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Abstract. We characterize the algebraic-geometric potentials for the Schrodinger
and AKNS operators using the Weyl m-functions and the Floquet exponent for
these operators. The characterization is this: among random ergodic Schrodinger
operators, the alebraic-geometric potentials are those for which (i) the spectrum is
a union of finitely many intervals (or bands); (ii) the Lyapounov exponent vanishes
on the spectrum.

1. Introduction
Our goal in this paper is to give a simple and rather surprising characterization of
the finite-band potentials for the Schrodinger and AKNS (after Ablowitz, Kaup,
Newell, and Segur ([2]; see also [35]) operators. Our characterization is based on
properties of the Weyl m- functions m± of these operators, together with certain
ideas from the theory of algebraic curves and from ergodic theory and dynamical
systems.

Although we are primarily interested in the AKNS operator, we begin the dis-
cussion by considering the one-dimensional Schrodinger equation

with a real bounded measurable potential y( t). In recent years, L has been intensively
studied from two points of view. The first is algebraic-geometric; one considers
certain quasi-periodic potentials y(t) for which L has finite-band spectrum. Such a
potential y can be calculated by evaluating a meromorphic function (abelian func-
tion), defined on the Jacobi variety J(C) of a certain hyperelliptic curve C, along
a rectilinear winding in J(C) [8], [23], [26]. Thus y{t) can be expressed in terms
of the ©-function of C.

The second point of view is ergodic-theoretic. One begins with a family Y = {y}
of potentials which form a stationary ergodic process with ergodic measure v (see
§ 3 for our definitions of these terms). One introduces a Floquet exponent w(A) =
(3(\) + ia(\) [20], [14], where (3(X) is the Lyapounov exponent and a(\) the
rotation number-integrated density of states [20], [3]. We delay definitions to § 3,

/ <f>(t)\
a n d n o t e on ly t h a t )3(A) d e t e r m i n e s t h e e x p o n e n t i a l g r o w t h r a t e of vec to r s I , , , . ) ,

\<P ( 0 /
w h e r e L 0 = A#.
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2 C. de Concini and R. A. Johnson

One of our objectives is to combine these two view-points in order to characterize
the ©-potentials y(t). Namely let (Y, v) be a stationary ergodic process, and suppose
the following hypotheses are satisfied:

(HI) The spectrum 2 of L= Ly (which is independent of y for î -a.a. y) consists
of finitely many intervals (or bands);

(H2) /3(A) = 0for all AeS.
Then Y (assumed to equal the support of v) is a real torus, v is Haar measure on
Y, and each y e V i s a 0-potential. Thus the innocuous-looking hypothesis (H2) is
very strong indeed.

A second objective is to give an analogous characterization of the finite-band
potentials for the AKNS operator

where

\—b+e -a

This is the 'sl(2, R)-form' of the AKNS operator; if b = 0, the change of variable

- G -;
takes K to the original 'su(l, l)-form' found in the original paper [2]. We again
start from (HI) and (H2). If b = 0, we find that a and e can be computed by
evaluating meromorphic functions A and E, defined on the generalized Jacobian
J(C0) corresponding to a two-point singularization Co of a hyperelliptic curve C,
along a rectilinear winding in J(C0). It is then easy to show that, starting with such
a and e, one can introduce an arbitrary function b in such a way that (HI) and
(H2) remain satisfied.

We are going to give a detailed derivation of the formulae for the finite-band
AKNS potentials (both periodic and non-periodic). One reason we do so is the
elementary nature of our derivation. But the main reason, which also forms the
third objective of this paper, is to show how the Weyl m-functions and the Floquet
exponent can be used to go simply and naturally from hypotheses (HI), (H2) to
precise formulae for the potentials y(t). In particular, the usual Floquet theory for
periodic systems is rendered completely unnecessary, and the source of the curve
C is made very clear. We feel that the m-functions provide a better point of departure
for discussing these algebraic-geometric potentials than, for example, the Green's
function, or the Baker function.

In the above considerations, we use a preliminary spectral theoretic result which
is of independent interest; our fourth and final objective is to prove it. Consider
e.g. the AKNS operator

Assume that y(t) is both 'positive and negative Poisson recurrent'; see § 2. Consider

https://doi.org/10.1017/S0143385700003783 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700003783


The algebraic-geometric AKNS potentials

the half-line boundary value problems

K±u = \u,
M2/
2((0 ±oo)C2)w,(0)=0, ueL2((0, ±oo),C2).

Our result is that the essential spectra 2* or K* are equal, and that these sets
coincide with the complement of the set of A in C for which the differential system

has an exponential dichotomy (i.e. the solution space has a hyperbolic splitting; see
e.g. [6], [31], [33]). A corollary of this result is that, if / c R\2* is an interval, then
at most one of the two operators K± has an eigenvalue in /, and there can be at
most one such eigenvalue. This refines a result of Hartman [16].

An outline of the paper is as follows. In § 2, we introduce the Weyl functions
and prove the spectral-theoretic result we need. In § 3, hypotheses (HI) and (H2)
are introduced. We adapt and extend a fundamental argument of Kotani [22] to
show how the Weyl functions m± fit together to form a single meromorphic function
on a curve C. The description of y(t) then proceeds along well-known lines in the
Schrodinger case (e.g. [26]). In § 4, we give a self-contained, detailed, and elementary
derivation of explicit expressions for the finite-band AKNS potentials. The Weyl
functions and the generalized Jacobian are the fundamental tools.

