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1. Introduction. Throughout the paper we consider only finite groups.
J. C. Beidleman and H. Smith [3] have proposed the following question: "If G is a

group and H a subnormal subgroup of G containing ^(G), the Frattini subgroup of G,
such that W/4>(G) is supersoluble, is H necessarily supersoluble? "In this paper, we give
not only an affirmative answer to this question but also we see that the above result still
holds if supersoluble is replaced by any saturated formation containing the class of all
nilpotent groups.

On the other hand, Doerk and the authors [2] introduce and study a new embedding
property of a subgroup in a soluble group which is an extension of the classical normality,
namely ft-normality, where ft is a saturated formation of soluble groups. We prove here
that if G is a soluble group and H is an ft-normal subgroup of G containing <t>(G) such
that ///O(G) belongs to ft then H belongs to ft. Moreover, if ft is a subgroup-closed
saturated formation, then the result is also true if ft-normal is replaced by ft-subnormal.

Finally, we give some results related to Beidleman and Smith's question concerning
the relationship between certain Frattini-like subgroups of a group G and the super-
solubility or nilpotency of some subnormal subgroups of G.

2. Preliminaries. The reader is assumed to be familiar with the theory of saturated
formations of finite groups. We shall adhere to the notation used in [5] and we refer the
reader to that book for the basic notation, terminology and results.

For the sake of completeness, we give some definitions and results used in proving
our Theorems.

Recall that if ft is a saturated formation and G is a group, a maximal subgroup M of
a group G is said to be ^-normal in G if the primitive group G/Core0(A/) e ft and
^-abnormal otherwise. A subgroup H of a group G is said to be ^-subnormal in C if
either H = G or there exists a chain

// = //„<//„_, < . . . < t f o = G

such that //,+, is a maximal ft-normal subgroup of //,-, for every i = 0,. . . , n — 1.

DEFINITION 2.1 ([2]). Denote by f the smallest local definition of the saturated
formation ft (cf. [5; IV, 3.9]). A subgroup H of a group G is said to be 'ft-normal in G if
H/CoreG(H) e \(p) for every prime p dividing \G :H\, the index of H in G.

It is clear that if ft = W, the saturated formation of all nilpotent groups, then
sJNnormality coincides with the classical normality. Moreover, a maximal subgroup of a
group is ft-normal in the sense of 2.1 if and only if it is ft-normal in the classical sense and
a subgroup H of a group G is ft-subnormal in G if and only if H can be joined to G by
means of a chain of ft-normal subgroups (cf. [2]).

It is not difficult to prove that if N 3 G and H is ft-normal (respectively ft-subnormal)
in G, then HN/N is ft-normal (respectively ft-subnormal) in GIN.

Let K be a field of characteristic p (p a prime number) and let G be a group.
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Consider K as trivial ATG-module and denote by PK the indecomposable projective
KG-module with K in the head, i.e. PK/PKJ — K, where / is the Jacobson radical of KG
(we consider only finite modules). AK{G) denotes the kernel of a projective cover
PX^*PKJ; AK{G) is uniquely determined up to isomorphism.

THEOREM 2.2 (W. Gaschutz, see [8]). Let K = GF(p), the finite field of p elements,
and A = AK(G). Then there exists a Frattini extension A >-» G* -» G, i.e. with A :£ <&(G*).
Any other Frattini extension of G by a KG-module is an epimorphic image over G of G*.

AK{G) is called the Frattini module of G with respect to K. It is known that
AK(G)¥=0 if p divides the order of G; for a p '-group G, AK(G) = 0. Moreover, AK(G) is
in the first block of the group algebra KG. So, by a well known result of Brauer,
OP.{G)<CG(AK{G)).

Let ft be a saturated formation. For any group G, denote by L^G) the intersection
of all ft-abnormal maximal subgroups of G, with the usual provision that the subgroup
concerned equals G if no such maximals exist (cf. [1, 6]). When ft = 11, the class of all
supersoluble groups, we denote LH(G) simply by L(G).

Let G be a group and n a set of primes. We consider the following families of
maximal subgroups of G:

MX(G) = {M\M is a maximal subgroup of G and \G:M\n = \), where \G:M\n

denotes the ;r-part of the index of M in G.
M^G) = {M eM\{G) I \G:M\ is a composite number}.
Denote by <Pn(G) = n {M \ M eM,{G)) and by 57t(G) = p | {M \ M e ^ G ) } . As

usual, <MG) = G if MX{G) is empty and Sn(G) = G if it,(G) is empty. Clearly, <
and Sn(G) are characteristic subgroups of G such that *(G) U On{G) c ^ ( G ) <
where On{G) is the maximal normal ;r-subgroup of G. These Frattini-like subgroups were
introduced by Bhattacharya and Mukherjee in [4].

