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Abstract

Spherical coordinate systems, which are ubiquitous in astronomy, cannot be shown without distortion on flat, two-
dimensional surfaces. This poses challenges for the two complementary phases of visual exploration—making discoveries
in data by looking for relationships, patterns, or anomalies—and publication—where the results of an exploration are
made available for scientific scrutiny or communication. This is a long-standing problem, and many practical solutions
have been developed. Our allskyVR approach provides a workflow for experimentation with commodity virtual reality
head-mounted displays. Using the free, open source S2PLOT programming library, and the A-FRAME WEBVR browser-
based framework, we provide a straightforward way to visualise all-sky catalogues on a user-centred, virtual celestial
sphere. The allskyVR distribution contains both a quickstart option, complete with a gaze-based menu system, and
a fully customisable mode for those who need more control of the immersive experience. The software is available for
download from https://github.com/cfluke/allskyVR.
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1 INTRODUCTION

To many ancient astronomers and skywatchers, the night sky
was an enormous, material sphere surrounding the Earth.
Emerging from the natural philosophy of the pre-Socratics (c.
6th century BCE) was a description of stars attached to, and
hence moving daily with this physical celestial orb. Observ-
ing and explaining the motion of planets with respect to the
fixed stars or identifying transient ‘guest stars’—fundamental
steps on the road to modern astronomy—relied on methods
to document and report celestial positions on a sphere.

Today, a spherical coordinate pair, such as Right Ascension
(α) and Declination (δ), is still the most convenient way to
catalogue the locations of celestial objects1. An additional ce-
lestial coordinate (distance, redshift, or velocity), is encoded
by mapping to a set of concentric spheres with differing radii.

Unfortunately, spherical coordinates provide a direct chal-
lenge when producing static plots, maps, or charts to appear in
flat, two-dimensional (2D) images—the predominant method
for analysing, intepreting, documenting, and communicating
scientific outcomes. Without a spherical surface to print on
and distribute, any 2D projection of the sky requires a com-

1 We use α and δ to refer to any spherical coordinate pair.

promise in accuracy between the scale, area, and azimuth of
plotted positions—all three properties cannot be presented
simultaneously (Farmer 1938). Instead, a decision must al-
ways be made (consciously or not) as to which subset of these
properties are the most important, and which will be shown
in a distorted fashion.

This poses problems for the two complementary phases of
visual exploration—making discoveries in data by looking
for relationships, patterns, or anomalies—and publication—
where the results of an exploration are made available for
scientific scrutiny, education, or public communication.

1.1. Visualising all-sky data

The conventional approach to the problem of displaying, pre-
senting, or publishing data in spherical coordinates is to per-
form a mapping to a flat, 2D representation. Usually devel-
oped for building better 2D maps of the (almost) spherical
Earth, a variety of projection techniques have made their way
into astronomy.

Computer-based plotting has vastly simplified the process
of creating coordinate grids, or graticules, so that it is a
straightforward task to implement different map projections
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2 Fluke and Barnes

for a particular data set. Calabretta & Greisen (2002) provide
a comprehensive overview of map projections for astronomy,
including forward and inverse transforms from celestial to
Cartesian coordinates.

A number of browser-based tools for navigating all-sky
data sets exist. These include solutions that are

• mainly intended for education and outreach, such as
Google Sky2 (Connolly & Ornduff 2008) and WikiSky3;

• hybrid solutions merging a strong educational focus with
direct links to the underlying data and publications, such
as the WorldWide Telescope4 (Goodman 2012; Fay &
Roberts 2016); and

• Dedicated astronomical services, in particular, Aladin
Desktop5 and Aladin Lite6 (Boch & Fernique 2014).

Using imagery from a variety of multi-wavelength surveys
and observations, and offering control over features such as
grid lines, constellation maps, and queries for an object of in-
terest (e.g. by name, position, catalogue number, etc.) these
solutions provide a powerful means to explore relationships
between objects on the sky. However, they suffer from map
projection effects on large scales, and are designed for view-
ing on flat, 2D displays.

The Java-based TOPCAT (Taylor 2005) package provides a
comprehensive set of visualisation and analysis tools for cat-
alogue data, including an interactive outside-looking-in all
sky representation via the Spherical Polar Plot window. TOP-
CAT supports a range of common astronomical data formats,
and integration with Virtual Observatory services.