The potentials we obtain form a set of initial conditions for which the 'non-
focussing' non-linear Schrodinger equation (NLS) can be explicitly solved. We will
not consider this topic, but instead refer to Previato [30] for the construction of
these solutions of NLS. We wish to note that Previato obtains, with different methods,
a description of the periodic finite-band AKNS potentials which is equivalent to
ours (see also Ablowitz & Ma [1]).

2. A spectral-theoretic result
In this preliminary section, we introduce the Weyl m- functions, and discuss the
result we need concerning the half-line operators L±, K±.

We will consider Poisson recurrent potentials y(t). We give the definition first in
the Schrodinger case. Let

f f'+1 ]
=\y:U-*U sup, |y(s)|ds<oo \

with the distribution topology defined as follows: yn -* y in i£ iff JR ya(j> ds -»jR y4> ds
for all 4> e C"(R). Note that the translation flow

T:BXU-»B: r{y, t)(s) = y(t + s)

is continuous for each bounded subset B<=i? (i.e., sup, Jj+1 \y(s)\ ds<M <oo for
each ye B). We will often write T,(y) for r{y, t).

Suppose now that yeZ£ has the following properties:
(PI) lim^oSUPlj;

+'b(s)|<fe = 0;
(P2) there exist sequences fn-»°o, sn-»-oo such that the translates r(y, tn) and

r(y, sn) satisfy lim,,^ r(y, tn) = lim,,^ r(y, sn) = y.
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4 C. de Concini and R. A. Johnson

If _y e if satisfies (PI) and (P2), then we say that y is positive and negative Poisson
recurrent, or simply Poisson recurrent.

Property (PI) has the consequence that the hull Y of y is compact. Here Y is
defined to be the closure cl{T,(y)\te R} of the set of translates of y.

For the AKNS operator

with j :R-»s l (2 , U), we define if as above, except that now |-| is some norm on
sl(2, U). We state properties (PI) and (P2) just as above, and we say that y e if is
Poisson recurrent if (PI) and (P2) hold. The hull Y of y is also defined just as
above, and is compact.

Returning to the Schrodinger equation, fix a potential yoe if which satisfies (PI),
and let Y be the hull of y0. Consider the family of operators

~d ' ' (yeY),y dt

and the corresponding collection of ordinary differential equations

When necessary, we will write (l)y,A to indicate the A-dependence. Let <t>y(t) be the
fundamental matrix solution of (l)y satisfying <$>y(0) = I. It is easy to show, using
Gronwall's inequality [5] and (PI), that (y, t, \)^<$y(t):YxUxC^SL(2,C) is
continuous (for the first and last time, we have indicated the A-dependence of 4>y).

For fixed A eC , the mappings <I>y induce a flow f: y x C 2 x R - » YxC 2 , defined
as follows:

?tty,S),t) = (T,(y),9y(t)u),

where r, refers to the translation flow on Y. We write f,(y, u) = f((y, u), t).

2.1. Definition [6], [31]. Fix AeC. Equations ( l)y are said to have exponential
dichotomy (ED) if there are positive constants M > 0, a > 0 and vector sub-bundles
y ± c Y x C 2 with the following properties:

(i) V* are invariant; that is, (y, T) e V=$rt(y, u) e V±, (yeY,ue C2);
(ii) (y,u)e V+

(iii) 0 > , u ) e V - y

(iv) YxC2=V+®V~.

If equations (l)y have ED, then dim V+ = dim V~ = 1 (because det <I>y = 1).
Now we recall a result of [18]. That result is stated in slightly less generality than

needed here, but the proof carries over simply to the present case [19].

2.2. THEOREM. Suppose yo&3? satisfies (PI), and let Y be the hull of y0. Then the
spectrum of L0—(—d2/dt2) + y0(t) as a self-adjoint operator on L2(U) equals {A eC|
equations (l)y,A do not have ED}.

Since Lo is self-adjoint on L2(R), theorem 2.2 implies that, if Im A # 0, then equations
(l)y?A have ED.
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The algebraic-geometric AKNS potentials 5

Now we introduce the Weyl m- functions, using theorem 2.2. Let P'(C) be the
usual space of complex lines in C2, coordinatized as follows: if / eP ' (C) contains

the vector I ), then m is the coordinate of /; if ( I e /, then m = oo. Fix y e Y. For

A € C, Im A = 0, let m+(y, A) be the rn-coordinate of V+(y) d= V+ n ({y} x C2), where
V+ is the bundle of theorem 2.2. Similarly, let m_( y, A) be the m-coordinate of V~(y).

We pause here to note that A -* m±(y, A) are the classical Weyl m-functions for
the operator Ly = (-d2/dt2) + y(t) [34]. In fact the classical Weyl functions m±(A)
are defined as follows. For Im A # 0, let 4>±(t) be non-zero solutions of Ly<f> = A<£
which are in L2(0, ±oo). Then <f>± are unique up to constant multiple, because Ly is
in the limit-point case at t = ±oo; see e.g. [5]. Define m±(A) = <£±(0)/#±(0). To see

that m±(y, A) = m±(A), note that, if I ^ 1 is a non-zero solution of (l)y>A with

<AL(O) = m±(y, A)<M0), then by (2.2),

|^2
+(t)l+l^2(0l^M2

e-
2"' (/>o),

and

| ^ ( r ) | + |^L2(0|=sAf2e2al (/=s0).

Hence i//± = const • <^±.
The preceding discussion also applies to the AKNS operator. Fix y0 e X which

satisfies (PI), let Y=Hull(y0), and consider the operators

together with the associated differential equations

We will write {2)yk when necessary. Theorem 2.2 is true as stated with

replacing Lo and L2(R, C2) replacing L2(R) [15], [19]. The Weyl m-functions are
defined just as above.