The next result is used frequently in induction arguments. Its proof is simple.

PROPOSITION 2.3. Denote by T(G) any one of the Frattini-like subgroups defined
above. For every N^G, we have that T(G)N/N<T(G/N) and if N<T(G), then
T(G)N/N = T(G/N).

3. ^-normal and ^-subnormal subgroups. In the sequel, ^ will denote a saturated
formation. By [5; IV, 3.8], there exists a unique formation function, F say, defining Jy
which is integrated and full. We denote by f the smallest local definition of Jy and by n the
characteristic of Jv, that is, K = {p e P \ (F(p) is non-empty}.

THEOREM 3.1. Let G be a group and H a subnormal subgroup of G containing
On{<&{G)) such that H/OM(<P(G)) belongs to ft. Then H belongs to ft.

Proof. (M. J. Tomkinson). By [5; IV, 4.3], ft is contained in (&„, the class of all
^-groups. Without loss of generality we can assume that <I>(G) is a ;r-group. Thus, H is a
^-group and H/O(G) is an ft-group. Let p be a prime in n. Since H is a subnormal
subgroup of G and Opp(G/<t>(G)) = OPP(G)/®(G), we have that OPP(H/Q>(G)) =
Op.p(H)/<P(G). Now, H/<&(G) is an ft-group. This means that
(H/<P(G))/Op.p(H/<!>(G)) e F(p) and so H/Op.p(H) e F(p). Therefore H is an ft-group.

REMARKS. If ft contains M, the class of all nilpotent groups, then n = P, the set of all
prime numbers. So, what Theorem 3.1 says in this case is the following: "If G is a group
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and H a subnormal subgroup of G such that Hl<$>{G) e ft, then H e ft". In particular,
when ft is the saturated formation of all supersoluble groups, we have an affirmative
answer to the question of Beidleman and Smith.

The above result is not true if ft is not of full characteristic. Let ft = S p be the
saturated formation of all p-groups, p a prime number. Take a prime q ¥=p and let
G = Cp2xCg2 be the cyclic group of order p2q2. If H = Cpi<i>{G), then W<G and

e ft but H i ft.
The following result was communicated to the authors by M. J. Tomkinson.

COROLLARY 3.2. Assume that ft is closed under taking subnormal subgroups. Let G be
a group and H a subnormal subgroup of G containing On(L^.(G)) such that

Proof. By [5; IV, 3.16], F(p) is closed under taking subnormal subgroups for every
pen. Assume that the result is not true and take G a counterexample of minimal order.
A routine argument shows that G has a unique minimal normal subgroup N such that
N < O^L^G)) and H/N e ft. In particular, H is a jr-group. If N < <D(G) then H e ft by
(3.1), a contradiction. Therefore there exists a maximal subgroup M of G such that
G = MN. Now, M is ft-normal in G because N < L?S(G). This means that G/Ca(N)e
F(p) for each prime p dividing \N\. Hence H/CH(N)e F(p) for every prime p dividing
\N\ and so each chief factor of H below N is ft-central in H. Applying [5; IV, 3.5(c)], we
have that Weft, a contradiction.

COROLLARY 3.3. Assume that ft is closed under taking subnormal subgroups. Let G be
a group and H a subnormal subgroup of G such that H/H D OM(L^.(G)) e ft. Then H e ft.

Taking H = Oj,(L^(G)) in the above Corollary, we obtain statement (1) of the
Theorem of Feng and Zhang [6].

The assumption on ft in the above result is necessary. To see that this is so, it is
enough to consider a saturated formation ft of full characteristic which is not closed under
taking subnormal subgroups (see example 3.8 below). In this case, there exists a group
G 6 ft with a subnormal subgroup H such that H $ ft. Thus LS(G) = G and then

The following result is a particular case of Corollary 3.3 and can be considered as a
generalization of the Corollary of [3] in the universe of all finite groups. It will be used in
Section 4.

COROLLARY 3.4. Let G be a group and assume that H is a subnormal subgroup of G
such that H/H n L{G) is supersoluble. Then H is supersoluble.