Kent (2017) provides a detailed discussion of the use of
BLENDER7 and the Google Spatial Media module8 to pro-
duce navigable spherical panoramas from astrophysical data,
including FITS-format images, planetary terrain data and 3D
catalogues. The resulting videos can be viewed interactively
via YouTube9 using a compatible browser. A similar ap-
proach, using panoramic images generated from the SPLASH

(Price 2007) smoothed particle hydrodynamics code, was
presented by Russell (2017).

1.2. Domes and head-mounted displays

The astronomy education world has had a solution to the
problem of spherical coordinate systems for some time:
the planetarium dome. Capable of dynamically represent-
ing 2π steradians of the sky, catalogues of objects can
be shown at their correct location and correct angular
separation without areal distortion in the coordinate sys-

2 https://www.google.com.au/sky/
3 http://www.wikisky.org
4 http://www.worldwidetelescope.org
5 http://aladin.u-strasbg.fr
6 http://aladin.u-strasbg.fr/AladinLite/
7 https://www.blender.org
8 https://github.com/google/spatial-media
9 E.g. https://www.youtube.com/user/VisualizeAstronomy

tem. For aesthetic purposes, individual objects can be dis-
played with an exaggerated local scale, appearing much
larger on the planetarium sky than we would ever see them
unaided.

Despite continuous improvements in digital full-dome pro-
jection techniques, few professional astronomers spend their
day making discoveries by projecting their data onto a dome
(see, for example, Teuben et al. 2001; Abbott et al. 2004;
Fluke et al. 2006, for early work). The majority perform their
day-to-day data exploration on desktop, notebook or tablet
screens, accessing a much smaller solid angle.

The emergence of the consumer, virtual reality (VR) head-
mounted display (HMD) presents a low-cost alternative to
these large-scale spaces. HMDs are ideal for providing an
immersive, 4π steradian, all-sky representation, where the
viewer can look anywhere: forwards, backwards, up, down,
and side-to-side. In essence, they provide a virtual, portable,
planetarium dome.

Two broad classes of commodity HMDs exist as follows:

1. Compute-based: In the first generation, the head-set is
connected to a computer via a cable, offering higher res-
olution, and real-time graphics. This is often augmented
with both basic orientation tracking via accelerometers
and absolute position tracking within a limited region.
Commercial options include the Oculus Rift10, HTC
Vive11, and Sony’s PlayStation VR12. Increasingly, the
computer, display system, and an outward facing camera
are combined into a single wearable, offering an experi-
ence where the digital world and the real world merge.
Often referred to as mixed reality (in contrast to the com-
pletely digital environment of VR), commercial and de-
veloper products are marketed by Microsoft (Hololens13)
and Google (the standalone Daydream14).

2. Mobile-based: A smartphone is docked within a sim-
ple headset. For experiences more complex than view-
ing a static image or short animation, it may be necessary
to stream content to the phone via WiFi. This places a
limit on the frame-rates and level of interactivity that can
be achieved. Options here include Google Cardboard15

viewers and Samsung Gear VR16.

1.3. Our solution

In this paper, we present a workflow for experimentation with
commodity VR HMDs, targeted at all-sky catalogue data in
spherical coordinates. Our solution uses the free, open source
S2PLOT programming library17 (Barnes et al. 2006, and see

10 https://www.oculus.com
11 https://www.vive.com
12 http://www.playstation.com/playstation-vr
13 https://www.microsoft.com/hololens
14 https://vr.google.com/daydream/
15 https://vr.google.com/cardboard/
16 http://www.samsung.com/global/galaxy/gear-vr/
17 http://astronomy.swin.edu.au/s2plot
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Appendix A) and the A-FRAME WEBVR framework initi-
ated by MozillaVR18 (Section 2).

S2PLOT offers a simple, but powerful, application pro-
gramming interface (API) for 3D visualisation that hides
access to OPENGL19 function calls. The choice of display
mode is a runtime decision depending on where the code is
deployed. S2PLOT is written in C, and full functionality can
be accessed most readily from C/C++ programs.

A-FRAME visualisations are generated with HTML state-
ments, enriched by JavaScript functions, and can be viewed
with a variety of commodity HMDs, including products from
Oculus, HTC, Samsung, and Google.