We need two facts concerning m±(y, A). For the Schrodinger operator, they are
part of the classical spectral theory (e.g. [5]). For the AKNS.operator, they are
proved, for example, in [14], [15].

2.3. PROPOSITION, (a) For Im A ^ 0, one has sgn(Im A • Im m±(y, A)) = ±1.

(b) The functions A -» m±(y, A) are holomorphic in I m A ^ O ^ e Y).

It follows immediately from theorem 2.2 that m± are jointly continuous in (y, A) e

2.4. Geometric discussion. Fix ye Y, and consider the function m+(A)= m+(y, A)
(what we will say is true for both the Schrodinger and AKNS operators). Let J c K
be an open interval such that m+ is meromorphic on / u {A | Im A ^ 0} = D. We view
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6 C. de Concini and R. A. Johnson

m+ as a mapping from D into P'(C). Let P'(K) be the usual one-dimensional
projective space; we embed P'(IR) in P'(C) by identifying a real line in R2<= C2 with
the complex line which it generates. Then P1(U) = {m\meR or m = co}. Since
Im A • Im m+{A) > 0 for Im A ^ 0, we must have m+(A) G P'(IR) for A 6 /.

The point we wish to emphasize is this: as A increases in /, m+(A) rotates without
rest in the direction of increasing m on the circle P'(R). This is simply a restatement
of the facts that: (i) dm+/d\>0 if m+^oo; (ii) d(l/m+)/d\ <0 if m+^Q; these
statements in turn follow easily from the inequality Im m+ • Im A > 0 (Im A ¥• 0).

Similarly we see that, if m_(A)= m_(y, A) is meromorphic on D, then m_(A)
rotates without rest on P'(IR) in the direction of decreasing m, as A increases in /.
Thus m+ and m_ rotate in opposite directions on P'(R) as A increases in /.

Fix once again an element yo€ if satisfying (PI). We consider the half-line boundary
value problems (y e Y)

= 0, 4> e L2(0, oo) (f)(0) = 0,4>e L2(-oo, 0)

K+
yu = \u Kyu = \u

u,(0) = 0, u e L2((0, co), C2) «,(0) = 0, u e L2((-<x>, 0), C2)

The boundary conditions are used to define self-adjoint operators on L2(0, ±°o);
we use the symbols Ly, Ky to refer to these operators. Thus, e.g. L+

y is the closure
of the operator (-d2/dt2) + y(t) on C^(R+) c L2(0, co).

From now on we consider only the operators Ky. It will be clear that all statements
made (in particular our main results, 2.5 and 2.6) hold also for Ly.

Let us write R±(y) for the essential resolvent of Ky; that is, /{±(_v) = {A e C|A is
not in the essential spectrum of K*}. Thus R±(y) consists of isolated point eigen-
values and points in the resolvent of K*.

We now state the main results of this section.

2.5. THEOREM. Let yo£$ satisfy (PI) and (P2); thus y0 is positive and negative
Poisson recurrent. Let Y = Hull(^0)

 c %• Then R+(y0) = R~(yo) = {\eC\ equations
(2)>>A have exponential dichotomy}.

2.6. COROLLARY. Let I c R+(y0) = R~(y0) be an interval. Let Ko = Kyo. Then «„
(KQ) has at most one eigenvalue in I. IfK^ (KQ) has an eigenvalue in I, then KQ {KQ)
has no eigenvalue in I.

Corollary 2.6 is a strengthened version (for potentials y0 satisfying (PI) and (P2))
of the main result of Hartman [16].

Proof of 2.5. First we recall some elementary facts about the spectral theory of Ky

for fixed ye Y; they are proved e.g. in [14], [15]. There are monotone increasing,
right-continuous spectral functions py(t), unique up to an additive constant, whose
points of increase are exactly the spectra of Ky. Moreover

ImmJy.A) f°° dp*(t)
(ImA>0).ImA J-<x>|f-A|2
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An open interval / is contained in i?±(>') if and only if \^m±(y, A) extends
meromorphically to / u {A|lm A ^ 0}. The poles of the meromorphic extension are
exactly the (isolated) eigenvalues of K* in /.

Turning now to 2.5, let / c R+(y0) be an open interval. We show that equations
(2)yA have ED for each A € /.

Let ye Y.By (P2), there exists a sequence tn -» oo such that T(J0, tn) -» y. By lemma
6.7 of [18], IcR+(y).

It is convenient to recall part of the proof of [18, lemma 6.7]. Let T>0, and
consider the boundary value problem

M1(0) = M,(T) = 0.

There is a corresponding self-adjoint operator K Jo on L2([0, T], C2); the spectrum
of this operator consists of discrete simple eigenvalues. Let J <= / be an open interval
containing fc eigenvalues of Kyo. Then an argument of Hartman [16] shows that /
contains no more than fc+1 eigenvalues of Kj0. AS a simple corollary of this
statement, one has the following: let / contain k eigenvalues of Ky~0; then / contains
no more than /c + 3 eigenvalues of X*(yo>r) (and / c R+(r(y0, T))).

Continuing the proof of 2.5, let yeY, tn-*x>, and r(y0, tn)^y. Let p^ = p^(yotlJ.
Then pt^Py in the sense that l^fdp+^^fdp* for each fe C"(K). Let / c /
be an interval containing fe eigenvalues of X ̂ o. By the preceding paragraph, K^(yo,n)

has </c + 3 eigenvalues in / for each n, and by the convergence of pt to py we see
that p* has <fe + 3 points of discontinuity on J (and /<= /?+(_y)). This holds for a//

Now we use Hartman's argument again: the problem

0) (J ~l)[i-r-Ayo)(t)]a^u,
U1(0) = M1(T) = 0,

has no more than fc + 4 eigenvalues in / (7*>0). Consider the problem

(4)

The number of eigenvalues in / of this problem is equal to the number of eigenvalues
in J of (3), hence is <fc + 4.

