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The concept of parity due to Fitzpatrick, Pejsachowicz and Rabier is a central tool in
the abstract bifurcation theory of nonlinear Fredholm operators. In this paper, we
relate the parity to the Evans function, which is widely used in the stability analysis
for traveling wave solutions to evolutionary PDEs.

In contrast, we use Evans function as a flexible tool yielding general sufficient
condition for local bifurcations of specific bounded entire solutions to (Carathéodory)
differential equations. These bifurcations are intrinsically nonautonomous in the
sense that the assumptions implying them cannot be fulfilled for autonomous or
periodic temporal forcings. In addition, we demonstrate that Evans functions are
strictly related to the dichotomy spectrum and hyperbolicity, which play a crucial
role in studying the existence of bounded solutions on the whole real line and
therefore the recent field of nonautonomous bifurcation theory. Finally, by means of
non-trivial examples we illustrate the applicability of our methods.

Keywords: Exponential dichotomy; Nonautonomous bifurcations

2010 Mathematics Subject Classification: 47J15; 34C37; 34C23; 47A53; 37C60

1. From Carathéodory to Krasnoselskii and beyond

This paper investigates the local behaviour of nonautonomous evolutionary differ-
ential equations under parameter variation. In contrast to the classical theory of
dynamical systems, one cannot expect that such explicitly time-variant problems
possess constant solutions (equilibria). For this reason, the recent nonautonomous
bifurcation theory investigates changes in the structure of (forward or pullback)
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2 C. Pötzsche and R. Skiba

attractors or in the set of bounded entire solutions [2]. Apparently both approaches
are related because pullback attractors consist of bounded entire solutions.

More detailed, we study parametrized nonautonomous differential equations

ẋ = f(t, x, λ) (Cλ)

in Rd allowing merely measurable dependence on the time variable (one speaks
of Carathéodory equations [4, 25]). These problems naturally occur in the field
of Random Dynamical Systems as pathwise realization of random differential
equations [3], in Control Theory when working with essentially bounded control
functions [6], and clearly include the special case of nonautonomous ordinary dif-
ferential equations. Aiming to detect bifurcations in Carathéodory equations (Cλ),
our strategy to locate their bounded entire solutions is to characterize them as
zeros of an abstract parametrized operator between suitable spaces of bounded
functions. This allows to employ corresponding tools from the functional analysis
of Fredholm operators. In this setting, both sufficient, but also necessary conditions
for local bifurcations of bounded entire solutions were already established in [36]
(see also [2, pp. 42ff]). Nonetheless, although [36] contains precise information on
the local bifurcation structure of solutions, it is restricted to a particular form of
nonyperbolicity and requires specific smoothness and further assumptions on the
partial derivatives of f.

In contrast to [36], the contribution at hand is less focussed on a detailed descrip-
tion of bifurcation diagrams. We rather intend to introduce a more general and
easily applicable tool to detect changes in the set of bounded entire solutions
to (Cλ), when λ varies. A starting point for such an endeavour might be the clas-
sical result of Krasnoselskii that odd algebraic multiplicity of critical eigenvalues
for the linearization of a parametrized nonlinear equation implies bifurcation. This
can be seen as an initial contribution to abstract analytical bifurcation theory (cf.
[24] or e.g. [22, p. 204, Theorem II.3.2]). It is nevertheless restricted to nonlinear
fixed-point problems involving completely continuous operators. In nonautonomous
bifurcation theory the operators characterizing bounded entire solutions to ordinary
differential or Carathéodory equations (Cλ) leave this classical set-up. Hence, the
Leray–Schauder degree and specifically the classical Krasnoselskii bifurcation theo-
rem cannot be applied. One rather needs a degree theory, a concept of multiplicity
and ambient bifurcation results tailor-made for our more general class of nonlinear
operators. We demonstrate that the parity developed in [12, 13, 16, 17] is indeed a
tool suitable for these purposes. This topological invariant applies to a continuous
path of index 0 Fredholm operators and plays a fundamental role in the degree and
abstract bifurcation theory of nonlinear Fredholm mappings [14, 32–34] or [10, 11,
28]. Yet, explicit parity computations depend on the particular problems and are
nontrivial.

In our situation, Fredholmness means that variation equations of (Cλ) along con-
tinuous families of bounded solutions possess compatible exponential dichotomies
on both semiaxes [30, Lemma 4.2]. The alert reader might realize that a related
constellation is also met in the stability theory for traveling wave solutions (pulses,
shock layers) of various types of evolutionary PDEs (see e.g. [21, 37]). In this area
the Evans function is a complex-valued analytical function, whose set of zeros
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Evans function, parity and nonautonomous bifurcations 3

coincides with the point spectrum of a differential operator arising as linearization
along the wave. The order of the zero gives the algebraic multiplicity of the eigen-
values and based on the Argument Principle one even obtains information on the
total number of zeros. Thus, the Evans function is of crucial importance in this
field and allows explicit computations.

In contrast, for the sake of nonautonomous bifurcation theory we associate real
Evans functions E to variation equations of (Cλ) along a given continuous family of
bounded entire solutions. Here it suffices to demand that E is continuous in the real
bifurcation parameter λ. Now the benefit of an Evans function is twofold: First, their
zeros indicate parameters where critical intervals of the dichotomy spectrum [42]
instantly split into a hyperbolic situation (cf. Corollary 3.5). Second, as our essential
contribution we establish in Theorem 3.6 that the parity of a path of Fredholm
operators can be expressed as product of the signs of Evans functions evaluated at
the boundary points of the path. Hence, based on an abstract bifurcation result
culminating from [12, 14, 32, 33] it results that a sign change of E is even sufficient
for a whole continuum of bounded entire solutions to bifurcate. In addition, we
note that E can be numerically approximated [9].

Let us point out that the parity is not the only topological invariant, which
can be associated to the Evans function. For instance, [1] provide a relation to
Chern numbers. The papers [18, Theorem 9.4] and [8, 26] (among others) con-
nect the Evans function to (modified) Fredholm determinants of integral operators
on Hilbert spaces, which however are not natural to contain solutions to (Cλ).
Furthermore, [23] establishes a connection of an Evans-like function to the Krein
signature theory. Nevertheless, per contra to the parity, the precise role of all these
tools in bifurcation theory is not immediately evident to us.

This paper is structured as follows. The subsequent § 2 contains necessary basics
on Carathéodory equations (Cλ) and introduces an abstract parametrized operator
(between spaces of essentially bounded functions), whose zeros characterize the
bounded solutions of (Cλ). Based on exponential dichotomy assumptions for a
variation equation associated to (Cλ) we establish that this operator is Fredholm.
Here, large parts of the required Fredholm theory are admittedly akin to results
for ordinary differential equations due to [7, 30, 31], but also for the sake of later
reference beyond this text and a self-contained presentation, we provide rather
detailed proofs. Then an Evans function tailor-made for our bifurcation theory is
introduced and studied in § 3, which results in the crucial Theorem 3.6 relating
parity and Evans function. Its proof is based on the reduction property of the
parity [16, 17], which we experience as more elegant and suitable than a Lyapunov-
Schmidt approach, which would require an intermediate step to obtain the reduced
equation.

As application, § 4 features a rather general sufficient condition for the bifurca-
tion of bounded solutions to Carathéodory equations (Cλ) from a prescribed branch
φλ in Theorem 4.2. The solutions contained in this bifurcating continuum are in
fact perturbations of the φλ vanishing at t = ±∞ (one speaks of homoclinic solu-
tions). This bifurcation criterion is illustrated by means of two concrete examples,
where the first one involves a Fredholm operator of arbitrary kernel dimension. An
outlook to the scope of our approach is given in § 5. Finally, for the convenience
of the reader, Appendix A describes constructions of the parity, its properties and
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4 C. Pötzsche and R. Skiba

particularly the reduction property in Lemma A.2, while Appendix B presents an
abstract bifurcation result suitable for applications to (Cλ).

Notation

We write R+ := [0,∞), R− := (−∞, 0] for the semiaxes and δij for the Kronecker
symbol. The interior and boundary of a subset Λ of a metric space are denoted by
Λ◦ resp. ∂Λ; the distance of a point x to Λ is distΛ(x) := infλ∈Λ d(x, λ).

If X,Y are Banach spaces, then L(X,Y ) are the linear bounded, GL(X,Y ) are
the bounded invertible and F0(X,Y ) are the index 0 Fredholm operators from X
to Y ; IX is the identity map on X. Moreover, N (T ) is the kernel, R(T ) is the range
of T ∈ L(X,Y ) and indT := dimN(T )− codimR(T ) for Fredholm operators T.

On the Euclidean space Rd we employ the canonical unit vectors ei := (δij)
d
j=1 for

1 ≤ i ≤ d, the inner product 〈x, y〉 :=
∑d
j=1 xjyj with induced norm |x| :=

√
〈x, x〉

and denote the orthogonal complement of a subspace V ⊆ Rd by V ⊥. Moreover,
Id and 0d is the identity resp. zero matrix in Rd×d, and AT is the transpose of
A ∈ Rd×d. We equip Rd×d with the norm induced by the Euclidean norm |·|.

Given a function φ : R → Rd and ρ> 0 we define the open ρ-neighborhood of its
graph as Bρ(φ) :=

{
(t, x) ∈ R× Rd : |x− φ(t)| < ρ

}
.

2. Carathéodory equations and Fredholm theory

Let Ω ⊆ Rd be nonempty, open, convex and assume (Λ̃, d) is a metric space. Our
investigations centre around parameter-dependent Carathéodory equations

ẋ = f(t, x, λ), (Cλ)

whose right-hand side f : R×Ω× Λ̃ → Rd is a Carathéodory function, i.e. for every
parameter value λ ∈ Λ̃ and

• for every x ∈ Ω the mapping f(·, x, λ) : R → Rd is measurable,
• for almost every t ∈ R the mapping f(t, ·, λ) : Ω → Rd is continuous.

Throughout, measurability and integrability are understood in the Lebesgue sense.
More precisely, we work under the following standing assumptions:

Hypothesis (H0). The right-hand side f : R × Ω × Λ̃ → Rd of (Cλ) is a
Carathéodory function with the following properties: For almost every t ∈ R and
each λ ∈ Λ̃ the function f(t, ·, λ) : Ω → Rd is differentiable with continuous partial
derivative D2f(t, ·) : Ω× Λ̃ → Rd×d such that for all bounded B ⊆ Ω one has

ess sup
t∈R

sup
x∈B

∣∣∣Dj
2f(t, x, λ)

∣∣∣ <∞ for all λ ∈ Λ̃ (2.1)

for all j ∈ {0, 1}. Moreover, for each λ0 ∈ Λ̃ and ɛ> 0 there exists a δ > 0 with

|x− y| < δ ⇒ ess sup
t∈R

∣∣∣Dj
2f(t, x, λ)−Dj

2f(t, y, λ0)
∣∣∣ < ε

for all x, y ∈ Ω and λ ∈ Bδ(λ0).
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Keeping λ ∈ Λ̃ fixed, a solution to (Cλ) is a continuous function φ : I → Ω defined
on an interval I ⊆ R satisfying the Volterra integral equation (cf. [4, Def. 2.3])

φ(t) = φ(τ) +

∫ t

τ

f(s, φ(s), λ) ds for all τ, t ∈ I. (2.2)

In case I = R one speaks of an entire solution and then we denote φ as permanent,
provided inft∈R dist∂Ω(φ(t)) > 0 holds, that is, the solution values φ(t) keep a
positive distance from the boundary of Ω. We denote the unique solution to (Cλ)
satisfying x(τ) = ξ as general solution ϕλ(·; τ, ξ), where (τ, ξ) ∈ R× Ω.

Hypothesis (H1). The Carathéodory equation (Cλ) has a family (φλ)λ∈Λ̃ of

bounded permanent solutions φλ : R → Ω such that for every ɛ> 0, λ0 ∈ Λ̃ there is
a δ > 0 with

d(λ, λ0) < δ ⇒ sup
t∈R

|φλ(t)− φλ0(t)| < ε for all λ ∈ Λ̃,

and there exists a ρ̄ > 0 with inft∈R dist∂Ω(φλ(t)) > ρ̄ for all λ ∈ Λ̃.

In this context, an entire solution φ : R → Ω to (Cλ) is called homoclinic to φλ,
provided the limit relations limt→±∞ |φ(t)− φλ(t)| = 0 hold.

Central parts of our theory are based on linearization. This involves the variation
equations corresponding to the solution family (φλ)λ∈Λ̃ given by

ẋ = A(t, λ)x, A(t, λ) := D2f(t, φλ(t), λ), (Vλ)

with coefficient matrices A : R× Λ̃ → Rd×d having the immediate properties:

Lemma 2.1. If Hypotheses (H0–H1) hold, then

(a) A(·, λ) : R → Rd×d is essentially bounded and locally integrable for λ ∈ Λ̃,
(b) A(t, ·) : Λ̃ → Rd×d is continuous for a.a. t ∈ R.

Hence, the transition matrix Φλ(t, s) ∈ GL(Rd,Rd), t, s ∈ R, of (Vλ) is well-
defined and due to [4, Lemma 2.9] of bounded growth, i.e.

|Φλ(t, s)| ≤ exp

(
ess sup
t∈R

|A(r, λ)| |t− s|
)

for all s, t ∈ R, λ ∈ Λ̃.

For λ ∈ Λ̃ fixed again, a solution φλ : R → Ω is understood as hyperbolic on
a subinterval I ⊆ R, if the associated variation equation (Vλ) is exponentially
dichotomic on I. This means there exist reals K ≥ 1, growth rates α> 0 and a
projection-valued function Pλ : I → Rd×d such that

Φλ(t, s)Pλ(s) = Pλ(t)Φλ(t, s) (2.3)

(one speaks of an invariant projector) and

|Φλ(t, s)Pλ(s)| ≤ Ke−α(t−s), |Φλ(s, t)[Id − Pλ(t)]| ≤ Ke−α(t−s) (2.4)
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6 C. Pötzsche and R. Skiba

for all s ≤ t, t, s ∈ I. The dichotomy spectrum of (Vλ) is given by (cf. [42])

Σ(λ) := {γ ∈ R : ẋ = [A(t, λ)− γId]x has no exponential dichotomy on R}

and consist of d0 ∈ {1, . . . , d} compact spectral intervals σj ⊆ R, i.e. Σ(λ) =⋃d0
j=1 σj (cf. [42, Theorem 3.1]). To each σj one associates a spectral manifold

Vj ⊆ R × Rd, which is an invariant bundle of subspaces of Rd having constant
dimension called algebraic multiplicity µj ∈ {1, . . . , d} of the spectral interval σj,
1 ≤ j ≤ d0.