The allskyVR system we present in this paper is a free,
open source software solution for creating immersive, all-sky
VR experiences. The distribution contains all of the relevant
source code, scripts, and A-FRAME assets. The software is
available for download from

https://github.com/cfluke/allskyVR

with online documentation at

https://allskyvr.readthedocs.io

The VR environment supports orientation-based naviga-
tion of the space, and a gaze-based menu system linked to
a hierarchy of graphical entities. The resulting assets can be
transferred to a web server for online accessibility, most read-
ily via a smartphone and Google Cardboard viewer.

2 GENERATING ALL-SKY VIRTUAL REALITY
ENVIRONMENTS

In this section, we demonstrate how the allskyVR dis-
tribution generates a VR experience for viewing with a
HMD. With a wide variety of commodity HMDs available,
we choose to focus on a straightforward approach to early
adoption.

We use a viewing paradigm that maps the positions of ob-
jects around the viewer onto a virtual celestial sphere, with
the added constraint that the viewer’s location is fixed to the
sphere’s origin. This environment can be explored by look-
ing in different directions, and is suitable for all HMDs that
support head-orientation navigation20. More complex, fully
navigable (e.g. with a hand-held controller or through abso-
lute position tracking) experiences are left to others to inves-
tigate. However, we note that allowing the viewer to move
away from the coordinate origin introduces new distortions—
the very problem we are trying to avoid.

In this work, an all-sky data set comprises: a spherical
coordinate pair, (α, δ), in decimal degrees; a radial coordi-
nate (r = 1 for objects on the celestial sphere) in arbitrary

18 https://mozvr.com
19 https://www.opengl.org
20 For mobile-based HMDs, head-orientation navigation requires a smart-

phone equipped with an accelerometer.

units; an optional category index, which can be used to group
objects with similar properties; and an optional per object
scaling factor. Colours are assigned to objects based on their
category.

A ready to view astronomical example using our approach
is included with the allskyVR distribution. Figure 1 con-
tains two screenshot from this example, incorporating all of
the features that will be described in this section. The data set
is from the Kepler space mission, showing the locations of
confirmed exoplanetary systems. This data set is described
in more detail in Appendix B.

2.1. allskyVR

AllskyVR supports two modes of operation: Quickstart and
Customisable.

Quickstart mode uses a subset of the allskyVR distribu-
tion along with a set of assets we have generated in advance,
thus reducing the barrier to experimentation and adoption.
Some level of customisation is still available, but only re-
quiring direct modification of HTML files or user-generated
images for the menu system.

A format conversion from input data to A-FRAME enti-
ties is performed, and a hierarchical framework and gaze-
based menu system for selecting individual data categories
is built. The output is a collection of HTML assets, images,
and Javascript, along with a pregenerated coordinate grid.
This mode can be used without installing S2PLOT, and is
best suited to catalogues with no more than a few thousand
items.

Customisable mode requires installation of the S2PLOT

programming library, third-party dependencies (see Ap-
pendix A), and the allskyVR distribution. Now, more com-
plete control is possible over the appearance of graphical fea-
tures such as category labels or choice of colour maps.

Immediately following import of a data file into a custom
S2PLOT application, a key press combination, <shift>-v,
initiates the workflow that creates the immersive experience.
The output comprises a complete set of assets: HTML source,
Javascript, and images.

The customisable mode provide functions to generate coor-
dinate grids of constant right ascension and declination lines,
with configurable labels and other annotations. Publication
quality axis labels and annotations are generated using either
the FreeType font library21 or via LATEXstyle mathematical
statements.

For both modes, the resultant assets then need to be moved
to a web server that can be accessed from a WebGL compat-
ible browser on a mobile- or compute-based HMD.

We now describe the technical solutions underpinning our
approach.

21 https://www.freetype.org
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4 Fluke and Barnes

Figure 1. Screenshots from an immersive, all-sky visualisation of confirmed exoplanetary systems using our S2PLOT to A-FRAME export pathway. The
data set from the Kepler space mission is described in more detail in Appendix B. Features in the virtual reality environment include mapping of individual
objects to A-FRAME entities (Section 2.3), a low-polygon count Sky Cube providing a reference grid (Section 2.4), and a gaze-based menu system (Section
2.5). These two screenshots were captured from a Samsung Galaxy S7 Edge mobile device showing the left and right image views that form the immersive
environment when viewed from a compatible head-mounted display. The expanded menu system is visible in the lower panel. The vertical white line in the
centre of each image is used to help with correct placement of the mobile device in a head-mounted display.