Now let Tn-»oo be a sequence such that r(y0, ~Tn)^y0. Let pn be the spectral
function of the problem (4) with Tn in place of T. Thus pn is piecewise constant
with jump (\°_Tn ||Uj(0||2 dt)'1 at AS, where As is the sth eigenvalue of (4) and us is
the corresponding normalized eigenfunction. Then one can show (see e.g. [15, § 3]
for the necessary arguments) that J"0O/dpn-»\™xfdp~0 for each/e C"(R). Hence
p~0 has at most fc + 4 jumps on J. Hence m_(_y0, A) extends meromorphically through
J, and therefore through / as well.

https://doi.org/10.1017/S0143385700003783 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700003783


8 C. de Concini and R. A. Johnson

We now know that both m±(y0, A) extend meromorphically through /. Hence so
does the spectral matrix

M ( y o , \ ) = ,
m+-m_ \5(m+ + m_) m+ni-

It follows [15, § 3] that the full-line operator Ky has at most isolated eigenvalues
on I. However ([18,6.9]) Ky has no isolated eigenvalues. Hence by [18, 3.1], /<= ED,
and we conclude that R+(y0)a ED.

Along entirely similar lines one proves that R~(y0)
c ED. It is straightforward to

show that ED<= R+(y0) n R~(y0). Hence 2.5 is proved. •

Proof of 2.6. First of all, by a perturbation theorem [6], [32], the bundles V* of
definition 2.1 vary continuously in A. It follows that m+(y, A) ¥= m_(y, A) for all A e /,
y e Y. Now, according to the geometric discussion in 2.4, the functions A -* m+{y, A)
and A -» m_(y, A) rotate in opposite directions on P'(R) as A increases in / (ye Y).
Hence, in /, only one of the functions m+, m_ can take on the value oo, and oo can
be attained at most once. This proves 2.6, since m+(y0, A) = oo (m_(y0, A) = oo)oA e
/ is an isolated eigenvalue of Kyo(K~o). D

2.7. Remark. We will use the statement in the proof of 2.6 later, namely that at most
one of m±(y, A) can take on the value oo, and oo is attained for at most one A e /.

3. Properties of the Weyl functions
Our purpose in this section is to study the implications for the Weyl functions
m±(y, A) of hypotheses (HI) and (H2) in the introduction. Extending an argument
of Kotani [22], we show that, for each yeY, the functions m± glue together to form
a meromorphic function My on a fixed hyperelliptic Riemann surface C which is
completely determined by the spectrum of Ly. We can then describe with precision
the potentials y(t) satisfying (HI) and (H2). For the Schrodinger equation, they
are the usual 0-potentials [26], [8], [23]; fo the AKNS operator, they are described
in § 4 using a generalized Jacobian.

We first define what we mean by 'stationary ergodic process'. We start with a
subset Y of if, where <S? is as defined in § 2. We require that

lim sup \y(
E^0+ I J<

s)\ds=0

uniformly in ye Y (this implies that Y is a compact metrizable subset of if), and
that Y is invariant under translation: T,(Y)<= Y, where (T,y)(s) = y(t + s) (yeif).
We further fix an ergodic measure v on Y: thus /x is invariant (i.e. V{T,(B)) = v(B)
for each Borel B <= Y and each t e R), and satisfies the following indecomposability
condition: if B is a Borel subset of Y such that V(BAT,(B)) = 0 for all teU, then
either v(B) = 0 or v(B) = 1. See e.g. [25].

3.1. Definition. A stationary ergodic process is (in this paper) a triple ( V,{T,},ER, V)

as described above, with the additional property that Supp v= Y; i.e. if We y is
open, then v( W) # 0.
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Let us now see to what extent conditions (PI) and (P2) of § 2 hold for the elements
y of a stationary ergodic process. First of all, (PI) holds uniformly in y e Y. As for
(P2),

3.2. LEMMA. For v-a.a. ye Y, the function y(t) is both positive and negative Poisson

recurrent, and moreover the positive and negative semi-orbits {rt(y)\t>0} and

{'•|(3')|'<0} are dense in Y.

Proof. Note first that the second statement implies the first statement.
To prove the second statement, let {Wn}^=1 be a countable base for the topology

of Y. It follows from the Birkhoff ergodic theorem (e.g. [25]) that, if \n is the
characteristic function of Wn, then

l im- Xn(Ts(y)) ds = \ Xn(y) dv(y)>0
'-°° ' Jo JY

for j^-a.a. y. The second conclusion of 3.2 follows immediately.

We recall two facts concerning the operators Ly, Ky (ye Y). The first is a special
case of the Oseledec theorem [27].

3.3. THEOREM. FIX A e C, and let <&y(t) be the fundamental matrix solution of equation
(l)y,A (Schrodinger) or (2),,A (AKNS) satisfying 0>,(0) = /. Then

P(\) =f lim^In ||<k(0||

exists and is independent of y for v-a.a. yeY.

The number /3(A) is called the Lyapounov exponent of equations (l)j,,A resp. (2)y>A.
The transparent proof of the Oseledec theorem given in [21] applies in our case.

The second fact concerns the spectrum of the operators Ly> Ky (ye Y).

