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Abstract It is shown that any torsion unit of the integral group ring ZG of a finite group G is rationally
conjugate to an element of ±G if G = XA with A a cyclic normal subgroup of G and X an abelian
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1. Introduction

There is a long-standing conjecture of Zassenhaus that runs as follows.

(ZC1) For a finite group G, every torsion unit in ZG is conjugate to an element of ±G in
the units of QG.

For known results on the Zassenhaus conjecture (ZC1) the reader is referred to [16,
Chapter 5], [17], [18, § 8] and [4,7,8].

Certainly the outstanding result in the field is Weiss’s proof [20,21] that the conjec-
ture is true for nilpotent groups G. The conjecture has also been verified for some split
extensions G = X �A under coprimeness conditions on X and A, with G the metabelian
and not too far from being metacyclic: Polcino et al . [15] proved (ZC1) in the case when
X and A are cyclic of relatively prime order 20 years ago, but since then no substan-
tial progress has been made beyond this. The main result of this paper is the following
theorem.

Theorem 1.1. Suppose that G = XA with A � G, X � G, and with A cyclic and X

abelian. Then (ZC1) holds for G.

The proof essentially consists of two parts. In a first step, it is shown that torsion
units in 1 + I(ZA)G are rationally conjugate to elements of A. (Our notation will be
explained in § 2.) The second step consists of showing that, for a torsion unit u not lying
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in 1 + I(ZA)G, all partial augmentations εa(u), a ∈ A, vanish. Thereby, induction on
the order of G and the result from step one is used (see Theorem 7.3 and Corollary 7.5).
The main reason for assuming that A is covered by an abelian subgroup X, rather than
assuming that G/A is abelian, is that these results, once established, are easily shown
to hold with A replaced by CG(A). Then an elementary observation, which we learnt
from [4] (see § 6), completes the proof.

To establish the first step, we show more precisely that a torsion unit in 1+I(Z Op(A))G
is p-adically conjugate to an element of A (see Theorem 5.1 and Claim 5.2). Therefore,
we show that, p-adically, such a unit has the most simple description one can think of (see
Corollary 4.7), which again relies on Weiss’s permutation module result [20] as explained
in § 3. Then Lemma 2.2, below, allows us to use a result in [2] to establish the general
result (see Corollary 5.3).

Finally, in § 8 we present two results on (ZC1) for direct products of groups which are
somehow related to the present work.

Note that [16] may serve as a general reference for any aspects of units in integral group
rings. For unexplained concepts of representation theory, we refer the reader to [3]. We
believe that the present work can be regarded as ‘applied representation theory’.

2. Review of some known facts

Throughout this paper, G always denotes a finite group and R will be an integral domain
of characteristic zero, with quotient field K. For global aspects of torsion units in group
rings, we think of R as the coefficient ring Z or a suitable semi-localization of it, but R

may also be a p-adic ring, i.e. the integral closure of the p-adic integers Zp in a finite
extension field of the p-adic field Qp.

Group-theoretical notation is mostly standard. We use the bar convention, set gh =
h−1gh and [g, h] = g−1gh, let gG be the conjugacy class {gh | h ∈ G} of g in G, let ‘∼’
denote conjugacy and let Op(G) and Op′(G) denote the largest normal p-subgroup and
p′-subgroup of G, respectively.

Furthermore, we will adhere to the notation and definitions used in [7]. The most
notable notational conventions followed are as follows.

(i) ε : RG → R denotes the augmentation homomorphism.

(ii) I(RG) = {m ∈ RG | ε(m) = 0} denotes the augmentation ideal of RG. Thus, for
N � G, I(RN)G is the kernel of the natural homomorphism RG → RG/N .

(iii) V(RG) denotes the group of augmentation 1 units in RG; the group of units itself
is denoted by (RG)×.

(iv) εg(u) denotes the partial augmentation of an element u of RG with respect to the
conjugacy class of g in G.

(v) 1(RG)α, for a homomorphism α from a finite group H into V(RG), denotes the
right R(G × H)-module which is RG as an R-module, and the group action given
by m · (g, h) = g−1m(hα) for all g ∈ G, h ∈ H and m ∈ RG.

https://doi.org/10.1017/S0013091505000039 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505000039


Torsion units in integral group rings 365

The ‘bimodules’ 1(RG)α are the tools used to translate questions about conjugacy
into the language of module theory: homomorphisms α, β : H → V(RG) are called
R-equivalent if there exists a unit v ∈ (RG)× such that hα = v−1 · hβ · v for all h ∈ H;
it is easy to see that α and β are R-equivalent if and only if 1(RG)α

∼= 1(RG)β as
R(G × H)-modules.

Partial augmentations also make their contribution. A torsion unit u in V(RG), with
no prime divisor on the order of u being invertible in R, is conjugate to an element of G

in the units of KG if and only if, for every power of u, all of its partial augmentations
but one vanish (see [13, Theorem 2.5], [16, (41.5)] and [7, Lemma 2.5]). Note that, for
R = Z, this is equivalent to saying that all partial augmentations are non-negative.

A connection between both concepts constitutes [21, Lemma 1], also recorded in [16,
(38.12)], and is as follows.

Lemma 2.1. For a group homomorphism α : H → V(RG), let χ be the character of
the associated K(G×H)-module 1(KG)α. Then χ((g, h)) = | CG(g)|εg(hα) for all g ∈ G,
h ∈ H.

The interpretation of partial augmentations as rational multiples of character values
of bimodules makes it possible to apply Green’s theorem on zeros of characters to obtain
(see [7, proof of Theorem 5.6]) the following lemma.

Lemma 2.2. Let u be a torsion unit in V(RG), where R is a p-adic ring. Suppose
that the p-part of u is conjugate to an element x of G in the units of RG. Then εg(u) = 0
for every g ∈ G whose p-part is not conjugate to x.

Proof. We can assume that the p-part of u is the group element x. Set M = 1(RG)ι,
where ι : 〈u〉 ↪→ V(RG) denotes inclusion, and let χ be the character of KM . The
restriction of M to G×〈x〉 is induced from the trivial module R for the diagonal subgroup
〈(x, x)〉. Thus, χ((g, u)) = 0 for any g ∈ G whose p-part is not conjugate to x (see [3,
(19.27)]). Equivalently, εg(u) = 0 for such g, by Lemma 2.1. �

This shows that even if one is only interested in rational conjugacy, i.e. in conjugacy
which takes place in (KG)×, one may seek p-adic conjugacy. The proof of Corollary 5.3
with the help of Theorem 5.1, below, provides a good example of this philosophy; another
example is given in [7, Theorem 1.2].

We add some further remarks on partial augmentations of torsion units. The first is
pretty elementary but obviously very useful in inductive approaches to the Zassenhaus
conjecture (cf. Lemma 6.1 below).

Remark 2.3. Let u be a torsion unit in V(RG), let N � G and set Ḡ = G/N . We
shall extend the bar convention when writing ū for the image of u under the natural map
RG → RḠ. Since any conjugacy class of G maps onto a conjugacy class of Ḡ, for any
x ∈ G, we have

εx̄(ū) =
∑

gG:ḡ∼x̄

εg(u).

In particular, if Nx ⊆ xG, then εx̄(ū) = εx(u).
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The next remark shows that, for non-vanishing partial augmentations, there is a nice
divisibility property between element orders.

Remark 2.4. Let u be a torsion unit in V(ZG). Then g ∈ G and εg(u) �= 0 implies
that the order of g divides the order of u. Indeed, it is well known that prime divisors
on the order of g then divide the order of u (see [13, Theorem 2.7] or [16, (38.11)], as
well as [7, Lemma 2.8] for an alternative proof). Furthermore, it was observed in [8,
Lemma 5.6] that the orders of the p-parts of g cannot exceed those of u.

In some sense, there are linear relations between partial augmentations of a torsion unit
u and multiplicities of eigenvalues of representing matrices of u which impose constraints
on these values (see [12]). Making use of them them is now understood as being the
Luthar–Passi method. We shall use this method in the proof of Theorem 7.3 below.

