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ABSTRACT

We derive some decision rules to select best predictive regression models in a
credibility context, that is, in a 'random effects' linear regression model with
replicates. In contrast to usual model selection techniques on a collective
level, our proposal allows to detect individual structures, even if they
disappear in the collective.

We give exact, non-asymptotic results for the expected squared error loss
for a predictor based on credibility estimation in different models. This
involves correct accounting of random model parameters and the study of
expected loss for shrinkage estimation. We support the theoretical properties
of the new model selectors by a small simulation experiment.
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1 INTRODUCTION

In the open market economy of today, one of the most challenging tasks of
an insurer is the design of a rating system catching all relevant factors and
omitting all irrelevant ones. Mathematically, this may be modelled as the
endeavour of finding those covariates which lead to the best possible
predictions, for example in a regression model.

In classical statistics, with a frequentist interpretation, this problem of
model selection has been widely discussed, cf. Akaike (1970, 1973), Mallows
(1973), Schwarz (1978), Rissanen (1989). For an overview, see also Linart
and Zucchini (1986). It may be worth to recall the well known fact, that the
machinery of testing hypothesis is often inappropriate for searching a model
with optimal predictive potential. This, because generally, the optimal
predictive model-structure is not equal to the true model-structure. An
intuitive (and mathematically correct) reason is that unknown parameters
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have to be estimated, each of them contributing (usually in an additive way)
to an increase of the variance of the estimated predictor. Moreover, selection
of Bayes and Empirical Bayes models is fundamentally different from
selection of models with fixed effects, because the parameters themselves
contribute as random variables to statistical uncertainty. And in the case of
credibility models with collateral data structure, we have to consider the fact
that shrinkage estimation is used.

Unlike the more traditional use of Bayes factors, the predictive point of
view in Bayes model selection has been studied among others in Gelfand and
Gosh (1998). As usual, the solution depends on the specification of the prior
distribution. In addition, Gelfand and Gosh (1998) take the approach to find
an optimal model conditioned on the data which is often a good strategy.
However, in actuarial applications one typically aims for optimality on
average (minimizing the overall expected loss of the insurer) instead of
conditioning on the data. The Empirical Bayes predictive point of view for
optimal model selection on average with the effect of estimating hyper-
parameters seems unknown. Neuhaus (1985) considers a weakly related
problem about the effect of additional parameters in a credibility model. But
no explicit penalty for using additional model parameters is given.

We develop here an approach for selection of general linear credibility
regression models which is natural in the credibility philosophy. The set-up
is as follows.
(a) The expected squared loss of a predictor at a design point is used as a

predictive criterion for optimality of a model.
(b) No specification of a prior distribution for structural hyper-parameters is

required. The assumptions are only in terms of first and second order
moments (and a linear regression structure).

(c) The focus is on best linear prediction, but still involving shrinkage
estimation.
Rather than the view to condition on the data, issue (a) is more

appropriate for an insurer, as already mentioned above. Point (b) leads to a
'robustness' against misspecification of the prior distribution. It is an
analogue of the Gauss-Markov conditions in classical linear models leading
to best linear unbiased estimators which is the issue (c). We are giving some
exact, non-asymptotic results for the expected squared predictive loss which
in turn can be estimated from the data leading to a data-driven model-
selector. Besides the theoretical justification we also consider the quality of
our model-selectors in a small simulation study.

Our model selection approach helps to prevent from the dangerous anti-
selection phenomenon in insurance. To explain why, we briefly mention a
frequently used (but bad) strategy in practice: a model for the collective data
is selected with frequentist methods for fixed effects and for such a chosen
model, credibility is then introduced in a second stage. This approach is
missing individual structure which averages out in the collective; see also
Figure 6.1 in section 6. It is clear that such collective decision making
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potentially leads to anti-selection. One has to account for individual
structure: this is what our approach does and it is not mislead by the
collective view.

2 THE CREDIBILITY REGRESSION MODEL

Consider a class of individual risks r G {1, 2, ..., N}, each of them with risk
parameter $r and observations Xr = (X\r, ..., Xnr)'. For simplicity, the
individual sample size n is the same for all risks r. The risk parameter is
modelled, in the Empirical Bayes sense, as a random variable. The individual
correct premium for 'period' i is denoted by

We then write

Xir = lli{dT)+ei{tir), 1 = 1 , ...,/!,

E[e,-(tfr)|i?r] = 0, E[e?(tfr)|0r] = <?(tiT)/V?\ i = 1, ..., n.

