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In the paper [3] the following lemma was proved.

LemMA. Let a,b and c be positive integers such that a and bc are relatively prime.
Then there are infinitely many primes p in the arithmetic progression ax +b (x =
0,1,2,...) such that

pl@PVe-1).

In 1982 Jan W¢jcik proved [10] a similar result about the so called Lehmer numbers.
Lehmer numbers can be defined as follows:

(@" - B")/(a~B) ifnisodd,
(" = BM)/(a?— B?) ifniseven,

where a, 8 roots of the trinomial z? - VL z+M, its discriminant is D = L —4M and
L >0 and M are rational integers. We can assume without any essential loss of generality

that (L,M)=1.
Put for the moment P, = P,(a, B). Lehmer numbers can be also defined as follows
Pi=P;=1,
P = {L’P;H - M'P,’.—z ffn ?s odd,
n-1~ MP,_, ifniseven.

Pu(a,B)= |

In 1982 Jan Wéjcik [10] proved the following

THeorREM W. If «, B defined above are different from zero and a/B is not a root of
unity then there exists a positive integer ko such that for every positive integer k divisible by

ko and for all positive integers a and b, where (a,b) =1 and b =1(mod(a, k)), there exist
infinitely many primes satisfying the conditions

p=b(moda), p=1(modk), p|P,-ula,B). 6))

RemMARrk. For any a, B in Theorem W, the constant k,= ko(a, 8) may be given
explicitly [11]. For example, for the Fibonacci sequence, k= 20.

Here we shall prove a similar result for composite numbers. Let
v _{(a"+ﬁ")/(a+ﬁ) if n is odd,
" e+ B if n is even,

denote the nth term of the associated Lehmer recurring sequence. The associated
Lehmer sequence V, can be defined as follows: V,=2, V; =1, and for n =2

V= {LV,,-I - MV,_, forneven,
" \V,.,—-MV,_, fornodd.
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An odd composite number n is a strong Lehmer pseudoprime with parameters L,M (or
for the bases a and B) if (n, DL)=1 and with n — (DL/n)=d.2°, d odd, where (DL/n)
is the Jacobi symbol, we have either

(i) P;=0(modn), or
(i) Vs2>=0(modn), forsomerwith 0=r<s.

Every odd prime # satisfies (i) or (ii) provided (n, DL) =1 (cf. [6]).
In 1994 I proved [6] the following

THeEOREM T. If a, B defined above are different from zero and a/B is not a root of
unity (that is (L, M)#(1,1), (2,1), (3,1)) then every arithmerical progression ax + b(x =
0,1,2,...), where a,b are relatively prime positive integers, contains an infinite number of
odd strong Lehmer pseudoprimes for the bases o and B.

In 1982 1 proved [5] this theorem only in the case D =(a — B)*>0. We shall
introduce the following

DeriNiTION. Let P,(a, B) denote the nth Lehmer number. An odd composite n is a
kth order strong Lehmer pseudoprime for the bases a and B if (n,DL)=1 and, with

n—(DL/n)=0(mod k), d = ;1(- (n = (DL/n)), (d, k) =1, we have

Ps(a, B)=0(mod n). (2)
For k =2° we get a strong Lehmer pseudoprime satisfying (i), for the bases a and B.
Now we shall prove the following

THEOREM W,. Let P,(a, B) denote the nth Lehmer number. If a/B is not a root of
unity then there exists a positive integer kg such that for every positive integer k divisible by
ko and for all positive integers a and b, where (a,b) =1 and b =1+ k(mod k?), in every
arithmetical progression ax +b (x =0,1,2,...) there exist infinitely many kth order strong
Lehmer pseudoprimes for the bases « and B.

For each positive integer n we denote by ¢,(, B) = ¢,(L, M) the nth cyclotomic
polynomial
J’n(L’ M) = d’n(a’ B) = ( l—!—l (a - nt)a
where {, is a primitive nth root of unity and the product is over the ¢(n) integers m with
l=m=nand (m,n)=1
It will be convenient to write

é(a, Bin) = dé,(a, B).