Remark 2.5. Let u be a torsion unit in V(ZG). Suppose that ue = 1 for some natural
number e (Zassenhaus [22] has shown that one can always choose e to be the exponent
of G) and assume that K contains a primitive eth root of unity, θ. Let χ be the character
afforded by a K-representation D of G, and write µ(ξ, u, χ) for the multiplicity of an eth
root of unity, ξ, as an eigenvalue of the matrix D(u). Then (cf. [12], [8, § 3])

µ(ξ, u, χ) =
1
e

∑
d|e

TrQ(θd)/Q(χ(ud)ξ−d).

When trying to show that u is rationally conjugate to a group element, one may hope
that, by induction on the order of u, the values of the summands for d �= 1 are ‘known’.
The summand for d = 1 can be written as (1/e)

∑
gG εg(u) TrQ(θ)/Q(χ(g)ξ−1), a linear

combination of the εg(u) with ‘known’ coefficients.

3. Application of Weiss’s permutation module result

Let N be a normal p-subgroup of the group G, and suppose that a torsion unit u in
V(RG) is given which maps to the identity under the natural map RG → RG/N . In
order to apply Weiss’s permutation module result, we assume that R is a p-adic ring
(with quotient field K).

It is known that u is of p-power order (see [16, (7.5)] and [7, § 4]).
Let 〈c〉 be a cyclic group with ‘abstract’ generator c of the same order as u. Define

the homomorphism α : 〈c〉 → V(RG) by cα = u, and write Mα = 1(RG)α for the
associated R(G × 〈c〉)-module. Then Mα is a trivial source module, by Weiss’s theorem
from [20], [16, (50.1)] (cf. [16, (41.12)] and [7, § 4]).

As a consequence, u is conjugate to an element x of N in the units of KG if u ∈ V(ZG)
or, more generally, if u ∈ V(Z(G)G), where Z(G) = {s/t | s, t ∈ Z, (t, |G|) = 1} (see [16,
(41.12)] and [7, Proposition 4.2]). We shall assume that this holds (but it is not required
for the proof of the next lemma).

Define the homomorphism β : 〈c〉 → V(RG) by cβ = x and write Mβ = 1(RG)β for
the associated R(G × 〈c〉)-module. Then u is conjugate to x in the units of RG if and
only if Mα ∼= Mβ . By assumption, KMα and KMβ have the same character.

https://doi.org/10.1017/S0013091505000039 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505000039


Torsion units in integral group rings 367

Lemma 3.1. The vertices of the indecomposable summands of Mα are all contained
in N × 〈c〉.

Proof. Let P be a Sylow p-subgroup of G. Then Mα is a permutation lattice for
P × 〈c〉 over R, by Weiss’s theorem, so

Mα
⏐�

P×〈c〉 ∼=
n⊕

i=1

1
�⏐P×〈c〉

Ui

for subgroups U1, . . . , Un, and we have to show that Ui � N × 〈c〉. The number n of
summands equals the R-rank of the fixed-point module (Mα)P×〈c〉, so n = |G : P | as
(Mα)P×〈c〉 = (Mα)P×1. Also (Mα)N×〈c〉 = (Mα)N×1, so the R-rank of (Mα)N×〈c〉 is
|G : N |. For each i, Mackey decomposition gives a decomposition

1
�⏐P×〈c〉

Ui

⏐�
N×〈c〉 =

⊕
Ui(N×〈c〉)\a

1
�⏐N×〈c〉

Ua
i ∩(N×〈c〉)

into at most |P : N | summands, and this possible maximal number of summands is only
obtained when Ui � N × 〈c〉. The resulting estimate for the rank of (Mα)N×〈c〉 proves
the assertion. �

Using the fact that the restriction of Mα to N × 〈c〉 is a permutation lattice and that
KMα and KMβ have the same character, it can be shown that the restrictions of Mα

and Mβ to N ×〈c〉 are isomorphic (see [7, Claim 5.1]). Thus, we have the following result.

Corollary 3.2. Under the above assumptions, Mα is a direct summand of the direct
sum of |G : N | copies of Mβ .

Proof. By Lemma 3.1, Mα is relatively projective to R(N×〈c〉), so that Mα is a direct
summand of Mα

N×〈c〉↑G×〈c〉 (see [3, (19.5)]). Since Mβ
N×〈c〉↑G×〈c〉 is clearly isomorphic to

the direct sum of |G : N | copies of Mβ , the claim follows from the remark preceding the
corollary. �

The following corollary is a simple prototype for intended applications, and will be
used in § 8 to give another proof that the Zassenhaus conjecture (ZC1) holds for nilpo-
tent groups. Another application to p-adic conjugacy of torsion units will be given in
Theorem 5.1 with the help of Lemma 4.6.

Corollary 3.3. Let N be a p-group and let H be a p′-group. Then every torsion
unit of p-power order in V(Z(H × N)) is conjugate to an element of N in the units of
Zp(H × N).

Proof. Set G = H × N and R = Zp, and let u be a torsion unit of p-power order in
V(ZG). Then u maps to 1 under the natural map ZG → ZG/N = ZH (see [16, (1.9)]).

As already remarked, u is conjugate to an element x of N in the units of KG; let Mα

and Mβ be the bimodules defined above. We show that Mα ∼= Mβ .
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Let 1 = e1 + · · · + es be an orthogonal decomposition into primitive idempotents of
RH. Then RG = RGe1⊕· · ·⊕RGes is a decomposition into indecomposable (projective)
RG-modules which at the same time is a decomposition of RG as an (RG, RN)-bimodule.
We remark that two summands RGei and RGej are isomorphic as (RG, RN)-bimodules
provided they are isomorphic as RG-modules: Indeed, RGei↓H is a direct sum of copies
of the indecomposable module RHei, so RGei

∼= RGej as RG-modules implies that
RHei

∼= RHej as RH-modules, i.e. ej = ev
i for some v ∈ (RH)×, and RGei

·v−→ RGej is
an isomorphism of (RG, RN)-bimodules.

We have noted that Mβ = RGe1⊕· · ·⊕RGes is a decomposition into indecomposables
and, by Corollary 3.2, each indecomposable summand of Mα is among the RGei. Since
Mα ∼= Mβ as RG-modules, the claim now follows from the remark made in the previous
paragraph. �

4. Indecomposable summands of some bimodules

We note some elementary facts about indecomposable summands of bimodules such as
Mα and Mβ from the last section.

Remark 4.1. For the moment, R may denote any commutative ring. Let U be a
finite subgroup of V(RG). We write (RG)U = {m ∈ RG | mu = m for all u ∈ U} for the
subring of U -invariants of RG.

Let ι : U ↪→ V(RG) denote inclusion. Decompositions 1(RG)ι = M1 ⊕ · · · ⊕ Ms

of the R(G × U)-module 1(RG)ι correspond to orthogonal idempotent decompositions
1 = e1 + · · · + es in (RG)U , the correspondence given by Mi = RGei. The summand Mi

is indecomposable if and only if ei is primitive in (RG)U .
For an idempotent e in (RG)U , the isomorphism EndRG(RGe) ∼= eRGe (given by

ϕ �→ eϕ) restricts to an isomorphism EndR(G×U)(RGe) ∼= e(RG)Ue.
Suppose that RGe ∼= RGf as R(G × U)-modules for some idempotents e and f in

(RG)U . Clearly, RGe ⊕ RG(1 − e) ∼= RG ∼= RGf ⊕ RG(1 − f). If the Krull–Schmidt
theorem holds, then RG(1 − e) ∼= RG(1 − f) by cancellation, whence the isomorphism
RGe ∼= RGf is given by right multiplication with a unit v in (RG)U and f = ev (cf. [3, § 6,
Exercises 14, 15]).

In all cases we are looking at, the Krull–Schmidt theorem is assumed to hold.
We may have given U as an abstract group and wish to ‘compare’ different (injective)

homomorphisms from U into V(RG) via the associated bimodules. Then similar remarks
hold. We only note the following.

Remark 4.2. Let Mα and Mβ be as in § 3. Let e be an idempotent in (RG)〈u〉, let
f be an idempotent in (RG)〈x〉, and consider RGe and RGf as submodules of Mα and
Mβ , respectively. Then any isomorphism RGe ∼= RGf is given by multiplication with a
unit v of RG such that f = ev and fuv = uvf = xf .

