 such that φ(t) ≥ ctp , for all t ∈ [0, 1], then there exists a > 0

such that ∥x∥ℓφ ≥ a∥x∥ℓp , for all x ∈ c00.

Assume now that φ ∶ [0,∞)→ [0,∞) is an Orlicz function that is 1-Lipschitz and
such that limt→∞ φ(t)/t = 1. Consider for (s, t) ∈ R2,

Nφ
2 (s, t) =

⎧⎪⎪⎨⎪⎪⎩

∣s∣ + ∣s∣φ(∣t∣/∣s∣) if s ≠ 0,
∣t∣ if s = 0.

hen deûne by induction for n ≥ 3,

∀(s1 , . . . , sn) ∈ Rn , Nφ
n (s1 , . . . , sn) = Nφ

2 (Nφ
n−1(s1 , . . . , sn−1), sn) .

he following is proved in [15] (see Lemma 4.3 and its preparation).

Lemma 3.5 (i) For any n ≥ 2, the function Nφ
n is an absolute (or lattice) norm

on Rn , meaning that Nn(s1 , . . . , sn) ≤ Nn(t1 , . . . , tn), whenever ∣s i ∣ ≤ ∣t i ∣ for all
i ≤ n.

(ii) For any n ∈ N and any s ∈ Rn :
1
2
∥s∥ℓφ ≤ Nφ

n (s) ≤ e∥s∥ℓφ .
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When X is a Banach space, it is easy to see that ρX is a 1-Lipschitz Orlicz function
such that limt→∞ ρX(t)/t = 1. But due to its lack of convexity, δ

∗
X is not an Orlicz

function, and we need to modify it. Following [15], we deûne

δ(t) = ∫
t

0

δ
∗
X(s)
s

ds.

It is easy to see that δ
∗
X(t)/t is increasing and tends to 1 as t tends to∞. herefore, δ

is an Orlicz function which is 1-Lipschitz, such that limt→∞ δ(t)/t = 1 and satisfying:

∀t ∈ [0,∞), δ
∗
X(t/2) ≤ δ(t) ≤ δ

∗
X(t).

he following statement is now a direct consequence of Lemmas 3.4 and 3.5.

Lemma 3.6 Let X be a Banach space and p ∈ [1,∞).
(i) If there exists C > 0 such that ρX(x) ≤ Ctp , for all t ∈ [0, 1], then there exists

A > 0 such that

∀n ∈ N ∀x ∈ Rn , N ρX
n (x) ≤ A∥x∥ℓnp .

(ii) If there exists c > 0 such that δ
∗
X(t) ≥ ctp , for all t ∈ [0, 1], then there exists a > 0

such that

∀n ∈ N ∀x ∈ Rn , N δ
n(x) ≥ a∥x∥ℓnp .

We will also use the following reformulation of Propositions 3.1 and 3.2 in terms
of the norms N δ

2 and N ρX
2 .

Lemma 3.7 Let X be a Banach space.
(i) Let (x∗n) ⊂ X∗ be weak∗-null. hen for any x∗ ∈ X∗, we have

lim sup
n→∞

∥x∗ + x∗n∥ ≥ N δ
2 (∥x∗∥, lim sup ∥x∗n∥).

(ii) Similarly, if (x∗∗n ) ⊂ X∗∗ is weak∗-null and x ∈ X, then

lim inf
n→∞ ∥x + x∗∗n ∥ ≤ N ρX

2 (∥x∥, lim inf ∥x∗∗n ∥).

Proof If x∗ = 0, there is nothing to do, sowe can assume that x∗ ≠ 0. By application
of Proposition 3.1, we see that

lim sup
n→∞

∥x∗ + x∗n∥ ≥ ∥x∗∥( 1 + δ∗X(
lim sup ∥x∗n∥

∥x∗∥ ))

≥ ∥x∗∥( 1 + δ( lim sup ∥x∗n∥
∥x∗∥ )) = N δ

2 (∥x∗∥, lim sup ∥x∗n∥).

he proof of the second claim is even simpler, so we leave it to the reader. ∎
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4 The General Result

Let us ûrst recall that a Banach space is said to be quasi-re�exive if the image of its
canonical embedding into its bidual is of ûnite codimension in its bidual. We can
now state our main result.

heorem 4.1 Let X be a quasi-re�exive Banach space, let p ∈ (1,∞), and denote
by q its conjugate exponent. Assume that X admits an equivalent p-AUS norm and
that X∗ admits an equivalent q-AUS norm. hen the family ([N]k , dk

K)k∈N does not
equi-coarsely embed into X∗∗.