2.2. WEBVR and the A-FRAME API

We choose to create immersive VR experiences using the
WEBVR A-FRAME API, developed by Mozilla’s VR team.
Using HTML statements, supported by Javascript functions,
VR environments can be built quickly in a text editor. The
result can then viewed in any HMD that supports browser-

based VR, provided WEBGL22 capabilities have been acti-
vated (usually selected in the browser preferences).

A-FRAME uses an entity-component architecture: one or
more abstract modules can be attached to each element within
a scene. The components can alter the way an entity appears

22 https://www.khronos.org/webgl/
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(size, colour, and material), how it moves, or whether it re-
acts to other entities. The entities and their components are
described using HTML statements with a syntax modelled
on the CSS (Cascading Style Sheets) language23. Standard
A-FRAME entities exist for a number of geometrical prim-
itives, such as spheres (<a-sphere>), cylinders (<a-
cylinder>), and text (<a-text>).

2.3. A-FRAME geometrical primitives

In most graphics libraries, the locations of objects can
be shown using three main geometrical primitives: points,
spheres, or billboards. A billboard comprises a low-resolution
texture assigned to a rectangular polygon, often provid-
ing the option with the best visual quality. Billboards are
continuously reoriented so that they always point towards
the camera, which requires computation on every refresh
cycle. The size and colour of all three primitives may
be adjustable, along with the polygon resolution of the
sphere.

Within an A-FRAME scene, points are represented as a
single pixel, making them hard to see, and hence this option
is not suitable. Additionally, there is no textured billboard in
the A-FRAME core—although some third-party components
have been developed. Since there is more control over the ap-
pearance of spheres, particularly the polygon resolution and
radius, it is preferable to use this as the primary primitive to
display individual objects for the quickstart mode of all-
skyVR. As we discuss in Section 2.4.2, it is possible to use
other primitives in the customisable version, but at the cost
of some level of interactivity.

For finer control of each entity’s appearance, we elect to use
the more generic blank <a-entity> form, and attach a ge-
ometry component, which assigns the sphere primitive type.
The polygon count for each of the sphere primitives is con-
trolled by the segmentsWidth and segmentsHeight
parameters, allowing the user to select the trade-off between
aesthetics (higher polygon count preferred) and performance
(lower polygon count preferred).

Functionality in the allskyVR distribution performs the
conversion of each object’s position, colour, and scale factor
to an A-FRAME entity declaration.

An example of the statements required to build a sim-
ple A-FRAME scene are shown in Figure 2. Here, four red
spheres are placed in front of the viewer in an environment
surrounded by a dark blue spherical sky. The statements
defining the primitives are enclosed within an <a-scene>

hierarchy.
For use within an A-FRAME scene, (α, δ, r) coordinates are

converted to an (x, y, z) Cartesian triple; the category index is
used to place each object into a user-selectable hierarchy; and
the scaling factor controls the relative size of the geometrical
primitive used to show the object’s location.

23 https://www.w3.org/standards/webdesign/htmlcss

2.4. Adding a celestial coordinate system

Mapping coordinates and colours to a collection of low-
polygon count spheres is a first step towards an immersive all-
sky experience. However, without a visible coordinate grid
for reference, it is more difficult to orient oneself within the
VR environment.

Generating smooth line segments for constant lines of right
ascension and declination can result in an unacceptably high
polygon count. Moreover, as there is no line width option,
it is necessary to use cylinders if the line thickness needs to
be controlled. These effects can have a significant impact on
the level of interactivity and responsiveness of the display to
head movements. Instead of using line segments or cylinders,
we use a pregenerated image of the coordinate system, which
is wrapped around the viewer.

2.4.1. Image-based coordinate grids

The A-FRAME <a-sky> entity maps an image with a 2:1
aspect ratio in equirectangular coordinates onto a sphere.
While there is minimal distortion along the celestial equator,
the pixel density changes rapidly across the image. Visually,
this approach is unsatisfactory, particularly when looking
towards the poles [e.g. as occurs with the YouTube spher-
ical panorama movies—see examples by Kent (2017) and
Russell (2017)]. Moreover, the <a-sky> entity is a tessel-
lated sphere, which can increases the polygon count in the
scene by a few thousand faces in order to achieve a suffi-
ciently smooth surface.