Primitive idempotent decompositions which take place in RL, for some normal sub-
group L of G, may prove useful in analysing the bimodules. We note the following obvious
instance.
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Claim 4.3. Let L � G and let µ and ν be primitive idempotents in RL. Suppose
that the RG-modules RGµ and RGν have a common (non-zero) direct summand. Then
RGµ ∼= RGν. More precisely, ν = µgv for some g ∈ G and v ∈ (RL)×.

Suppose further that L � CG(H) for a subgroup H of G, and let ι : H ↪→ V(RG)
denote inclusion. Then RGν and RGµg are isomorphic direct summands of the R(G×H)-
module 1(RG)ι (with an isomorphism given by right multiplication with v−1).

Proof. Let G =
⋃

i Lgi be the disjoint union of the cosets of L. Then RGµ = RLµ↑G=⊕
i g−1

i RLµ as RL-modules, and g−1RLµ
·g−→ RLµg is an isomorphism of RL-modules

for any g ∈ G, so RGµ↓L
∼=

⊕
i RLµgi is a direct sum of indecomposable RL-modules (the

µgi are primitive in RL since L � G). Likewise, RGν↓L
∼=

⊕
i RLνgi , and since RGµ↓L

and RGν↓L have a common direct summand, we have RLνgi ∼= RLµgj for some indices
i, j, that is, νgi and µgj are conjugate by a unit in RL.

The additional statement concerning the bimodule is obvious. �

The normal subgroups we are interested in are the centralizers of normal p-subgroups
of G, as will become clear from the following discussion.

Remark 4.4. Let N be a normal p-subgroup of G and set L = CG(N). (Then L � G,
but this does not matter for the moment.) Let R be a commutative local ring whose
residue class field has characteristic p. Set

J =
〈 ∑

h∈gN

h

∣∣∣∣ g ∈ G \ L

〉
(RG)N

,

the two-sided ideal of (RG)N generated by all N -conjugacy class sums in G of length
larger than 1. We have (RG)N = RL + J . Since, for g ∈ G \ L,

∑
h∈gN

h ∈ |gN |g + I(RN)G ⊆ I(RN)G + pRG,

J is nilpotent modulo p(RG)N and hence J ⊆ rad(RG)N (see [3, (5.26)]). Thus, the
inclusion RL ↪→ (RG)N is a covering homomorphism (in the sense of [19, § 25]), i.e.
(RG)N = RL + rad(RG)N .

Let e be an idempotent in RL. Since rad e(RG)Ne = e(rad(RG)N )e (see [3, (5.13)]),
eJe is contained in the radical of e(RG)Ne, and eRLe ↪→ e(RG)Ne is also a covering
homomorphism. Suppose that e is primitive in RL. Then eRLe is local (since eRLe has
no non-trivial idempotents and the radical quotient of eRLe is semisimple artinean [3,
(5.22)]), so eRLe ↪→ e(RG)Ne induces an isomorphism on the radical quotients, and
e(RG)Ne is local.

We explicitly record what we are interested in. Let N be a normal p-subgroup of G

and let R be a p-adic ring.

Remark 4.5. Let e be a primitive idempotent in R CG(N). Then e(RG)Ne is a local
ring, and hence RGe is an indecomposable R(G × N)-module.
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In combination with Claim 4.3 we obtain the following lemma.

Lemma 4.6. Let ϕ : U → N be a group isomorphism and set α : U
ϕ−→ N ↪→ V(RG).

Suppose that M is an R(G × U)-module which is free of rank 1 as an RG-module and a
direct summand of a direct sum of copies of 1(RG)α. Let 1 = e1+· · ·+es be an orthogonal
decomposition into primitive idempotents of R CG(N). Then there exist g1, . . . , gs ∈ G

such that M ∼= RGeg1
1 ⊕ · · · ⊕ RGegs

s , where each summand RGegi

i is considered as a
submodule of 1(RG)α. In other words, M ∼= 1(RG)γ , where γ is the homomorphism
U → V(RG) given by u �→

∑
i ei(uϕ)g−1

i for u ∈ U .

Proof. We have 1(RG)ι = RGe1 ⊕ · · · ⊕ RGes, where each summand is an indecom-
posable R(G × U)-module by Remark 4.5. By assumption, the Krull–Schmidt theorem
provides an isomorphism M ∼= RGf1 ⊕ · · · ⊕ RGft, where each fi is taken from the set
{e1, . . . , es} (some of them may be equal). Thus, as RG-modules,

RGe1 ⊕ · · · ⊕ RGes = RG ∼= RGf1 ⊕ · · · ⊕ RGft. (4.1)

Renumbering if necessary, we can assume that RGe1 and RGf1 as RG-modules have a
direct summand in common. Then f1 = eg1

1 for some g1 ∈ G, by Claim 4.3. Cancelling
the isomorphic summands RGe1 and RGf1 in (4.1) and continuing this way proves the
lemma. �

Corollary 4.7. Suppose that N is cyclic. Let u be a torsion unit in 1+I(ZN)G. Then
u is conjugate to an element x of N in the units of QG, and we can assume that N = 〈x〉.
If 1 = e1+ · · ·+es is an orthogonal decomposition into primitive idempotents of R CG(x),
then there exist g1, . . . , gs ∈ G such that u is conjugate in (RG)× to

∑s
i=1 eix

gi .

Proof. This is immediate from the above discussion (see Corollary 3.2 and Lemma
4.6). �

Even if N is not cyclic, the above facts may be useful for obtaining information about
torsion units in 1 + I(ZN)G, since a statement corresponding to Remark 4.5 can be
made for p-elements in N : if x ∈ Op(G) and e is a primitive idempotent in R CG(x),
then e(RG)〈x〉e is a local ring. This may be particularly promising for metabelian groups
when CG(x) is likely to be a normal subgroup of G.

Remark 4.8. Let x ∈ Op(G). Then N = 〈xg | g ∈ G〉 is a normal p-subgroup of G.
Suppose that [G, CG(x)] � CG(N). Then CG(x) = CG(N). Indeed, for g, h ∈ G with
h ∈ CG(x), we have xgh = xg[g,h] = xg, showing that h ∈ CG(N). For example, if G is
metabelian and x ∈ Op(G′), then CG(x) = CG(N).

5. Torsion units in 1 + I(ZA)G

The aim of this section is to present the following consequence of Corollary 4.7. It will
be applied to torsion units in 1 + I(ZA)G, for G and A as in Theorem 1.1.
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Theorem 5.1. Suppose that N is a cyclic normal p-subgroup of G. Let u be a torsion
unit in 1 + I(ZN)G. Then u is conjugate to an element x of N in the units of QG. If
CG(x) has a normal p-complement, then u is even p-adically conjugate to x.

Proof. We have already noted in § 3 that u is conjugate to an element x of N in the
units of QG. We can assume that N = 〈x〉, and set L = CG(N) � G. By assumption,
L/Op′(L) is a p-group.

Let R be a p-adic ring such that its field of quotients K is sufficiently large for G.
We will show that u and x are conjugate in the units of RG. Interpreting the units as
bimodules and using a result due to Reiner and Zassenhaus [3, (30.25)], it then follows
that conjugacy already takes place in the units of ZpG.

The group L acts on the centrally primitive idempotents of R Op′(L) and, since L � G,
the group G acts on the orbits of this L-action. Let e be the sum of the centrally primitive
idempotents of R Op′(L) which lie in an orbit under the L-action. Set T = {g ∈ G |
eg = e}, the inertia group of e in G. Note that L � T � G, since G/L can be identified
with a subgroup of the abelian group Aut(N). Set n = |G : T |, and let s1, . . . , sn be
representatives of the cosets of T in G. Let ε be the sum of the G-conjugates of e, so that
ε =

∑n
j=1 es−1

j , a central idempotent of RG.
We remark that a primitive idempotent in R Op′(L) remains primitive in RL since

L/Op′(L) is a p-group, by Green’s indecomposability theorem (see [3, (19.23)] or [19,
§ 23]). Write e = e1 + · · · + em with orthogonal primitive idempotents in R Op′(L). Then

ε =
m∑

i=1

n∑
j=1

e
s−1

j

i

is a decomposition into orthogonal primitive idempotents of RL.
By Corollary 4.7, there exist gij ∈ G (1 � i � m, 1 � j � n) such that εu is conjugate

in (εRG)× to the element

v =
m∑

i=1

n∑
j=1

e
s−1

j

i xgij .