It is easy to see that ¢(a,B;n)>1 for D=L ~-4M >0, n>2. A prime factor p of
P, = P.(a, B) is called a primitive factor of P, if p | P, but p 4 DLP;... P,_,.

Assume that M #0, D=L —4M #0, (L,M)#(1,1), 2,1, (3,1); (i.e. B/a is not a
root of unity).

The following results are well known.
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LemMma 1. (Lehmer [2]). Let n #27,3.2". Denote by r = r(n) the largest prime factor
of n. If r } ¢(a, B; n), then every prime p dividing ¢(a, B;n) is a primitive prime divisor
of P,.

Every primitive prime divisor p of P, is =(DL/p)(mod p). If r| é(a,B;n), r'||n
(which is to say r' | n but r'*' t n) then r || ¢(a, B;n) and r is a primitive prime divisor of
Pn/r’-

LeMMA 2. The number P, for n > 12, D >0 has a primitive prime divisor (see Durst
(1], Ward [9]). If D <0 and B/a is not a root of unity, then, for n > ny(a, B), P, has a
primitive prime divisor. The number ny(a, B) can be effectively computed (Schinzel [7]);
no = no(a, B) = e*?. 45 (Stewart [8]). We have |¢(a, B; n)|>1 for n >nq ([7), [8)).

Lemma 3. (Rotkiewicz {4, Lemma 5]). Ler

w(pfpst. .. pe) =2pps. .. pe(pi - D(PI-1)... (pi—1).

If q is a prime such that q* || n and a is a natural number such that ay(a) | (q — 1), then
¢(a, B;n)=1(mod a).

Proof of Theorem W,. 1t is sufficient to show that there exists one kth order strong
Lehmer pseudoprime for the bases a and B of the form ax + b. To see this just notice
that we then have such pseudoprimes of the shape adx +b for every natural d with
(d,b) =1 and we may choose d as large as we wish. We may also suppose without loss of
generality that b is odd and that 4DL | a, since if b, is prime of the form k?ar + b, then
every term of the progression k%at+ b, (t=1,2,...) is =b(mod a), its difference is k’a
and (ka,b,)=1.

Let DLky|k where ko is an integer from the theorem of W&jcik. We have
by=k%r+b=1+k(modk?). Now let pi,p, ps,ps be different primes such that
(P1p2p3pa,ak) =1 and let g be a prime number such that

cp(c)|g -1,  c=Kkapip:pspa ©)
Let m be a positive integer such that
m = b(mod ak?),

4)
m=1+p, p,pspaq*(mod p2pipipiq®).

Such positive m exists by the Chinese Remainder Theorem. From (4) and b=1+
k(mod k?), it follows that

(m,ak’pipipipiq) =1
Since m=b=1+k(modk®) we have m=1(modk). Thus also m=

1(mod(k2ap3p3pipiqg® k)) and by, Theorem W, there exist infinitely many primes

p in the arithmetical progression k%ap3p3p3pig®x + m(x =1,2,...) for which

P, 1y(e, B) =0(mod p)-

Let p be one of them. From 4DLko|k, m=1(modk) it follows that
m=1(mod4DL), hence (DL/m)=1 and also (DL/p)=1. We have that
(p —1)/k=(m —1)/k =1(mod k), hence ((p —1)/k,k)=1.

Let 7 denote the greatest prime factor of p — 1. It is easy to see that one of numbers
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¢(a, B;(p —1)/kp;) for i=1,2,3,4 can be divisible by 7 and only one can be divisible
by p. Without loss of generality we can assume that p 4 ¢(a, B;(p —1)/kp;) and
Fto(a,B;(p—1)/kp;) fori=1,2.
Letm; = ¢(a,,3;p 1
kp;
pm, or pm, is our required pseudoprime and if m, <0 and m, <0 then pm;m, is our
required pseudoprime. First we shall consider the case when m; >0 or m,>0.