To create a more complex, immersive all-sky experience
for HMDs, without substantially increasing the polygon
count, we use a technique introduced to computer graphics
in the mid-1980s: perspective projection onto the interior six
faces of a cube. We refer to this geometrical element as a Sky
Cube.

The original approach, as described by Greene (1986), was
proposed as a computationally efficient method for environ-
ment mapping. It allowed reflection effects and illumination
effects from the environment surrounding a model to be in-
cluded without the overheads of ray-tracing.

The primary limitation of the Sky Cube approach is that the
viewer cannot navigate away from the origin: The projection
is only correct when viewed from the same location at which
it was generated. However, this is the specific scenario we
are trying to address. As soon as any physical navigation
other than head-orientation is used, or objects are presented
at different radial values, the resulting mapping again distorts
area, angle, or separation.

In principle, the Sky Cube should be placed infinitely far
from the viewer. In practice, a suitably large value for the
cube dimensions is chosen, so as to be compatible with the
limits of the graphics depth buffer.

2.4.2. Building a Sky Cube with S2PLOT

We generate a Sky Cube by placing S2PLOT’s virtual camera
at the origin of the celestial sphere. Using S2PLOT’s dynamic
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6 Fluke and Barnes

Figure 2. A simple A-FRAME scene. Four red spheres placed in front of the viewer. The environment is surrounded by a dark blue
spherical sky. The polygon count for each of the sphere primitives is controlled by the segmentsWidth and segmentsHeight
parameters.

callback system, the view-direction and camera up vector are
modified on successive refresh cycles to produce six projec-
tions each with a 90° field of view. The camera vectors are
set using the ss2sc(...) function, and the camera angle
is set using the ss2sca(...) function. A one frame delay
is required in the refresh cycle, as the TGA export function
ss2wtga(...) saves the previously generated frame.

To improve visual quality, texture-based axis labels and
other annotations are generated using either LATEXstyle
statements, ss2ltt(...), or with FreeType fonts, using
thess2ftt(...) function. The S2PLOT environment vari-
ables listed in Appendix A must be set in order for these two
texture types to be used.

FreeType textures are preferred for text-only labels, as they
provide a great deal of flexibility in the choice of font. LATEX
fonts allow the standard set of mathematical symbols and
type-setting commands for superscript and subscript fonts,
etc. to be used.

Due to the wide field-of-view of each face of the Sky Cube,
we need to orient any textures towards the origin. This is
achieved by the following:

1. Querying the camera’s up vector, u, and unit view direc-
tion vector, v, with ss2qc(...).

2. Calculating a local right vector for a texture centred at
xi via the cross product: r = u × xi.

3. Calculating a new local up vector: n = u × xi.

The vectors r and n are converted to unit vectors and then
used to determine the four vertices of a polygon onto which
the relevant texture is mapped. Some user adjustment of the

label content, font, and size may be required to ensure the best
possible appearance of FreeType or LATEXbased textures.

An advantage of using a Sky Cube is that additional geo-
metrical primitives may be rendered into the six cube views.
Along with axis labels, this might include additional annota-
tions, background imagery (not supported in the initial release
of allskyVR), or representations of object positions when
there are too many items in a catalogue to display in real time.

A case where this might be relevant is when images of spe-
cific objects are to be ‘baked’ into the Sky Cube views. Here,
for example, a package like Montage (Berriman & Good
2017) could be used to obtain a set of cut-out images which
are then used as individual billboard texture maps within a
customised S2PLOT application. However, as billboards are
continuously oriented towards the camera, some care in inter-
pretation is required, as the images may not always preserve
their correct spatial relationships on the sky once baked into
the Sky Cube.

As this level of user-specific customisation will vary case-
by-case, a sample workflow is included in Appendix B. A
vanilla Sky Cube is included for the quickstart mode; al-
ternative options can be downloaded from the allskyVR
website.

2.5. Interaction

It is usually impractical to type commands on a keyboard
while immersed in a virtual environment. Not all commer-
cial HMDs, however, are equipped with a controller for
navigation.