We know that v is conjugate to εx in (εKG)×, and have to show that conjugacy already
takes place in (εRG)×. To this end, we will compare the eigenvalues of v and εx with
reference to a suitably chosen representation.

εRG ∼= Matn(eRTe) is a well-known result due to Clifford (see [14, § 6, Lemma 1.7]
or [6, Theorem 2.5]). The isomorphism can be chosen such that the elements εx and v of
RT (remember that T � G) correspond to diagonal matrices:

εx �→ diag(exs1 , . . . , exsn),

v �→ diag
( m∑

i=1

eix
gi1s1 , . . . ,

m∑
i=1

eix
ginsn

)
.

Let ψ be the sum of the irreducible characters of K Op′(L) which belong to eK Op′(L).
By our assumption on R, we have ψ(f) = 1 for every primitive idempotent f of R Op′(L)
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satisfying ef �= 0, so, in particular, ψ(1) = m. Let π : N → K be a faithful character
and set ξ = π(x), so ξ is a primitive |N |th root of unity. The tensor product ψ ⊗ π is a
character of Op′(L) × N and we set χ = (ψ ⊗ π)↑T . Let D be a representation affording
χ. Set q = |L : Op′(L) × N |, and let t1, . . . , tr be representatives of the cosets of L in
T (so r = |T : L|). For representatives sj , tk, let σj , τk ∈ Gal(Q(ξ)/Q) be defined by
π(xsj ) = ξσj and π(xtk) = ξτk . Also, let γij ∈ Gal(Q(ξ)/Q) be defined by π(xgij ) = ξγij .

Now suppose that we are given g1, . . . , gm ∈ G and that the γi ∈ Gal(Q(ξ)/Q) are
defined by π(xgi) = ξγi . Then (ψ ⊗ π)↑L (eix

gi) = qξγi , χ(eix
gi) = q

∑r
k=1 ξτkγi and

χ

( m∑
i=1

eix
gi

)
= q

m∑
i=1

r∑
k=1

ξτkγi .

However, if we examine the affording representations, we see more precisely that the ξτkγi

are the eigenvalues of the representing matrix D(
∑m

i=1 eix
gi), each one occurring q times

the number of times it occurs in the list ξτ1γ1 , ξτ1γ2 , . . . .
Let D̂ be the representation of KG obtained by ‘composing’ the homomorphism KG →

εKG ∼= Matn(eKTe) with the representation D of KT , and let χ̂ be its character. Then

χ̂(εx) = qm

n∑
j=1

r∑
k=1

ξτkσj , χ̂(v) = q

m∑
i=1

n∑
j=1

r∑
k=1

ξτkγijσj ,

where the occurring roots of unity are the eigenvalues (including multiplicities) of the
representing matrices D̂(εx) and D̂(v). They agree for both matrices, since εx and v are
rationally conjugate, and so:

for every 1 � j0 � n, there exist exactly m pairs (i, j) such that
gijsj ≡ sj0 mod T, which will be indicated by (i, j) � j0. (5.1)

This is all the information we need, so we now turn to the bimodules.
Let Mα and Mβ be defined as in § 3, so we have a generator c of an ‘abstract’ cyclic

group 〈c〉 of the same order as u, and Mα and Mβ are the right R(G × 〈c〉)-modules,
which are simply RG with RG acting from the left and c acting by right multiplication
with u and x, respectively.

We have to show that the direct summands εMα and εMβ are isomorphic, and therefore
we will change the action of 〈c〉 on εMα by letting c act by multiplication with v (this
does not change the isomorphism type). Note that

εRG =
⊕
i,j

RGe
s−1

j

i

is a direct sum decomposition of both εMα and εMβ . We shall write εMα
ij and εMβ

ij for
RGe

s−1
j

i when considered as direct summand of εMα and εMβ , respectively.
Fix some 1 � j0 � n. Note that εMβ

i1j0
∼= εMβ

i2j0
for all 1 � i1, i2 � m. This is simply

because ei1 and ei2 are conjugate by a unit in RL and L = CG(x) � G. Also

Mβe
s−1

j0
i

∼= Mβe
ts−1

j0
i for all 1 � i � m and t ∈ T,
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again since ei and et
i are conjugate by a unit in RL. Now if (i, j) � j0, then

εMβ
ij0

= Mβe
s−1

j0
i

∼= Mβe
s−1

j g−1
ij

i

and multiplication with gij gives an isomorphism

Mβe
s−1

j g−1
ij

i
∼= εMα

ij ,

so εMβ
ij0

∼= εMα
ij . Thus, it follows from (5.1) that

⊕
(i,j)�j0

εMα
ij

∼=
⊕

(i,j)�j0

εMβ
ij0

∼=
m⊕

i=1

εMβ
ij0

and

εMα =
n⊕

j0=1

( ⊕
(i,j)�j0

εMα
ij

)
∼=

n⊕
j0=1

( m⊕
i=1

εMβ
ij0

)
= εMβ .

The proof is complete. �

The assumption on CG(x) in Theorem 5.1 has been chosen so that it applies to the
groups of our favourite class, as follows.

Claim 5.2. Suppose that G = XA for A � G, X � G with A cyclic, X abelian and
A having a non-trivial p-subgroup N . Then CG(N) has a normal p-complement.

Proof. Set Ḡ = G/ Op′(G). From Op′(G) � CG(N) and Op′(G)∩N = 1 it follows that
CG(N) is the pre-image of CḠ(N̄) under the natural map G → Ḡ. We proceed to show
that CḠ(N̄) is a p-group. Let x be a p′-element of X. If [x̄, Ā] = 1, then x̄ ∈ Z(G) and
x̄ ∈ Op′(Ḡ). Otherwise, x̄ acts fixed-point freely on the cyclic p-group Ā and [x̄, N̄ ] �= 1.
Since A � CG(N), this gives the desired results, i.e. Op′(G) is the normal p-complement
of CG(N). �

Now we can use a theorem of Cliff and Weiss [2, Theorem 6.3] to deduce the following
result.

Corollary 5.3. Suppose that G = XA with A � G, X � G and with A cyclic and X

abelian. Then any torsion unit in 1 + I(Z CG(A))G is rationally conjugate to an element
of G.

Proof. First, let u be a torsion unit in 1+I(ZA)G. If u is a p-element, for some prime
p, then u ∈ 1 + I(Z Op(A))G (see [16, (7.5)]), so u is p-adically conjugate to an element
of A by Theorem 5.1 and Claim 5.2. Thus, for u of arbitrary order, εg(u) = 0 for all
g ∈ G \ A by Lemma 2.2 and Remark 2.4. For m = |G : A|, we have an embedding
of RG into (RA)m, the ring of m × m matrices over RA. Let U be the image of u

under this embedding. Since U lies in the kernel SGL(RA) of the augmentation map
GLm(RA) → GLm(R) and A is cyclic, it follows from [2, Theorem 6.3] that εa(u) � 0
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for all a ∈ A (note the well-known relation (7.1)). Thus, εg(u) � 0 for all g ∈ G, and
since the same holds for all powers of u, it follows that u is rationally conjugate to an
element of G (see [16, (41.5)]).

Now let u be a torsion unit in 1 + I(Z CG(A))G. Set Ḡ = G/A. Then ū = ḡ in ZḠ for
some g ∈ CG(A) = A CX(A), since Ḡ is abelian and ū maps to the identity in ZḠ/CG(A).
We can assume that g ∈ CX(A) ⊆ Z(G), when g−1u is a torsion unit in 1 + I(ZA)G.
Thus, u is rationally conjugate to an element of G by the preceding result. �

6. An inductive argument for metabelian groups

The following simple group-theoretical observation is taken from [4, Lemma 2]. It imme-
diately yields information about partial augmentations of torsion units in integral group
rings of metabelian groups if one takes an inductive approach (cf. Remark 2.3).

