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Crystal structure of iprodione, C13H13Cl2N3O3
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Abstract: The crystal structure of iprodione has been solved and refined using synchrotron X-ray
powder diffraction data and optimized using density functional theory techniques. Iprodione crys-
tallizes in the space group P21/c (#14) with a = 15.6469(3), b = 22.8436(3), c = 8.67226(10) Å,
β = 94.1303(7)°,V = 3,091.70(9) Å3, and Z = 8 at 298K. The crystal structure contains clusters of four
iprodione molecules. The only two classical N–H���O hydrogen bonds in the structure are both
intramolecular. The powder pattern has been submitted to the International Centre for Diffraction
Data for inclusion in the Powder Diffraction File™ (PDF®).
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I. INTRODUCTION

Iprodione (marketed under the trade name Rovral, among
others) is a fungicide used for disease control in agricultural
applications. Rovral can be applied to many food crops and
ornamental plants. It functions by preventing the germination
of fungal spores and inhibits the growth of fungal mycelium
(PubChem; Kim et al., 2023). The systematic name (CAS
Registry No. 36734-19-7) is 3-(3,5-dichlorophenyl)-2,4-
dioxo-N-propan-2-ylimidazolidine-1-carboxamide. A two-
dimensional molecular diagram of iprodione is shown in
Figure 1. We are unaware of any experimental diffraction or
structural data on this compound.

This work was carried out as part of a project (Kaduk
et al., 2014) to determine the crystal structures of large-
volume commercial pharmaceuticals and include high-quality
powder diffraction data for them in the Powder Diffraction
File™ (Kabekkodu et al., 2024).

II. EXPERIMENTAL

Iprodione was a commercial reagent, purchased from
TargetMol (#T5116) and was used as received. The light
yellow powder was packed into a 0.5-mm-diameter Kapton
capillary and rotated during the measurement at ~2 Hz. The
powder pattern was measured at 298(1) K at the Wiggler Low
Energy Beamline (Leontowich et al., 2021) of the Brockhouse
X-ray Diffraction and Scattering Sector of the Canadian Light
Source using a wavelength of 0.819826(2) Å (15.1 keV) from
1.6 to 75.0° 2θwith a step size of 0.0025° and a collection time

of 3 minutes. The high-resolution powder diffraction data
were collected using eight DectrisMythen2 X series 1K linear
strip detectors. NIST SRM 660b LaB6 was used to calibrate
the instrument and refine the monochromatic wavelength
used in the experiment.

The pattern was indexed using JADE Pro (MDI, 2024) on
a primitive monoclinic unit cell with a = 15.65213,
b = 22.84356, c = 8.67028 Å, β = 94.11°, V = 3,092.10 Å3,
and Z = 8. The suggested space group was P21/c, which was
confirmed by the successful solution and refinement of the
structure. A reduced cell search of the Cambridge Structural
Database (Groom et al., 2016) yielded 13 hits, but no struc-
tures for iprodione or its derivatives.

The iprodione molecular structure was downloaded
from PubChem (Kim et al., 2023) as Conformer3D_
COMPOUND_CID_37517.sdf. It was converted to a *.mol2
file using Mercury (Macrae et al., 2020). The crystal struc-
ture was solved using Monte Carlo-simulated anneal-
ing techniques as implemented in EXPO2014 (Altomare
et al., 2013), using two molecules as fragments and a bump
penalty.

Rietveld refinement was carried out with GSAS-II (Toby
and Von Dreele, 2013). Only the 2.0–45.0° portion of the
pattern was included in the refinements (dmin = 1.071 Å). All
non-H-bond distances and angles were subjected to
restraints, based on a Mercury/Mogul Geometry Check
(Bruno et al., 2004; Sykes et al., 2011). The Mogul average
and standard deviation for each quantity were used as the
restraint parameters. The five- and six-membered rings in
each molecule were restrained to be planar. The restraints
contributed 3.2% to the overall χ2. The hydrogen atoms were
included in calculated positions, which were recalculated
during the refinement using Materials Studio (DassaultCorresponding author: James A. Kaduk; Email: kaduk@polycrystallography.
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Systèmes, 2023). The Uiso of the heavy atoms were grouped
by chemical similarity. TheUiso for the H atoms were fixed at
1.3× the Uiso of the heavy atoms to which they are attached.
The peak profiles were described using the generalized
(Stephens, 1999) microstrain model. The background was
modeled using a three-term shifted Chebyshev polynomial,
with peaks at 3.07 and 10.78° to model the narrow and broad
scattering from the Kapton capillary and any amorphous
component.