Smartphone-style VR systems, such as Google Card-
board, provide limited selection-based interaction through a
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Figure 3. The A-FRAME Inspector. This view is accessed by pressing <Cntrl>-<Option>-I when viewing outside of full-screen mode in a browser.
The textures forming the Sky Cube are visible: one of which (posy) has been selected. The posz texture has been hidden by selecting the eye symbol from
the hierarchy of entities on the left-hand side. This reveals the individual sphere entities inside the Sky Cube. Attributes can be modified for each entity using
the options on the right-hand side. The data set from the Kepler space mission is described in more detail in Appendix B.

button integrated into the HMD housing. The initial release
of the Samsung Gear VR system provided a touch-pad on
the side of the HMD, along with two buttons linked to menu
actions.

While A-FRAME provides a tracking interface to HTC
Vive and Oculus controllers through the vive-controls
and oculus-touch-controls entities, we do not ex-
plore them further at this stage. Instead, for convenience, we
provide an easily customisable gazed-based menu system,
which allows the user to make a hands-free selection of dif-
ferent parts of a scene. Our solution remixes some elements
of the A-FRAME 360° image gallery example24.

Physical attributes (e.g. mass, magnitude, and morphol-
ogy) may be supported by categorical labels, which lend
themselves to a hierarchy that can be implemented by nesting
A-FRAME entities. The menu system allows the visibility of
named entities (and their children in the hierarchy) to be tog-
gled. The cursor (a green circle, whose default appearance can
be modified in the HTML source) is drawn at the centre of the
field of view. This is achieved by using the Javascript addE-
ventListener(...), which then changes the visibility
of the element through a call to setAttribute(...).

As the viewer’s head position changes, the cursor can
be brought into alignment with a textured element for the
menu. Maintaining focus on this element causes a submenu
to appear: Selection from this new menu toggles visibility

24 https://aframe.io/examples/showcase/360-image-gallery/

of the categories and the Sky Cube. The default locations of
the menu entities can be modified, as the textures may ob-
scure important parts of the data set. An optional format file
can be specified at runtime, containing the category-based
colours and the short text-only labels that will appear in the
menu.

Code in the allskyVR distribution manages the cre-
ation of the A-FRAME hierarchy, textures for the menu
system, and integrates the various assets into an output
directory containing the HTML source file, images, and
Javascript.

Additional customisation and interaction with the A-
FRAME entities can be performed using the A-FRAME In-
spector. The Inspector is accessed by pressing <Cntrl>-
<Option>-I, but only when viewing outside of full-screen
mode in a browser (Figure 3).

3 CONCLUDING REMARKS

Standard astronomy software has not yet caught up with the
availability of HMDs. This makes it difficult for experimen-
tation, or wider scale early adoption, to occur. Without an
easy way to look at your all-sky data with an HMD, how
can you objectively assess the level of insight or potential for
discovery that could arise?

For highly customisable astronomy visualisation solutions,
it is probably necessary to learn how to use vendor spe-
cific Software Development Kits (SDKs; e.g. Schaaff et al.
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8 Fluke and Barnes

Figure 4. An early experiment with the Oculus Rift DK1 and a Leap Mo-
tion controller through a custom S2PLOT application. Note the image pair
rendered on the laptop (lower left), but without any attempt to correct the
lens-based distortions.

2015), or create new solutions based on game engines such
as UNITY25 (Ferrand et al. 2016) or UNREAL ENGINE26.

UNITY and UNREAL ENGINE offer a powerful collec-
tion of primitives, management of dynamic timeline-based
events, and support for HMDs and their corresponding
interaction/motion detection solutions. However, they require
some familiarity with concepts and approaches from com-
puter generated imagery (CGI) modelling and animation.

The use of a hardware-specific SDK comes with a steep
learning curve, and can lock a developer to a single vendor.
While this might be appropriate for commercial products (VR
games and other entertainment experiences), it is less suitable
for a generic solution that can be adopted by researchers.
Minor changes in any SDK can have a significant impact on
development.