Note that the R(Pλ(τ)), τ ∈ I, are uniquely determined on intervals I unbounded
above, while theN(Pλ(τ)), τ ∈ I, are unique on intervals I unbounded below. Given
this, we introduce the Morse index (note that it is independent of τ ∈ I)

mλ :≡

dimN(Pλ(τ)), if I is unbounded below,

d− dimR(Pλ(τ)), if I is unbounded above.

In particular, one has the respective dynamical characterizations (cf. [7, p. 19])

R(Pλ(τ)) =

{
ξ ∈ Rd : sup

τ≤t
eγ(τ−t)|Φλ(t, τ)ξ| <∞

}
for all γ ∈ [−α, α),

N(Pλ(τ)) =

{
ξ ∈ Rd : sup

t≤τ
eγ(τ−t)|Φλ(t, τ)ξ| <∞

}
for all γ ∈ (−α, α]

(2.5)

and τ ∈ I. Eventually, it is convenient to introduce the Green’s function

ΓPλ
(t, s) :=

Φλ(t, s)Pλ(s), s ≤ t,

−Φλ(t, s)[Id − Pλ(s)], t < s
for all s, t ∈ I. (2.6)

Our approach requires a suitable setting of functions defined on an interval I ⊆ R.
We write L∞(I,Ω) for the essentially bounded and W 1,∞(I,Ω) for L∞-functions
x : I → Ω with essentially bounded (weak) derivatives. In case Ω = Rd we write
L∞(I) := L∞(I,Rd) and proceed accordingly with further function spaces. Note
that L∞(I) is a Banach space w.r.t. the norm ‖x‖∞ := ess supt∈I |x(t)| .

Each x ∈ W 1,∞(I) has a bounded Lipschitz continuous representative (cf. [27,
p. 224, Theorem 7.17]), while Rademacher’s theorem [27, p. 343, Theorem 11.49]
yields that the (strong) derivative ẋ : I → Rd exists a.e. in I ⊆ R. Due to [27, p. 224,
Example 7.18], W 1,∞(I) is a Banach space with ‖x‖1,∞ := max {‖x‖∞ , ‖ẋ‖∞} , as
norm.

Clearly, W 1,∞(I) ⊆ L∞(I) is a continuous embedding. Finally, on the interval
I = R and for 0 ∈ Ω we introduce the respective subsets

L∞
0 (R,Ω) := {x ∈ L∞(R,Ω) | ∀ε > 0∃T > 0 : |x(t)| < ε a.e. in R \ (−T, T )} ,

W 1,∞
0 (R,Ω) :=

{
x ∈W 1,∞(R,Ω) | x, ẋ ∈ L∞

0 (R)
}
.

Then the continuous embeddingsW 1,∞(R) ⊆ L∞(R) andW 1,∞
0 (R) ⊆ L∞

0 (R) hold.
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We characterize bounded entire solutions of Carathéodory equations (Cλ), as
well as solutions being homoclinic to the family φλ from Hypothesis (H1), as zeros

G(x, λ) = 0 (Oλ)

of the formally defined abstract nonlinear operator

[G(x, λ)](t) := ẋ(t)− f(t, x(t) + φλ(t), λ) + f(t, φλ(t), λ).

One clearly obtains the identity G(0, λ) ≡ 0 on Λ̃.

Theorem 2.2. If Hypotheses (H0–H1) hold, then

(a) G : U × Λ̃ → L∞(R) is well-defined on U :=
{
x ∈ W 1,∞(R) : ‖x‖∞ < ρ̄

}
,

continuous and the partial derivative D1G : U◦ × Λ̃ → L(W 1,∞(R), L∞(R))
exists as a continuous function,

(b) G : U × Λ̃ → L∞
0 (R) is well-defined on U :=

{
x ∈ W 1,∞

0 (R) : ‖x‖∞ < ρ̄
}
,

continuous and the partial derivative D1G : U◦ × Λ̃ → L(W 1,∞
0 (R), L∞

0 (R))
exists as a continuous function.

Moreover, in both cases and for λ ∈ Λ̃ the partial derivative is given by

[D1G(x, λ)y](t) = ẏ(t)−D2f(t, x(t) + φλ(t), λ)y(t) for a.a. t ∈ R. (2.7)

Proof. The argument essentially follows [36, Corollary 2.1]. �

Theorem 2.3. If Hypotheses (H0–H1) hold, then φλ ∈ W 1,∞(R,Ω) and also the
following is true for all parameters λ ∈ Λ̃:

(a) If φ : R → Ω is a bounded solution of (Cλ) in Bρ̄(φλ), then φ − φλ is
contained in W 1,∞(R) and satisfies (Oλ). Conversely, if ψ ∈ L∞(R) has a
(strong) derivative a.e. in R with ‖ψ‖∞ < ρ̄ and satisfies G(ψ, λ) = 0, then
ψ ∈W 1,∞(R) and ψ + φλ is a bounded entire solution of (Cλ) in Bρ̄(φλ).

(b) If φ : R → Ω is a solution of (Cλ) in Bρ̄(φλ) homoclinic to φλ, then φ− φλ
is contained in W 1,∞

0 (R) and satisfies (Oλ). Conversely, if ψ ∈ L∞
0 (R) has

a (strong) derivative a.e. in R with ‖ψ‖∞ < ρ̄ and satisfies G(ψ, λ) = 0,

then ψ ∈ W 1,∞
0 (R) and ψ + φλ is a solution of (Cλ) in Bρ̄(φλ) homoclinic

to φλ.

Proof. Let λ ∈ Λ̃ be fixed. The assumption (H1) directly yields φλ ∈ L∞(R,Ω).
As a solution to (Cλ), φλ is absolutely continuous, hence the strong derivative φ̇λ
exists a.e. in R with φ̇λ(t) ≡ f(t, φλ(t), λ). Thus, since (2.1) yields that f(·, φλ(·), λ)
is essentially bounded on R and we deduce φ̇λ ∈ L∞(R), i.e. φλ ∈W 1,∞(R,Ω).

(a) Assume φ ∈ L∞(R,Ω) is an entire solution of (Cλ) in Bρ̄(φλ). Then φ
and φλ both satisfy (2.2) and the Fundamental Theorem of Calculus [27, p. 85,
Theorem 3.30] yields that φ, φλ are absolutely continuous (on any bounded subin-
terval of R). This yields that the strong derivatives φ̇, φ̇λ exist a.e. in R. Thus,
δ := φ− φλ ∈ L∞(R) fulfills the identity δ̇(t) + φ̇λ(t) ≡ f(t, δ(t) + φλ(t), λ) a.e. on
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8 C. Pötzsche and R. Skiba

R. Hence, ‖φ− φλ‖∞ < ρ̄ and the fact δ̇(t) ≡ f(t, δ(t) + φλ(t), λ) − f(t, φλ(t), λ),
a.e. on R has two consequences: First, there exists a bounded set B ⊆ Ω such that
the inclusion φλ(t)+ θδ(t) ∈ B holds for all t ∈ R, θ ∈ [0, 1] due to the convexity of
Ω. Whence the Mean Value Theorem [46, p. 243, Theorem 4.C for n =1] implies∣∣∣δ̇(t)∣∣∣ = ∣∣∣∣∫ 1

0

D2f(t, θδ(t) + φλ(t), λ) dθδ(t)

∣∣∣∣
≤
∫ 1

0

|D2f(t, θδ(t) + φλ(t), λ) dθ| ‖δ‖∞

and thanks to (H0) the right-hand side of this inequality is essentially bounded in
t ∈ R, i.e. δ ∈W 1,∞(R) holds. Second, δ defines an entire solution of the equation
of perturbed motion ẋ = f(t, x+φλ(t), λ)−f(t, φλ(t), λ), which implies G(δ, λ) = 0.

Conversely, let ψ ∈ L∞(R) be strongly differentiable a.e. in R with ‖ψ‖∞ < ρ̄

and G(ψ, λ) = 0, i.e. ψ̇(t) = f(t, ψ(t)+φλ(t), λ)−f(t, φλ(t), λ) holds for a.a. t ∈ R.
First, ψ̇(t)+ φ̇λ(t) = f(t, ψ(t)+φλ(t), λ) a.e. in R implies that ψ+φλ is a bounded
entire solution of (Cλ) in Bρ̄(φλ). Second, as above one establishes ψ̇ ∈ L∞(R) and
therefore the inclusion ψ ∈W 1,∞(R) results.

(b) can be shown analogously. �

Theorem 2.4 (admissibility). If Hypotheses (H0–H1) hold, then the following are
equivalent for all parameters λ ∈ Λ̃:

(a) D1G(0, λ) ∈ GL(W 1,∞(R), L∞(R)),
(b) D1G(0, λ) ∈ GL(W 1,∞

0 (R), L∞
0 (R)),

(c) the bounded entire solution φλ : R → Ω to (Cλ) is hyperbolic on R.

Proof. Throughout, let λ ∈ Λ̃ be fixed.
(c) ⇒ (a) Because φλ is hyperbolic, (Vλ) has an exponential dichotomy on R with

projector Pλ and growth rate α> 0. Due to the explicit form (2.7) from Theorem 2.2
the invertibility of the Fréchet derivative D1G(0, λ) means that for each g ∈ L∞(R)
there exists a unique solution ψ ∈W 1,∞(R) of the perturbed variation equation

ẋ = A(t, λ)x+ g(t). (Vλ,g)

In order to verify this, with Green’s function (2.6) we define

ψ : R → Rd, ψ(t) :=

∫
R
ΓPλ

(t, s)g(s) ds.

As in [4, proof of Lemma 3.2] one shows that ψ is actually a solution of (Vλ,g).
Moreover, the dichotomy estimates (2.4) yield ψ ∈ L∞(R). Hence, since the solu-
tion identity ψ̇(t) ≡ A(t, λ)ψ(t)+g(t) holds a.e. in R we obtain from Lemma 2.1 and
the inclusion g ∈ L∞(R) that also ψ̇ is essentially bounded, i.e. ψ ∈ W 1,∞(R). It
remains to show that ψ is uniquely determined by the inhomogeneity g ∈ L∞(R).
If ψ̄ ∈ L∞(R) is another bounded entire solution to (Vλ,g), then the difference
ψ − ψ̄ ∈ L∞(R) solves the variation equation (Vλ). Due to our hyperbolicity
assumption, (Vλ) has exponential dichotomies on R+ and on R− with projector
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Pλ satisfying Rd = R(Pλ(0)) ⊕N(Pλ(0)). This yields R(Pλ(0)) ∩N(Pλ(0)) = {0}
and the dynamical characterization (2.5) implies that the trivial solution is the
unique bounded entire solution to the variation equation (Vλ); thus ψ = ψ̄. This
shows that D1G(0, λ) :W

1,∞(R) → L∞(R) is invertible and Banach’s Isomorphism
Theorem [46, pp. 179–180, Proposition 1] yields the claim.

(a) ⇒ (b) Repeating the arguments yielding (a) it remains to show that inho-
mogeneities g ∈ L∞

0 (R) imply ψ ∈ W 1,∞
0 (R). Thereto, note ψ = ψ1 + ψ2

with

ψ1(t) :=

∫ t

−∞
Φλ(t, s)Pλ(s)g(s) ds, ψ2(t) := −

∫ ∞

t

Φλ(t, s)[Id − Pλ(s)]g(s) ds,

and choose ɛ> 0. Then, there exists a real T > 0 such that |g(s)| < α
K
ε
2 holds for

a.a. s ∈ R\ (−T, T ). On the one hand, provided we choose T1 ≥ T sufficiently large
that K

α ‖g‖∞ eα(T−t) < ε
2 for all t ≥ T1, then this leads to the estimates

|ψ1(t)| ≤
∫ T

−∞
|Φλ(t, s)Pλ(s)g(s) ds|+

∫ ∞

T

|Φλ(t, s)Pλ(s)g(s) ds|

(2.4)

≤ K

∫ T

−∞
e−α(t−s) |g(s)| ds+K

∫ ∞

T

e−α(t−s) |g(s)| ds

≤ K

∫ T

−∞
e−α(t−s) ds ‖g‖∞ + α

∫ ∞

T

e−α(t−s) ds
ε

2

≤ K

α
eα(T−t) ‖g‖∞ +

ε

2
< ε for all t ≥ T1,

|ψ1(t)| ≤
∫ t

−∞
|Φλ(t, s)Pλ(s)g(s)| ds

(2.4)

≤
∫ t

−∞
e−α(t−s) dsε = ε for all t ≤ −T

and in conclusion limt→±∞ |ψ1(t)| = 0. On the other hand, if we furthermore choose
T1 ≥ T so large that K

α ‖g‖∞ eα(t+T ) < ε
2 for all t ≤ −T1, then

|ψ2(t)| ≤
∫ ∞

t

|Φλ(t, s)[Id − Pλ(s)]g(s)| ds
(2.4)

≤ α

∫ ∞

t

eα(t−s)ε = ε for all t ≥ T,

|ψ2(t)| ≤
∫ −T

t

|Φλ(t, s)[Id − Pλ(s)]g(s)| ds+
∫ ∞

−T
|Φλ(t, s)[Id − Pλ(s)]| ds

(2.4)

≤ K

∫ ∞

−T
eα(t−s) |g(s)| ds+K

∫ ∞

−T
eα(t−s) |g(s)| ds

≤ α

∫ ∞

−T
eα(t−s) ds

ε

2
+K

∫ ∞

−T
eα(t−s) ds ‖g‖∞

≤ ε

2
+
K

α
eα(t+T ) ‖g‖∞ < ε for all t ≤ −T

also guarantee limt→±∞ |ψ2(t)| = 0. We conclude that ψ ∈ L∞
0 (R) holds. Moreover,

from the identity ψ̇(t) ≡ A(t, λ)ψ(t)+g(t) a.e. on R, Lemma 2.1(a) and g ∈ L∞
0 (R)

results limt→±∞ |ψ̇(t)| = 0 and consequently ψ ∈W 1,∞
0 (R).
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(b) ⇒ (c) We first note that the transition matrix Φλ : R×R → Rd×d of (Vλ) is an
evolution family on the Banach space Rd in the language of e.g. [39, 40] (note that
the essential boundedness guaranteed by Lemma 2.1(a) and [4, Lemma 2.9] yield
that there exists a ω ≥ 0 so that |Φλ(t, s)| ≤ eω(t−s) for all s ≤ t). In particular,
the proof of [39, Theorem 4.8] establishes that for each g ∈ L∞

0 (R) there exists a
unique solution φ ∈ L∞

0 (R) of the integral equation

φ(t) = Φλ(t, τ)φ(τ) +

∫ t

τ

Φλ(t, s)g(s) ds for all τ ≤ t. (2.8)

Indeed, the abstract setting of [40, Theorem 1.2] is met, because the function space
L∞
0 (R) possesses the following properties:

• For each x ∈ L∞
0 (R) and τ ∈ R the shifted function xτ := x(τ + ·) satisfies

that xτ ∈ L∞
0 (R) and ‖x‖∞ = ‖xτ‖∞,

• L∞
0 (R) contains the continuous functions x : R → Rd having compact

support,
•
∫ t
τ
|x(s)| ds ≤

∫ t
τ
‖x‖∞ ds = (t− τ) ‖x‖∞ for all τ ≤ t and x ∈ L∞

0 (R),
• e.g. x0 : R → R, x0(t) := 1

1+|t| is continuous with x0 ∈ L∞
0 (R) \ L1(R),

• if x, y : R → R are measurable with |x(t)| ≤ |y(t)| for a.a. t ∈ R and
y ∈ L∞

0 (R), then x ∈ L∞
0 (R).