The final refinement of 160 variables using 17,201 obser-
vations and 112 restraints yielded the residual Rwp = 0.05677.
The largest peak (1.35 Å from Cl36) and hole (1.10 Å from
C12) in the difference Fourier map were 0.54(13) and �0.55
(13) eÅ�3, respectively. The final Rietveld plot is shown in
Figure 2. The largest features in the normalized error plot are
in the shapes of some of the strong low-angle peaks, and at

peaks of an unidentified inorganic crystalline impurity. These
misfits probably indicate subtle changes in the specimen
during the measurement.

The crystal structure of iprodione was optimized (fixed
experimental unit cell) with density functional theory tech-
niques using VASP (Kresse and Furthmüller, 1996) through
theMedeA graphical interface (Materials Design, 2024). The
calculation was carried out on 32 cores of a 144-core
(768-GB memory) HPE Superdome Flex 280 Linux server
at North Central College. The calculation used the GGA-PBE
functional, a plane wave cutoff energy of 400.0 eV, and a
k-point spacing of 0.5 Å�1, leading to a 1 × 1 × 2 mesh, and
took ~25 hours. Single-point density functional calculations
(fixed experimental cell) and population analysis were car-
ried out using CRYSTAL23 (Erba et al., 2023). The basis
sets for the H, C, N, and O atoms in the calculation were those
of Gatti et al. (1994), and that for Cl was that of Peintinger
et al. (2013). The calculations were run on a 3.5-GHz PC
using eight k-points and the B3LYP functional and took
�3.8 hours.

III. RESULTS AND DISCUSSION

There are two molecules in the asymmetric unit of
iprodione. The root-mean-square (rms) Cartesian displace-
ment of the non-H atoms in the Rietveld-refined and VASP-
optimized structures of molecules 1 and 2 are 0.065 and
0.068 Å (Figures 3 and 4). The agreements are within the
normal range for correct structures (van de Streek and Neu-
mann, 2014). The two molecules differ in conformation
(Figure 5); the rms displacement in the VASP-optimized
structure is 1.187 Å and can be decreased to 0.246 Å by
invoking the inversion option in Mercury. The contents of
the asymmetric unit are illustrated in Figure 6. The

Figure 1. The two-dimensional structure of iprodione.

Figure 2. The Rietveld plot for iprodione. The blue crosses represent the observed data points, and the green line represents the calculated pattern. The cyan
curve indicates the normalized error plot, and the red line indicates the background curve. The row of blue tick marks indicates the iprodione reflection positions.
The vertical scale has been multiplied by a factor of 5× for 2θ > 15.0 ̊ and by a factor of 10× for 2θ > 30.0 ̊.
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remaining discussion will emphasize the VASP-optimized
structure.

All of the bond distances and bond angles and almost all
the torsion angles fall within the normal ranges indicated by a
Mercury Mogul Geometry check (Macrae et al., 2020). Only
the N42–C47–N40–C44 torsion angle of�23.2° is flagged as
unusual. This lies on the tail of a narrow distribution of similar

torsion angles around 0°. The conformation of molecule 2 is
slightly unusual.

Quantum chemical geometry optimization of an isolated
iprodione molecule (DFT/B3LYP/6-31G*/water) using Spar-
tan ’24 (Wavefunction, 2023) indicated that the two indepen-
dentmolecules are within 0.03 kcal/mol of each other in energy.
Each is close to the global minimum-energy conformation,
which has a slightly different orientation of the dichlorophenyl
group.

The crystal structure (Figure 7) contains clusters of four
iprodione molecules. The Mercury Aromatics Analyser indi-
cates one moderate interaction, with a minimum ring–ring
distance between the independent molecules of 5.48 Å.
Despite the visual appearance, fingerprint plots indicate that
only 1.3% of the intermolecular contacts are Cl���Cl.

