$H\alpha$ Equivalent Widths from the 3D-HST survey: evolution with redshift and dependence on stellar mass[†]

Mattia Fumagalli¹, Shannon G. Patel¹, Marijn Franx¹, Gabriel Brammer², Pieter van Dokkum³, Elisabete da Cunha⁵, Mariska Kriek⁴, Britt Lundgren³, Ivelina Momcheva ³, Hans-Walter Rix⁵, Kasper B. Schmidt⁵, Rosalind E. Skelton³, Katherine E. Whitaker³, Ivo Labbe¹, and Erica Nelson³

¹ Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, Netherlands

² European Southern Observatory, Alonso de Crdova 3107, Casilla 19001, Santiago, Chile
³ Department of Astronomy, Yale University, New Haven, CT 06511, USA

⁴ Department of Astronomy, University of California, Berkeley, CA 94720, USA

⁵ Max Planck Institute for Astronomy (MPIA), Knigstuhl 17, 69117 Heidelberg, Germany

Abstract. We investigate the evolution of the H α equivalent width, EW(H α), with redshift and its dependence on stellar mass, using the first data from the 3D-HST survey, a large spectroscopic Treasury program with the HST-WFC3. Combining our H α measurements of 854 galaxies at 0.8 < z < 1.5 with those of ground based surveys at lower and higher redshift, we can consistently determine the evolution of the EW(H α) distribution from z=0 to z=2.2. We find that at all masses the characteristic $EW(H\alpha)$ is decreasing towards the present epoch, and that at each redshift the EW(H α) is lower for high-mass galaxies. We find EW(H α) ~ $(1 + z)^{1.8}$ with little mass dependence. Qualitatively, this measurement is a model-independent confirmation of the evolution of star forming galaxies with redshift. A quantitative conversion of $EW(H\alpha)$ to sSFR (specific star-formation rate) is model dependent, because of differential reddening corrections between the continuum and the Balmer lines. The observed $EW(H\alpha)$ can be reproduced with the characteristic evolutionary history for galaxies, whose star formation rises with cosmic time to $z \sim 2.5$ and then decreases to z = 0. This implies that EW(H α) rises to 400 Å at z = 8. The sSFR evolves faster than $EW(H\alpha)$, as the mass-to-light ratio also evolves with redshift. We find that the sSFR evolves as $(1+z)^{3/2}$, nearly independent of mass, consistent with previous reddening insensitive estimates. We confirm previous results that the observed slope of the sSFR-z relation is steeper than the one predicted by models, but models and observations agree in finding little mass dependence.

Keywords. galaxies: evolution galaxies: formation galaxies: high-redshift

[†] Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 12177, 12328