It remains to show φ ∈ W 1,∞
0 (R). Thereto, by the Variation of Constants [4,

Theorem 2.10] the unique solution φ ∈ L∞
0 (R) of (2.8) is also the unique solu-

tion to the perturbed variation equation (Vλ,g) (satisfying x(τ) = φ(τ)) and hence
absolutely continuous on each bounded subinterval of R. Moreover, the solution
identity for (Vλ,g) implies φ̇ ∈ L∞

0 (R) due to Lemma 2.1(a). In conclusion, it

results that φ ∈W 1,∞
0 (R). �

Lemma 2.5 (dual variation equation). Let Hypotheses (H0–H1) hold and λ ∈ Λ̃. If
φλ : R → Ω is hyperbolic on an interval I with projector Pλ, then the dual variation
equation

ẋ = −D2f(t, φλ(t), λ)
Tx (V ∗

λ )

has an exponential dichotomy on I with projector

Qλ(t) := Id − Pλ(t)
T for all t ∈ I. (2.9)

In particular, one has N(Pλ(t))
⊥ = N(Qλ(t)) for all t ∈ I.

Proof. Fix λ ∈ Λ̃. Above all, one can easily show that the dual variation equation
(Vλ

*) has the transition matrix Φ∗
λ(t, s) := φλ(s, t)

T for all t, s ∈ I. Consequently,

Φ∗
λ(t, s)Qλ(s)

(2.9)
= φλ(s, t)

T
[
Id − Pλ(s)

T
] (2.3)

= ([Id − Pλ(s)]φλ(s, t))
T

= (φλ(s, t)[Id − Pλ(t)])
T
=
[
Id − Pλ(t)

T
]
φλ(s, t)

T (2.9)
= Qλ(t)Φ

∗
λ(t, s),
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as well as the required dichotomy estimates (note |C| =
∣∣CT ∣∣ for C ∈ Rd×d)

|Φ∗
λ(t, s)Qλ(s)|

(2.9)
=
∣∣∣(φλ(s, t) [Id − Pλ(t)])

T
∣∣∣

= |φλ(s, t) [Id − Pλ(t)]|
(2.4)

≤ Ke−α(t−s),

|Φ∗
λ(s, t) [Id −Qλ(t)]|

(2.9)
=
∣∣∣(φλ(t, s)Pλ(s))T ∣∣∣

= |φλ(t, s)Pλ(s)|
(2.4)

≤ Ke−α(t−s)

for all s ≤ t, s, t ∈ I, result, which prove that (Vλ
*) has an exponential

dichotomy on I with projector Qλ. The last statement follows from [46, p. 294,
Proposition 6(ii)]. �

The following result was already partly stated in [36, Proposition 3.1]:

Theorem 2.6 (Fredholmness). If Hypotheses (H0–H1) hold, then the following are
equivalent for all parameters λ ∈ Λ̃:

(a) D1G(0, λ) ∈ L(W 1,∞(R), L∞(R)) is Fredholm,
(b) D1G(0, λ) ∈ L(W 1,∞

0 (R), L∞
0 (R)) is Fredholm,

(c) the bounded entire solution φλ : R → Ω to (Cλ) is hyperbolic on R+ with the
Morse index m+

λ and on R− with Morse index m−
λ ,

where indD1G(0, λ) = m−
λ −m+

λ .

Although the proof literally follows the lines of [30, Lemma 4.2], for further
reference in the subsequent text we provide some necessary details.

Proof. Throughout, let λ ∈ Λ̃ be fixed.
(c) ⇒ (a) Our assumptions imply that (Vλ) has exponential dichotomies on R±

with projectors P±
λ ; the corresponding growth rates may be denoted by α> 0. We

establish that D1G(0, λ) :W
1,∞(R) → L∞(R) is Fredholm.

(I) Claim: dimN(D1G(0, λ)) <∞.
Thanks to the dynamical characterization (2.5), if we abbreviate

X+ := R(P+
λ (0)), X− := N(P−

λ (0)),

then X+ ∩ X− is precisely the subspace of all initial values ξ ∈ Rd for bounded
entire solutions Φλ(·, 0)ξ to (Vλ). By means of the isomorphism ξ 7→ Φλ(·, 0)ξ from
Rd onto the solution space of (Vλ) one has dim(X+ ∩X−) = dimN(D1G(λ, 0)).

(II) Claim: If g ∈ R(D1G(0, λ)), then for all solutions ψ ∈ L∞(R) of the dual
variation equation (Vλ

*) one has∫
R
〈ψ(s), g(s)〉 ds = 0. (2.10)

First of all, Lemma 2.5 implies that the dual variation equation (Vλ
*) has

dichotomies on R± with projectors Q±
λ (t) = Id − P±

λ (t)T and growth rate α> 0.
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Hence the following orthogonal complements allow the dynamical characterization

X⊥
+ = R(Q+

λ (0)) =

{
η ∈ Rd : sup

0≤t
e−γt|Φ∗

λ(t, 0)η| <∞
}
for γ ∈ [−α, α),

X⊥
− = N(Q−

λ (0)) =

{
η ∈ Rd : sup

t≤0
e−γt|Φ∗

λ(t, 0)η| <∞
}
for γ ∈ (−α, α].

(2.11)

Therefore the intersectionX⊥
+∩X⊥

− consists of initial values η giving rise to bounded

entire solutions Φ∗
λ(·, 0)η to the dual variation equation (Vλ

*). For each function
g ∈ R(D1G(0, λ)) there exists a preimage φ ∈ W 1,∞(R) such that the identity
g(t) ≡ φ̇(t)−D2f(t, φλ(t), λ)φ(t) holds a.e. on R. If ψ ∈ L∞(R) denotes a solution
of (Vλ

*), then the product rule implies∫ T

−T
〈ψ(s), g(s)〉ds =

∫ T

−T
〈ψ(s), φ̇(s)−D2f(s, φλ(s), λ)φ(s)〉 ds

=

∫ T

−T
〈ψ(s), φ̇(s)〉+ 〈ψ̇(s)φ(s)〉ds =

∫ T

−T

d

ds
〈ψ(s), φ(s)〉 ds

= 〈ψ(T ), φ(T )〉 − 〈ψ(−T ), φ(−T )〉 for all T > 0.

Since the dynamical characterization (2.11) guarantees that ψ(t) decays to 0 as
t→ ±∞ exponentially and φ ∈ L∞(R) holds, one obtains (2.10) from∫

R
〈ψ(s), g(s)〉ds = lim

T→∞
(〈ψ(T ), φ(T )〉 − 〈ψ(−T ), φ(−T )〉) = 0.

(III) Claim: If (2.10) holds for all solutions ψ ∈ L∞(R) of the dual variation
equation (Vλ

*), then g ∈ R(D1G(0, λ)).
Let g ∈ L∞(R). For η ∈ Rd satisfying

ηT
[
P+
λ − (Id − P−

λ )
]
= 0, (2.12)

we define

ψ : R → Rd×d, ψ(t) :=

Φ∗
λ(t, 0)Q

+
λ (t)η, t ≥ 0,

Φ∗
λ(t, 0)Q

−
λ (t)η, t ≤ 0.

Then ψ is a bounded entire solution of the dual variation equation (Vλ
*) and

〈η,
∫ 0

−∞
P−
λ (0)Φλ(0, s)g(s) ds+

∫ ∞

0

(Id − P+
λ (0))Φλ(0, s)g(s) ds〉 = 0

for all η ∈ Rd such that (2.12) holds. This, in turn, is equivalent to the fact that
the linear algebraic equation[

P+
λ (0)− (Id − P−

λ (0))
]
ξ

=

∫ 0

−∞
P−
λ (0)Φλ(0, s)g(s) ds+

∫ ∞

0

(Id − P+
λ (0))Φλ(0, s)g(s) ds
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for ξ ∈ Rd has a solution. Consequently, with Green’s function (2.6),

φ : R → Rd, φ(t) :=

Φλ(t, 0)P
+
λ (0)ξ +

∫∞
0

ΓP+
λ
(t, s)g(s) ds, t ≥ 0,

Φλ(t, 0)[Id − P−
λ (0)]ξ +

∫ 0

−∞ ΓP−
λ
(t, s)g(s) ds, t ≤ 0

defines a solution of the perturbed variation equation (Vλ,g) in W 1,∞(R). Due to
(2.7) this means D1G(0, λ)φ = g, i.e. g ∈ R(D1G(0, λ)).

(IV) Claim: codimR(D1G(0, λ)) <∞.
For each bounded entire solution ψ of (Vλ

*) we define a functional

x′ψ ∈W 1,∞(R)′, x′ψ(x) :=

∫
R
〈ψ(s), x(s)〉ds.

This gives an isomorphism between X⊥
+ ∩ X⊥

− and a finite-dimensional subspace
of the dual space L∞(R)′. In other words, R(D1G(0, λ)) is the subspace of L∞(R)
annihilated by this finite-dimensional subspace of L∞(R)′. Thus, R(D1G(0, λ)) is
closed, codimR(D1G(0, λ)) = dim(X⊥

+ ∩X⊥
− ) <∞ and D1G(0, λ) is Fredholm.

(V) It remains to determine the index of D1G(0, λ) as

indD1G(0, λ)

= dim
(
R(P+

λ (0)) ∩N(P−
λ (0))

)
− dim

(
N(P−

λ (0)) +R(P+
λ (0))

)⊥
= dim

(
R(P+

λ (0)) ∩N(P−
λ (0))

)
−
(
d− dim

(
N(P−

λ (0)) +R(P+
λ (0))

))
= dim

(
R(P+

λ (0)) ∩N(P−
λ (0))

)
−
(
d− [dimN(P−

λ (0)) + dimR(P+
λ (0))− dimR(P+

λ (0)) ∩N(P−
λ (0))]

)
= dimR(P+

λ (0))−
(
d− dimN(P−

λ (0))
)
= m−

λ −m+
λ .

(a) ⇒ (b) In order to show that D1G(0, λ) ∈ L(W 1,∞
0 (R), L∞

0 (R)) is Fredholm,
we mimic the arguments in (a). This additionally only requires to establish the
inclusions φ, ψ ∈W 1,∞

0 (R), provided that g ∈ L∞
0 (R) holds, but the corresponding

estimates result as in the proof of Theorem 2.4(b).
(b) ⇒ (c) Referring to Lemma 2.1(a), the coefficient matrices A(·, λ) : R → Rd×d

are essentially bounded. Then the proof of [31, Theorem] given for continuous
A(·, λ) and the spaces (BC1(R), BC(R)) literally carries over to our situation. �

3. Evans function and parity

This section contains our main result. It relates two seemingly independent
concepts, namely the Evans function of a parametrized family of variation equa-
tions (Vλ) to the parity of an abstract path of index 0 Fredholm operators
(cf. Appendix A). As basis for the Fredholm properties we impose

Hypothesis (H2). There is a critical parameter λ∗ ∈ Λ̃ so that the entire solution
φ∗ := φλ∗ of (Cλ∗) is hyperbolic on R+ with projector P+

λ∗ : R+ → Rd×d (Morse
index m+) and on R− with projector P−

λ∗ : R− → Rd×d (Morse index m−).

This local assumption extends to a neighborhood of λ∗ as follows:
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Lemma 3.1 (roughness). Let Hypotheses (H0–H2) hold, where the exponential
dichotomies on the semiaxes have the growth rate α∗ > 0. If α ∈ (0, α∗), then there
exists a ρ0 > 0 such that for each λ ∈ B̄ρ0(λ

∗) the solution φλ is hyperbolic on
both R+ with a projector P+

λ and on R− with a projector P−
λ and common growth

rate α. Moreover, the projection mappings (t, λ) 7→ P+
λ (t) and (t, λ) 7→ P−

λ (t) are
continuous with

dimR(P+
λ (0)) ≡ d−m+, dimN(P−

λ (0)) ≡ m− on Bρ0(λ
∗).