As an example, we performed some simple experimenta-
tion with an Oculus Rift DK1 headset in 2015. Using S2PLOT,
and an incomplete integration with the Oculus API, it was
possible to generate a usable virtual experience. In Figure 4,
the image pair displayed in the HMD can be seen on the
laptop screen in the lower left of this image, and the faint
(yellow) circle shows the finger position detected by a Leap
Motion27 controller. No attempt was made to correct the sig-
nificant chromatic distortions introduced by the DK1 lenses.
Unfortunately, support for macOS and Linux operating sys-
tems was paused by Oculus soon afterwards due to concerns
about the minimum level of graphics performance required to
power the Rift28. Consequently, we abandoned this approach.

25 https://unity3d.com
26 https://www.unrealengine.com
27 https://www.leapmotion.com
28 See, for example, https://www3.oculus.com/en-us/blog/

powering-the-rift/

The allskyVR approach provides a pathway to early
adoption of immersive VR for visual exploration and pub-
lication. It performs a limited number of tasks related to con-
version from a simple input data format to a VR experience,
where the only mode of navigation is based on view-direction.
When an A-FRAME environment is viewed with a compatible
HMD, it is possible to explore spatial relationships between
objects from a user-centred spherical coordinate system.

We recognise that every astronomer using data in spherical
coordinate systems will have different requirements. In our
solution, we provide two pathway to adoption of HMDs: a
quickstart solution, where conversion of data values to the
relevant HTML statements can be achieved with any number
of approaches, and a fully customisable solution for those
who can see the benefit of the S2PLOT programming library
to provide more control over the visual outcome. As we have
favoured functionality over efficiency in allskyVR, we
welcome suggestions to improve the run-time performance
if this becomes an issue for some users. Our own testing sug-
gests that interactivity is maintained for datasets comprising a
few 1 000 objects rendered as spheres, however, this is device
and screen-resolution dependent.

In order to provide astronomers with opportunities to ex-
plore their all-sky data with a HMD, a simplified, vendor-
agnostic process is required. A-FRAME shows one simple
way to present all-sky catalogues within a virtual environ-
ment, which can be viewed with variety of HMDs. We look
forward to seeing how the astronomy-focused VR evolves,
and where it finds its niche within the complementary phases
of visual exploration and publication.
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A THE S2PLOT LIBRARY AND DEPENDENCIES

S2PLOT (Barnes et al. 2006) is an advanced, 3D graphics library
built as a layer on top of OpenGL. This open source library is used
most effectively within C/C++ programs. Its key features include a
rich API and simple support for a variety of standard and advanced
displays including: side-by-side, frame sequential, and interlaced
stereoscopic modes; and full/truncated fish-eye projections suitable
for digital domes.

S2PLOT provides a variety of geometrical primitives ranging from
points, lines, and spheres to isosurfaces and volume renderings,
most of which can be created or displayed with a single function
call. Labels or text annotations can be created using LATEX and
FreeType fonts. Geometrical primitives can either be created as static
objects (these are created once, and are always displayed) or as
dynamic objects (these are regenerated at each screen refresh).

Interactive inspection of 3D data sets is achieved with mouse
and keyboard controls, with default behaviour for many key presses
(auto-spin the camera, zoom in/out) and user customisation via a
callback system.

To access the full functionality presented in this paper requires
a working installation of the S2PLOT distribution (version 3.4 or
higher), available from

https://github.com/mivp/s2plot

along with the following additional items:

• The ImageMagick®tools29: the CONVERT utility is used
throughout to make conversions between image formats sup-
ported by S2PLOT (TGA) and LATEX (PNG).

• The allskyVR bundle: comprising the C-language source
code, header files, build scripts, and a directory containing
pregenerated A-FRAME assets.

29 http://www.imagemagick.org

The S2PLOT environment variables S2PLOT_IMPATH,
S2PLOT_LATEXBIN, S2PLOT_DVIPNGBIN must all be set as
described in the ENVIRONMENT.TXT file included in the S2PLOT

distribution. If FreeType textures are to be used for axis labels
and other annotations (see Section 2.4.2), the FreeType libraries
needs to be installed and the S2FREETYPE environment variable
set to yes. It may be necessary to modify the _DEFAULTFONT
variables defined in allskyVR.h to better reflect a given system
configuration or to manage a specific use case.

For VR export to work correctly, S2PLOT_WIDTH and
S2PLOT_HEIGHTmust be set to the same value. It is recommended
that the largest possible square window is used for the best graphics
quality.