The interpretation of the heteroscedastic conditional variances a2(rdr)/v\r' is
given through different volumes v\ (which are just weights in the statistical
terminology) for the different 'periods' i and risks r. The individual premium
is assumed to follow a linear regression structure,

with n x p design matrix D(p < n) being the same for all r e {1, ..., N}. The
specifications (2.1) and (2.2) describe the main part of the model. Thereby we
tacitly assume that the risks are drawn in an i.i.d. fashion, i.e., $i, ..., tfN

i.i.d. on the structural level, implying that

, ..., /3(I?JV) i-i.d.,

e(i?i), ..., e(i?yv) i.i.d., where e(0r) = (ei(^), .., en(0r))',

Ei(dr), Ej{ds) independent for all i,j = 1, ..., n and r ^ s.

This then induces also independence between Xir and Xp for all ij = 1, ..., n
and r ^ s. Since the parameter vector j3(-dr) is a random variable, we have a
'random effects' linear model with replicates over different r's. In the
actuarial literature, the model is known as 'credibility regression model', cf.
Hachemeister (1975).

In the sequel, we assume orthogonal design together with componentwise
uncorrelated regression parameters /3($,-)- Reasons for this are given in
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Buhlmann and Gisler (1997). More precisely, we assume for the structure
in (2.2),

n

J2DiJD'kVlr) = 0 for7 ^ k and all r = 1, ..., N.
1=1

We assume here that

n

q{ = v\r)/Vir) is independent of r, where KJr) =

Then, orthogonality as above can always be achieved by an appropriate
reparametrization. Moreover, we assume uncorrelated components of the
parameter vector in (2.2),

Cov(/?(t?r)) = diag(r0
2, ..., ^_,)for all r = 1, ..., N,

and the expectation is denoted by

,)] = (b0, ..., V O ' -
Finally, we also assume conditionally uncorrelated components for the
errors in (2.1),

We also denote by E[cr2(^)] = a2, r=\, ..., N.

2.1 The problem of selecting the optimal model

Let us ask the question how to possibly reduce the set of regression
parameters (covariates)

to an optimal subset,

or how to find an optimal subset regression model,

/t=l

Optimality is here always with respect to the expected squared error loss,
see also subsection 3.1. In the sequel, we denote by U C {0, ..., p — 1} a
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subset of the regressor indices and write the corresponding subset regression
model as

jeU

We then speak of the ^-submodel. Obviously, the full model
U = {0, 1, ..., p — 1} is a possible choice, too.

It is worthwhile to remember the fundamental argument for selection of
fixed effects models in frequentist statistics,
(a) Each (fixed) parameter (3jk that we retain needs to be estimated,

hence leading to a higher variance of the estimator for
W = E p o A / # , i = l , 2 , ..., n.

(b)On the other hand, any relevant parameter that we miss will cause a
model bias in the estimator for fit.

All model selection procedures in frequentist statistics rely on an optimal
compromise between (a) and (b), the so-called bias-variance trade-off, which
is estimated with the observed data. We mention here various approaches
such as Cp (Mallows, 1973), FPE (Akaike, 1970), AIC (Akaike, 1973), BIC
(Schwarz, 1978) and MDL (Rissanen, 1989). The tool of hypothesis testing is
not tailored towards optimality (with respect to some risk function such as
expected squared loss) of a model. The reason is that generally, the optimal
model is not equal to the true model. For the latter, testing is appropriate,
but not for the first. The shift in focus from the 'true model' (associated with
testing) to the optimal approximating model (associated with risk-optimal
model selection) is often very fruitful in prediction problems.

For credibility models, the uncertainty of each parameter (3jk is measured
differently.
• By the nature of/^ = /3jk($) as a random variable (in the Bayesian sense)

with a structural prior distribution.
• By the uncertainty in the relevant hyper-parameters of the structural

distribution. Following the Empirical Bayes route, estimation of hyper-
parameters introduces an additional source of variance contribution.

We propose in this paper model selection rules for the homogeneous
credibility estimator in regression.

3 INDIVIDUAL PREDICTIONS UNDER KNOWN COLLECTIVE STRUCTURE

Unless explicitly mentioned, we assume in this section that the structural
parameters in the underlying full regression model are known,

a1 = E[<72(tf)], rj = V a r ^ t f ) ) (/ = 0, ..., p - 1).

Given are the risks r = I, ..., N and for each risk the observations

Xr = \X\r, ..., Xnr) .
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For any risk r from this collective we want to find an optimal U-
submodel. As we shall see, depending on the volumes of observed data for
different risks, the optimal choice of a ^-submodel can vary form risk to
risk. Optimality is here, as usual in credibility theory, with respect to the
expected squared loss between the predictor and the observation to be
predicted.