The characterization in Theorem 2.6 provides an easy proof that the hyper-
bolicity of φ∗ extends to the bounded entire solutions φλ for parameters λ near
λ∗. Thereto, Hypothesis (H2) implies that D1G(0, λ

∗) is Fredholm. Since the
Fredholm operators form an open subset of L(W 1,∞(R), L∞(R)) (cf. [46, p. 300,
Proposition 1]) and λ 7→ D1G(0, λ) is continuous by Theorem 2.2, also D1G(0, λ)
is Fredholm (preserving the index). This, in turn, ensures that φλ is hyperbolic on
both semiaxes for λ in a neighborhood of λ∗.

Proof. As in [38, S. 8, Lemma 1.1] the projectors P±
λ are characterized via fixed

points of Lyapunov–Perron operators. Then their continuous dependence on the
parameter λ is a consequence of the Uniform Contraction Principle. �

Under Hypothesis (H2) we now fix a growth rate α ∈ (0, α∗) and based on ρ0 > 0

from Lemma 3.1 consider the parameter space Λ :=
{
λ ∈ Λ̃ : d(λ, λ∗) ≤ ρ0

}
.

Lemma 3.2. Under Hypotheses (H0–H2) the sets

R[P+(t)] :=
{
(λ, ξ) ∈ Λ× Rd | ξ ∈ R(P+

λ (t))
}

for all t ∈ R+,

N[P−(t)] :=
{
(λ, ξ) ∈ Λ× Rd | ξ ∈ N(P−

λ (t))
}

for all t ∈ R−

are vector bundles of dimension d−m+ resp. m− over Λ.

Proof. Since λ 7→ P±
λ (t) is continuous for any t ∈ R± by Lemma 3.1, the assertion

follows directly from [16, Proposition 6.21]. �

Proposition 3.3 (Evans function). Let Hypotheses (H0–H2) hold with Morse
indices m+ = m−. If Λ is contractible, then there exist continuous functions
ξ+1 , . . . , ξ

+
d−m+ : Λ → Rd and ξ−1 , . . . , ξ

−
m− : Λ → Rd such that

(a) ξ+1 (λ), . . . , ξ
+
d−m+(λ) is a base of R(P+

λ (0)) ⊆ Rd,
(b) ξ−1 (λ), . . . , ξ−m−(λ) is a base of N(P−

λ (0)) ⊆ Rd,
(c) ξ+1 (λ), . . . , ξ

+
d−m+(λ), ξ

−
1 (λ), . . . , ξ−m−(λ) is a basis of Rd if and only if one

has the direct sum R(P+
λ (0))⊕N(P−

λ (0)) = Rd

holds for all λ ∈ Λ. Given this, an Evans function for (Vλ) is defined by

E : Λ → R, E(λ) := det
(
ξ+1 (λ), . . . , ξ

+
d−m+(λ), ξ

−
1 (λ), . . . , ξ−m−(λ)

)
.

Evans functions clearly depend on the choice of ξ+i (λ) and ξ
−
j (λ) ∈ Rd. However,

any two Evans functions differ only by a product with a nonvanishing function (this
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factor is a determinant of the transformation matrices that describe the change
of bases). Furthermore, all subsequent statements involving zeros of the Evans
function do not depend on the choice of the basis vectors.

Proof. We write Rd = (Rd−m+ ×{0})⊕({0}×Rm−
) and consider the sets R[P+(0)]

and N[P−(0)] introduced in Lemma 3.2. Since they are are vector bundles over
a contractible space, [19, p. 30, Corollary 4.8] yields the existence of morphism
bundles

ψ1 : Λ× Rd−m
+

→ R[P+(0)], ψ2 : Λ× Rm
−
→ N[P−(0)]

such that the following diagrams are commutative:

where the vertical arrows represent the corresponding projections, and for any
λ ∈ Λ the maps ψ1(λ, ·) : Rd−m+ → R(P+

λ (0)) and ψ2(λ, ·) : Rm− → N(P−
λ (0)) are

linear isomorphisms. Then it is not hard to see that the functions

ξ+1 , . . . , ξ
+
d−m+ : Λ → Rd, ξ+i (λ) := ψ1(λ, ei) for all 1 ≤ i ≤ d−m+,

ξ−1 , . . . , ξ
−
m− : Λ → Rd, ξ−j (λ) := ψ2(λ, ed−m++j) for all 1 ≤ j ≤ m−

satisfy the claimed properties (a–c) with the sets {e1, . . . , ed−m+} ⊂ Rd−m+ × {0}
and {ed−m++1, . . . , ed} ⊂ {0} × Rm−

derived from the standard basis e1, . . . , ed of
Rd. In particular, E : Λ → R is well-defined. �

The following observations recommend Evans functions λ 7→ E(λ) as tool to
locate non-trivial intersections of the stable and unstable vector bundles to (Vλ)
(transversality). In addition, it extends the admissibility Theorem 2.4:

Proposition 3.4 (properties of Evans functions). Let Hypotheses (H0–H2) hold
with Morse indices m+ = m−. If Λ is contractible, then an Evans function E : Λ →
R of (Vλ) is continuous. Moreover, for each λ ∈ Λ the following are equivalent:

(a) E(λ) 6= 0,
(b) R(P+

λ (0))⊕N(P−
λ (0)) = Rd,

(c) a bounded entire solution φλ of (Cλ) is hyperbolic on R, i.e. 0 6∈ Σ(λ).

Proof. The continuity of the Evans function follows immediately from
Proposition 3.3 and the continuity of the determinant det : Rd×d → R.

(a) ⇔ (b) is an immediate consequence of Linear Algebra.
(b) ⇔ (c) Arguing as in [7, p. 19], a variation equation (Vλ) possesses an

exponential dichotomy on R if and only if the projections satisfy (b). �
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Figure 1. To Corollary 3.5: Dichotomy spectra Σ(λ) of (Vλ): At zeros λ∗ of an Evans
function E the critical spectral interval of Σ(λ∗) is not a singleton. For E(λ) 6= 0 the
interval splits, which results in 0 6∈ Σ(λ) and hyperbolic solutions φλ to (Cλ).

An Evans function serves as indicator when spectral intervals split (see Fig. 1):

Corollary 3.5 (Evans function and dichotomy spectrum). The following are
equivalent:

(a) E(λ∗) = 0,
(b) there exists a α∗ > 0 such that [−α∗, α∗] ⊆ Σ(λ∗).

Moreover, if (a) (or (b)) holds for some λ∗ ∈ Λ, then for all λ ∈ Λ one has

(c) 0 < m+,m− < d and each solution φλ of (Cλ) is unstable,
(d) in case λ ∈ Λ \ E−1(0) it is 0 6∈ Σ(λ) such that both (−∞, 0) and (0,∞)

contain at least one spectral interval of Σ(λ).

Proof. (I) We first establish the claimed equivalence:
(a) ⇒ (b) The assumption (H2) implies that (Vλ∗) has exponential dichotomies

on both semiaxes with growth rate α∗ > 0. Now if E(λ∗) = 0, then Proposition 3.4
shows that φ∗ is nonhyperbolic, i.e. 0 ∈ Σ(λ∗). Due to Theorem 2.4, D1G(0, λ

∗) is
noninvertible, but because of Theorem 2.6 Fredholm of index 0. Hence, D1G(0, λ

∗)
has a nontrivial kernel and from step (I) in the proof for Theorem 2.6 one obtains
{0} 6= R(P+

λ∗(0)) ∩ N(P−
λ∗(0)). Because the transition matrices of (Vλ) and Φγλ of

ẋ = [A(t, λ) − γId]x are related by Φγλ(t, s) = eγ(s−t)Φλ(t, s) for all t, s ∈ R, the
dynamical characterization (2.5) implies

{0} 6=
{
ξ ∈ Rd : sup

t∈R
e−γt |Φλ∗(t, 0)ξ| <∞

}
=

{
ξ ∈ Rd : sup

t∈R
|Φγλ∗(t, 0)ξ| <∞

}
for each γ ∈ (−α∗, α∗). Consequently, the shifted equation ẋ = [A(t, λ∗)−γId]x has
nontrivial bounded solutions and thus cannot possess an exponential dichotomy on
R, i.e. γ ∈ Σ(λ∗). Since γ ∈ (−α∗, α∗) was arbitrary, we deduce (−α∗, α∗) ⊆ Σ(λ∗)
and (b) results due to the compactness of spectral intervals.

(b) ⇒ (a) Because obviously 0 ∈ Σ(λ∗) holds, the bounded entire solution φ∗ is
nonhyperbolic and Proposition 3.4 yields (a).

(II) Let λ ∈ Λ. By means of contradiction we assume P+
λ∗(0) = Id and hence

the ξ+1 (λ), . . . , ξ
+
d (λ) ∈ Rd from Proposition 3.3 are linearly independent. Thus,
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E(λ) 6= 0 contradics E(λ∗) = 0, we deduce dimR(P+
λ∗(0)) < d, hence

m+ = d− dimR(P+
λ∗(0)) > 0.

Using a similar argument, also the assumption P+
λ∗(0) = 0d yields a contradiction,

which yields m+ < d. With m− = m+ it is 0 < m+,m− < d.
This implies that the projectors P+

λ for the exponential dichotomy of (Vλ) on R+

are nontrivial. Then [2, pp. 32–33, Proposition 2.2.1] implies that φλ is unstable.
Now let E(λ) 6= 0 and hence 0 6∈ Σ(λ) results by Proposition 3.4. First, the

assumption Σ(λ) ⊂ (−∞, 0) implies that (Vλ) has an exponential dichotomy on
R+ with Pλ(t) ≡ Id resulting in the contradiction m+ = 0. Second, assuming
Σ(λ) ⊂ (0,∞) leads to the contradiction m+ = d. In conclusion, both the positive
and the negative reals contains at least one spectral interval of Σ(λ). �

As an interim conclusion, note that Evans functions have a clear geometric inter-
pretation and are accessible in practice (cf. [9]). Furthermore, referring to Thms. 2.4
and 2.6, as well as Proposition 3.4, they allow to distinguish invertibility from
merely Fredholmness of the partial derivatives D1G(0, λ) given in (2.7). We thus
aim to relate Evans functions to abstract bifurcation theory. Here the concept
of parity, explained in Appendix A and Appendix B, is crucial. In our present
framework, we further restrict to interval neighborhoods

Λ := [a, b] with reals a < b, a, b ∈ B̄ρ0(λ
∗)

and arrive at our central result involving the parity σ:

Theorem 3.6 (Evans function and the parity). Let Hypotheses (H0–H2) hold with
Morse indices m+ = m−. If E(a) · E(b) 6= 0, then both mappings

(a) T : [a, b] → L(W 1,∞(R), L∞(R)),
(b) T : [a, b] → L(W 1,∞

0 (R), L∞
0 (R)),

given by T (λ) := D1G(0, λ) define paths of index 0 Fredholm operators with
invertible endpoints and parity σ(T, [a, b]) = sgnE(a) · sgnE(b).

Proof. (a) The mapping T : [a, b] → L(W 1,∞(R), L∞(R)) is continuous because of
Theorem 2.2(a). Due to Lemma 3.1 the variation equations (Vλ) have exponen-
tial dichotomies on both semiaxes R± with respective projectors P±

λ for all λ ∈ Λ.
Thus, the inclusion T (λ) ∈ F0(W

1,∞(R), L∞(R)) results from Theorem 2.6(a) com-
bined with (2.2). Hence, T is a path of index 0 Fredholm operators. Furthermore,
E(a)E(b) 6= 0 and Proposition 3.4 yield that both bounded entire solutions φa and
φb are hyperbolic, i.e. the variation equations (Va) and (Vb) have an exponential
dichotomy on R. Then Theorem 2.4(a) implies the inclusions

T (a), T (b) ∈ GL(W 1,∞(R), L∞(R))

and T has invertible endpoints.
We first prepare some properties of T (λ) needed in the further steps of the proof.

Throughout, we again abbreviate A(t, λ) := D2f(t, φλ(t), λ).
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(I) Claim: N(T (λ)) ∼= R(P+
λ (0)) ∩N(P−

λ (0)).
This is shown in the proof of Theorem 2.6(a).
(II) Consider the formally dual operators

T (λ)∗ :W 1,∞(R) → L∞(R), [T (λ)∗y](t) := ẏ(t) +A(t, λ)T y(t)

for a.a. t ∈ R associated to the dual variation equation (Vλ
*). Thanks to Lemma 2.5,

the dual variation equation (Vλ
*) has exponential dichotomies on both R± with the

projectors Q±
λ (t) := Id − P±

λ (t)T .
(II.1) Claim: dimN(T (λ)) = dimN(T (λ)∗).
As in the proof of Theorem 2.6(a) (cf. (2.11)) one has

N(T (λ)∗) ∼= R(Q+
λ (0)) ∩N(Q−

λ (0))
(2.9)
= R(P−

λ (0)T ) ∩N(P+
λ (0)T ),

while R(P−
λ (0)T ) = N(P−

λ (0))⊥, N(P+
λ (0)T ) = R(P+

λ (0))⊥ result from [46, p. 294,
Proposition 6(ii)] and consequently the claim is established by

dimN(T (λ)∗) = dim
(
R(P−

λ (0)T ) ∩N(P+
λ (0)T )

)
= dim

(
N(P−

λ (0))⊥ ∩R(P+
λ (0))⊥

)
= dim

(
N(P−

λ (0)) +R(P+
λ (0))

)⊥
= dim

(
R(P+

λ (0)) ∩N(P−
λ (0))

) (I)
= dimN(T (λ)).

(II.2) Claim: R(T (λ))⊕N(T (λ)∗) = L∞(R).
First of all, observe that since W 1,∞(R) ⊂ L∞(R), it follows that N(T (λ)∗) is

a subset of L∞(R). Furthermore, if g ∈ R(T (λ)) with preimage φ ∈ W 1,∞(R) and
functions u ∈ N(T (λ)∗) ⊆W 1,∞(R), then∫

R
〈u(s), g(s)〉ds =

∫
R
〈u(s), φ̇(s)−A(t, λ)φ(s)〉ds

=

∫
R
〈u(s), φ̇(s)〉 − 〈u(s), A(t, λ)φ(s)〉ds

=

∫
R
〈u(s), φ̇(s)〉+ 〈−u(s)A(t, λ)T , φ(s)〉 ds

=

∫
R
〈u(s), φ̇(s)〉+ 〈u̇(s), φ(s)〉 ds =

∫
R

d〈u(s), φ(s)〉
ds

ds

due to the product rule. Now, reasoning as in the proof Theorem 2.6, one obtains∫
R
〈u(s), g(s)〉ds =

∫ 0

−∞

d〈u(s), φ(s)〉
ds

ds+

∫ ∞

0

d〈u(s), φ(s)〉
ds

ds

= 〈u(0), φ(0)〉 − lim
t→−∞

〈u(t), φ(t)〉+ lim
t→∞

〈u(t), φ(t)〉 − 〈u(0), φ(0)〉 = 0.