3.4. PROPOSITION. The spectrum H.y of the full-line operator Ly, Ky is independent of
y for v-a.a. yeY. We write 1 for this common spectrum.

For the Schrodinger operator, 3.4 is proved by Pastur [29] and Ishii [17]. Their
methods can be applied to the AKNS operator. Alternatively, the proof in [18] for
the AKNS operator with bounded uniformly continuous y extends to the present
case [19].

We now restate (HI) and (H2) with precision:
(HI) 2 is a finite union of intervals; we write

2 = [A0,A,]u-- -u[A2g,oo)

in the Schrodinger case and

2 = (-oo,A!]u- • -u[A2g+2,oo)

in the AKNS case;
(H2) j8(A) =0 for Lebesgue-a.a. A e l

It follows from 2.1, 2.2 and 3.2 that )3(A)>0 for all A e C \ I Thus (H2) says that
j8 attains the value zero 'where it is allowed to do so'.

We now prove two fundamental lemmas (3.5 and 3.6).
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10 C. de Concini and R. A. Johnson

3.5. LEMMA. Fix a stationary ergodic process as in 3.1, and let {Ly: ye Y} (resp.
{Ky-.yeY}) be the corresponding families of full-line Schrodinger (resp. AKNS)
operators. Let /cffi be an open interval, and suppose )8 (A) = 0 for Lebesgue-a.a. A e /.
Then for v-a.a. y, the functions X->m±(y, A) extend holomorphically from the upper
half-plane H+ through I to 3) = I u {A | Im A ^ 0}. Write h±(y, A) for the extension of
m±(y,X) to 2). Then

Im h+(y, A) > 0 > Im h__(y, A)

on I. Moreover
h+(y, A) = h_(y, A) (A e / ; v-a.a. ye Y).

Proof. In the Schrodinger case, this lemma is proved by Kotani [22] by means of
a beautiful calculation. Thus we need only give the proof in the AKNS case, which
we do by adapting Kotani's argument.

First we recall a result from the theory of functions holomorphic with positive
imaginary part in H+.

Result (see e.g. [10]). Let / c R be an open interval, l e t / : H+ -» H+ be holomorphic,
and suppose that lime^0+ Re/(A -He) = 0 for Lebesgue-a.a. A e /. Then / extends
holomorphically through /, and any extension / satisfies I m / > 0 on / (and of
course R e / = 0 on / ) .

Note that, by the Schwarz reflection principle, one can find an extension / defined
on all of 2> = / u {A | Im A ^ 0}.

Next we introduce the Floquet exponent w = w(A) for our family {Ky \y e Y} of
AKNS operators. See [14], [15] for a detailed discussion. These papers are inspired
by [20], which discusses the Floquet exponent for the Schrodinger operator; see
also [3]. Moser [24] uses the Floquet exponent in his discussion of the ©-potentials
for the Schrodinger equation.

The properties of w which we need are the following. First, — w is holomorphic
in H+ and has positive real part there. Second, w restricted to a bounded subset
of H+ is uniformly bounded. Third, for XeH+, — Re w(A) = )3(A) = Lyapounov
exponent. Fourthly,

( A G H + ) .
Y in- iil+

Motivated by Kotani's computations, we now show that, if A e H+, then for I'-a.a.

Im A dXJ JYV Im m+ Imm

( R e m . - R e m ^ 2 ^ " -LT x2

12 i &v-

To prove this equality, we start with a formula for Re w(X): for i>-a.a. ye Y,

1 fT

(5) Rew(A)=lim — Re [a{t) + (X + b(t) + e(t))m+{T,(y), A)] dt.
T-oo T Jo

We sketch the proof of this formula. First of all, - R e w(X) = /3(A), so we must show
that — /3(A) equals the expression on the right-hand side for ^-a.a. ye Y. Let
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The algebraic-geometric AKNS potentials 11

V± = V±(A) be the one-dimensional subbundles of Y x C 2 denned by exponential
dichotomy (2.1). Let u(t) be a non-zero solution of (2)yA with u(0) e V+ n {>»} x C2.
Using the Oseledec theorem [27] and 2.1, one shows that, for v-a.a. }/,

l i l | |

Now u2(0 = m+{T,(y), A ) ^ ^ ) , and |m+| is uniformly bounded. Thus (5) follows
from the equation (In «,)' = a + (A + b + e)m+.

Now fix y e Y for a moment, and consider the corresponding Riccati equation
for m = u2/ux:

where we set m = m(t) = m+(T,(y), A) for fixed A 6 H+. Taking imaginary parts, we
get

Im m' = - I m A -2a Im m-Im[(A + b ) m 2 ] - e Im m2

= - I m A - 2 a Im m - ( R e A + b)Im m 2 - I m A Im m2- e Im m2

= - I m A - 2a Im m - 2(Re A + b)Re m Im m
- I m A[(Re m ) 2 - ( I m m)2]-2e Re m • Im m.

Hence

Imm' s / l + (Rem)2N

= —2a — 2(Re A + b) Re m + Im A Im m — 2e Re m — Im A I
1mm \ Im m

= - 2 a - 2(Re A + b + e) Re m + 2 Im A Im m
2\/ l + (Imm)2 + (Rem)2\

-ImA I .