More precisely, we wish to predict,a (future) observation for risk r at a
(future) design point c = (c0, ..., cp-\) G W,

P-\

j=o

where

Co\{e„+{{•&r), Si{'ds)\"&r^'ds) = 0 f o r a l l i = 1, ..., n and r,s = I, ..., N,

and Kn^j is the volume associated to the (future) observation Xn+\,r{c). We
can think of Xn+\j(c) as the next observation of claims generated at the new
design point c (the new set of covariates) with volume V^: this new
observation is conditionally uncorrelated from X^r (i = 1, ..., n) and of
course independent of XiS (s ^ r; i = 1, ..., n).

We allow the set of possible regressors {/3o($r), •••, f}p-\(flr)} to be too
large, i.e., the full model can be overparametrized. For example, for some
index 70 G {0, ..., p - 1} it could be that E[#0(i9r)] = 0, Var(fy0(tfr)) = 0.
Conceptually, we could alternatively write for the new observation

where

T={je{0, ...,p-l};

is the index set of the true regression parameters.
The predictor based on the submodel U is as follows,

jeU

where J3j{dr) denotes the homogeneous credibility estimator,

4-(i?r) = z{r)bx
r + (i - z(r)) ^ = 1 b^Zj
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The elements of this credibility estimator /?y(i?r) are, cf. Buhlmann and Gisler
(1997),

v" y n -v^ V" Y n-v^
(r) '

zir) =
1

Here and in the sequel, a dot denotes summation over all corresponding
indices.

3.1 Expected loss and model selection

The accuracy of the predictor X^+\ r(c) from the ^/-submodel is measured
with the expected squared loss,

It depends on the risk r, the submodel U, the future design point c and of
course also on the true underlying probability distribution which is implicitly
used in the expectation operator IE. It is instructive to decompose this
expected loss as

(3.1)

= 1 + 11 + III + IV.

A derivation is given in section 8. The interpretation is as follows.
/: Uncertainty of claim around the correct individual premium.
//: Uncertainty of parameters chosen in U which are true relevant

parameters.
///.- Model bias due to underparametrization.
IV: Error due to overparametrization.
Formula (3.1) is conceptual and not useful for estimating Dr \c) from the
data. In particular, the set of true parameters T is not known. By the fact

https://doi.org/10.2143/AST.29.2.504614 Published online by Cambridge University Press

https://doi.org/10.2143/AST.29.2.504614


252
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0 for j £ T, it is straightforward to write the expected squared

EC;(^H + E . (3-2)

where if — {0, ..., p - 1}\U is the complement of the set £/ with respect to
the full basis model {0, ..., p — 1}. Formula (3.2) can be explicitly rewritten
in terms of the structural parameters, see section 8,

(3.3)

Each parameter chosen in

( \

W contributes to a variance term

^)\ ) Penalizing large models, whereas the

parameters in Uc, which are not chosen, generate a (model) bias term

^ 2 ] 2

r) l ~ zjr

]
Based on (3.3), the optimal submodel is then given by

Remark A. In the special case with N = 1 (no collateral data) and Vt = 1
(/ = 1, ..., « + 1), we obtain from (3.3) the expected squared loss in classical
frequentist linear fixed effects regression

a
jell

This formula is different from that obtained by the classical discussion
aiming for models minimizing

i=\

This is a mean squared error averaged over the observed design points
dt — (AO> •••) A,/)-i) ' cf. Weisberg (1985, App. 8A.1) in connection with
Mallows Cp. In contrast, we consider here the expected squared loss at a
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particular (future) design point c measuring optimal prediction at this point c.
We feel that this comes closer to the aim in actuarial practice. However,
unlike to selection of fixed effects models in frequentist statistics which are all
of the form of a penalized residual sum of squares, the approach of optimal
prediction at a point needs explicit consideration of a model bias term.

So far, we have assumed that the structural parameters are all known. If
this is not the case, the standard approach in credibility procedures is to
replace unknown structural parameters by their estimated versions. Here,
the expected loss Lr (c) can then be estimated from the data with the
estimated structural parameters a2, bj, f2 (j = 0, ..., p — 1) and Z J , given in
(5.1)-(5.4). Formally, the estimated squared loss Lr (c) is given by the
following plug-in scheme,

c) = G(a2, b0, ..., bp-u T2, ..., T2
 x, Zo, ..., Z,_i) ,

; . . , ' . I (3-4)
, b 0 , ..., b ^ , f 2 , ..., f2_u Zo, ..., Z p y

where G(.) is the function as described by formula (3.3). We prefer the
notationally appealing plug-in formalism including Z/s as arguments,
although the (optimal) Z/s are functions of a2, T2 and hence not intrinsic
structural parameters. We select the optimal model from the data as

U$t(c) = argmi%c{0, ...,p^}L^(c). (3.5)

Like the truly optimal submodel Ulpt{c), the estimated optimal submodel
U,lp,(c) depends on the future design point c (where prediction is made) and
on the risk r. The estimator L, (c) is consistent as the number N of risks
grows to infinity, and thus also our selection procedure.