In particular, from this we obtain R(T (λ)) ∩N(T (λ)∗) = {0}, and combined with
indT (λ) = 0 and (II.1) we arrive at the desired splitting.

(III) We construct a finite-dimensional subspace V ⊆ L∞(R) complementary to
each R(T (λ)), i.e., R(T (λ))+V = L∞(R) holds for λ ∈ [a, b]. Thereto, if λ0 ∈ [a, b]
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is fixed, then because of dimN(T (λ0)) <∞ there is a complementWλ0
⊂W 1,∞(R)

with N(T (λ0))⊕Wλ0
=W 1,∞(R). Now consider the bilinear operator

Σλ :Wλ0
×N(T (λ0)

∗) → L∞(R), Σλ(w, v) := T (λ)w + v.

Because of Σλ0
∈ GL(Wλ0

× N(T (λ0)
∗), L∞(R)) it follows from the continuity of

T and the openness of the set of bounded invertible operators that there exists a
neighborhood Uλ0

of λ0 in [a, b] such that Σλ ∈ GL(Wλ0
×N(T (λ0)

∗), L∞(R)) and

R(T (λ)) +N(T (λ0)
∗) = L∞(R) for all λ ∈ Uλ0

results. By compactness we can now cover the interval [a, b] with a finite number
of such neighborhoods Uλ1

, . . . , Uλn
⊆ R. If

V := N(T (λ1)
∗) +N(T (λ2)

∗) + . . .+N(T (λn)
∗) ⊂ L∞(R), (3.1)

then dimV <∞ and R(T (λ)) + V = L∞(R) for all λ ∈ [a, b].
(IV) This step is inspired by Step 3 in the proof of [45, Theorem 5.3]. Keeping

τ > 0 fixed, consider the family of operators

S(λ) : D(S(λ)) → L∞[−τ, τ ], [S(λ)y](t) := ẏ(t)−A(t, λ)y(t)

for a.a. t ∈ [−τ, τ ], which due to Lemma 2.1(a) is well-defined on the domain

D(S(λ)) :=
{
u ∈W 1,∞[−τ, τ ] | u(−τ) ∈ N(P−

λ (−τ)), u(τ) ∈ R(P+
λ (τ))

}
.

(IV.1) Claim: dimN(S(λ)) = dimN(T (λ)) <∞.
Consider the commutative diagram

where p abbreviates the restriction of functions in L∞(R) to L∞[−τ, τ ] given by
p(u) := u|[−τ,τ ] and a canonical map iλ : D(S(λ)) →W 1,∞(R) defined by extending
a given function u ∈ D(S(λ)) to the intervals (−∞,−τ) and (τ,∞) as solution of
(Vλ). Observe that iλ is injective and iλ

(
N(S(λ))

)
= N(T (λ)), holds, where the

inclusion iλ
(
N(S(λ))

)
⊆ N(T (λ)) results directly due to the construction of iλ,

while iλ
(
N(S(λ))

)
⊇ N(T (λ)) as converse inclusion follows from the fact that

provided u ∈ N(T (λ)), then u(τ) ∈ R(P+
λ (τ)) and u(−τ) ∈ N(P−

λ (−τ)) for any
τ > 0 (recall (2.3)). Finally, this yields the assertion.
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(IV.2) We decompose [−τ, τ ] = [−τ, 0] ∪ [0, τ ] and define the spaces

X+ := {u ∈W 1,∞[0, τ ] | u(τ) ∈ R(P+
λ (τ)) }, Y+ := L∞[0, τ ],

X− := {u ∈W 1,∞[−τ, 0] | u(−τ) ∈ N(P−
λ (−τ)) }, Y− := L∞[−τ, 0].

Consider the following linear operators S±(λ) : X± → Y± pointwise defined as

[S±(λ)y](t) = ẏ(t)−D2f(t, φλ(t), λ)y(t) for a.e. t ∈ R±.

Next consider the following commutative diagram

where the mappings J : L∞[−τ, τ ] → Y− ⊕ Y+ and Jλ : D(S(λ)) → X− ⊕X+ are
defined by Ju := (u−, u+) and Jλv := (v−, v+) with u+ and v+ (resp. u− and v−)
being the corresponding restrictions to [0, τ ] (resp. to [−τ, 0]). It is clear that J is an
isomorphism, while Jλ is injective with range R(Jλ) = {(v−, v+) | v−(0) = v+(0)}.
Defining the mapping Σ: X− ⊕ X+ → Rd by Σ(v−, v+) = v−(0) − v+(0), one
obtains that R(Jλ) = N(Σ). What is more, since Σ is an epimorphism, one can
conclude that coker Jλ = X− ⊕X+/R(Jλ) = X− ⊕X+/N(Σ) ∼= Rd, and hence Jλ
is Fredholm with ind Jλ = dimN(Jλ) − dim coker Jλ = 0 − d = −d. Since J is an
isomorphism, it follows ind J−1 = 0.

(IV.3) Claim: S+(λ) : X+ → Y+ and S−(λ) : X− → Y− are Fredholm with index
d−m+ resp. m−.

For S+(λ) it suffices to prove that S+(λ) is surjective andN(S+(λ)) ∼= R(P+
λ (τ)),

which results from the following arguments: Consider the perturbed variation equa-
tion (Vλ,g) with inhomogeneity g ∈ L∞[0, τ ]. Due to [4, Theorem 2.10] the general
solution ϕ̄λ of (Vλ,g) is expressed via the Variation of Constants as

ϕ̄λ(t; τ, ξ) = Φλ(t, τ)ξ +

∫ t

τ

Φλ(t, s)g(s) ds for all t ∈ [0, τ ], ξ ∈ Rd.

Since Φλ is a bounded function on [0, τ ] × [0, τ ] and g ∈ L∞[0, τ ] holds, stan-
dard calculations yield ϕ̄λ(·; τ, ξ) ∈ W 1,∞[0, τ ], which proves that S+(λ) is onto.
Concerning the kernel N(S+(λ)), note that Φλ(·, τ)ξ ∈ N(S+(λ)), we conclude

N(S+(λ)) ∼= R(P+
λ (τ)),

and finally arrive at indS+(λ) = dimR(P+
λ (τ)) = d −m+ because the invariance

relation (2.3) implies dimR(P+
λ (τ)) = dimR(P+

λ (0)) = d−m+.
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The argument for S−(λ) is dual to the above proof. Now it suffices to show that
S−(λ) is surjective and N(S−(λ)) ∼= N(P−

λ (−τ)). Thereto, for g ∈ L∞[−τ, 0] it is

ϕ̄λ(t;−τ, ξ) = Φλ(t,−τ)ξ +
∫ t

−τ
Φλ(t, s)g(s) ds for all t ∈ [−τ, 0], ξ ∈ Rd.

From the boundedness of Φλ on the square [−τ, 0]×[−τ, 0] and g ∈ L∞[−τ, 0] results
that ϕ̄λ(·;−τ, ξ) ∈ W 1,∞[−τ, 0], which shows that S−(λ) is surjective. Addressing
the kernel N(S−(λ)) we have Φλ(·,−τ)ξ ∈ N(S−(λ)) and therefore N(S−(λ)) ∼=
N(P−

λ (−τ)), leading to indS−(λ) = dimN(P−
λ (−τ)) = m− by (2.3).

(IV.4) Claim: S(λ) : D(S(λ)) → L∞[−τ, τ ] is Fredholm of index 0.
Due to the composition S(λ) = J−1 ◦ (S−(λ) ⊕ S+(λ)) ◦ Jλ : D(S(λ)) →

L∞[−τ, τ ] the commutativity of the diagram (3.3) shows that S(λ) is
Fredholm with

indS(λ) = ind(J−1 ◦ (S−(λ)⊕ S+(λ)) ◦ Jλ)
= ind(J−1) + ind(S−(λ)⊕ S+(λ)) + ind Jλ
(IV.2)
= ind(S−(λ)⊕ S+(λ))− d

= indS−(λ) + indS+(λ))− d
(IV.3)
= n+ r − d = 0.

(V) Keeping τ > 0 fixed consider the family of operators

S(λ)∗ : D(S(λ)∗) → L∞[−τ, τ ], [S(λ)∗y](t) := ẏ(t) +A(t, λ)T y(t)

for a.a. t ∈ [−τ, τ ] on the domain

D(S(λ)∗) :=
{
u ∈W 1,∞[−τ, τ ] | u(−τ) ∈ N(P−

λ (−τ))⊥, u(τ) ∈ R(P+
λ (τ))⊥

}
.

Then the diagram

commutes, where i∗λ is defined according to (3.2). As above, S(λ)∗ is Fredholm of
index 0 and iλ(N(S(λ)∗)) = N(T (λ)∗) with dimN(S(λ)∗) = dimN(T (λ)∗).

(VI) Claim: N(S(λ)∗) ∩R(S(λ)) = {0}.
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If g ∈ R(S(λ)) with preimage φ ∈ D(S(λ)∗) and u ∈ N(S(λ)∗), then∫ τ

−τ
〈u(s), g(s)〉ds =

∫ τ

−τ
〈u(s), φ̇(s)−A(t, λ)φ(s)〉 ds

=

∫ τ

−τ
〈u(s), φ̇(s)〉 − 〈u(s), A(t, λ)φ(s)〉ds

=

∫ τ

−τ
〈u(s), φ̇(s)〉+ 〈−u(s)A(t, λ)T , φ(s)〉 ds

=

∫ τ

−τ
〈u(s), φ̇(s)〉+ 〈u̇(s), φ(s)〉 ds =

∫ τ

−τ

d〈u(s), φ(s)〉
ds

ds

= 〈u(τ), φ(τ)〉 − 〈u(−τ), φ(−τ)〉 = 0,

where the last equality follows from u(τ) ⊥ φ(τ) and u(−τ) ⊥ φ(−τ), which shows
that N(S(λ)∗) ∩ R(S(λ)) = {0}. Thanks to this result and indS(λ) = 0 together
with dimN(S(λ)) = dimN(S(λ)∗), we conclude R(S(λ))⊕N(S(λ)∗) = L∞[−τ, τ ].

(VII) Repeating the arguments from Claim III, one has

R(S(λ)) +W = L∞[−τ, τ ],

where W := N(S(λ1)
∗) + . . . + N(S(λn)

∗) and the parameters λ1, . . . , λn ∈ [a, b]
are the same as in (3.1). Due to p(N(T (λ)∗)) = N(S(λ)∗) we conclude p(V ) = W
with a subspace V as in (3.1). Thus the vector bundles

E(T, V ) :=
{
(λ, x) ∈ [a, b]×W 1,∞(R) | T (λ)x ∈ V

}
,

E(S,W ) := {(λ, x) ∈ [a, b]×D(S(λ)) | S(λ)x ∈W} ,

are well-defined and the following diagram commutes:

where (iE)λ(x) = iλ(x) and iλ is as in (3.2).
(VIII) Claim: σ(T, [a, b]) = σ(S, [a, b]).
We observe that dimW ≤ dimV and iE : E(S,W ) → E(T, V ) is an injective

bundle morphism. Then E0 := iE(E(S,W )) is a subbundle of E(T, V ), and since
Λ = [a, b] is compact, there is a complementary bundle E 1 to E 0, i.e., E(T, V ) =
E0 ⊕ E1. We decompose V = W0 ⊕ W1, where W0 := {χ[−τ,τ ]u | u ∈ V } and
W1 := {χR\[−τ,τ ]u | u ∈ V }. It follows from the construction of V and W that
p|W0 : W0 → W is an isomorphism, and hence dimW0 = dimW . Now, given
λ ∈ [a, b] taking account the above splittings, the diagram (3.4) has the following
form:
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and T (λ) : E0
λ ⊕ E1

λ →W0 ⊕W1 can be written as operator matrix

T (λ) =

(
T (λ)11 T (λ)12
T (λ)21 T (λ)22

)
.

We prove that both mappings T (λ)12 : E1
λ →W0 and T (λ)21 : E0

λ →W1 are trivial.
Indeed, take u ∈ E0

λ. Since there exists a v ∈ E(S,W )λ with (iE)λv = u, it follows
that T (λ)u admits the property (T (λ)u)(t) = 0 for all t ∈ R \ [−τ, τ ], which yields
T (λ)u ∈W0. But T (λ)u = (T (λ)11u, T (λ)21u), and therefore T (λ)21 is trivial.

As for T (λ)12, take w ∈ R(T (λ)12) ⊆ W0. Then there is u ∈ E1
λ ⊂ W 1,∞(R)

such that T (λ)12u = w. Since T (λ)12u ∈ W0, it follows that u̇(t)− A(t, λ)u(t) = 0
for all t ∈ (−∞,−τ) and for t ∈ (τ,∞), which particularly shows that

u(−τ) ∈ N(P−
λ (−τ)), u(τ) ∈ R(P+

λ (τ)).

Hence, there exists a v ∈ E(S,W )λ such that (iE)λ(v) = u, which implies u ∈ E0
λ.

Thus, u ∈ E0
λ ∩ E1

λ = {0}, and hence w = T (λ)120 = 0, establishing T (λ)12 ≡ 0.
Thus we have proved that T (λ) : E(T, V )λ → V allows the decomposition:

T (λ) = T (λ)11 ⊕ T (λ)22 : E0
λ ⊕ E1

λ →W0 ⊕W1 = V. (3.5)

Now, we have

• N(T (λ)22) = {0} since N(T (λ)) = (iE)λ
(
N(S(λ))

)
⊆ E0

λ,
• dimW = dimE(S,W )λ because indS(λ) = 0 and E(S,W )λ = S(λ)−1(W ),
• dimW0 ⊕W1 = dimE0

λ ⊕ E1
λ since indT (λ) = 0,

• dimE0
λ = dim(iE)λ(E(S, V ))λ = dimE(S, V )λ because (iE)λ is injective.