\ Im m ]

Rewriting, we get

Im vn' , —Im
+ 2 R e [ a + (A + b + e)w]

1mm Im m

Using (5) and Im m > 0 , we have for y-a.a. yeY:

I m m + ( r , W , A)

By the Birkhoff ergodic theorem,

(6) - 2 R e w ( A ) = ImA T ' " ' " ' ' 7 dv{y).
Jy Im m+(y, A)

In a similar way, one proves

(7) 2Rew(A) = ImA — ~ ' dv{y).
J y Im w_(_v, A)

Now using the fourth property of w(A), and suppressing the arguments {y, A), we
have

dw f l + /n_m+ f (1 + m_w+)(w_ —m+)
Im — = I m dv= Im r̂  dv

dX JY tti- — m+ J y w_ — m+\

"I. Im m + - ( l + m+|2) Im
|m_-m + | 2
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12 C. de Concini and R. A. Johnson

Combining this formula with (6) and (7), we get

_4(J^+ImM=[ fuWLi+WI
\ImA dX) J Y I Im m+ Imm_

A
•J

i
|m_-m+

=]}

f—i—+r-« I
LImm_Imm+ |m_ —m+| J

*

m+

Im

_|2l r|m_-m+|2 + 4Im w+Im m_"|
_ J L |m_-m+|2 J

_ f l"l
J Y L

f
x

L

m+ Im m_

(Re m_-Re m+)2

m_-m+

m + ) 2 l
dv.

This is the formula which we wanted to prove.
Next recall that /3(A) = 0 for Lebesgue-a.a. A € /. It is easily seen that, for almost

all (in fact all) XeR, one has lime^0+-Re w(A + ie) = /3(A); see e.g. [15]. Using the
boundedness property of w, we see that the Schwarz reflection principle applies,
and thus w extends holomorphically to 3 = / u {A|lm A #0}. In particular Re w(X) =
0 for all A e /.

We use these facts in the following way. Let Xe I. Then

dw . Rew(A + ie) . / dw , Rew(A + ii

By Fubini's theorem and a standard result on boundary values of holomorphic
functions / : //+-» H+ [10], the limits lime_0

+ m±(y, A + ie) = ih±(y, A) exist Lebes-
gue-a.e., for *--a.a. yeY. Hence by Fatou's lemma and our formula for
—4((Re vv/Im X) + lm{dw/dX)), we get:

(8) Re tn_(y, A) = Re rh+(y, A),

Lebesgue-a.e. in /, for I'-a.a. ye Y.
By (8), (9), and the result alluded to earlier, we see that, for p-a.a. yeY,

m+(y, X) - nt-(y, A) extends holomorphically through / to 3), with positive imaginary
part on / (and on 3), in fact). The same is true of ((m_wj+)/(m_ - m+))(y, A). It is
now an exercise to show that, for p-a.a. y, m_(_y, A) and m+(y, A) both extend
holomorphically to 3 (hint: consider the quadratic polynomial with roots m+ and
-m_). If h±(y, X) are the extensions, then (8) and (9) imply the last two statements
of 3.5. •

In our second lemma we show that the extensions h± of lemma 3.5 satisfy h+(y, X) =
m_(y, A), h^-(y, A) = m+(y, X) (Im A <0). This amounts to saying that the potential
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y is reflectionless. This statement should be true (with an appropriate definition of
'reflectionless' [7]) for any stationary ergodic set of potentials.

3.6. LEMMA. Let / c R be as in lemma 3.5. Then for all yeY, m±(y,X) admits a
holomorphic extension h±(y, A) to 3) = Ju{A |lm A ^0} , and h±(y, A) = m^(y, A)
(ImA<0).

Proof. We consider only m+(y, A).
Let Y1 = {ye Y\ the conclusions of 3.5 hold}, and let Y2 = {ye Y\ the positive

and negative semi-orbits of y are dense in Y}. Then both Yt and Y2 have I'-measure
1. Let y be an element of Y, n Y2, and write h(\) = /i+(^, A). Here fc+ is defined by
3.5.

For A e C with Im A ^ 0, consider the corresponding Riccati equation for m:

(10) m'+m2 = -\+y(t) (Schrodinger),

(11) m' = (-\-b + e)-2am-(k + b + e)m2 (AKNS).

Suppose Im A <0. Then for each each real intial condition m(0) 6 R, the solution
m(t) of (10) (resp. (11)) satisfies Imm(l )>0 for all t>0. Moreover, if n = \/m,
and n(0)eR, then Imn( t )<0 for all f>0.

Geometrically, these statements mean the following. View {m | Im m > 0} as a disc
B in P'(C)s=Riemann sphere, with boundary dB = {oo}u{m|meR}. We define a
flow {T,}I(ER on YxP'(C) in the natural way: f,(y, mo) = (T,(y), m(t)), where m(t)
satisfies (10) (resp. (11)) with m(0) = m0. (Alternatively, f is induced from the flow
f of § 2 by considering the action of f on complex lines in C2.) Then f,(B u dB) c B
for all t>0; i.e. the closed disc B is mapped entirely into its interior for all t>0
(if ImA<0).

Consider next the sections S±(\) = {(y, m±{y, X)\y e Y} of the sphere bundle
yxP ' (C) . For fixed A eC with Im A #0 , these sections are invariant under the flow
f; this follows from 2.1(i). Moreover, S±(A) are the only continuous invariant
sections of YxP'(C). To see this, let So be a third such section. Using the Birkhoff
ergodic theorem, we see that {ye Y\Son{y}xP1(C) equals neither m+(y, A) nor
m_(j, A)} has ^-measure 1. By 3.2, we can find such ay with dense positive semi-orbit
{^t(y)\t>0}. Choose non-zero vectors u+, u0, ii_ in the complex lines S+(A), S0,
S~(A)n{y}xP'(C) respectively; then these vectorse are pairwise linearly indepen-
dent. Let <t>y(t) be the fundamental matrix solution of (1),,,A resp. (2)y>A such that
<t>y(0) = /. Using 2.1(i) and (ii), we find l im ,^ ||<I>y(0«-|| =°°, and therefore
liminf,_00 ||<I>y(0Mo||=0 (because det<i>y(t) = 1). However l i m , ^ ||4>y(t)u+1| =0,
and thus we obtain the contradiction lim inf,^ det <$>y(t) = 0.