Lemma 6.1. Let A be an abelian normal subgroup of G, and suppose g ∈ G satisfies
[g, G] � A. Then B = [g, A] � G and BgG = gG. (That is, gG is the only conjugacy class
of G which maps onto the conjugacy class of Bg in G/B.)

Proof. Since A is abelian, elementary commutator calculus shows that B � G. Let
a ∈ A and h ∈ G. Then

[g, a]gh = g−1a−1g · a · h−1ghg−1 · g

= g−1a−1g · h−1ghg−1 · a · g (since A is abelian)

= ghg−1ag ∈ gG.

Since each element of B can be written as a product of elements of the form [g, a], a ∈ A,
the statement of the lemma follows. �

Corollary 6.2. Suppose that G has an abelian normal subgroup A with abelian
quotient G/A, and that the Zassenhaus conjecture (ZC1) holds for proper quotients of
G. Let u be a torsion unit in V(ZG). Then the following hold.

(i) εg(u) ∈ {0, 1} for all g ∈ G \ CG(A).

(ii) Set G∗ = G/ CG(A) and suppose that u∗ �= 1. Then there exists (up to conjugacy)
a unique g0 ∈ G \ CG(A) with εg0(u) = 1, and εx(u) = 0 for all x ∈ G \ CG(A)
with x �∈ gG

0 (obviously u∗ = g∗
0).

(iii) Let u and g0 be as in (ii). Let N be a non-trivial normal subgroup of G contained
in CG(A) and set Ḡ = G/N . Then ū is conjugate to ḡ0 in (QḠ)×.

Proof. (i) Let g ∈ G \ CG(A) and set B = [g, A]. Then 1 �= B � G and (ZC1) holds
for Ḡ = G/B. Therefore, all but one of the partial augmentations of ū vanish and since,
by Lemma 6.1, gG is the unique conjugacy class of G which maps onto ḡḠ in Ḡ, it follows
that εg(u) = εḡ(ū) ∈ {0, 1}.
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(ii) By a well-known result of Berman and Higman, u∗ has zero 1-coefficient (see [16,
(1.4)]), and since u∗ has augmentation 1, the claim follows from (i) and Remark 2.3.

(iii) We have εḡ0(ū) =
∑

gG:ḡ∼ḡ0
εg(u), and since G/ CG(A) is abelian, the sum extends

over certain classes gG with g ∈ g0 CG(A), so εḡ0(ū) = εg0(u) = 1 by (ii). Since (ZC1)
holds for Ḡ, the claim follows. �

Remark 6.3. Let u be a torsion unit in V(ZG). Let N be a normal p-subgroup of G,
set Ḡ = G/N and assume that ū ∼ ḡ in (QḠ)× for some g ∈ G. Then the p′-parts of u and
g have the same order. This holds since torsion units in the kernel of V(ZG) → V(ZḠ)
have p-power order (see [16, (7.5)]).

The Zassenhaus conjecture (ZC1) holds for groups G which have a normal p-subgroup
with abelian quotient (see [7, Theorem 1.2]). Thus, in the situation of Corollary 6.2 (ii),
the elements u and g0 have the same order, by the remark just made. We are not aware of
any obvious connection with the Whitcomb argument, which supplies a unique element
g ∈ G with u ≡ g mod I(ZG) I(ZA) and which also has the same order as u (cf. [16, (30.5),
(37.14)]).

The following lemma is not used for the proof of Theorem 1.1, but we included it here
since it is tempting to believe that it also holds for abelian A when it might be combined
with the approach taken in the next section to yield further results.

Lemma 6.4. Suppose that G = XA with A � G, X � G and with A cyclic and X

abelian, and that (ZC1) holds for proper quotients of G. Let u be a torsion unit in V(ZG)
with u∗ �= 1 in ZG∗ (again, G∗ = G/ CG(A)), and let g0 ∈ G be the (up to conjugacy)
unique element of G with u∗ = g∗

0 and εg0(u) = 1 (see Corollary 6.2). Then, if p is a
prime such that up is conjugate in (QG)× to an element of G, this element is conjugate
to gp

0 .

Proof. Under the assumption that up is rationally conjugate to an element of G we
must show that εgp

0
(up) �= 0. Write u =

∑
g∈G λgg (all λg ∈ Z). Then up ∈

∑
g∈G λgg

p +
[ZG, ZG] + pZG (see [16, (7.1)]) and, consequently,

εgp
0
(up) ≡

∑
gG:gp∼gp

0

εg(u) mod p.

By Corollary 6.2 (ii), εx(u) = 0 for all x ∈ G \ CG(A) with x �∈ gG
0 , so

εgp
0
(up) ≡ εg0(u)︸ ︷︷ ︸

=1

+
∑

gG:gp∼gp
0 ,

g∈CG(A)

εg(u) mod p. (6.1)

We have to investigate the case when the sum that appears in equation (6.1) is non-
empty, so assume that there exists an element g1 in the normal subgroup CG(A) of G

with gp
1 = gp

0 . Note that CG(A) is abelian.
Suppose that p divides the order of CG(A). Set E = 〈x ∈ CG(A) | xp = 1〉 �= 1. Then

E is an elementary abelian normal subgroup of G. If g2 is another element of CG(A) with
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gp
2 = gp

0 , then (g2g
−1
1 )p = gp

2g−p
1 = 1 and so g2 ∈ Eg1. Thus, the sum in (6.1) extends

over the conjugacy classes of elements of Eg1. Set Ḡ = G/E. By Corollary 6.2 (ii), ū ∼ ḡ0

in (QḠ)×, so ∑
gG:g∈Eg1

εg(u) = εḡ1(ū) = 0,

since ḡ1 and ḡ0 are not conjugate in Ḡ. Now it follows from (6.1) that εgp
0
(up) ≡ 1 mod p,

so εgp
0
(up) �= 1 as desired.

It remains to consider the case when CG(A) is a p′-group. Then g1 is the unique
element of CG(A) with gp

1 = gp
0 , so εgp

0
(up) ≡ 1 + εg1(u) mod p by (6.1). We shall show

that g1 ∈ Z(G), whence εg1(u) = 0 (see [16, (1.4)]) and again εgp
0
(up) �= 1. We have

[g0, g1] = 1 since g0 commutes with gp
1 (gp

1 = gp
0) and 〈g1〉 = 〈gp

1〉. Thus, g−1
1 g0 is of order

p and acts fixed-point freely on the cyclic p′-group A (this is the only place where we
use the fact that A is cyclic). Write g1 = ax with a ∈ A and x ∈ CX(A) ⊆ Z(G), and
g−1
1 g0 = by with b ∈ A and y ∈ X. Then y acts fixed-point freely on A, so a = 1 from

ax = g1 = g
g−1
1 g0

1 = gby
1 = gy

1 = ayx and g1 = x ∈ Z(G) as claimed. �

Let us continue to suppose that G = XA for A � G, X � G with A cyclic, X abelian,
and let u be a torsion unit in V(ZG) which does not map to the identity in ZG/ CG(A).
Also suppose that (ZC1) holds for proper quotients of G and that proper subgroups of
〈u〉 are rationally conjugate to subgroups of G. Let g0 ∈ G be defined as in Corollary 6.2.
So far we have shown that then u is rationally conjugate to an element of G if and only
if χ(u) = χ(g0) for every faithful irreducible character χ of G.

One might hope to prove the missing statement by some kind of ‘inspection’ since the
irreducible C-representations are monomial. In fact, every simple CG-module on which
A acts faithfully is induced from a one-dimensional module for the abelian subgroup
CG(A) (see [3, (11.1)]). Thus, it remains to show that χ(u) = 0 for the corresponding
characters χ. Actually, this is equivalent to requiring that the partial augmentations of
u with respect to elements of CG(A) vanish, as we will see next.

7. Induced characters and partial augmentations

The main result of this section is stated in Theorem 7.3. We begin with some general
observations.

Let A be a normal subgroup of G, of index m, say. One obtains an embedding of RG

into (RA)m, the ring of m × m matrices over RA, by considering RG as an (RA, RG)-
bimodule, with RG = RA ⊗RA RG. (Here R is any integral domain of characteristic
zero.)