Thus, dimE0
λ = dimW0 < ∞, dimE1

λ = dimW1 < ∞, and T (λ)11 : E0
λ → W0

and T (λ)22 : E1
λ → W1 are Fredholm of index 0. Moreover, from N(T (λ)22) = {0}

results that T (λ)22 is an isomorphism and by means of (3.5) and Lemma A.1 and
A.2, we obtain

σ(T, [a, b]) = σ(T ◦ T̂ , [a, b]) = σ((T11 ⊕ T22) ◦ (T̂1 ⊕ T̂2), [a, b])

= σ(T11 ◦ T̂1, [a, b]) · σ(T22 ◦ T̂2, [a, b])
= σ(T11 ◦ T̂1, [a, b]) · 1 = σ(T11 ◦ T̂1, [a, b]),

(3.6)

where T̂ : [a, b]× V → E(T, V ),

T̂1 : [a, b]×W0 → E(T11,W0), T̂2 : [a, b]×W1 → E(T22,W1)
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are arbitrary bundle trivializations. If we consider

then again Lemma A.1 and A.2 imply that

σ(T11 ◦ T̂1, [a, b]) = σ(S ◦ T̂0, [a, b]) = σ(S, [a, b]), (3.7)

where also T̂0 : [a, b]×W → E(S,W ) is an arbitrary bundle trivialization. Finally,
taking into account (3.6) and (3.7), we derive the claimed equality.

(IX) Claim: σ(S, [a, b]) = σ(Q, [a, b]) for the operator

Q(λ) : D(Q(λ)) ⊂W 1,∞[−τ, τ ] → L∞[−τ, τ ], [Q(λ)u](t) = u̇(t),

defined on the domain

D(Q(λ)) =
{
u ∈W 1,∞[−τ, τ ] | u(−τ) ∈ N(P−

λ (0)), u(τ) ∈ R(P+
λ (0))

}
. (3.8)

We abbreviate Φλ(t) := Φλ(t, 0), Sλ := S(λ) and similarly for further paths. With

M(λ) ∈ GL(W 1,∞[−τ, τ ]), [M(λ)u](t) = Φλ(t)u(t) for all t ∈ [−τ, τ ],

we observe that M−1
λ SλMλ are Fredholm of index 0 (cf. (IV.5)) and defined on

D(M−1
λ SλMλ) = {M−1

λ u ∈W 1,∞[−τ, τ ] : u ∈ D(Sλ) }
= {M−1

λ u ∈W 1,∞[−τ, τ ] : u(−τ) ∈ N(P−
λ (−τ)), u(τ) ∈ R(P+

λ (τ)) }
= {v ∈W 1,∞[−τ, τ ] : (Mλv)(−τ) ∈ N(P−

λ (−τ)), (Mλv)(τ) ∈ R(P+
λ (τ)) }

=
{
v ∈W 1,∞[−τ, τ ] : v(−τ) ∈ N(P−

λ (0)), v(τ) ∈ R(P+
λ (0))

}
,

where we used Φλ(t)P
±
λ (0)φλ(t)

−1 = P±
λ (t) for t ∈ R± in the last equality (for this

see (2.3)). Moreover, for u ∈ D(M−1
λ SλMλ) one has the identity

[M−1
λ SλMλu](t) ≡ Φλ(t)

−1(Φ̇λ(t)u(t) + Φλ(t)u̇(t)−A(t, λ)Φλ(t)u(t))

≡ u̇(t) + Φλ(t)
−1(Φ̇λ(t)−A(t, λ)Φλ(t))u(t) ≡ u̇(t)

a.e. on R, i.e. M−1
λ SλMλ = Q(λ). Hence, we obtain from Lemma A.1(c) that

σ(S, [a, b]) = σ(M−1, [a, b]) · σ(S, [a, b]) · σ(M, [a, b])

= σ(M−1SM, [a, b]) = σ(Q, [a, b]).
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(X) It is not hard to see that L∞[−τ, τ ] = Y0⊕Y1, where Y 0 is the d -dimensional
space of constant Rd-valued functions and

Y1 =

{
u ∈ L∞[−τ, τ ] :

∫ τ

−τ
u(s) ds = 0

}
.

What is more, let us observe that Y 0 is transversal to the image of Q, i.e.,

R(Q(λ)) + Y0 = L∞[−τ, τ ]. (3.9)

Indeed, let u ∈ L∞[−τ, τ ]. If we define c, v : [−τ, τ ] → Rd as

c(t) :≡ 1

2τ

∫ τ

−τ
u(s) ds, v(t) :=

∫ t

−τ
(u(s)− c(s)) ds,

then v belongs to D(Q(λ)), defined in (3.8) for all λ ∈ [a, b], and

[Q(λ)v](t) + c(t) = u(t)− c(t) + c(t) = u(t) for all t ∈ [−τ, τ ]

proves (3.9). Thus E(Q,Y0) is well-defined with the fibres

E(Q,Y0)λ = Q(λ)−1Y0 = {u ∈ D(Q(λ)) : u̇(t) ≡ constant}

=
{
uηξ : uηξ (t) =

1
2

(
1 + t

τ

)
η + 1

2

(
1− t

τ

)
ξ for ξ ∈ N(P−

λ (0)), η ∈ R(P+
λ (0))

}
.

Moreover, Q(λ) acts on the fibers E(Q,Y0)λ into Y 0 by Q(λ)uηξ = 1
2τ (η − ξ). Now

we are in a position to introduce the following commutative diagram:

where the mappings eλ, L̂λ and m are defined as follows

eλ : E(Q,Y0)λ → N(P−
λ (0))⊕R(P+

λ (0)), eλ(u) := (u(−τ), u(τ))
m : Y0 → Rd, m(u) := 2τu

L̂λ : N(P−
λ (0))⊕R(P+

λ (0)) → Rd, L̂λ(u, v) = v − u.

Hence, in view of Lemma A.1 and A.2, we deduce the desired conclusion

σ(Q, [a, b]) = σ(Q ◦ T̂ , [a, b]) = σ(L̂ ◦ T̂ L̂, [a, b]), (3.10)

where T̂ : [a, b] × Y0 → E(Q,Y0) is any bundle trivialization with second bundle

trivialization T̂ L̂ : [a, b]× (Rd−m+ × {0} ⊕ {0} × Rm−
) → N(P−(0))⊕ R(P+(0)),

T̂ L̂(λ, x, y) :=

d−m+∑
i=1

xiξ
+
i (λ),

m−∑
j=1

yjξ
−
j (λ)


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and the functions ξ+i , ξ
−
j from Proposition 3.3 with m+ = m−.

(XI) Claim: σ(L̂ ◦ T̂ L̂, [a, b]) = sgnE(a) · sgnE(b).

By Lemma A.1 it results σ(L̂ ◦ T̂ L̂, [a, b]) = sgn det(L̂a ◦ T̂ L̂a ) · sgn det(L̂b ◦ T̂ L̂b ),
where using Proposition 3.3 one has for λ ∈ {a, b} that

det(L̂λ ◦ T̂ L̂λ ) = det(−ξ+1 (λ), . . . ,−ξ
+
d−m+(λ), ξ

−
1 (λ), . . . , ξ−m−(λ))

= (−1)d−m
+

det(ξ+1 (λ), . . . , ξ
+
d−m+(λ), ξ

−
1 (λ), . . . , ξ−m−(λ)) = (−1)d−m

+

E(λ)

and thus σ(L̂ ◦ T̂ L̂, [a, b]) = (sgn(−1)d−m
+

)2 sgnE(a) sgnE(b) = sgnE(a) sgnE(b).
(XII) Finally, taking into account the previous steps, one obtains

σ(T, [a, b])
(VIII)
= σ(S, [a, b])

(IX)
= σ(Q, [a, b])

(3.10)
= σ(L̂ ◦ T̂ L̂, [a, b])

(XI)
= sgnE(a) · sgnE(b),

which completes the proof of (a).
(b) The arguments from the above proof of part (a) carry over to the present

situation with the spaces W 1,∞(R) and L∞(R) replaced by W 1,∞
0 (R) resp.

L∞
0 (R), provided the respective statements (b) of Theorem 2.2, 2.4 and 2.6 are

employed. �

We conclude with a local version of Theorem 3.6 involving the parity index
σ(T, λ∗) (see Appendix A). Thereto, we say that an Evans function E for (Vλ)
changes sign at a parameter value λ∗ ∈ Λ◦, if there exists a neighborhood Λ0 ⊆ Λ̃
of λ∗ so that E(λ) 6= 0 for all λ ∈ Λ0 \ {λ∗} and

lim
ε↘0

sgnE(λ∗ − ε) · sgnE(λ∗ + ε) = −1

hold. Then the Intermediate Value Theorem yields E(λ∗) = 0. Moreover, for smooth
Evans functions a sign change occurs, if λ∗ is a zero of odd order.

Corollary 3.7 (Evans function and parity index). If an Evans function E of
(Vλ) changes sign at λ∗, then σ(T, λ∗) = −1.

Proof. By assumption there exits a neighborhood Λ0 of λ∗ such that E(λ) 6= 0
holds on Λ0 \ {λ∗} and hence Theorem 2.4 combined with Proposition 3.4 yield
that T (λ) are nonsingular for λ 6= λ∗. Therefore, Theorem 3.6 implies

σ(T, [λ∗ − ε, λ∗ + ε]) = sgnσ(T, [λ∗ − ε, λ∗ + ε]) = sgnE(λ∗ − ε) · sgnE(λ∗ + ε)

and passing to the limit ε↘ 0 yields the claim. �

Remark 3.8 (multiplicities). With the closed operators

T (λ) : D(T (λ)) ⊆ L∞(R) → L∞(R) for all λ ∈ Λ

on the domains D(T (λ)) := W 1,∞(R) (or with the spaces L∞
0 (R) and W 1,∞

0 (R),
resp.) it is due to [44] that the dichotomy spectrum Σ(λ) of (Vλ) is related to the
spectrum σ(T (λ)) ⊆ C of the operator T (λ) via Σ(λ) = σ(T (λ)) ∩ R.
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The assumption (H2) and E(λ∗) = 0 yield 0 ∈ Σ(λ∗) and we denote the spectral
interval containing 0 as critical. More precisely, 0 is an eigenvalue of T (λ∗) with
geometric multiplicity µg := dimN(T (λ∗)) = dim

(
R(P+

λ∗(0)) ∩ N(P−
λ∗(0))

)
. In

relation to the algebraic multiplicity µ of the critical spectral interval it is µg ≤
µ ≤ d.

4. Bifurcation in Carathéodory equations

We now establish Evans functions as a tool to detect bifurcations of bounded entire
solutions to Carathéodory equations (Cλ). An entire solution φ∗ = φλ∗ of (Cλ∗)
is said to bifurcate at the parameter λ∗ ∈ Λ̃, if there exists a sequence (λn)n∈N in
Λ̃ converging to λ∗ such that each (Cλn

) has a bounded entire solution ψn 6= φλn

with

lim
n→∞

sup
t∈R

|ψn(t)− φ∗(t)| = 0.

In other words, φ∗ is an accumulation point of bounded entire solutions not con-
tained in the family (φλ)λ∈Λ̃. For Λ ⊆ Λ̃ the subset BΛ of parameters λ ∈ Λ so that
there occurs a bifurcation at (φλ, λ) is denoted as set of bifurcation values for (Cλ).

Theorem 4.1 (necessary bifurcation condition). Let λ∗ ∈ Λ̃ and suppose that
Hypotheses (H0–H1) hold. If λ

∗ ∈ BΛ̃, i.e. the bounded, permanent, entire solution
φ∗ of (Cλ∗) bifurcates at λ∗, then φ∗ is not hyperbolic on R, i.e. 0 ∈ Σ(λ∗).

Proof. This consequence of the Implicit Function Theorem [22, pp. 7–8,
Theorem I.1.1] is established akin to [35, Theorem 3.8] in the context of ordinary
differential equations. �

Note that our approach requires Hypotheses (H0–H2) to hold with a parameter
space Λ̃ ⊆ R containing a neighborhood of λ∗. Then Proposition 3.3 guarantees the
existence of an Evans function E : [λ∗ − ε̄, λ∗ + ε̄] → R for the variation equation
(Vλ).

A combination of Theorem 2.2 with Proposition 3.4 yields the implications

λ∗ ∈ BΛ ⇒ 0 ∈ Σ(λ∗) ⇔ E(λ∗) = 0,

while the converse holds when E has an actual sign change at λ∗. Note that we
impose no further assumption and thus extend the sufficient bifurcation conditions
from [36], which were limited to critical spectral intervals containing a geometrically
simple eigenvalue 0. For the sake of a compact notation in the next result we
introduce the prescribed branch

T := {(φλ, λ) ∈W 1,∞(R,Ω)× Λ̃ | φλ is as in (H1)}

of solutions to (Cλ) and its subset TH := {(φλ, λ) ∈ T | φλ is hyperbolic on R}.
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Figure 2. Theorem 4.2: At (φ∗, λ∗) ∈ W 1,∞(R)×Λ a continuum of solutions homoclinic to
φλ (dark grey shaded) bifurcates from the prescribed branch T (dashed line) connecting
it to the tube given in terms of the set

{
(x, λ) ∈ W 1,∞(R)× Λ | ‖x− φλ‖1,∞ = δ

}
(light

grey shaded) for sufficiently small δ > 0.

Theorem 4.2 (bifurcation of bounded solutions homoclinic to T ). Let
Hypotheses (H0–H2) hold with Morse indices m+ = m−. If an Evans function

E : [λ∗ − ε̄, λ∗ + ε̄] → R

for (Vλ) changes sign at λ∗, then the entire solution φ∗ to (Cλ∗) bifurcates at λ∗

in the following sense:

(a) There is a δ0 > 0 so that for each δ ∈ (0, δ0) there is a connected component

C ⊆
{
(φ, λ) ∈W 1,∞(R)× Ω | φ : R → Ω solves (Cλ)

}
\ TH

containing the pair (φ∗, λ∗), which joins the complement T \ TH with the set{
(x, λ) ∈W 1,∞(R)× Λ | ‖x− φλ‖1,∞ = δ

}
(see Fig. 2).