Next we see how the above results can be extended to ft-normal and ft-subnormal
subgroups.

THEOREM 3.5. Let G be a soluble group and H an 'ft-normal subgroup of G. Assume
there exists a normal subgroup M of G such that M < H D *(G) and HIM e ft. Then

Proof. First of all, notice that G is a ^-group where n = char ft because H is
ft-normal in G and HIM is a ;r-group.
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Assume that the result is not true and let G be a counterexample of minimal order.
Let N b e a minimal normal subgroup of G. The group GIN and the pair (HN/N, MN/N)
satisfy the hypotheses of the theorem. So HN/N e ft by our choice of G. If W is another
minimal normal subgroup of G then again HW/W e ft. Hence H e ft, a contradiction.
Consequently, N = Soc(G) is the unique minimal normal subgroup of G. Since M =£ 1, it
is clear that N^M ^H D 3>(G), N is abelian and ///JV e ft. Denote by p the prime
dividing \N\ and let K be the finite field of p elements. Consider the Frattini extension of
G* = G/N:Ny->G^*G*. By Theorem 2.2 N, regarded as a KG*-module by conjuga-
tion, is a quotient module of A = AK(G*), the Frattini module of G* with respect to K.
Since OP(G*)< CC-(A), we have that Op.(G*)^Cc-(N). Let T = OP(G mod N). By
the Schur-Zassenhaus Theorem, T = QN where Q is a Hall /?'-subgroup of T. Now, £) is
a normal /?'-subgroup of the normal subgroup T of G because 2 centralizes /V. Hence
«2<OP(G) = 1. Thus OP(G*) = 1. Assume that p does not divide \G:H\. Then
H* = H/N contains a Sylow p-subgroup of G*. In particular, OP(G*)<H*. But
F(G*) = Op(G*). So CC.(OP(G*))<OP(G*) because G* is soluble. Now, OP{H*)
centralizes OP(G*) and then Op.(H*) = l. Therefore OP(H*) = OPP(H*) and since
H* e ft we have that H*/OPP(H*) e F(p). So //* e S,F(/>) = F(p) and then Heft , a
contradiction. Therefore p divides \G:H\. Since H is ft-normal in G, we have that
///CoreG(//) e f(p). In particular, the f(p)-residual, HHp\ of / / is subnormal in G. Then
Op((W*)f('>)<Op.(G*) = l. On the other hand, (//*)i("> is/J-nilpotent because H* e ft.
Therefore H* e Spf(p) = F(p) and then // e SpF(p) = F(p) s ft, the final contradiction.

EXAMPLE 3.6. Let p be a prime number and consider ft = S p S p the saturated
formation of soluble p-nilpotent groups. The smallest local definition f of ft is given by

A subgroup H of a soluble group G is ft-normal in G if and only if either H^G oxp
does not divide \G :H\ and H/CoreG(H) e S p Sp . Consequently, by Theorem 3.5, if / / is
a subgroup of a soluble group G such that ///O(G) is p-nilpotent and either / / < G o r p
does not divide |G :H\ then H is likewise p-nilpotent.

THEOREM 3.7. /issM/rce //uM ft is a subgroup-closed formation. Let G be a soluble
group and H an ^-subnormal subgroup of G. Suppose there exists a normal subgroup M
of G such that M<HD <D(G) and HIM e ft. Then / /ef t .

Proof. As in the above Theorem, it is not difficult to prove that G is a ^-group
where n = char ft. Suppose the result is not true and consider G a counterexample of
minimal order. With similar arguments to those used in the above result, we have that
JV = Soc(G) is the unique minimal normal subgroup of G, N<Ms//n<J>(G), N is
abelian and H/N e ft. Denote by p the prime dividing \N\. We denote by stars the images
in G* = G/N. Again, as in the above Theorem, we have that OP-(G*) = 1. Moreover, if
OP(G*) s //*, then OP(H*) = 1 and / /ef t . Therefore we can assume that H* is a proper
subgroup of H*OP{G*). By [7; Lemma 1.1], H* is an ft-subnormal subgroup of
H*OP(G*). So there exists a chain

//* = / / „ < / / „ _ , < . . . < Ho = H*OP{G*)

such that //,+i is a maximal ft-normal subgroup of //,, for every i = 0 , . . . , « - 1. Take an
index ie{0,...,n — l}. Since //,+, is a maximal ft-normal subgroup of //,, we have that
the F(p)-residual, (Hi+])