To write down such an embedding explicitly, let x1, . . . , xm be representatives of the
cosets of A in G. Then RG = ⊕jRAxj as RA-module. For u =

∑
g∈G ugg (all ug in R),

write accordingly xiu =
∑

fij(u)xj . Then u �→ U = [fij(u)] ∈ (RA)m defines an embed-
ding of RG into (RA)m. (The choice of another ‘RA-basis’ would lead to a conjugate
representation.)
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The relevance of this embedding with respect to the Zassenhaus conjecture (ZC1) was
demonstrated in [2,13,20] and [16, § 41]. We shall be concerned only with characters,
for which we recall some known facts.

The embedding exists whether or not A is normal; one advantage of A being normal
is that traces can easily be calculated: one has fii(u) = (

∑
a∈A uaa)x−1

i , so the trace of
U modulo [KA, KA] can be expressed using the partial augmentations with respect to
elements of A as follows (see [13, (2.8)]):

tr(U) =
∑

i

∑
a∈A

ux−1
i axi

a

=
∑

aG:a∈A

∑
i

∑
b∈aG

ux−1
i bxi

b

≡
∑
aG

∑
i

εa(u)a

≡
∑
aG

|G : A|εa(u)
1

|G : CG(a)| Ĉ(a)

=
∑
aG

| CG(a)|
|A| εa(u)Ĉ(a), (7.1)

where we have written Ĉ(a) for the class sum of a, i.e. for the sum of the elements of aG.
Note that the averaged coefficients in the last sum need not lie in R. If one does not wish
to have a congruence to an element of KA, one may choose, for each class aG, elements
ak in A such that aG is the disjoint union of the A-conjugacy classes of the ak. Then
Ĉ(a) ≡

∑
k |A : CA(ak)|ak and

| CG(a)|
|A| εa(u)Ĉ(a) ≡

∑
k

| CG(ak) : CA(ak)|εak
(u)ak,

resulting in the following formula [16, (41.10)]:

tr(U) ≡
∑

aA:a∈A

| CG(a) : CA(a)|εa(u)a mod [RA, RA]. (7.2)

The given embedding RG → (RA)m may be ‘composed’ with homomorphisms of
RA into some ring Λ, and also characters RA → K, to obtain further homomorphisms
RG → (Λ)m, and characters KG → K.

Let R = C, and let ψ1 = 1, ψ2, . . . , ψn be the irreducible complex characters of A.
The characters χ1, . . . , χn of G one obtains in this way are just the induced characters,
χi = ψi↑G. Let a1 = 1, a2, . . . , an be representatives of the conjugacy classes of A, and
let Z be the character table of A, with (i, j) entry ψi(aj). Then (7.2) yields

⎛
⎜⎝

χ1(u)
...

χn(u)

⎞
⎟⎠ = Z

⎛
⎜⎝

| CG(a1) : CA(a1)|εa1(u)
...

| CG(an) : CA(an)|εan(u)

⎞
⎟⎠ . (7.3)
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It may happen that some information about the values χi(u) is available from which
one would like to obtain information about the partial augmentations of u. For this
purpose one obviously should multiply (7.3) by the inverse of Z. Let Z̄ be the complex
conjugate of Z, and Z∗ = Z̄T be the Hermitian transpose. Then

Z∗Z = |A| · diag(|A : CA(a1)|, . . . , |A : CA(an)|)−1

(see [3, (9.26)]), and it follows that

(χ1(u), . . . , χn(u))Z̄ = (| CG(a1)|εa1(u), . . . , | CG(an)|εan(u)). (7.4)

What kind of information may we have about the χi(u)? Of course, we are thinking
of u as a torsion unit, when it should be appreciated that the χi(u) are sums of roots of
unity. Equation (7.3) itself may provide information.

Remark 7.1. Let u be a torsion unit in V(ZG) which does not map to the identity
in ZG/A, and suppose that (ZC1) holds for proper quotients of G. Then χi(u) = 0 if the
kernel of the character ψi contains a non-trivial normal subgroup of G.

Proof. Let B be a non-trivial normal subgroup of G contained in A, and set Ḡ = G/B.
If B lies in the kernel of some irreducible character ψi of A, then ψi is inflated from an
irreducible character ϕ of Ā, and χi is inflated from ϕ↑Ḡ. Thus, we have to show that
ϕ↑Ḡ (ū) = 0 for the image ū of u in ZḠ. Since (ZC1) holds for Ḡ and ū does not map to
the identity in ZḠ/Ā, we have εā(ū) = 0 for all a ∈ A. Therefore, the claim follows from
(7.3) applied to the group Ḡ, its normal subgroup Ā and the element ū. �

We merely note down that (7.4) is compatible with any group action on A, in the
following sense.

Remark 7.2. Suppose that G is a group acting on A. Then G also acts on the irre-
ducible characters IrrC(A) if one defines ψσ, for ψ ∈ IrrC(A) and σ ∈ G, by setting
ψσ(a) = ψ(aσ−1

). This action is compatible with the action on the conjugacy classes of
A in the following sense (cf. Brauer’s ‘permutation lemma’ [3, (11.9)]). For σ ∈ G, define
m × m permutation matrices Pcol(σ) and Prow(σ) by requiring that Pcol(σ)i,j = 1 if
(aσ

i )A = aA
j and Prow(σ)i,j = 1 if ψσ

i = ψj . Then the ith column of ZPcol(σ) is the
column of Z corresponding to the class of aσ

i , and the ith row of Prow(σ)Z is the row of
Z corresponding to the class of ψσ

i . It follows that ZPcol(σ) = Prow(σ−1)Z. (And the
permutation representations σ �→ Pcol(σ) and σ �→ Prow(σ−1) of G are conjugate.)

The group G acts on the induced characters, χσ
i = ψσ

i ↑G. Replacing Z by
Prow(σ)ZPcol(σ) in (7.3) gives us

(χσ−1

1 (u), . . . , χσ−1

n (u))Z̄ = (| CG(aσ
1 )|εaσ

1
(u), . . . , | CG(aσ

n)|εaσ
n
(u)).

Perhaps this can be helpful to obtain relations between the εaσ
i
(u), σ ∈ G, when u is a

torsion unit in ZG.

In the special case when A is cyclic, we can prove, with the help of (7.4), the following
theorem.
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Theorem 7.3. Let A be a cyclic normal subgroup of G. Suppose that

(i) (ZC1) holds for proper quotients of G;

(ii) every torsion unit in V(ZG) which maps to the identity in ZG/A is rationally
conjugate to an element of G.

Then for each torsion unit u in V(ZG) which does not map to the identity in ZG/A, all
partial augmentations εa(u), a ∈ A, are zero.

Proof. We keep previously introduced notation. Let ζ be a primitive nth root of
unity (now n = |A|), and set G = Gal(Q(ζ)/Q). For σ ∈ G, we have ζσ = ζi for some
integer i = i(σ), uniquely determined modulo n. The map σ �→ i(σ) gives an isomorphism
G → (Z/nZ)× (see [11, § VI, Theorem 3.1]). Thus, G acts on A as the full automorphism
group, aσ = ai(σ) for a ∈ A. The action of G on the irreducible characters of A— according
to Remark 7.2—is described by ψσ−1

(a) = ψ(aσ) = ψ(ai(σ)) = ψ(a)i(σ) = ψ(a)σ, for ψ ∈
IrrC(A), a ∈ A. Note that also ψσ−1

(v) = ψ(v)σ and (ψ↑G)σ−1
(u) = (ψ↑G)(u)σ for ψ ∈

IrrC(A), v ∈ QA and u ∈ QG.
Let u be a torsion unit in V(ZG) which does not map to the identity in ZG/A. The

essential observation will be that the entries of (χ1(u), . . . , χn(u))Z̄ have a simple descrip-
tion in terms of the Galois action. Fix a faithful irreducible character ψ of A and set
χ = ψ↑G. The Galois conjugates of ψ are all distinct and give the faithful irreducibles.
It follows from Remark 7.1 that, for a ∈ A,

n∑
i=1

χi(u)ψi(a) =
∑
σ∈G

χσ−1
(u)ψσ−1(a) =

∑
σ∈G

χ(u)σψ(a)σ.