(b) For all (φ, λ) ∈ C the bounded entire solution φ : R → Ω is homoclinic to
φλ.

Using the examples below, it is not hard to see that a sign change of an Evans
function is a sufficient, but not a necessary condition for bifurcation in the sense
of Theorem 4.2. Furthermore, the fact that E(λ∗) = 0 and Corollary 3.5(c) imply
that d > 1, i.e. Theorem 4.2 does not apply to scalar Carathéodory equations (Cλ)
(where d =1).

Proof. Above all, φλ ∈W 1,∞(R,Ω) for each λ ∈ Λ̃ holds due to Theorem 2.3.
We apply the abstract bifurcation Theorem A.1 to (Oλ) with the parametrized

operator G from Theorem 2.2 and the Banach spaces X =W 1,∞
0 (R), Y = L∞

0 (R).
Indeed, because of Theorem 2.2(b) the mapping G : U → L∞

0 (R) is well-defined and
continuous on a product U :=

{
x ∈W 1,∞

0 (R) : ‖x‖∞ < ρ
}◦ ×Λ. Furthermore, the

partial derivative D1G : U → L(W 1,∞
0 (R), L∞

0 (R)) exists as continuous function,
G(0, λ) ≡ 0 holds on Λ, while Theorem 2.6(b) shows that λ 7→ D1G(0, λ) defines a
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path of Fredholm operators with index 0. Since an Evans function E is assumed to
change sign at λ∗, we readily derive from Corollary 3.7 that σ(D1G(0, ·), λ∗) = −1
holds. Consequently, Theorem A.1 (with λ0 = λ∗) shows that (0, λ∗) is a bifurcation
point of (Oλ) and that there exists a δ0 > 0 and a connected set of nonzero solutions
to (Oλ) inW

1,∞
0 (R) emanating from (0, λ∗) to the surface ‖x‖1,∞ = δ for δ ∈ (0, δ0).

Note in this context that Theorem 4.1 guarantees the equivalence

D1G(0, λ) ∈ GL(W 1,∞
0 (R), L∞

0 (R)) ⇔ (φλ, λ) ∈ TH .

Then Theorem 2.3(b) implies that φ∗ to (Cλ∗) bifurcates at λ = λ∗ into a set of
solutions to (Cλ) homoclinic to φλ. In particular, the statements on the continuum
of bifurcating bounded entire solutions to (Cλ) holds. �

The following example illustrates the generality and applicability of Theorem 4.2.

Example 4.3. Let n ∈ N, α> 0 and Λ̃ = R. Consider a Carathéodory equation
(Cλ) in Ω = R2n with right-hand side f : R× R2n × R → R2n,

f(t, x, λ) :=

(
a(t)In 0

C(λ) −a(t)In

)
x+ F (t, x, λ), a(t) :=

−α, t ≥ 0,

α, t < 0

with a continuous function C : R → Rn×n and a nonlinearity F : R×Rd×R → Rd
such that the resulting right-hand side f might fulfill both Hypothesis (H0) and

F (t, 0, λ) ≡ 0, D2F (t, 0, λ) ≡ 0 on R× R. (4.1)

Consequently, (Cλ) has the trivial solution for all parameters λ ∈ R, i.e., we can
choose the continuous branch φλ(t) :≡ 0 on R and assumption (H1) holds. For each
γ ∈ R the shifted variation equation (Vλ) along the trivial solution becomes

ẋ =

(
(a(t)− γ)In 0n

C(λ) (−a(t)− γ)In

)
x. (4.2)

We first determine the dichotomy spectrum Σ(λ) of (Vλ). Thereto, note that (4.2)
is piecewise autonomous which on the respective semiaxes R+ and R− becomes

ẋ =

(
(−α− γ)In 0n

C(λ) (α− γ)In

)
x, ẋ =

(
(α− γ)In 0n
C(λ) (−α− γ)In

)
x.

In case γ < −α it is −α − γ > 0, α − γ > 0 and thus (4.2) has an exponential
dichotomy with projector P (t) ≡ I2n on R. In case γ > α it holds −α − γ < 0,
α − γ < 0 and (4.2) is exponentially dichotomic with projector P (t) ≡ 02n on R.
In conclusion, this implies that Σ(λ) ⊆ [−α, α]. For γ ∈ {−α, α} one sees that
(4.2) has nontrivial bounded entire solutions, which yields {−α, α} ⊆ Σ(λ). In the
remaining situation γ ∈ (−α, α) the equation (4.2) has an exponential dichotomy
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on the semiaxis R+ with projector

P+
λ (t) ≡

(
In 0n

− 1
2αC(λ) 0n

)
, R(P+

λ (0)) =

{(
ξ

η

)
∈ R2n : η = − 1

2αC(λ)ξ

}
(and Morse index m+ = n), as well as on the semiaxis R− with projector

P−
λ (t) ≡

(
0n 0n

− 1
2αC(λ) In

)
, N(P−

λ (0)) =

{(
ξ

η

)
∈ R2n : η = 1

2αC(λ)ξ

}
(and Morse index m− = n). Hence, m− = m+ and according to Proposition 3.3 a
globally defined Evans function for the variation equation (Vλ) can be constructed
as

E : R → R, E(λ) = det

(
In In

− 1
2αC(λ)

1
2αC(λ)

)
=

detC(λ)

αn
,

which results in the following two observations:
(1) The equation (4.2) with a nontrivial bounded entire solution is equivalent to

R(P+
λ (0)) ∩N(P−

λ (0)) 6= {0} ⇔ N(C(λ)) 6= {0} ⇔ E(λ) 6= 0,

which leads to the dichotomy spectrum

Σ(λ) =

[−α, α], λ ∈ E−1(0),

{−α} ∪ {α} , λ 6∈ E−1(0),

of the variation equation (Vλ) (cf. Corollary 3.5). In detail, if an Evans function
E has an isolated zero λ∗ ∈ R, then the critical spectral interval Σ(λ∗) = [−α, α]
of algebraic multiplicity 2n splits into two spectral intervals {−α} , {α} (in fact
singletons) of algebraic multiplicity n for λ 6= λ∗. Here, the critical spectral interval
Σ(λ∗) consists of eigenvalues to T (λ∗) from Remark 3.8 with geometric multiplicity
dimN(C(λ∗)).

(2) If E : R → R changes sign at λ∗, then Theorem 4.2 implies for
any nonlinearity F satisfying (4.1) that nontrivial bounded entire solution to
(Cλ) being homoclinic to 0 bifurcate at λ∗ from the zero branch, i.e. BR =
{λ ∈ R : E changes sign at λ}. Note that the bifurcation criteria from [36] do not
apply to such Carathéodory equations (Cλ) unless dimN(C(0)) = 1.

Preparing further examples we introduce a prototypical equation:

Lemma 4.4. Let ν, µ ∈ R. The general solution of the ordinary differential equation

ẋ =

(
− tanh t 0

0 tanh t

)
x+

(
0

νx21

)
+

(
0

µ

)
(4.3)

https://doi.org/10.1017/prm.2025.10062 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2025.10062


Evans function, parity and nonautonomous bifurcations 31

satisfies for all t ∈ R and initial values ξ ∈ R2 that

ϕ(t; 0, ξ) =

(
1

cosh tξ1
νξ21
2 tanh t+ cosh t

[
ξ2 + (νξ21 + 2µ) arctan tanh t

2

]) .
Moreover, the equivalence ϕ(·; 0, ξ) ∈ L∞(R) ⇔ νξ21 + 2µ = 0and ξ2 = 0 holds.

Proof. Because equation (4.3) is of lower triangular form the given expression
for the general solution ϕ is due to the Variation of Constants Formula [4,
Theorem 2.10]. In order to identify the bounded entire solutions of (4.3) we first
note the limits

lim
t→±∞

cosh t
(
arctan tanh t

2 ∓ π
4

)
= ∓1

2 . (4.4)

On the one hand, the representation

cosh t
[
ξ2 + (νξ21 + 2µ) arctan tanh t

2

]
=cosh t

[
(νξ21 + 2µ)

(
arctan tanh t

2 − π
4

)]
+ cosh t

[
ξ2 + (νξ21 + 2µ)π4

]
and (4.4) guarantee that supt≥0 |ϕ(t; 0, ξ)| <∞ is equivalent to

0 = ξ2 + (νξ21 + 2µ)π4 . (4.5)

On the other hand,

cosh t
[
ξ2 + (νξ21 + 2µ) arctan tanh t

2

]
=cosh t

[
(νξ21 + 2µ)

(
arctan tanh t

2 + π
4

)]
+ cosh t

[
ξ2 − (νξ21 + 2µ)π4

]
combined with (4.4) ensure that supt≤0 |ϕ(t; 0, ξ)| <∞ holds if and only if

0 = ξ2 − (νξ21 + 2µ)π4 . (4.6)

The relations (4.5) and (4.6) in turn are equivalent to νξ21 + 2µ = 0 and ξ2 = 0. �

We proceed to an example with a nontrivial continuous branch of nontrivial
bounded solutions φλ. It exhibits a transcritical bifurcation, which can also be
verified in terms of the degenerate fold bifurcation from [36, Theorem 4.2].

Example 4.5. Let Λ̃ = R. Consider an ordinary differential equation (Cλ) in the
domain Ω = R2 with the right-hand side

f(t, x, λ) :=

(
− tanh t 0

0 tanh t

)
x+

(
0

x21

)
−

(
0

λ2

)
.

It fits in the framework of (4.3) with ν=1, µ = −λ2 and hence Lemma 4.4 implies

that the initial values ξ±(λ) = ±
(√

2λ
0

)
yield two continuous branches of bounded

https://doi.org/10.1017/prm.2025.10062 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2025.10062
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Figure 3. Bifurcation of solutions homoclinic to φλ: The blue branch φ−
λ bifurcates from

the gray branch φλ = (φ1(λ), φ2(λ)) at λ∗ = 0 and the trivial solution (black line).

entire solutions to (Cλ). Here, ξ
+(λ) leads to the branch of bounded solutions

φλ : R → R2, φλ(t) := λ

( √
2

cosh t

λ tanh t

)
for all λ ∈ R.

It intersects the branch of bounded entire solutions emanating from the initial
values ξ−(λ) and is given by

φ−λ : R → R2, φ−λ (t) := λ

(
−

√
2

cosh t

λ tanh t

)
for all λ ∈ R;

note that each φ−λ is homoclinic to φλ. Consequently, a branch of homoclinic solu-
tions bifurcates from φ∗ = 0 at λ∗ = 0 (see Fig. 3). In order to confirm this scenario
by means of Theorem 4.2 we compute the partial derivative

D2f(t, x, λ) =

(
− tanh t 0

2x1 tanh t

)
leading to the variation equation (Vλ∗) explicitly given by

ẋ = D2f(t, φ
∗(t), λ∗)x =

(
− tanh t 0

0 tanh t

)
x

with the diagonal transition matrix

Φλ∗(t, τ) =

(
cosh τ
cosh t 0

0 cosh t
cosh τ

)
for all τ, t ∈ R.

Therefore, the variation equation (Vλ∗) has exponential dichotomies on R+ with

P+
λ∗(t) ≡

(
1 0

0 0

)
, R(P+

λ∗(t)) ≡ span {e1}
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and also on the semiaxis R− with

P−
λ∗(t) ≡

(
0 0

0 1

)
, N(P−

λ∗(t)) ≡ span {e1} .

Now (H2) holds withm
+ = m− = 1. Having established the Hypotheses (H0–H2)

we can compute an Evans function E : R → R defined on the entire real axis.
Indeed, the variation equation (Vλ) along φλ has the solutions

Φλ(t, 0)ξ =

(
ξ1/ cosh t√

2λ tanh tξ1 + cosh t(2
√
2λ arctan tanh t

2ξ1 + ξ2)

)
and consequently (2.5) induces the dynamical characterizations:{

ξ ∈ R2 : sup
0≤t

|Φλ(t, 0)ξ| <∞
}

=
{
ξ ∈ R2 : ξ2 = −

√
2λπ2 ξ1

}
,{

ξ ∈ R2 : sup
t≤0

|Φλ(t, 0)ξ| <∞
}

=
{
ξ ∈ R2 : ξ2 =

√
2λπ2 ξ1

}
.

In conclusion, with Proposition 3.3 it follows that

E(λ) = det

(
1 1

−
√
2λπ2

√
2λπ2

)
=

√
2πλ for all λ ∈ R

is an Evans function. First, due to E−1(0) = {0} the splitting of the critical spectral
interval guaranteed by Corollary 3.5 is illustrated (even upper semicontinuously)
as

Σ(λ) =

[−1, 1], λ = 0,

{−1} ∪ {1} , λ 6= 0;

the critical spectral interval [−1, 1] of algebraic multiplicity 2 splits into the single-
tons {−1} , {1} having algebraic multiplicity 1. Second, because E changes sign at
λ∗ = 0, by Theorem 4.2 there is a bifurcation of bounded entire solutions φ−λ to
(Cλ) being homoclinic to φλ. As demonstrated explicitly above, both branches φλ
and φ−λ exist for all parameters; one has BR = {0}.

5. Outlook, comparison and connections

We introduced the Evans function as a tool in nonautonomous bifurcation theory,
where W 1,∞(R) or W 1,∞

0 (R) are natural spaces to look for bifurcating solutions
of (Cλ). Neverthless, the basic Fredholm theory from § 2, as well as the proof of
Theorem 3.6 extends to further paths T : [a, b] → F0(X,Y ) of differential operators

[T (λ)y](t) := ẏ(t)−A(t, λ)y(t) with coefficients A(t, λ) ∈ Rd×d (5.1)

between appropriate pairs (X,Y ) of function spaces beyond those suitable for
Carathéodory equations (Cλ). This adds the parity (and its applications) to the

https://doi.org/10.1017/prm.2025.10062 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2025.10062
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toolbox available for further areas, as discussed in e.g. [1, 21, 37] addressing PDEs
or [41] tackling nonautonomous Hamiltonian systems.