B STAR SYSTEMS WITH CONFIRMED
EXOPLANETS

In this Appendix, we provide a step-by-step guide to creating an
immersive VR environment using allskyVR. As an example, we
populate the celestial sphere with the locations of confirmed exo-
planet systems.

The first step is to gather data, and convert it to an appropriate for-
mat. We access the NASA Expolanet Archive30, and view the table
of confirmed planets. Selecting the α, δ, and number of planets (Np)
columns, the data set is downloaded and saved in comma-separated
variable (CSV) format. Some editing is required to remove dupli-
cate items and the columns of sexagesimal-formatted coordinates.
A new data column is created to hold the rz coordinates, with all
values set to 1.

The Kepler spacecraft’s primary mission footprint, which con-
tributes a substantial number of exoplanets to the data set, requires
some additional attention. A further column is created to contain the
relative scaling sizes, Sg, for the geometrical primitives. Exoplanet
systems with celestial coordinates in the range 18h � α � 22h and
+30°� δ � +60° have a scale value of 1, while other systems have
a scale value of 5. This will mean that isolated systems are more
easily seen, while limiting the over-crowding in the Kepler field. For
other data sets, additional fine-tuning may be required to produce
the most effective visualisation.

This modified data set is saved as a CSV-format file
(exoplanet.csv), with the column order: α (decimal degrees),
δ (decimal degrees), rz, Np, Sg.

User control of colours and tags is provided through a text file,
format.txt, requiring one line in the file per category. The format
is

CAT=R,G,B,Label

where the red, green, and blue colour components, [R,G,B], are
integer values in the range [0.255], and Label is a short text-only
label to appear in the A-FRAME menu. It is necessary to avoid
spaces and some symbols in the label, such as $ and _, which have
particular meanings in LATEX formatting.

Note that the category labels are only used in the fully customis-
able mode (Section 2.4.2), where the relevant textures are gener-
ated on demand. For the quickstart mode, default textures are pro-
vided from an asset directory. These can be replaced by the user as
required.

30 https://exoplanetarchive.ipac.caltech.edu
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After setting the S2PLOT_WIDTH and S2PLOT_HEIGHT envi-
ronment variables to 800 (pixels), we launch the S2PLOT application
with the following command-line arguments:

templateSpherical -i exoplanet.csv

-f format.txt -o exosys

On pressing <shift>-v, the VR experience is generated, with
all assets moved to the directory VR-exosys. The exoplanetary
system data set is now ready to be deployed on a relevant web-server
for viewing with a compatible HMD. The two panels in Figure 1
show screenshots captured from a Samsung Galaxy S7 Edge mobile
device. The expanded menu, including the category labels, is visible
in the lower panel.

B1 Modifying the Sky Cube textures
Suppose the input catalogue comprised a few thousand additional
planetary candidates, thus reducing the responsiveness of the im-
mersive experience, and it was sufficient to only interact with a
subset of categories. The following workflow would allow a user-
controlled portion of objects to have their positions ‘baked’ into the
Sky Cube texture.

1. Create two input data files, one which contains only the data
items that will be ‘baked’ into the Sky Cube (exoplanet-
bake.csv), and one containing only the data items for interactive
exploration (exoplanet-interact.csv). Visibility of the latter will
be controllable from the HMD using the gaze-based menu sys-

tem, so use of relevant categories to further subset the data is
encouraged.

2. Execute the S2PLOT application using the smaller of the two
data sets, and complete the export step:

templateSpherical -i exoplanet-
interact.csv

-f format.txt -o exosys

This will create the relevant HTML, Javascript, and A-FRAME

for interactive exploration.
3. Make a back-up (in another location) of the six Sky Cube tex-

tures: neg?.png and pos?.png.
4. Execute the S2PLOT application using the larger of the two

data sets, choosing a different export directory name, to avoid
over-writing the first export:

templateSpherical -i exoplanet-bake.csv

-f format.txt -o exosys-bake

This will create the Sky Cube textures with the additional data
set items included.

5. Copy the new set of six Sky Cube textures from the VR-
exosys-bake directory to the VR-exosys directory, re-
placing the original textures.

The result is an immersive environment with a more detailed Sky
Cube, which can still have its visibility toggled through the menu
system.
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