Thus, (7.4) means that

TrQ(ζ)/Q(χ(u)ψ(a)) = | CG(a)|εa(u) for all a ∈ A. (7.5)

We shall use induction on the number of prime factors on the order of u. Thus, to
start the induction, u will be of prime order, but we will treat this case simultaneously
with the general induction step. Suppose by way of contradiction that εa(u) �= 0 for
some a ∈ A. We shall show that εa(u) � 0. Since the image of u in ZG/A has vanishing
1-coefficient (see [16, (1.5)]), this will prove the theorem.

Set ξ = ψ(a). Let e denote the order of u, and let θ be a primitive eth root of unity.
Since the order of a divides e (see Remark 2.4), we have ξ ∈ Q(θ).

Let χ be afforded by a representation D, and write µ(ξ, u, χ) for the multiplicity of
the eth root of unity ξ as an eigenvalue of D(u). Then (see Remark 2.5)

µ(ξ, u, χ) =
1
e

∑
d|e

TrQ(θd)/Q(χ(ud)ξ−d). (7.6)

We shall use (7.5) to simplify this sum. Let f denote the order of the image of u in
V(ZG/A). Let d | e with f � d, so that ud does not map to the identity in ZG/A. If
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d �= 1, then u is not of prime order, and we can inductively assume that εa(ud) = 0 for
all a ∈ A. Taking traces is transitive (see [11, § VI, Theorem 5.1]), so

[Q(ζ, θd) : Q(θd)] TrQ(θd)/Q(χ(ud)ξ−d) = [Q(ζ, θd) : Q(ζ)] TrQ(ζ)/Q(χ(ud)ξ−d)

or

TrQ(θd)/Q(χ(ud)ξ−d) =
[Q(θd) : Q]
[Q(ζ) : Q]

TrQ(ζ)/Q(χ(ud)ξ−d).

Note that (7.5) also holds with u replaced by ud (and a replaced by ad), so the inductive
step shows that TrQ(θd)/Q(χ(ud)ξ−d) = 0 if d �= 1. When d = 1, (7.5), now slightly
modified, reads

TrQ(θ)/Q(χ(u)ξ−1) =
ϕ(e)

ϕ(|A|) | CG(a)|εa(u),

where ϕ denotes Euler’s phi function. Furthermore,

1
e

∑
d|e:f |d

TrQ(θd)/Q(χ(ud)ξ−d) =
1
e

∑
d|e/f

TrQ((θf )d)/Q(χ((uf )d)ξ−fd)

=
1
f

µ(ξf , uf , χ).

Taken altogether,

µ(ξ, u, χ) =
1
f

µ(ξf , uf , χ) +
1
e

ϕ(e)
ϕ(|A|) | CG(a)|εa(u). (7.7)

We remark for later use that, when f is even, (7.6) holds with ξ replaced by −ξ and
it follows in the same way that

µ(−ξ, u, χ) =
1
f

µ(ξf , uf , χ) − 1
e

ϕ(e)
ϕ(|A|) | CG(a)|εa(u). (7.8)

Note that µ(ξ, u, χ) and µ(ξf , uf , χ) are non-negative (integers). We can assume that
µ(ξf , uf , χ) �= 0 since otherwise obviously εa(u) � 0. By assumption (ii), uf is rationally
conjugate to an element b of A. The eigenvalues of the matrix D(b) (remember that
D is a representation affording the induced character χ) are the roots of unity ψ(bgi)
where g1, . . . , gr are representatives of the cosets of CG(b) in G, each one occurring with
multiplicity χ(1)/|G : CG(b)|. Since ξf is an eigenvalue, ψ(af ) = ξf = ψ(bgi) for some
index i. It follows that uf is rationally conjugate to af , and

1
f

µ(ξf , uf , χ) =
1
f

| CG(af )|
|A| . (7.9)

Again, we note for later use that if σi ∈ G are such that ψ(agi) = ξσi (remember that
ξ = ψ(a)) and f is even, then (7.8) holds with ξ replaced by ξσi , and so

µ(−ξσ1 , u, χ) = · · · = µ(−ξσr , u, χ). (7.10)
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We will show that
1
f

| CG(af )|
|A| � 1

e

ϕ(e)
ϕ(|A|) | CG(a)|, (7.11)

where equality can hold only when f = 2 and |A| is odd. Thus, in the end, only this case
will be left to consider since strict inequality implies by (7.7) and (7.9) that the rational
integer εa(u) is non-negative.

Write f = f1f2 such that the prime divisors of f1 divide |A| and (f2, |A|) = 1. Since e/f

is the order of af , we have e = f2e
′ with all prime divisors of e′ dividing |A|. Remembering

that ϕ(k)/k =
∏s

i=1(1 − 1/pi) for a natural number k whose distinct prime divisors are
p1, . . . , ps, we obtain

f2
1
e

ϕ(e)
ϕ(|A|) =

1
e′

ϕ(f2)ϕ(e′)
ϕ(|A|) = ϕ(f2)

ϕ(e′)/e′

ϕ(|A|)/|A|︸ ︷︷ ︸
�1

1
|A| � 1

|A| .

Note that equality can only hold if f2 � 2.
Set Q = CG(af )/ CG(a). We proceed to show that |Q| � f1 (a general fact) and that

|Q| < f1 if f1 �= 1. Together with the last inequality, this establishes (7.11):

1
f1

| CG(af )|
|A| � | CG(a)|

|A| � f2
1
e

ϕ(e)
ϕ(|A|) | CG(a)|

with equality both times possible only if f1 = 1 and f2 = 2 (remember that f �= 1).
Note that 〈af 〉 = 〈af1〉 and so CG(af ) = CG(af1). The quotient Q is the kernel of

the natural surjection G/ CG(a) → G/ CG(af1). When G/ CG(a) is viewed as a sub-
group of Aut(〈a〉), Q consists of automorphisms fixing af1 . Thus, |Q| � f1 (both this
fact and next are described in detail separately in Claim 7.4, below). Suppose that
|Q| = f1 �= 1. Then prime divisors of f1 are prime divisors of |〈a〉|, and if we set
B = 〈b ∈ 〈a〉 | bp = 1 for some p ∈ π(f1)〉, then 1 �= B � G and Ba ⊆ aG. Thus, if
we set Ḡ = G/B and ū denotes, as usual, the image of u in ZḠ, then εā(ū) = εa(u) �= 0.
But this contradicts the assumption that (ZC1) holds for Ḡ and ū does not map to the
identity in ZḠ/Ā. Therefore, |Q| < f1 if f1 �= 1.

Finally, we consider the case when f = 2 and |A| is odd. It follows from (7.7), (7.9)
and (7.11) that either εa(u) � 0 or εa(u) = −1, and in the latter case the supple-
ments (7.8) and (7.10) provide us with µ(−ξσi , u, χ) = µ(ξ2, u2, χ) = | CG(a2)|/|A| for
i = 1, 2, . . . , r = |G : CG(a2)|. Now, suppose that εa(u) = −1. Since the (ξ2)σi are the
distinct eigenvalues of D(u2) and χ(1) = |G : A|, it follows that the −ξσi are the distinct
eigenvalues of D(u). Thus, D(ue/2) is the negative of the identity matrix. Since ue/2 has
order 2, A is of odd order and (ZC1) holds for G/A, we know that ue/2 is rationally con-
jugate to an element z of G (see [5, Theorem 2.2]). It follows that D(ue/2) = D(z), and
z ∈ Z(G), since D is a faithful representation of G. Thus, z is the 2-part of u, and z−1u is a
torsion unit in V(ZG) which maps to the identity in ZG/A. By assumption (ii), the partial
augmentations of z−1u are non-negative, in contradiction to εz−1a(z−1u) = εa(u) = −1.
The proof of the theorem is complete. �
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We append an elementary fact used in the above proof. We write π(n) for the set of
prime divisors of a natural number n.

Claim 7.4. Let X be a cyclic group, let k ∈ N and let Q be the subgroup of Aut(X),
fixing Xk element-wise. Then |Q| � k. Furthermore, if k �= 1 and |Q| = k, then π(k) ⊆
π(|X|) and, for B = 〈x ∈ X | xp = 1 for some p ∈ π(k)〉 and a generator a of X, the coset
Ba is contained in a single orbit under the action of Q on X.