F(p\ of //,+, is a subnormal subgroup of //,. Moreover,
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(Hi+l)
F(p) < (/y,)F(p) because F(p) is subgroup-closed (see [5; IV, 3.16]). This implies that

(H*)F{p) is a subnormal subgroup of H*OP(G*) and Op.{(H*)F(p)) < OP(H*OP{G*)).
Hence Op.((H*)F(p)) < CC.(OP(G*)) < OP(G*) and so Op-((H*)Fip)) = 1. But (//*)F(p) is
p-nilpotent because //* e Jv. Consequently, (H*)F(p) is ap-group and then H e SPF(/?) =

F(p) s Js\ a contradiction.
If <y is not a subgroup closed saturated formation the above Theorem fails as the next

example shows.

EXAMPLE 3.8. Let Jy be the saturated formation locally defined by the formation
function / given by the formula: f(p) = (1) if p =£2, 3 and /(2) =/(3) = (G | G is soluble
and the Carter subgroups of G are 2-groups). It is easy to see that Jy is not a
subgroup-closed formation.

Let A be the symmetric group of degree three. There exists an irreducible and faithful
A -module V over GF(2) (dim V = 2). Let P = H(V) be the Hartley group on V = {V, V}
(see [5;B, 12.11]). Regarding A as an operator group for P, we have P/<P(P) is
/4-isomorphic to V © V and <t>(P) is /1-isomorphic to V ®V. Consider G = [P]A the
corresponding semidirect product and the subgroup H=JB, where J = <$>(P) and
B = O3{A). Then H/J e Jy. Since V ® K is a faithful ^-module, we have that ///(2) is not
2-nilpotent. Therefore H is not an Jy-group. Now, H is a normal subgroup of JA and JA is
an Jy-normal maximal subgroup of NA, where N is a subgroup of P such that N/J = V.
Moreover, NA is an Jy-normal maximal subgroup of G. Therefore H is an {y-subnormal
subgroup of G.

4. Frattini-like subgroups. In this section, we consider the relationship between the
Frattini-like subgroups ^ ( G ) and Sn(G) of a group G and the supersolubility or
nilpotency of some subnormal subgroups of G.

Feng and Zhang [6] proved that *^(G) = $(G mod OR{G)) and, if Sn{G) is
^-separable, then Sn{G)IOn{G) is supersoluble. As a consequence the commutator
subgroup of SJT(G)/OJt(G) is nilpotent. Our first result in this section shows that rather
more than this is true.

THEOREM 4.1. Let G be a group. If Sn{G) is it-separable then (G' nSJt(G))/(C n
On(G)) is a nilpotent group.

Proof. Again we argue by induction on the order of G. Since On(GIOn(G)) = 1 and
Sa(G/On(G)) = Sn(G)/On(G), we can assume that On(G) = 1 and H * 1 where H is the
subgroup G'n5^(G). Let N be a minimal normal subgroup of G contained in H and
suppose that Ojr(G/N) = 1. By induction hypothesis, H/N is nilpotent. Since Sn(G) is a
supersoluble group and On{G) = 1, we have that N is an abelian ^'-group. On the other
hand, H is soluble. Therefore, by [5; III, 4.6], H has a conjuacy class of nilpotent
projectors, the Carter subgroups of H. Let C be a Carter subgroup of H. Then H = NC,
G = HNG(C) and G = NNG(C). If C were a normal subgroup of G then H would be
nilpotent and we are done. Otherwise, let M be a maximal subgroup of G containing
NG(C). Since N is a jr'-group, G = JWV and N < / / it follows that |G :MU = 1 and \G:M\
is a prime number. This implies that N is a cyclic group of prime order and thus G/CC(N)
is abelian. Consequently, N^Z(H) and / / is nilpotent. Therefore we can assume that
On{GlN) =£ 1 for every minimal normal subgroup N of G which is contained in H. Let N
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be one of them and denote by T the subgroup of G such that TIN = On{GIN) D G'IN.
By the Schur-Zassenhaus Theorem, there exists a Hall jr-subgroup Q of T such that
T = QN and G = NNG(Q). Since On{G) = 1, we have JVO(<2) < G. Let M be a maximal
subgroup of G such that Na{Q) ^ M. Since N is a ^'-group, G = M/V and N s // we have
that IGiM^ = 1 and \G:M\ is a prime number. Thus N is a cyclic group of prime order.
Therefore each minimal normal subgroup of G contained in H is a cyclic group of prime
order and H D 3>(G) = 1. Let A be the product of all minimal normal subgroups of G
contained in H. By [9, Hilfssatz 4.4], there exists a subgroup R of G such that G = /!/?
and /4 n /? = 1. Clearly, A < Z(//) and so F(H) ("I fl, where F(#) is the Fitting subgroup
of H, is a normal subgroup of G. Now, F(H)DR must be trivial because /I contains
every minimal normal subgroup N of G such that N <H. Therefore v4 = F(H) and
H < CH{F{H)) s F(W) because // is soluble. This means that // is a nilpotent group.