> for i = 1,2. Now we shall prove that if m; >0 or m, >0 then

-1
Suppose for example that m; > 0. Let s, =%. By Lemma 1 every prime factor ¢
1

of m, is congruent to (DL/t)(mod s,). Since m, >0, by Lemma 2, m, is a positive integer
greater than 1. So

m, = (DL/m;)(mod ;). 5)

Certainly g ||s, = (p — 1)/kp,. So from ay(a)|(q —1), 4DL |a, by Lemma 3 we have
m; =1(mod 4DL). So (DL/m,)=1 and from (5) it follows that

-1
m,=1(mods,), s =E—. (6)
kp;
Further, from || s,, kp;¥(kp;) | (p — 1), by Lemma 3 we have
m; =1(mod kp,). 7

Since p=1+k(mod k?) and p=1+p,p,p;p.q*(modp?), we have (s;,kp;)=1. Thus
from (6) and (7) we get

m, = 1(mod (p — 1)), (8)
and n, = pm, = 1(mod(p — 1)), hence
(ny — 1)/k =0(mod(p — 1)/k). 9)
From k*y(k?) | (g - 1), ¢*| (p = 1)/k, by Lemma 3 we get
m, = 1(mod k?); (10)
hence n, = pm,=(1+ k)1 =1+ k(mod k?) and
((ny = 1)/k,k)=1. (11)
Further, (DL/n,)=(DL/pm;)= (DL/p}XDL/m;)=1.1=1. Thus from (9) and (11) we
et
: my = (e, B; (p = V)Ikp1) | Pio-1y | Piny=1yse = Pin, oLy (12)
where ((n, — (DL/ny))/k, k) =1, P,= P(a, B).
Also
P | Pip-yk | Piny-oLimpye (13)

Since (p;,m;) =1, by (12) and (13) we have

ny =pm, l P(n,—(DL/nl))/k'
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Since m, =1(mod a) we have

ny=pmy=b.1=b(moda) (14)
as required.
If the both numbers m, and m, are negative their product m, is positive and
my, = (DL/my,)(mod(p — 1)/kp, p2), (15)
where m; =mymy, m; = ¢(a, B; (p — V)/kp, for i =1, 2.
Indeed, let m,, =q7'q3*. .. q/". By Lemma 1 we have
gi"=(DL/g;)*(mod(p = 1)/kp, p2)-
Thus
mi,=(DL/q,)*(DL/q;)**... (DL/q,)*=(DL/q7"}(DL/q5%)...(DL/q[)
= (DL/my,)(mod(p — 1)/kp, p,).

Certainly ¢* || (p = 1)/kp, p, and ay(a)|q — 1 and by Lemma 3, m, = 1(mod a) for
i=1,2; hence we have m;; = 1(mod a).
Since 4DL | a, we have m;,=1(mod 4DL). So (DL/m,;) =1 and from (15) we get

my, =1(mod(p — 1)/kp1p2). 4 (16)

From p: p2yi(p1p2) || (9 = 1), ¢° | (p — 1)/kp1 p2, by Lemma 3 we have m; =1(mod p, p»)
for i =1, 2; hence

my,=1(mod p; p,). (17)
Since p, || (p ~ 1), p2 || (p — 1), from (16) and (17) we get
myz = 1(mod(p ~ 1)/k). (18)

From k*y(k?)|(g-1), ¢*||(p —1)/kp;, by Lemma 3 we get m,=1(mod k?); hence
my;=m; . my=1(mod k?), ny, =pm, =1+ k(mod k?). Hence ((n;»—1)/k,k)=1. Also
(DL/ny;) =1 (recall that (DL/m,)=1, p=1(mod 4DL)). By Lemma 2, m;, >1 and
miz= (e, B; (p = 1)/kpy) . ¢(a, B; (p = 1)/kp2) | Pip-1yk | Ping=1yk = Piny- 0 Limpyie
Also
P | Pk | Pony-oLimapyi
and since (p,m,) =1 we have

Ny =mypp l P(nu—(DLlnu))/ka

(na—(DL/np)Yk,k)=1 and nyy,=pmy,=a.1=b(moda)

where

as required.
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