We immediately deduce the following corollary.

Corollary 4.2 Let X be a quasi-re�exive Banach space, let p ∈ (1,∞) and denote
by q its conjugate exponent. Assume that X admits an equivalent p-AUS norm and
that X∗ admits an equivalent q-AUS norm. hen the family ([N]k , dk

K)k∈N does not
equi-coarsely embed into X, nor does it equi-coarsely embed into any iterated dual X(r)

(r ≥ 0) of X.

Proof Since X is quasi re�exive,we infer that X(r) admits an equivalent p-AUSnorm
when r is even and admits an equivalent q-AUS norm when r is odd. Indeed, note
that when r is even X(r) is isomorphic to X ⊕p F where F is ûnite-dimensional (resp.
X(r) ≃ X∗⊕q F when r is odd). Now it is obvious fromheorem4.1 that ([N]k)k∈N do
not equi-coarsely embed into X(r) when r is even. When r is odd, we just exchange
the roles of p and q. ∎

Before going into the detailed proof ofheorem4.1, let us brie�y indicate themain
idea. We assume that there is an equi-coarse family of embeddings ( fk) of [N]k into
X∗∗ with moduli ρ and ω. We ûx k suõciently large and observe that, up to passing
to a subgraph, fk can be represented as the sum along the branches of a weak∗-null
countably branching tree of height k, say (zn)n∈[N]≤k . Moreover, the norms of the ele-
ments of this tree stabilize on each level towards values (K i)k

i=1 ⊂ [0,ω(1)]. Applying
the existence of a q−AUS normon X∗, one can show that∑k

i=1 K
p
i ≤ cpω(1)p where c

is a constant depending only on X. he beneût of this observation is twofold. On one
hand, we will be able to construct two elements n0 ,m0 ∈ [N]l (with l ≤ k) such that
∑l

i=1 z(n1 , . . . ,n i) − z(m1 , . . . ,m i) is small in norm (say less than 2cω(1)), while d l
K(n0 ,m0)

is large (say ρ(d l
K(n0 ,m0)) > 3cω(1)). On the other hand, the p−AUS renormability

of X together with the quasi-re�exivity allows to extend these elements to elements
n,m ∈ [N]k such that dk

K(n,m) is still large and

∥
k

∑
i=l+1

z(n1 , . . . ,n i) − z(m1 , . . . ,m i)∥ ∼ (
k

∑
i=l+1

∥z(n1 , . . . ,n i) − z(m1 , . . . ,m i)∥p)
1/p

∼ (
k

∑
i=l+1

K p
i )

1/p
≤ cω(1).
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Eventually, summing the tree from 1 to k over the branches ending by n and m, we
get the desired contradiction

3cω(1) < ρ(dk
K(n,m)) ≤ ∥ fk(n) − fk(m)∥ ≤ 3cω(1).

Proof of Theorem 4.1 Let us assume that there are two maps ρ,ω∶ [0,+∞) →
[0,+∞) andmaps fk([N]k , dk

K)∶→ (X∗∗ , ∥ ⋅ ∥) for k ∈ N such that
(i) limt→∞ ρ(t) =∞;
(ii) ω(t) <∞ for every t ∈ (0,+∞);
(iii) ρ(t) ≤ ρ fk(t) and ω fk(t) ≤ ω(t) for every k ∈ N and t ∈ (0,∞).
Note that all fk ’s are ω(1)-Lipschitz for ∥ ⋅ ∥ and so ω(1) > 0. Since all the sets [N]k
are countable, we can and will assume that X, and therefore by the quasi-re�exivity
of X all its iterated duals, are separable.