Proof. Let Xi (i ∈ I) be the Sylow subgroups of X. Then Aut(X) =
∏

i∈I Aut(Xi)
and Q =

∏
i∈I Qi, where Qi = 〈α ∈ Aut(Xi) | α fixes Xk

i element-wise〉. This will reduce
the proof of the claim to the case where X is a p-group.

So, assume for the moment that |X| = ps for some prime p and s � 1. Let pt be the
p-part of k. Then one of the following holds:

(i) pt = 1, when |Q| = 1;

(ii) t � s, i.e. Xk = 1, when |Q| = |Aut(X)| = (p − 1)ps−1 < ps � pt;

(iii) 1 � t < s, when |Q| = pt (since |Xk| = ps−t �= 1 and Q is isomorphic to the kernel
of the surjection (Z/psZ)× → (Z/ps−tZ)×).

Note that, in any case, |Q| is less than or equal to the p-part of k.
Returning to the general case, it follows that |Q| � k. Suppose that k �= 1 and |Q| = k.

Then π(k) ⊆ π(|X|). Let p ∈ π(k) and let Xi(p) be the Sylow p-subgroup of X, with
generator xp. Then we are in situation (iii), i.e. the p-part of k is less than the order
of xp. If bp denotes an element of order p in Xi(p), then αp : xp �→ xpbp defines an
automorphism of Xi(p) of order p which can be viewed as an automorphism of X, and
then αp ∈ Q. Now if Q0 = 〈αp | p ∈ π(k)〉 � Q, B = 〈bp | p ∈ π(k)〉 � X and X = 〈a〉,
then Ba = {aγ | γ ∈ Q0}. This completes the proof. �

Now we can complete the proof of Theorem 1.1.

Corollary 7.5. Suppose that G = XA with A � G, X � G and with A cyclic and
X abelian. Set G∗ = G/ CG(A) and suppose that u∗ �= 1 in ZG∗ for a torsion unit u in
V(ZG). Then u is rationally conjugate to an element of G.

Proof. By induction on the order of G and in view of Corollary 5.3 we can assume
that (ZC1) holds for proper quotients of G. Also Theorem 7.3 (ii) holds by Corollary 5.3.
Thus, by Theorem 7.3, all partial augmentations εa(u), a ∈ A, are zero.

Let g ∈ CG(A). We can write g = xa with x ∈ CX(A) and a ∈ A. Note that x ∈ Z(G),
so x−1u is a torsion unit with (x−1u)∗ �= 1 and εg(u) = εa(x−1u) = 0 by the previous
paragraph.

By Corollary 6.2, εg(u) ∈ {0, 1} for all g ∈ G \ CG(A).
Thus, all but one of the partial augmentations of u vanish. Again using Corollary 5.3,

it follows that the same holds for all powers of u, and therefore u is rationally conjugate
to an element of G (see [16, (41.5)]). �
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8. Zassenhaus conjecture (ZC1) for some direct products

It is hard to predict how the Zassenhaus conjecture (ZC1) behaves under taking direct
products of groups for which (ZC1) holds (in fact, almost nothing is known in this
direction, cf. [1]). Finally, we present two positive results.

The results from § 3 can be used to prove an extension of a result of Weiss (see [21,
Corollary], which is the G = 1 case of the following proposition) in an alternative way.
We also give an obvious extension of a result of Höfert [9], which was the source of
inspiration for the approach taken in § 7.

Proposition 8.1. Let G be a finite group for which (ZC1) holds, and let Π be a
nilpotent group with (|G|, |Π|) = 1. Then (ZC1) holds for the direct product G × Π.
Actually, a torsion unit in V(Z(G × Π)) is conjugate to an element of G × Π already in
the units of S(G × Π), where S is the semi-localization Zπ(|Π|).

Proof. Set P = G×Π and let u be a torsion unit in V(ZP ). If p is a prime divisor of
|Π|, then the p-part of u is conjugate in (ZpP )× to an element xp of the Sylow p-subgroup
of Π, by Corollary 3.3. Choose such elements xp, one for each prime divisor p, and let
x be their product. By Lemma 2.2, εa(u) = 0 for all a in P whose |Π|-part is not
conjugate to x. Thus, we can choose g1, . . . , gs ∈ G such that the εgix(u) are the distinct
non-vanishing partial augmentations of u. It follows that the image ū of u under the
homomorphism ZP → ZP̄ = ZP/Π has distinct non-vanishing partial augmentations
εḡi(ū), and hence precisely one partial augmentation of u does not vanish, since (ZC1)
holds for G = P/Π by assumption. Thus, so far we have shown that (ZC1) holds for P

and that u is rationally conjugate to an element a of P .
Let p be a prime divisor of |Π|. It remains to show that u is conjugate to a in (ZpP )×

(see [3, (31.15)]). Let up, up′ and ap, ap′ be the p- and p′-parts of u and a, respec-
tively. There exists v ∈ (ZpP )× such that uv

p′ = ap′ (see [7, Lemma 2.9]). We noted
at the beginning of the proof that we can choose w ∈ (ZpP )× such that uvw

p = ap.
Set N = Op(P ). Since P = N × Op′(P ), we can choose w to lie in 1 + I(ZpN)G.
Then uvw ≡ a mod I(ZpN)P . Thus, if we set ũ = uvw and let m denote the order
of ap′ , then k = (1/m)

∑m−1
i=0 ũia−i ∈ 1 + I(ZpN)P . We have 1 + I(ZpN)P ⊆ (ZpP )×

(see [3, (5.26)]). Moreover, if n denotes the order of a, then k = (1/n)
∑n−1

i=0 ũia−i as
ũma−m = 1, so ũka−1 = k and uvwk = a. �

Höfert proved the following result in [9] for A of prime order, and it was announced
in [10, Proposition 3.2] for A an elementary abelian group.

Proposition 8.2. Let A be a finite abelian group of exponent m, and let ζ be a
primitive mth root of unity. Suppose that any torsion unit in V(Z[ζ]G) is conjugate in
(Q(ζ)G)× to an element of G. Then the Zassenhaus conjecture (ZC1) holds for G × A.

Proof. Let u be a torsion unit in V(Z(G × A)); we shall show that all but one of the
partial augmentations of u vanish. Note that Z(G × A) = ZG ⊗Z ZA. The unit u maps
under the homomorphism ε ⊗ id : Z(G × A) → ZA to an element a of A, by a result of
G. Higman. Replacing u by ua−1, we can assume that u maps to the identity.
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Let χ be an irreducible complex character of A. We have a commutative diagram of
ring homomorphisms:

Z(G × A)
ε⊗id ��

id ⊗χ

��

ZA

χ

��
Z[ζ]G

ε
�� Z[ζ]

showing that u maps under ϕ = id⊗χ to a unit uϕ of augmentation 1 in Z[ζ]G. By
assumption, εg(uϕ) = 1 for the elements g of a unique conjugacy class of G, and the
other partial augmentations of uϕ vanish. Note that εg(uϕ) =

∑
a∈A χ(a)εga(u) for all

g ∈ G.
Let a1 = 1, a2, . . . , an be the elements of A, and let χ1 = id, χ2, . . . , χn be the irre-

ducible complex characters of A. Let Z be the character table of A, with (i, j) entry
χi(aj), and Z∗ its Hermitian transpose, so that Z∗Z = |A|In where In is the n × n

identity matrix. Set ϕi = id⊗χi : Z(G × A) → Z[ζ]G.
Take any g ∈ G, and set

x = (εga1(u), . . . , εgan(u)), y = (εg(uϕ1), . . . , εg(uϕn)).

Then y is a vector with 0/1 entries, and yT = ZxT. From this we obtain |A|xT = Z∗yT,
where the entries of the vector on the left-hand side lie in |A|Z, and those on the right-
hand side are sums of roots of unity taken from a column of Z. It follows that either
x = 0 or y = (1, 1, . . . , 1) and, in the latter case, x = (1, 0, . . . , 0). Thus, all partial
augmentations of u are either 0 or 1 and, since they add up to 1, we are done. �
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