The model selector in (3.5) is useful and quite easy to implement.
However, the standard argumentation in credibility, namely to treat in a first
stage the structural parameters as fixed and replace them in a second stage
by their estimated versions, discards uncertainty about structural parameter
estimation. The expected loss Lr\c) does not account for this uncertainty
and can in this sense be misleading. For practical purposes, as long as N is
'sufficiently large', the selector in (3.5) is appropriate for discriminating
among 'sufficiently different' prediction models. A more detailed discussion
about this issue is given in sections 6 and 7. We describe in the next section a
more complicated scheme which accounts for estimation of structural
parameters.

4 UNKNOWN HYPER-PARAMETERS:
NON-OPTIMAL AND ESTIMATED CREDIBILITY WEIGHTS

If the structural parameters of the collective are not known, we need to
estimate ZJ^ (/— 0, ..., p— 1) for constructing the credibility estimator.
Such an estimate is given in (5.4).
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The expected loss Lr
u\c) in subsection 3.1 is correct if the structural

parameters and hence the credibility weights are known; in particular, this
means that the credibility weights are optimal for unbiased linear estimation.
But of course, estimated credibility weights are never exactly optimal; hence,
the expected loss Lr (c) is not correct. We first address the problem of
obtaining the true expected squared loss for fixed, generally non-optimal
credibility weights between 0 and 1, which are denoted in the sequel by
Zj• (j = 0, ..., p - 1). In statistical terminology, we study the expected loss
for a shrinkage estimator with fixed shrinkage factors. The problem of
treating the credibility weights as random, which is the case when they have
been estimated, is more delicate and we discuss it in subsection 4.1.

The quantity in formula (3.2) that depends on the credibility weights is

the variance term c/

credibility weights, the expected squared loss IE

By using arbitrary, fixed

is

(4-1)

(A derivation is given in section 8. The notation Mr(c) distinguishes this
expected squared loss with arbitrary, fixed credibility weights from Lr

U\c)
for the optimal credibility weights. Of course, Lr \c) is just a special case ofr t

(c) when optimizing over the credibility weights Zj in (4.1).

Remark B. The quantity Mr (c) in (4.1) is the exact expected loss for the
homogeneous credibility estimator with fixed arbitrary credibility weights.
This is also of special interest in statistical theory: our result describes model
risks in connection with shrinkage estimation for fixed shrinkage weights. In
actuarial practice we advise to use (4.1) instead of (3.3) whenever the
credibility weights are determined by other reasons and are not estimated
from the collateral data structure. The difference between the expected losses
in (3.3) and (4.1) can also be used in a sensitivity analysis when considering
the stability of an optimal model under variation of the credibility weights
around their optimal values.

Estimation of MJU\c) with fixed, given Z- 's can be done with plugging
in the estimate d2, bj and rf from (5.1)-(5.3).
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Remark C. Another estimate of M; (c) than the one discussed above could
be as follows. Plug in all estimated structural quantities o2, bj, fj and
Zf] = Zf from (5.1)-(5.4). But this would coincide with L¥\C) from (3.4),
since the credibility weights Z- are of the optimal structural form.
Accounting for the randomness when plugging in such estimated credibility
weights is given in the next subsection 4.1.

In the special case where all the volumes are the same, i.e.,
v\r) = V (i= 1, ..., n+ 1, r = 1, ..., N), the fixed credibility weights
should not depend on the risk r. We denote them by Zj (j = 0, ..., p — 1).
Then,

Mf\c) = M[u\c) = cy1lV

(4.2)

jeUL

aj=a2/(SjjnV).

4.1 Estimated credibility weights

For simplicity we consider here the case with equal volumes as in (4.2). But
all what follows can be written down straightforwardly for the general case
with different volumes. When estimating credibility weights we consider,

SunV ,. „

These estimators are consistent for the true optimal weights Z, = j " 2, 2

as N —> oo. Direct plug in of estimated structural quantities is discussed in
Remark C. We write

Zj = Zj + Ay.

https://doi.org/10.2143/AST.29.2.504614 Published online by Cambridge University Press

https://doi.org/10.2143/AST.29.2.504614


2 5 6 PETER BUHLMANN AND HANS BUHLMANN

When using Zj = Zj in formula (4.2) (ignoring first that the Z/s are
random), we obtain

l-Zi N - 1 . ,1 N - 1 A 2

(4.3)