Let us ûx N ∈ N. Pick α ∈ N such that α ≥ p
q and set k = N 1+α ∈ N. We also ûx

η > 0. We obtain a contradiction at the end of our proof if N is chosen large enough
and η small enough. We denote by ∥ ⋅ ∥ the original norm on X, as well as its dual
and bidual norms. Let us assume, as we can, that ∥ ⋅ ∥ is p-AUS on X. We denote its
modulus of asymptotic uniform smoothness ρ∥ ⋅ ∥ or simply ρX .
For the ûrst step of the proof,we exploit the existence of an equivalent q-AUS norm

∣ ⋅ ∣ on X∗ (we also denote ∣ ⋅ ∣ its dual norm on X∗∗). It is worth mentioning that if X
is not re�exive, ∣ ⋅ ∣ cannot be the dual norm of an equivalent norm on X (see, for
instance, [7, Proposition 2.6]). Assume also that there exists b > 0 such that

∀z ∈ X∗∗ b∥z∥ ≤ ∣z∣ ≤ ∥z∥.
hen we have that all fk ’s are also ω(1)-Lipschitz for ∣ ⋅ ∣.
By Proposition 3.3, we have that there exists c > 0 such that for all t ∈ [0, 1],

δ
∗
∣ ⋅ ∣(t) ≥ ctp . We denote again

δ(t) = ∫
t

0

δ
∗
∣ ⋅ ∣(s)
s

ds.

Recall that Lemma 3.6 ensures the existence of a > 0 such that for all n ∈ N, N δ
n ≥

2a∥ ⋅ ∥ℓnp .
First, using the separability of X∗ andProposition 2.8,we can assume, by passing to

a full subtree, that there exist aweak∗-null tree (z(m))m∈[N]≤k in X∗∗ with ∣zm ∣ ≤ ω(1)
for all m ∈ [N]≤k ∖ {∅} and so that

∀n ∈ [N]k , fk(n) =
k

∑
i=0

z(n1 , . . . , n i) = ∑
m⪯n

z(m).

For r ∈ N, we denote Er = {m = (m1 , . . . ,m j) ∈ [N]≤k ∖ {∅}, m j = r} and
Fr = ⋃r

u=1 Eu . Fix a sequence (λr)∞r=1 in (0, 1) such that ∏∞
r=1 λr > 1

2 . We now use
Lemma 3.7(i) and the fact that (z(m))m∈[N]≤k is aweak∗-null tree to build inductively
n1 < ⋅ ⋅ ⋅ < nr so that for all n1 , . . . , nL ∈ Fnr−1, all ε1 , . . . , εL ∈ {−1, 1} and all n ∈ Enr ,
we have

∣ z(n) +
L

∑
l=1
ε l z(n l)∣ ≥ λrN δ

2 ( ∣
L

∑
l=1
ε l z(n l)∣ , ∣ z(n)∣) .
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herefore, using the fact that N δ
2 is an absolutenorm and a�er passing to a full subtree,

we can assume that for all r1 < ⋅ ⋅ ⋅ < rL in N, all ε1 , . . . , εL ∈ {−1, 1} and all n1 , . . . , nL

so that n l ∈ Er l for 1 ≤ l ≤ L, we have

(4.1) ∣
L

∑
l=1
ε l z(n l)∣ ≥ 1

2
N δ

L( ∣z(n1)∣, . . . , ∣z(nL)∣) ≥ a(
L

∑
i=1

∣ z(n l)∣ p)
1/p

.

Assume now that n = (n1 , . . . , nk) ∈ Nk is such that n1 < ⋅ ⋅ ⋅ < nk are even and choose
m = (m1 , . . . ,mk) so that n1 < m1 < ⋅ ⋅ ⋅ < nk < mk . It follows from (4.1) that

∣ f (n) − f (m)∣ = ∣
k

∑
i=1

z(n1 , . . . , n i) − z(m1 , . . . ,m i)∣

≥ a(
k

∑
i=1

∣ z(n1 , . . . , n i)∣
p + ∣ z(m1 , . . . ,m i)∣

p)
1/p

.

We now use the fact that dk
K(n,m) = 1 and f is ω(1)-Lipschitz to deduce

(
k

∑
i=1

∣ z(n1 , . . . , n i)∣
p)

1/p
≤ 1
a
ω(1).