Ordinary differential equations

Our central results literally carry over to nonautonomous ordinary differential equa-
tions (Cλ), provided Hypothesis (H0) holds with continuous functions f and D2f
in their full set of variables. Then the functional analytical machinery presented
here applies with W 1,∞(R) and L∞(R) replaced by the corresponding subspaces of
bounded continuous resp. continuously differentiable functions BC1(R) and BC(R)
resp. their subspaces of functions vanishing at ±∞; this is met in Example 4.5.

Difference equations

Similarly, linearizing difference equations xt+1 = ft(xt, λ) near branches of bounded
entire solutions gives rise to operators

[T (λ)y]t := yt+1 −At(λ)yt with At(λ) ∈ Rd×d.

Under corresponding dichotomy assumptions (cf. [2, pp. 101ff, Section 6.2]), T (λ)
can be shown to be an index 0 Fredholm endomorphism on the spaces `∞(Z) of
bounded sequences and the limit zero sequences `0(Z). This allows to introduce an
Evens function in this framework with the corresponding ramifications.

Parity and multiplicity

The parity unifies several approaches extending the algebraic multiplicity µ̄ of crit-
ical parameters λ0 from compact operators to paths of index 0 Fredholm operators
with invertible endpoints in terms of the relation

σ(T, [λ0 − ε, λ0 + ε]) = (−1)µ̄ for sufficiently small ε > 0.

Among them are the crossing number [22, pp. 203ff] or the multiplicities from Izé
[20], Magnus [29] and Esquinas & López-Gómez [11]; their relation was studied in
[10, Theorem 1.4] and [15]. Indeed, the parity is invariant under Lyapunov–Schmidt
reduction (cf. [15]). In our situation of paths of the form (5.1), Theorem 3.6 connects
the Evans function with these multiplicities via the relation σ(T, λ0) = (−1)µ̄ resp.

(−1)µ̄ = sgnE(λ0 − ε) sgnE(λ0 + ε) for sufficiently small ε > 0.

In addition, the product representation [5, Proposition 5.6] of the parity in terms
of the sign of oriented Fredholm operators implies

sgnT (λ0 − ε) sgnT (λ0 + ε) = sgnE(λ0 − ε) sgnE(λ0 + ε) for small ε > 0.

Evans function and Fredholm determinants

Several contributions such as [8, 18, 26] relate the Evans function to Fredholm
determinants, and to be precise, to the 2-modified perturbation determinant
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det2(IH +K(λ)) for an analytical path λ 7→ K(λ) ∈ L(H,H) of Hilbert-Schmidt
integral operators over a Green’s function (as in (2.6)) and a L2-Hilbert space H.
In [26, Section 3] it is established that the algebraic multiplicity of an isolated
eigenvalue for the respective operators coincides with the order of the zeros to the
Evans function for certain coefficient matrices A(t, λ). For general A(t, λ), [8] use
this approach to obtain formulas for the derivatives of Evans functions, which allow
to establish sign changes of E based on linearization. While a Hilbert space set-
ting is not natural to locate bifurcating solution in Carathéodory equations (Cλ),
we nonetheless point out that these results combined with a Hilbert space version
of Theorem 3.6 link the above Fredholm determinants to the parity and therefore
make them a tool in bifurcation theory.

We finally point out a useful extension of results stemming from the abstract
set-up of Appendix B. Indeed, [15, Theorem 6.18] establishes that provided a path
T : [a, b] → F0(X,Y ) is differentiable in λ0 ∈ (a, b) and satisfies the splitting

Ṫ (λ0)N(T (λ0))⊕R(T (λ0)) = Y, (5.2)

then λ0 is an isolated singular point of T and for sufficiently small ɛ> 0 one has

σ(T, [λ0 − ε, λ0 + ε]) = (−1)dimN(T (λ0)). (5.3)

Observe that under (5.2) and (5.3) one has the equivalence

σ(T, [λ0 − ε, λ0 + ε]) = −1 ⇔ dimN(T (λ0)) is odd.

In contrast, based on our approach a path T neither has to be differentiable
nor must satisfy (5.2) in λ0. Beyond that σ(T, [λ0 − ε, λ0 + ε]) = −1 may hold for
even dimensions of N(T (λ0)). Example 4.3 above illustrates that such a situation
occurrs.

Example 5.1. Let X = W 1,∞(R) and Y = L∞(R). In the framework of
Example 4.3 the path T : [a, b] → L(W 1,∞(R), L∞(R)) discussed in Theorem 3.6
becomes explicitly

[T (λ)y](t) = ẏ(t)−

(
a(t)In 0

C(λ) −a(t)In

)
y(t) for a.a. t ∈ R

and y ∈ W 1,∞(R). Even if the coefficient function C : [a, b] → Rn×n is
merely assumed to be continuous, an Evans function for (Vλ) can be con-
structed. Yet, unless C is differentiable in some λ0 ∈ (a, b), the condition (5.2)
cannot be employed. Beyond that, even for C being differentiable at λ0, but
Ċ(λ0) 6∈ GL(Rn,Rn), then also the path T is differentiable in λ0 with Ṫ (λ0) ∈
L(W 1,∞(R), L∞(R)) given by

[Ṫ (λ0)y](t) = −

(
0 0

Ċ(λ0) 0

)
y(t) for a.a. t ∈ R.

But it is clear that this derivative does not fulfill a splitting (5.2).
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35. C. Pötzsche. Nonautonomous continuation of bounded solutions. Commun. Pure Appl.
Anal . 10 (2011), 937–961.
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Appendices
Assume that X,Y are real Banach spaces. For the convenience of the reader we
briefly review the construction of the parity for a path of Fredholm operators and
provide its properties, as well as applications in bifurcation theory from [12, 14–17].
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Appendix A. The parity

We denote a continuous function T : [a, b] → L(X,Y ) as a path. It is said to have
invertible endpoints, if moreover T (a), T (b) ∈ GL(X,Y ) holds. Referring to [13], for
each path T : [a, b] → F0(X,Y ) there exists a path P : [a, b] → GL(Y,X) having the
property that P (λ)T (λ)− IX ∈ L(X,X) is a compact operator for every λ ∈ [a, b];
such a function P is called parametrix for T. In case T : [a, b] → F0(X,Y ) has
invertible endpoints, then its parity on [a, b] is defined as

σ(T, [a, b]) := degLS(P (a)T (a)) · degLS(P (b)T (b)) ∈ {−1, 1} ,

where the symbol degLS denotes the Leray–Schauder degree (cf. e.g. [22, pp. 199ff]).
We understand paths T, S : [a, b] → F0(X,Y ) with invertible endpoints as

homotopic, if there is a continuous map h : [0, 1] × [a, b] → F0(X,Y ) with the
properties

• h(0, λ) = T (λ) and h(1, λ) = S(λ) for all λ ∈ [a, b],
• h(t, ·) : [a, b] → F0(X,Y ) has invertible endpoints for all t ∈ (0, 1).

Lemma A.1 (properties of the parity). Let E,F and Z be further real Banach
spaces and assume T : [a, b] → F0(X,Y ) is a path with invertible endpoints.

(a) Homotopy invariance [16, p. 54, (6.11)]: If T is homotopic to a further path
S : [a, b] → F0(X,Y ) with invertible endpoints, then σ(T, [a, b]) =

σ(S, [a, b]).
(b) Multiplicativity under partition of [a, b] [16, p. 53, (6.9)]: If T (c) ∈ GL(X,Y )

for some c ∈ (a, b), then σ(T, [a, b]) = σ(T, [a, c]) · σ(T, [c, b]).
(c) Multiplicativity under composition [16, p. 54, (6.10)]: If S : [a, b] → F0(Y, Z)

is a path with invertible endpoints, then1

σ(ST, [a, b]) = σ(S, [a, b]) · σ(T, [a, b]).

(d) Multiplicativity under direct sum [16, p. 54, (6.12)]: If S : [a, b] → F0(E,F )
is a path with invertible endpoints, then

σ(T ⊕ S, [a, b]) = σ(T, [a, b]) · σ(S, [a, b]).

(e) Finite-dimensional case [16, p. 53, (6.8)]: If X = Y and dimX < ∞, then
σ(T, [a, b]) = sgn detT (a) · sgn detT (b).

(f) Triviality property [16, p. 52, Theorem 6.4]: σ(T, [a, b]) = 1 if and only if
the path T : [a, b] → F0(X,Y ) can be deformed in F0(X,Y ) to a path in
GL(X,Y ) through a homotopy with invertible endpoints. In particular, if
T (λ) ∈ GL(X,Y ) for all λ ∈ [a, b], then σ(T, [a, b]) = 1.

For actual parity computations the following result is crucial:

Lemma A.2 (reduction property of the parity, [16, 17]). Let T : [a, b] → F0(X,Y )
be a path with invertible endpoints. If V is a finite-dimensional subspace of Y which

1we abbreviate (TS)(λ) := T (λ)S(λ) for all λ ∈ [a, b]
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satisfies T (λ)X + V = Y for all λ ∈ [a, b], then

E(T, V ) := {(λ, x) ∈ [a, b]×X | T (λ)x ∈ V }

has the following properties:

(a) E(T, V ) is a subbundle of [a, b] × X with fibers E(T, V )λ = T (λ)−1V . In
particular, dimT (λ)−1V = dimV for all λ ∈ [a, b].

(b) For every bundle trivialization T̂ : [a, b]× V → E(T, V ) one has

T ◦ T̂a, T ◦ T̂b ∈ GL(V, V )and σ(T, [a, b]) = σ(T ◦ T̂ , [a, b]),

where T ◦ T̂ : [a, b] → L(V, V ) is given by (T ◦ T̂ )λ(v) := T (λ)T̂ (λ, v).

Since the interval [a, b] is contractible, every such vector bundle E(T, V ) over

[a, b] possesses a bundle trivialization T̂ : [a, b] × V → E(T, V ) (cf. [19, p. 30,
Corollary 4.8]).

Remark A.3. To achieve a detailed description of the path T ◦T̂ : [a, b] → L(V, V ),
let v1, . . . , vd be a basis of the subspace V from Lemma A.2. Since E(T, V ) is a
vector bundle over [a, b] with fibers isomorphic to V, it follows that there exist
continuous sections ϕ1, . . . , ϕd : [a, b] → E(T, V ) such that ϕ1(λ), . . . , ϕd(λ) forms
a basis of E(T, V )λ for all λ ∈ [a, b]. We define an isomorphism

T̂ : [a, b]× V → E(T, V ), T̂λ(v) = T̂λ

(
d∑
i=1

αivi

)
:=

d∑
i=1

αiϕi(λ)

and consider functionals v∗1 , . . . , v
∗
d : V → R uniquely determined by the conditions

v∗j (vi) = δij , 1 ≤ i, j ≤ d. Then (T ◦ T̂ )λ : V → V can be represented as matrix

M(λ) = (mij(λ))
d
i,j=1, mij(λ) := 〈v∗j , T (λ)(ϕi(λ))〉 for all 1 ≤ i, j ≤ d

and Lemma A.1(e) and A.2 imply σ(T, [a, b]) = sgn detM(a) · sgn detM(b).

Our following bifurcation result requires a local version of the parity near isolated
singular points λ0 ∈ (a, b). This means T (λ0) 6∈ GL(X,Y ), but there exists a
neighborhood Λ0 ⊆ (a, b) of λ0 so that T (λ) ∈ GL(X,Y ) for all λ ∈ Λ0 \ {λ0},
which allows us to introduce the parity index

σ(T, λ0) := lim
ε↘0

σ(T, [λ0 − ε, λ0 + ε]).
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Appendix B. Parity and local bifurcations

Let us assume that U ⊆ X × R is nonempty and open. We investigate abstract
parametrized equations

G(x, λ) = 0 (Oλ)

for continuous functions G : U → Y having the following properties:

(M1) the partial derivative D1G : U → L(X,Y ) exists as continuous function,
(M2) there exists an open interval Λ ⊆ R with {0}×Λ ⊆ U such that G(0, λ) =
0 and D1G(0, λ) ∈ F0(X,Y ) for all λ ∈ Λ.

We denote a λ0 ∈ Λ as bifurcation value, provided (0, λ0) is a bifurcation point for
(Oλ) (e.g. [46, p. 309, Def. 1]).

Theorem A.1 (local bifurcations). Let (M1–M2) hold. If λ0 ∈ Λ is an isolated
singular point of D1G(0, ·) with parity index σ(D1G(0, ·), λ0) = −1, then λ0 is a
bifurcation value for (Oλ). More precisely, there exists a δ0 > 0 such that for each
δ ∈ (0, δ0) a connected component

C ⊆ G−1(0) \ {(0, λ) ∈ X × Λ : D1G(0, λ) ∈ GL(X,Y )}

joins the set {(0, λ) ∈ X × (λ−, λ+) : D1G(0, λ) 6∈ GL(X,Y )} of critical trivial
solutions to the surface

{
(x, λ) ∈ X × Λ : ‖x‖X = δ

}
.

Proof. Since U ⊆ X × Λ is open, there exist open neighborhoods U0 ⊆ X of 0
and Λ0 ⊆ Λ of λ0, so that U0 × Λ0 ⊆ U . Because λ0 is assumed to be an isolated
singular point of D1G(0, ·), there exist λ− < λ+ in Λ0 yielding invertible endpoints
D1G(0, λ−), D1G(0, λ+) ∈ GL(Y,X) and parity

σ(D1G(0, ·), [λ−, λ+]) = −1.

Now for C 1-mappings G : U → Y this allows an immediate application of [28,
Theorem 4.1] under the assumption that the generalized algebraic multiplicity of
the path D1G(·, 0) is odd. But because of [28, Theorem 3.2] this is equivalent
to our assumption of having a parity index −1 in λ0. Moreover, the continuous
differentiability of G can be weakened to our assumption (M2) using methods
due to Pejsachowicz [32, Lemma 2.3.1] or [34, Lemma 6.3] together with [43,
Theorem 8.73]. �
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