By a result of Beidleman and Smith [3; Theorem 4], we have G" n L{G) < 4>(G) for
all G. The corresponding result for SM(G) is the following:

THEOREM 4.2. Lef G be a group such that Sn(G) is a n-separable group. Then
G" D Sn{G) is contained in <MG).

Proof. Let G be a group such that Sn(G) is a ^-separable group and put
H = G"n Sn(G). In order to show H < ^ ( G ) we may asssume that *^(G) = 1. Suppose,
by contradiction, that G is of minimal order subject to $^(G) = 1 and Hi=\. Since
<& (̂G) = 1, we have On{G) = 1 and, by Theorem 4.1, H is a nilpotent normal subgroup
of G. Moreover, 3>(G) = 1. Therefore <!>(//) = 1 and // is abelian. Let N be a minimal
normal subgroup of G contained in H. Since 4>jr(G) = 1 and N^SM(G), we can find a
maximal subgroup M of G such that \G: Af| is a prime number, \G: ML, = 1 and G = MM
Thus N is a cyclic group of prime order. Consider the primitive group G* = G/Mo. If
Mc =£ 1, then G"MC/MG D Sn(G/MG) < *,(G*) by minimality of G. But N* = NMG/MG

is the unique minimal normal subgroup of G* and N* is a jr'-group. Hence O^(G*) = 1
and O^(G*) = 1. This implies that / / < M G and G = M, a contradiction. Consequently,
MG = 1 and G is a primitive group. But then F(G) = Soc(G) is the unique minimal
normal subgroup of G. Thus N = F(G) and G/N is a cyclic group. In particular, G" = 1
and H = 1, the required contradiction.

It should be noted that our Theorem 4.2 is not a corollary of Theorem 4 of [3]
because there exist ^-separable groups G such that L(G mod O^(G)) #= 5^(G).

Our final theorem establishes the supersolubility of H/On(G) if H is a subnormal
subgroup of G such that H/S^iG) is supersoluble.

THEOREM 4.3. Let G be a group such that Sn(G) is a n-separable group. Assume that
H is a subnormal subgroup of G containing Sn(G). Then H/On(G) is supersoluble if and
only if H/Sn(G) is supersoluble.

Proof. Since On{G) ^Sn(G), the necessity is obvious. Let H/S^iG) be supersoluble.
We prove that H/OK(G) is supersoluble by induction on \G\. Clearly we can suppose that
O^(G) = 1 and 5^(G)^1. Let W be a minimal normal subgroup of G such that
N<Sn{G). Since Sn(G) is supersoluble, we have that N is an abelian ^'-group. If
On(GlN) = l, then H/N is supersoluble by induction. But N<L(G). By Corollary 3.4,
H is supersoluble and we are done. So we may assume that OM(G/N)¥:\ for each
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minimal normal subgroup N of G contained in Sn(G). Arguing as in the proof of
Theorem 4.1, N is a cyclic group of prime power order and moreover N C\ <I>(G) = 1. In
particular, <I>(G) = 1. Moreover, F(Sn(G)) is the product of all minimal normal subgroups
of G which are contained in S^G). Since H is a subnormal subgroup of G, it follows that
<!>(//) = 1. Assume that H is not supersoluble. Clearly H is soluble. By [5; IV, 5.7] there
exists a maximal subgroup M of H such that H = MF(H) and H/CoreH(M) is not
supersoluble. Since <£(//) = 1, F(H) is a direct product of minimal normal subgroups of
H. Consequently, there exists a minimal normal subgroup P of H such that H = MP. On
the other hand, P is contained in SX(G) because H/Sn(G) is supersoluble and P is not a
cyclic group. Thus P £ F(Sn(G)). But the index of M in H is not a prime number because
H/MH is not supersoluble. This implies that F(Sn(G))^M and so H = M, a contradic-
tion. Therefore H is supersoluble and the theorem is proved.
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