Analysis of the contributions to the total crystal energy of
the structure using the Forcite module of Materials Studio
(Dassault Systèmes, 2023) indicates that the intramolecular
energy is dominated by angle distortion terms. The intermo-
lecular energy is dominated by electrostatic attractions, which
in this force field-based analysis also includes hydrogen
bonds. The hydrogen bonds are better discussed using the
results of the DFT calculation.

There are only two classical hydrogen bonds in the struc-
ture, and they are both intramolecular N–H���O hydrogen
bonds (Table I). The energies of the N–H���O hydrogen bonds
were calculated using the correlation of Wheatley and Kaduk
(2019). Several C–H���O and one C–H���Cl hydrogen bonds
also contribute to the lattice energy.

The volume enclosed by the Hirshfeld surface of ipro-
dione (Figure 8; Hirshfeld, 1977; Spackman et al., 2021) is
762.77 Å3, 98.69% of one-fourth of the unit cell volume. The
packing density is thus typical. The only significant close
contacts (red in Figure 8) involve the hydrogen bonds. The
volume/non-hydrogen atom is normal at 18.4 Å3.

The Bravais–Friedel–Donnay–Harker (Bravais, 1866;
Friedel, 1907; Donnay and Harker, 1937) algorithm suggests

Figure 3. Comparison of the Rietveld-refined (red) and VASP-optimized
(blue) structures of molecule 1 of iprodione. The root-mean-square Cartesian
displacement is 0.065 Å. Image generated using Mercury (Macrae et al.,
2020).

Figure 4. Comparison of the Rietveld-refined (red) and VASP-optimized
(blue) structures of molecule 2 of iprodione. The root-mean-square Cartesian
displacement is 0.068 Å. Image generated using Mercury (Macrae et al.,
2020).

Figure 5. Comparison of molecule 1 (green) and molecule 2 (orange) in the
VASP-optimized structure of iprodione. The root-mean-square Cartesian
displacement is 1.187 Å. Image generated using Mercury (Macrae et al.,
2020).

Figure 6. The asymmetric unit of iprodione, with the atom numbering. The
atoms are represented by 50% probability spheroids. Image generated using
Mercury (Macrae et al., 2020).
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that we might expect elongated morphology for iprodione,
with [001] as the long axis. A second-order spherical harmonic
model was included in the refinement. The texture index was
1.006(0), indicating that the preferred orientation was not
significant in this rotated capillary specimen.

DEPOSITED DATA

The powder pattern of iprodione from this synchrotron
dataset has been submitted to the International Centre for
Diffraction Data (ICDD) for inclusion in the Powder Diffrac-
tion File. The Crystallographic Information Framework (CIF)

Figure 7. The crystal structure of iprodione, viewed down the c-axis. Image generated using Diamond (Crystal Impact, 2023).

TABLE I. Hydrogen bonds (CRYSTAL23) in iprodione

H bond D–H, Å H���A, Å D���A, Å D–H���A, Å Mulliken overlap, e E, kcal/mol

N42–H59���O37 1.026 1.928a 2.753 132.2 0.044 4.8
N8–H25���O3 1.026 1.944a 2.694 126.3 0.041 4.7
C52–H67���O38 1.086 2.401a 2.872 106.4 0.012
C50–H64���O37 1.100 2.685 3.698 152.9 0.010
C46–H58���O39 1.101 2.461 2.861 99.7 0.011
C43–H57���O4 1.100 2.516 3.299 133.8 0.016
C43–H56���O38 1.100 2.173 3.299 159.9 0.025
C21–H34���Cl1 1.088 2.861 3.789 144.2 0.014
C15–H27���O3 1.099 2.530 3.521 149.5 0.011
C12–H24���O5 1.101 2.513 2.849 96.1 0.011
C9–H23���O4 1.101 2.239 3.316 173.6 0.024
C9–H22���O38 1.101 2.480 3.464 137.1 0.019

aIntramolecular.
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files containing the results of the Rietveld refinement
(including the raw data) and the DFT geometry optimization
were deposited with the ICDD. The data can be requested at
pdj@icdd.com.
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