Note the correspondence to formula (3.3) as well, since the Z/s are the
optimal fixed credibility weights. To evaluate (4.3), we need a 'reasonable'
value of Aj. Approximately, IE [Ay] « 0 and thus, the expected value of Aj is
approximately

the variability of Zj. As a reasonable but non-exact value we find

Var(A,) 1Z X~Z> " 1 + m + ~ ' ' + ™ ^+T:

(4.4)

See section 8. Replacing the quantities Aj in (4.3) with the values in (4.4)
yields another expected loss

c) = RM (C) given by (4.3) and (4.4). (4.5)

Notationally, we distinguish this expected squared loss R^(c) for the case
with estimated, random credibility weights from the one in (4.2) with fixed,
arbitrary credibility weights. Note that in (4.5), the credibility weights Zj are
optimal as in (3.3) (but the expected loss is, unlike as in (3.3), for the
predictor X^+\ r(c) = X^+\(c) with estimated, unknown credibility weights).

Remark D. The expected loss in (4.5) does only partially reflect the
randomness of the estimated Z/s for the predictor X^Xr(c) = Xn^_\(c).
Formula (4.3) treats the Ay's as fixed and we then consider afterwards
statistical variability of these quantities. This route possibly misses some
complicated correlation between Zj and the individual least squares
estimates bfr (j, k = 0, ..., p—l, r=l, ..., N). A non-asymptotic, exact
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calculation of the expected loss when (correctly) viewing the Z7 as random
variables being functions of all the observations seems very difficult.

The expected squared loss in (4.5) can be estimated by plugging in the
estimated structural parameters a2, bj, T2 and Zj (j — 0, ..., p — 1) given in
(5.1)-(5.4). We denote it by R(u\c). By the message in Remark D, we view
(4.5) and its estimated version R^u\c) as a guide to account for effects due to
estimation of credibility weights. Our simulation study in section 6 indicates
that model selection based on R^(c) works better than with Uu\c) from
(3.4); in particular for discriminating among very similar prediction models.
For a more detailed discussion, see sections 6 and 7.

5 ESTIMATION OF STRUCTURAL HYPER-PARAMETERS

When estimating the expected losses in (3.3), (4.1), (4.2) and (4.5) it remains
to estimate the hyper-parameters a2, bo, ..., bp-\ and TQ, ..., r2

x.
The variance of the errors o2 = Var(e(??r)) = E[Var(e(#r)|#r)] can be

estimated with a residual sum of squares from the full basis model involving
all covariates. Let

An unbiased estimator is then given by

<T2 = R S S — - = — r . (5.1)
N{n-p)

See section 8.
For the collective means we take the obvious estimator

^ ( J = 0,...,p-l). (5-2)

For the variance components rj = Var(/3,(^)), consider the sum of
squares

r=i \ e=\
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As shown in section 8,

We then use as an estimator

2 = 1 / (Â
J A\ J N(n-p)Sjj

(5.3)

where w+ = max(w, 0) and RSS as above.
We then estimate credibility weights, of optimal form, as

- (y = 0, ...,p-l), (5.4)

with a2 and f2 from (5.1) and (5.3), respectively.
As usual in model selection, it is often of little concern to ask about

efficiency for estimating unknown expected losses. We just give a few
comments. Due to the orthogonal design, the accuracy of the individual
estimates bjr, used in Wj, is always the same, regardless how large the full
basis model is. On the other hand, the efficiency of the estimator a1 does
depend on the dimensionality of the full basis model. With increasing degree
of overparametrizing the basis model, the estimator a2 gets more inefficient.
But'usually, such effects are very small.

6 SIMULATION

We consider two related situations. In both cases, the individual sample size
is n = 10 and the volumes are Vp = 1 (/ = 1, ..., n + 1; r = 1, ..., N).

The design matrix is

D =

-4.9543369
-3.8533732
-2.7524094
-1.6514456
-0.5504819
0.5504819
1.6514456
2.7524094
3.8533732
4.9543369

5.2223297
1.7407766

-0.8703883
-2.6111648
-3.4815531
-3.4815531
-2.6111648
-0.8703883
1.7407766
5.2223297

-4.534252
1.511417
3.778543
3.346710
1.295501

-1.295501
-3.346710
-3.778543
-1.511417

4.534252

3.3658092 \
-4.1137668
-3.1788198

0.5609682
3.3658092
3.3658092
0.5609682

-3.1788198
-4.1137668

3.3658092/

(6.1)

https://doi.org/10.2143/AST.29.2.504614 Published online by Cambridge University Press

https://doi.org/10.2143/AST.29.2.504614


SELECTION OF CREDIBILITY REGRESSION MODELS 2 5 9

This design is constructed from orthogonal polynomials of degrees smaller
or equal to 4. They-th column of D represents a polynom of degree j — 1 (as
a function of the row index). A submodel WC{0, 1,2, 3, 4} is thus given
by a subset of degrees of orthogonal polynomials.