So replacing N with 2N and setting A = 1/a, we can assume that

(4.2) ∀n ∈ [N]k , (
k

∑
i=1

∣ z(n1 , . . . , n i)∣
p)

1/p
≤ Aω(1).

By Ramsey’s theorem (Proposition 2.7), we can also assume, a�er passing again to
a full subtree, that for all i ∈ {1, . . . , k}, there exists K i ∈ [0,ω(1)] such that

∀(n1 , . . . , n i) ∈ [N]i , K i ≤ ∣z(n1 , . . . , n i)∣ ≤ K i + η.
he estimate (4.2) yields

k

∑
i=1

K p
i ≤ A

pω(1)p .

herefore, since k = N 1+α , there exists j ∈ {0,N , . . . ,N(Nα − 1)} such that
j+N

∑
i= j+1

K p
i ≤

Apω(1)p

Nα .

hen we deduce from Hölder’s inequality that

(4.3)
j+N

∑
i= j+1

K i ≤ N 1/q Aω(1)
Nα/p ≤ Aω(1).

We now use the assumption that X is quasi-re�exive, so that X∗∗ = X ⊕ F, where
F is of ûnite dimension. hus, for each (n1 , . . . , n i) ∈ [N]≤k , we can decompose
z(n1 , . . . , n i) = x(n1 , . . . , n i) + e(n1 , . . . , n i), with x(n1 , . . . , n i) ∈ X and e(n1 ,
. . . , n i) ∈ F. hen the compactness of bounded sets in F and another application of
Proposition 2.7 allows us to assume, a�er passing to a full subtree, that

∀i ∈ {1, . . . , k} ∀n, v ∈ [N]i , ∥e(n) − e(v)∥ < η,
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which implies that for all i ∈ {1, . . . , k} and all n, v ∈ [N]i , we have

(4.4) ∣ ∥z(n) − z(v)∥ − ∥x(n) − x(v)∥∣ < η.

We are now ready for the last step of the proof, wherewe buildm and u in [N]k so
that dk

K(m, u) = N , but ∣ f (m) − f (u)∣ is bounded by a constant depending only on
ω(1) and on X. his will yield a contradiction with the fact that limN→∞ ρ(N) =∞.
First, we set m i = u i = i, for all 1 ≤ i ≤ j. hen, for j + 1 ≤ i ≤ j + N , we set m i = i

and u i = i + N . Finally, we build m i = u i inductively, for j + N < i ≤ k. Note, that
when this is done, we will indeed have dk

K(m, u) = N .
First, we obviously have

(4.5)
j

∑
i=1

z(m1 , . . . ,m i) − z(u1 , . . . , u i) = 0.

he next estimate follows from (4.3):

(4.6) ∣
j+N

∑
i= j+1

z(m1 , . . . ,m i) − z(u1 , . . . , u i)∣ ≤
j+N

∑
i= j+1

2(K i + η) ≤ 3Aω(1),

if η was initially chosen small enough.
We now select the remaining coordinates of m and u inductively using the fact

that ∥ ⋅ ∥ is p-AUS. To shorten the notation for the end of the proof, we now denote
x i = x(m1 , . . . ,m i), z i = z(m1 , . . . ,m i), x′i = x(u1 , . . . , u i), and z′i = z(u1 , . . . , u i).
First, we simply set m j+N+1 = u j+N+1 = j + 2N + 1. We now use the fact that the tree
(z(m))m∈[N]≤k isweak∗-null and Lemma 3.7(ii) to ûndm j+N+2 = u j+N+2 > j+2N + 1
such that

∥x j+N+1 − x′j+N+1 + z j+N+2 − z′j+N+2∥

≤ N ρX
2 (∥x j+N+1 − x′j+N+1∥, ∥z j+N+2 − z′j+N+2∥) + η.

It follows from (4.4) that

∥z j+N+1 − z′j+N+1 + z j+N+2 − z′j+N+2∥

≤ N ρX
2 (∥z j+N+1 − z′j+N+1∥ + η, ∥z j+N+2 − z′j+N+2∥) + 2η

≤ N ρX
2 ( 2

b
(K j+N+1 + η) + η,

2
b
(K j+N+2 + η)) + 2η.