If one replaces lemma 3.2 with Poincare recurrence in the above argument, one
can show that S*(A) are the only I'-measurable invariant sections of YxP'(C).

Using 2.3(i), we see that, if Im A > 0, then S+(A) is the only continuous invariant
section in Yx Be yxP ' (C) ; if Im A <0, then S~(A) is the only continuous invariant
section in Y x B.

Now return to the fixed point yeYlnY2. Let @0cC be a domain containing
7u{A|lmA>0} on which /i(A) is holomorphic and has positive imaginary part
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14 C. de Concini and R. A. Johnson

(3.5). For t > 0 and A e 9 0 , define g,(A) by (r,(y), g,(A)) = T,(J, fe(A)). Then g, maps
®0 into H + s B: if Im A > 0 this follows from invariance of S+(A), if A e / it follows
from Im h > 0, and if Im A < 0 it follows from Im h > 0 and the first part of the
present proof. Moreover g,: ®0-> H + is holomorphic because $,,(0 is linear. Hence
{gt\t>0} is a normal family of holomorphic functions on 2>0.

Let yeYbe arbitrary, and let tn -> oo be a sequence such that T(>», fn) -» y. We can
choose a subsequence tm of fn such that q,m converges to a holomorphic function
vy, uniformly on compact subsets of 3l0. By invariance and continuity of S+(A), we
have vy(\) = m+(y, A) for all ImA>0 . By an elementary argument, we conclude
that g,n-» vy, uniformly on compact subsets of 3>0, for every sequence fn-»°o such
that r(y, tn)^y.

Since {r(y, t) 1t > 0} is dense in Y, we can define a limiting function uy: 3)0-> H+

as above for every ye Y. Since uv(A) = m+{y, A) for Im A > 0 , and since S+(A) is
invariant, we conclude via a normal families argument that the section Vo =
{(y, vy(\))\ye Y} is continuous and invariant for each A e @0.

For Im A < 0 , A e 2>0, we have S~(A) = Vo by uniqueness. Thus we can conclude
that m+(y, A) extends holomorphically through /, and the extension h+(y, A) equals
m_(y, A) for Im A < 0 (y e Y).

Similarly one proves the statement concerning m_ and its extension /i_ to 2. This
completes the proof of 3.6. •

3.7. Remark. It follows from 3.6 that the resolvent of L^resp. Ky) equals C\2 for
all y e Y. This is proved as follows (we treat the AKNS case). First of all, C\S = £ =
{A e C | equations (2)y>A have ED} (2.2). It follows that C\L is in the resolvent of
Ky for all ye Y. On the other hand, if A e in tS , then it follows from (3.5 and) 3.6
that all solutions of ( 2 ) ^ are bounded. This implies ([9]) that A is in the spectrum
of Ky. This proves our assertion.

Let C be the Riemann surface of
(i) K2 = - ( A - A 0 ) • • • (A-A2 g) = - r i i i i (A-A,) in the Schrbdinger case;

(ii) K2 = - ( A - A ! ) - • •(A-A2 g + 2) = - n - = l 2 ( A - A i ) in the AKNS case.
Then C is a non-singular, hyperelliptic algebraic curve of genus g. We will show
that the m-functions m± define, for fixed ye Y, a meromorphic function on C.

We need some notation. Let S2 be the A-sphere. C is precisely cls{(A, K) \ A e C} <=•
S2 x S2 where K runs over the square roots of the corresponding polynomial. Let
77: C-* S2:(A, K)-> A be the projection. In the Schrodinger case, po =
/""~1(Ao)) • • •, P2g — T''~1(A2g) are ramification points; in the AKNS case, p, = ^"'(A,)
(1 < i < 2 g + 2). In the Schrodinger case, TT~\OO) is also a ramification point; in the
AKNS case this is not true, and TT~1(OO) consists of two points oo+, oo_ which we
distinguish by requiring that sgn Im K = ±1 in a neighbourhood of oo±. There are
no other ramification points on C. We use p to denote points of C.

3.8. THEOREM. Fix a stationary ergodic process Y, and suppose (HI) and (H2) are
satisfied. Then for each yeY, the functions m±(y, A) define a meromorphic function
My on C. The map M: Yx C^-P1(C):(>', p)-> My(p) is jointly continuous.
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Proof. We do the AKNS case, then remark on the (completely analogous)
Schrodinger case.

It follows immediately from 3.6 that the functions m±(y, A) form a function My

which is meromorphic on C except possibly at the branch points px,..., p2g+2 and
at oo+> oo_. Actually, there are two possibilities for My; we choose one by requiring
that Im My(p)>0 if Im «(/>)>0. The other possibility is My ° a; where <r:(A, K)-»
(A, — K) is the involution on C which interchanges sheets.

Let pe{plt..., p2g+2} be a branch point, and let D <= C be a disc centred at p.
Letting g = {A e<C| equations (2)ytX have ED} as in 3.7, we can choose D so that
T T ( D ) n R n ^ i s contained in an open interval 7, which can be assumed to have the
form (A2i_i,A2l).