Moreover, we assume

)-AAn(0,/) ,

= diag(r0
2, ..., r4

2),

where / is the 11x11 identity matrix. The new design point at which
prediction is made is

c = (1, 1.5, -2.5, -3.5, 0.5)', (6.3)

which is 'fairly close' to the 7-th observed design point (D70, ..., 2)74)'.
The two specifications we consider are

(Ml) n = 10, N = 100, D as in (6.1), c as in (6.3),
and for (6.2): b = (1, 0, 0, 0, 0)', S^ = diagjl, 1, 0, 1, 0),

(M2) n = 10, N = 5, D as in (6.1), c as in (6.3),
and for (6.2): b = (1, 0, 0, 0, 0)', S/j = diag(l, 0.01, 0, 0.01, 0).

Hence, the set of the true regression parameters is in both specifications
T = {0, 1, 3}. The full model {0, 1, 2, 3, 4} is overparametrized but still a
good basis model for estimating the structural hyper-parameters and thus
for estimating expected losses (relative to this basis model). Some
realizations of the model specified by (Ml) are given in Figure 6.1.

Because E[/3,-(i?r)] = 0 for j = 1, ..., 4, the individual effects almost
disappear in the collective representation in Figure 6.1. As mentioned in
section 1, decision making on the collective level can lead to anti-selection in
insurance.
For each submodel U of interest we get approximations for

xj%\(c) - Xn+lr(c)\ (actual expected loss),

E[LM(c)], ttu\c) from (3.4),

JE[RM(c)], Riu)(c) estimated version of (4.5),

by simulating 50 independent realizations (of the whole model specified by
(Ml) or (M2)). We denote these approximations with the symbol Ave
(average) instead of E. Note that there is no functional dependence on the
risk r since all volumes are v\ = 1.
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Individual: r=1 Individual: r=2 Individual: r=3

Individual: r=4 Individual: r=5 Individual: r=6

Individual: r=7 Individual: r=8

FIGURE 6.1: Eight realizations of individual samples and their joint representation as a collective sample from
specification (Ml).

For (Ml), we considered all 25 — 1 = 31 possible submodels. The results
are summarized in Figure 6.2. The left panel of figure 6.2 shows that the

actual expected loss Ave ( l ^ c ) - Xn+lr(c)) is close to A v e j l ^ e ) ]

(the difference between Ave[!/W)(c)] and Ave[i?(w)(c)] is invisible on this
scale and plotted is only the first of these quantities). The four best models
are magnified in the right panel of Figure 6.2:

the true model {0, 1,3},
overparametrized models {0, 1, 2, 3, 4}, {0, 1, 2, 3}, {0, 1, 3, 4}.

Ave [/j(w) (c)] produces the same ranking as the actual expected loss: in
particular, minimal Ave[/?(w'(c)] is achieved for the optimal model, being
the true one. This is not the case for Ave [2/w' (c)].

For (M2), the seven most reasonable models are
the true model {0, 1,3},
overparametrized models {0, 1, 2, 3, 4}, {0, 1, 2, 3}, {0, 1, 3, 4},
underparametrized model {0, 1}, {0, 3}, {0}.
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FIGURE 6.2: Left panel: Expected loss and averages of their estimates with (3.4) for all 31 subset models from
specification (Ml) (every star represents more than one model). The fine dashed reference line isy — x. Right
panel: Magnification for the best four models. The stars and circles represent averages of estimated expected
losses with (3.4) and the plug-in estimate of (4.5), respectively. The models are numbered as: 1 = {0, 1, 2, 3, 4),

2 = {0, 1, 2, 3}, 3 = {0, 1, 3, 4}, 4 = {0, 1, 3}.

The underparametrized models delete one or both elements in the set of
regressor indices {1,3} which corresponds to regression parameters 'close' to
zero since b\ = 63 = 0 and T\ = r\ = 0.01 in (6.2). The results are displayed
in Figure 6.3. The optimal model is the pure intercept model {0} and not the
true model. The estimated expected losses Ave[!/W)(c)] and Ave[i?(w)(c)] are
similar. As in the right panel of Figure 6.2, there is a slight advantage for
Ave[i^w'(c)]: it is minimal for the best model and produces the correct
ranking, except for model {0, 3}.