Similarly, we can inductively ûnd m j+N+2 = u j+N+2 < ⋅ ⋅ ⋅ < mk = uk such that

∥
k

∑
i= j+N+1

(z i − z′i)∥ ≤ 2
b
N ρX

k− j−N(K j+N+1 , . . . ,Kk) + ω(1),

provided η is chosen small enough. Since Lemma 3.6 ensures the existence of C > 0
such that N ρX

n ≤ C∥ ⋅ ∥ℓnp for all n ∈ N, the above inequality yields

∥
k

∑
i= j+N+1

(z i − z′i)∥ ≤ 2C
b

(
k

∑
i= j+N+1

K p
i )

1/p
+ ω(1) ≤ ( 2CA

b
+ 1)ω(1).
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Finally, combining the above estimate with (4.5) and (4.6), we get that

∥ f (m) − f (u)∥ ≤ 3A+ 2CA+ b
b

ω(1).

As announced at the beginning of the proof, this yields a contradiction if N was ini-
tially chosen so that ρ(N) > 3A+2CA+b

b ω(1), as was possible. ∎

Unlike re�exivity, quasi-re�exivity itself isnot enough to prevent theKalton graphs
from embedding into a Banach space. We thank P. Motakis for showing us the next
example.

Proposition 4.3 (Motakis) here exists a quasi-re�exive Banach space X such that
the family of graphs ([N]k , dk

K)k∈N equi-Lipschitz embeds into X.

Proof he proof relies on the existence of a quasi-re�exive Banach space X of order
one that admits a spreading model, generated by a basis of X that is equivalent to
the summing basis (sn)∞n=1 of c0. his is shown in [9, Proposition 3.2] and based on
a construction given in [6]. We refer the reader to [5] for the necessary deûnitions.
Consequently, there exists a sequence (xn)∞n=1 in SX and constants A, B > 0 such that
for all k ≤ n1 < ⋅ ⋅ ⋅ < nk and all ε1 , . . . , εk in {−1, 0, 1}, one has

(4.7) A∥
k

∑
i=1
ε i s i∥

c0
≤ ∥

k

∑
i=1
ε ixn i∥ X

≤ B∥
k

∑
i=1
ε i s i∥

c0
.

For k ∈ N and n = (n1 , . . . , nk) ∈ [N]k , we deûne

gk(n) =
k

∑
i=1

x2k+n i .

It follows easily from Proposition 2.5, the inequality (4.7), and the fact that (sn)∞n=1 is
a spreading sequence that

A
2
dk
K(n,m) ≤ ∥gk(n) − gk(m)∥X ≤ Bdk

K(n,m)

for all n,m ∈ [N]k . ∎

Remark 4.4 Let us mention that, more generally, it was proved in [2] that for
any conditional normalized spreading sequence (en)∞n=1, there exists a quasi-re�exive
Banach space X of order 1 with a normalized basis (x i)∞i=1 that generates (en)∞n=1 as a
spreading model.

5 The James Sequence Spaces

Let p ∈ (1,∞). We now recall the deûnition and some basic properties of the James
space Jp . We refer the reader to [1, Section 3.4] and references therein formore details
on the classical case p = 2. he James space Jp is the realBanach space of all sequences
x = (x(n))n∈N of real numberswithûnite p-variation and verifying limn→∞ x(n) = 0.
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he space Jp is endowed with the following norm

∥x∥Jp = sup{(
k−1

∑
i=1

∣x(p i+1) − x(p i)∣p)
1/p

∶ 1 ≤ p1 < p2 < ⋅ ⋅ ⋅ < pk} .

his is the historical example, constructed for p = 2 by R. C. James in [11], of a quasi-
re�exive Banach space that is isomorphic to its bidual. In fact, J∗∗p can be seen as the
space of all sequences of real numbers x = (x(n))n∈N with ûnite p-variation, which
is Jp ⊕Re, where e denotes the constant sequence equal to 1.