To get an idea about variability and the distribution of the selection rules
we consider

8L = 6R = R{Ul){c) - (6.4)
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Seven most reasonable models
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FIGURE 6.3: Expected losses and averages of their estimates for models from specification (M2). The stars and
circles represent averages of estimated expected losses with (3.4) and the plug-in estimate of (4.5),
respectively. The models are numbered as: 1 = {0, 1, 2, 3, 4}, 2 = {0, 1, 2, 3}, 3 = {0, 1. 3, 4}, 4 = {0, 1. 3},

5 = {0, 1}, 6 = {0, 3), 7 = {0}.

for the selection between models U\ and U2. Our choices are

Wi = {0, 1, 3}, U2 = {0, 1, 2, 3, 4} for (Ml),

Hi = {0}, U2 = {0, 1, 2, 3, 4} for (M2).

(6.5)

(6.6)

TABLE 6.1

MlSCLASSIFICATION RATES WITH DECISIONS BASED ON bL AND t,, FROM (6.4) FOR THE MODELS IN (6.5) AND (6.6)

f>R

models from (6.5) for (Ml)

models from (6.6) for (M2)
0.48

0.68

0.12

0.30
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These are the optimal and full models in both specifications (Ml) and (M2).
The approximate distributions (estimated from the 50 simulations) of 6L and
6R in (6.4) for the models in (6.5) and (6.6) are given in Figure 6.4 in terms of
boxplots.
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FIGURE 6.4: Boxplot representation for estimated distributions of f>L and <*>« in (6.4), denoted by L and R,
respectively. The two specifications are as in (6.5) and (6.6), denoted by (Ml) and (M2), respectively.

Note that a negative value for 6, in (6.4) leads to a correct selection among
the two candidate models. Figure 6.4 shows that 6R is substantially more
concentrated on negative values than 6L (although the variability of 8R is
larger), for both specifications and thus for large and small N. Table 6.1
gives the misclassification rate.

50

being the relative frequency of misclassifications, where 6t denotes 6L or 6R
from (6.4) based on the i-th simulated data-set.

We conclude from Figure 6.4 and Table 6.1 that not only Ave [/?(w) (c)] is
slightly better than Ave[Z/w*(c)] but also the decision rule itself.
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The little simulation experiment is reassuring. The averages of the
estimated expected losses are almost equal to the true actual losses, even for
a small number of risks N. The more complicated estimator R^(c) has a
slightly better behavior in that respect than its simpler cousin L^^c). The
model selector itself based on R^u\c) is able to discriminate reasonably well
among very similar prediction models. This is not true for UU)(c) as
indicated by Figure 6.4 and Table 6.1. However, model selection based on
lSu\c) is accurate if the models are 'sufficiently' different, see also left panel
of Figure 6.2. For many practical purposes, it suffices to discriminate among
'sufficiently' different prediction models and selection can then be based on
the simpler statistic l}u\c).

7 DISCUSSION

We have developed a framework for model selection in the general
credibility regression model (linear model with 'random effects') with
collateral data structure. As already known from frequentist statistics, the
machinery of hypothesis testing is not tailored towards, and inappropriate
for, optimal prediction. The search for optimal prediction models can be
done by direct estimation of an expected loss.

Our approach for model selection is to minimize the expected squared
error for prediction at an arbitrary (future) design point. We do not require
specification of a prior distribution for the hyper-parameters. All what we
assume is a structure of first and second order moments. In this sense, the
approach is 'robust' against misspecification of prior distributions. This
issue has always been a main focus in credibility models; it is an analogue to
the Gauss-Markov conditions and BLUE estimators in standard linear
model theory.

As pointed out in Remark A, the Cp criterion (Mallows, 1973), and
others like AIC, BIC or MDL, is not appropriate for the situation
encountered here. The reasons are:

• We need to account for variability of (random) parameters.
• We have to study the expected loss for shrinkage estimators.
• We aim for optimal prediction at a (future) design point instead of

optimality 'averaged' over the observed design of the data.
The first two issues are major points which need to be considered. The third
point is more our preference to do predictive model selection which is
optimal at a particular design point. As a result, the optimal model will then
depend on the value of this design point. It depends also on the risk r
implying that in actuarial applications one might consider the possibility to
use different models for different risks.

We have given here three results for the expected loss of the credibility
(shrinkage) estimator.
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(a) Formula (3.3) describes the exact expected loss for the predictor based on
the credibility estimator with known structural parameters, i.e., with
known optimal credibility weights.

(b) Formula (4.1) describes the exact expected loss for the predictor based on
the credibility estimator with fixed, given credibility weights which are
generally not optimal.

(c) Formula (4.5) describes the approximate expected loss for the predictor
based on the credibility estimator with estimated credibility weights.