he standard unit vector basis (en)∞n=1 (en(i) = 1 if i = n and en(i) = 0 otherwise)
is a monotone shrinking basis for Jp . Hence, the sequence (e∗n)∞n=1 of the associated
coordinate functionals is a basis of its dual J∗p . hen the weak∗ topology σ(J∗p , Jp) is
easy to describe. A sequence (x∗n)∞n=1 in J∗p converges to 0 in the σ(J∗p , Jp) topology
if and only if it is bounded and limn→∞ x∗n(i) = 0 for every i ∈ N.
For x ∈ Jp , we deûne supp x = {i ∈ N ∶ x(i) ≠ 0}. For x , y ∈ Jp , we deûne x ≺ y

whenever max supp x < min supp y.
Similarly, an element x∗ of J∗p will be written as x∗ = ∑∞

n=1 x∗(n)e∗n , its support
as supp x∗ = {i ∈ N ∶ x∗(i) ≠ 0}, and we will say x∗ ≺ y∗ whenever max supp x∗ <
min supp y∗.

he detailed proof of the following proposition can be found in [21, Proposition
2.3]. his a consequence of the following fact: there exists C ≥ 1 such that ∥∑n

i=1 x i∥p
Jp

≤ C∑n
i=1 ∥x i∥p

Jp
, for all x1 ≺ ⋅ ⋅ ⋅ ≺ xn in Jp .

Proposition 5.1 here exists an equivalent norm ∣ ⋅ ∣ on Jp such that its dual norm
∣ ⋅ ∣∗ has the following property. For any x∗ , y∗ ∈ J∗p such that x∗ ≺ y∗, we have that

∣x∗ + y∗∣q∗ ≥ ∣x∗∣q∗ + ∣y∗∣q∗ .
In particular, ∣ ⋅ ∣∗ is q-AUC∗ for the weak∗ topology induced by Jp , and therefore ∣ ⋅ ∣ is
p-AUS on Jp .

here is also a natural weak∗ topology on Jp . Indeed, the summing basis (sn)∞n=1
(sn(i) = 1 if i ≤ n and sn(i) = 0 otherwise) is a monotone and boundedly complete
basis for Jp . hus, Jp is naturally isometric to a dual Banach space: Jp = X∗ with
X being the closed linear span of the biorthogonal functionals (e∗n − e∗n+1)∞n=1 in J∗p
associated with (sn)∞n=1. Note that X = {x∗ ∈ J∗p , ∑∞

n=1 x∗(n) = 0}. hus, a sequence
(xn)∞n=1 in Jp converges to 0 in the σ(Jp , X) topology if and only if it is bounded and
limn→∞ (xn(i) − xn( j)) = 0 for every i ≠ j ∈ N. he next proposition is easy (see
[17, Proposition 2.3] for the case p = 2).

Proposition 5.2 he usual norm on Jp is p-AUC∗ for the weak∗ topology induced by
X. In other words, the restriction to X of the usual norm on J∗p is q-AUS.

hen, since X is one codimensional in J∗p , we have that J∗p is isomorphic to X ⊕R
and therefore also admits an equivalent q-AUS norm.

he above remarks combined with Corollary 4.2 immediately yield the following.
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Corollary 5.3 Let p ∈ (1,∞). hen the family ([N]k , dk
K)k∈N does not equi-coarsely

embed into Jp , nor does it equi-coarsely embed into J∗p .

6 A Remark on the James Tree Space

Let us recall the construction of the James tree space JT. We denote by T = 2<ω the
tree of all ûnite sequences with coeõcients in {0, 1} equipped with its natural order:
for s, t ∈ T ,we say that s ≤ t if the sequence t extends s. he set of all inûnite sequences
with coeõcients in {0, 1} will be denoted 2ω . For s ∈ T , the length of s is denoted ∣s∣.
We call a segment of T any set of the form {s ∈ T , t ≤ s ≤ t′} with t ≤ t′ in T . For a
map x ∶ T → R, we deûne

∥x∥JT = sup{(
n

∑
i=1

( ∑
s∈S i

x(s))
2
)