Estimation of these expected losses in (a)-(c) can be done by the plug-in
principle. The more complicated nature of the versions in (b) and (c) is the
price we pay to get knowledge about more realistic cases than in (a). The
version in (b) is also interesting from a theoretical point of view since it gives
the exact, non-asymptotic expected loss for shrinkage estimation. Note, that
the differences between these expected losses are not substantial if N is
'sufficiently' large. Indeed, as N —>• oo, all the versions in (a)-(c) are
equivalent, and they are exact regardless of the size of the individual sample
size n. Thus, the most simple, user-friendly criterion in (3.3) often leads to a
data-driven model selector in (3.5) which is satisfactory for many practical
purposes. To discriminate among very similar prediction models, there can
be considerable gain by using R(u\c) instead of L^u\c). Our exploratory
simulation study confirms these issues.

The general strategy which we have developed here will also be useful and
successful in many other credibility models. For example, the hierarchical
models, cf. Jewell (1975) and Taylor (1979), or hierarchical regression
models, cf. Sundt (1979) and Norberg (1986).

8 PROOFS

Proof of formula (3.1). We make use of the following facts:

(a) Cow(bX,b*r\0r) = 0 fory ^k,r=l, ..., N.

(b) Cov(#(tf r ) , &(<?,)) = 0 for j^k, r= 1, ..., N.

(c) Cov(en+i(?9r), e,-(^)|i9r,^) = 0 for / = 1, ..., n and r,£=l, ..., N. This
implies uncorrelatedness of en+\(dr) with the predictor Xn+l(c).

Note that (a) is due to the orthogonal design which is well known in linear
fixed effects regression theory; (b) and (c) are true by assumption. All these
issues imply by straightforward calculation formula (3.1).
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Proof of formula (3.3). This is just a special case of formula (4.1) when using
for Zj the true optimal weights

ri') _ SJJV'r)
7V) _

Straightforward calculation then yields (3.3). •
Proof of formula (4.1). We take formula (3.2) as our starting point. We first

17 - \21
analyse E lPj{$r) - Pji&r)) appearing in the second term on the right
hand side of (3.2). The calculation is straightforward, using again issues
(a)-(c) from the proof of formula (3.1) above. The steps are:

E

= E 1-ZJ '

V^L

Pj(Vr) r A

HZj

(8.1)

with ajr as defined in (4.1). The first term / is already as it appears in (4.1).
For the second term we obtain

II = JE

km
t^r.m^r

, ) - bx
m()

Now use that

E

IE

IT] for £ + r,

bfm)] = rj for
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Then,

/ / =

This, together with (8.1) gives the formula for E and

hence for the second term on the right hand side of formula (4.1).
For the third term on the right hand side of (3.2), it is easy to see that due

to issue (b) in the proof of formula (3.1) above,

E

This then completes the proof of formula (4.1).

jeUc

•

Derivation of formula (4.4). Write Zj—-~

order Taylor expansion of g at (a2,r2) yields,

i = g(<72,r/
2). A first

(8.2)

The partial derivatives are

(8.3)

All we need to do is then to calculate the variances and covariances of a2

and fj. Assuming e,-($r) independent of i?r and normality of
[}j ((/ = 0, ..., p — 1)) and of e-, (normality is only crucial for the values of
fourth moments), the following result can be derived from the ideas in Klotz
et al. (1969),

a 1
N- 1
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where U\ and Ui are independent. Hence,

Cm(d2 f 2 ) _ 2a4

By (8.2),

Inserting (8.3) and (8.4) yields (4.4): for the case with r 2 = 0 we take the limit

as rf -̂  0. ' •

Unbiasedness of'a2 in (5.1). Denote by

ryi*,) =bf- fa*,) = £?=' £'^V'r)
 J = 0) ..., p - \ - r = \ , ..., V̂.

Then, by the assumptions on the e(-(i9r)'s

r)K] =0,

Therefore, the residual sum of squares as defined preceding (5.1) can be
written as

( \ 2

j=o j v'
n y(,) p-\ n y{r) p-\ n y{r)

(=1 V' j=0 i=\ ' V' /=0/=l V'

= 1 + 11 + HI.
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By definition of Sjj and r/7(^r),

P-\

Hence,

j2III = -
y=o

= E

j=o

p-\

'=1
P-\

But this implies

E[RSS2] = 1

which proves unbiasedness of a2.

a2(n-p)N •

Derivation of the estimator in (5.3). We calculate the expected values
JE[Wj], j = 0, ...,p-l. Without loss of generality we assume
bj = E\Pj(dr)\ = 0. Straightforward calculation yields,

Thus,

m[Wj\ =T2

i/i')\2

where A — \— Yl!e,=\ (%l) • ̂ his then leads to the estimator in (5.3). •
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