1/2
} ,

where the supremum is taken over all pairwise disjoint segments S1 , . . . , Sn of T . hen
the James tree space is the space JT = {x ∶ T → R, ∥x∥JT < ∞} equipped with
the norm ∥ ⋅ ∥JT . For s ∈ T , we denote es ∶ T → R deûned by es(t) = δs ,t , t ∈ T .
If ψ ∶ N→ T is a bijection such that ∣ψ(n)∣ ≤ ∣ψ(m)∣whenever n ≤ m, then (eψ(n))∞n=1
is a normalized,monotone and boundedly complete basis of JT. For s ∈ T , the coor-
dinate functional e∗s is deûned by e∗s (x) = x(s), x ∈ JT. hen the closed linear span
of {e∗s , s ∈ T} in JT∗ is denotedB, andB∗ is isometric to JT. he space JT was built
by R. C. James in [12] to serve as the ûrst example of a separable Banach space with
non-separable dual that does not contain an isomorphic copy of ℓ1.

In [14] itwas shown that if a Banach space X coarsely contains c0, then there exists
k ∈ N such that X(k), the dual of order k of X, is non-separable. A close look at the
proof of [14,heorem 3.5] allows us to state the following theorem.

heorem 6.1 (Kalton) Let X andY be twoBanach spaces such that X coarsely embeds
into Y . Assume moreover that there exist an uncountable set I and for every i ∈ I and
k ∈ N, a 1-Lipschitz map f ki ∶ ([N]k , dk

K)→ X such that

lim
k→∞

inf
i≠ j∈I

inf
M∈[N]ω

sup
n∈[M]k

∥ f ki (n) − f kj (n)∥ =∞.

hen there exists r ∈ N such that Y(r) is not separable.

As an application, we can show the following.

heorem 6.2 Let Y be a Banach space such that B or JT coarsely embeds into Y .
hen there exists r ∈ N such that Y(r) is not separable.

Proof For σ ∈ 2ω ,we let σ∣n = (σ1 , . . . , σn). hen, for k ∈ N,we deûne f kσ ∶ [N]k → B

as follows. For n = (n1 , . . . , nk) ∈ [N]k , let

f kσ (n) =
1√
k

k

∑
i=1

∑
s≤σ∣ni

e∗s .
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Assume, for instance, that n1 ≤ m1 ≤ ⋅ ⋅ ⋅ nk ≤ mk . hen we can write

f kσ (m) − f kσ (n) =
1√
k

k

∑
i=1
∑
s∈S i

e∗s ,

where S1 , . . . , Sk are pairwise disjoint segments in T . Note that for any segment S i ,
the sum ∑s∈S i

e∗s belongs to the unit ball of JT∗. It then follows from the Cauchy–
Schwarz inequality that f kσ is 1-Lipschitz on ([N]k , dk

K). Assume now that σ ≠ τ ∈ 2ω .
Pick r ∈ N such that σr ≠ τr . hen for anyM ∈ [N]ω and any n = (n1 , . . . , nk) ∈ [M]k
with n1 ≥ r, we have

∥ f kσ (n) − f kτ (n)∥B ≥ ∣ ⟨ f kσ (n) − f kτ (n), eσ∣n1 ⟩∣ ≥
√

k.

By heorem 6.1 and the uncountability of 2ω , this ûnishes our proof for B.
For σ ∈ 2ω and k ∈ N, deûne gk

σ ∶ [N]k → JT by

∀n = (n1 , . . . , nk) ∈ [N]k , gk
σ(n) =

1√
2k

k

∑
i=1
eσ∣ni

.

It is easily checked that gk
σ is 1-Lipschitz on ([N]k , dk

K). Assume that σ ≠ τ ∈ 2ω . Pick
r ∈ N such that σr ≠ τr . hen for anyM ∈ [N]ω and any n = (n1 , . . . , nk) ∈ [M]k with
n1 ≥ r, let S = {s ∈ T , σ∣n1 ≤ s ≤ σ∣nk}. he set S is a segment in T , and x∗ = ∑s∈S e∗s is
in the unit ball of JT∗. herefore,

∥gk
σ(n) − gk

τ (n)∥JT ≥ ⟨gk
σ(n) − gk

τ (n), x∗⟩ ≥
√

k√
2
.

his concludes our proof for JT. ∎
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