Let y e Y, and let Ao be the endpoint in / of TT(D) n I. Since the bundles V± of
2.1 are continuous in A ([6], [32]), we see that (y, A)-» m±(y, A) are jointly continuous
on Yx Do, where now D o cC is a disc with centre Ao such that D o n R c 7. This
fact together with the geometric discussion of 2.4 and the inequalities m+{y, A) ^
m_(y, A) (ye Y, A € 7) show that there is a neighbourhood B of y in Y such that,
for each yeB, the restriction of My to D\{p} omits the same set of infinitely many
real values. By the Picard theorem [4], My extends meromorphically to p, and by
the Montel theorem [4], {My\yeB} is a normal family. It follows easily that
(>"> P) ~* M(y, p) is continuous on BxD, and hence on Yx D.

In a neighbourhood of p = °o+ or oo_ the argument is even simpler. Choose a
disc D<= C centred at p such that 7r(D)nRc (-oo, A1)u(A2g+2, oo). Then, by 3.6,
the restriction of My to D\{p} omits every real value. Hence we can apply the
theorems of Picard and Montel just as above to show that M is continuous on Yx D.

•
3.9. Remark. In the AKNS case, it follows from 3.8 and [14], [15] that
limp̂ oô  My(p) = ±i. In the Schrodinger case, one has limp̂ oo My{p) = oo.

3.10. Remark. Consider the AKNS operators Ky. It follows from 2.5, 2.7, and 3.8
that each My has one and only one pole Pi(y) in each circle TT~1[A2,_1, A2,]

<= C
(1 < j < g +1). Moreover it is easy to see that each such pole is simple (use 2.3). It
follows that each function y-*Pi(y): Y^*C is continuous. Analogous statements
hold in the Schrodinger case.

3.11. Remark. It now follows from well-known arguments (see especially [8]) that,
in the Schrodinger case, Y is a real sub-torus T of a complex torus, T is a Kronecker
winding on T, v is normalized Haar measure on T, and y(t) is the evaluation of an
Abelian function along an orbit of T. We do not give details here; the uninitiated
reader may wish to work them out for her/himself after reading § 4.

4. The finite-band AKNS potentials
In this section, we describe precisely those stationary ergodic AKNS potentials

/ a b + e\
\-b+e -a )
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16 C. de Concini and R. A. Johnson

for which hypotheses (HI) and (H2) hold. We first assume b = 0, then at the end
of the section show how to introduce an (essentially arbitrary) b.

We divide the discussion into four steps. The first aims at formulae (22) and (23)
for e(t) and a(t). The second shows how to linearize the motion of the pole divisor.
The third shows that this linear motion takes place on the generalized Jacobian.
The fourth involves 'going backward': if e{t), a(t) are given by (22), (23), and the
Jacobian data, then (HI) and (H2) hold.

To begin, let <r: C-» C: (A, K)-> (A, — K) be the sheet-interchange involution. We
fix yeY until further notice, and write /*+(*,p) = M{T,(y),p), fi_(t,p) =
M(r,(y), cr(p)). Thus for example if A = ir(p) has positive imaginary part, and if
Im K(P)>0, then

(12) n±(t,p) = m±(T,(y),p).

For each peC with Im ir{p)#0, the functions /x± are absolutely continuous and
satisfy the Riccati equation

(13) ^=(-X + e(t))-2a(t)/i±(t,p)-(X + e(t))^±(t,p)2

dt
for (Lebesgue)-a.a. teU. In fact there is a Borel set BocU with null complement
such that, for each te Bo, (13) holds for all peC with Im ir(p)*0. We will not
prove this; it is an exercise using the Cauchy integral formula, Fubini's theorem,
and elementary existence-uniqueness theory for ordinary differential equations.

Next expand p-* /j.+(t,p) in a Laurent series near oo+ (see 3.9):

(14) H+(t,p) = i+l~P-, X = ir(p).

Another exercise shows that nn{t) is absolutely continuous for each n and that for
a.a. (6R, say te B+, the derivatives d/j.n/dt can be evaluated by plugging (14) into
(13). Similarly, if we expand p-> fj.^(t,p) near oo+:

(15)

then each /!„ is absolutely continuous and for a.a. t eU, say te B_, the derivatives
can be evaluated by plugging (15) into (13). Let B = BonB+nB_; then R\B has
null complement.

Now consider the function p->^+{t,p) — ix_{t,p) for fixed teU. Let P,(0 =
PAr,(y)) be the poles of fi+(t, A) = M(r,(y), A) (3.9). If no pole Pf(f) equals a
ramification point pj = ir~1(Xj) (1 <j"<2g + 2), then /A+-/U,_ has simple zeros at
/?, (1 <_/ < 2g + 2) and simple poles at each of the two elements of v~lir(Pi( t)) (1 < i <
g + 1 ; see 3.10). Since /i+ — /A_-*2I as p ^ o o + ) we have

(16) /t+-/*- = 2n«+i (

If one of the P,(0's equals a ramification point /?*, then (16) still holds. To see
this it suffices to show that p% is a simple pole of / a + - / i _ . But this follows from
2.3, 2.4, and 3.8. Indeed, as A -» ir(p%) along the resolvent interval adjacent to A*,
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one has either m+(T,(y), A)-»-oo and m_(T,(y), A)->+oo, or m+{T,{y), A)-»oo and
m-(T,(y), A)-»-oo. Hence l i m p ^ (/*+ -fi-)(p) = 00, and the simplicity of the pole
follows from 2.3.

Let us also consider the function p -> /*+( t,p) + /A_( t, p). It commutes with cr, hence
defines a rational function on the A-sphere which is, moreover, 0 at A = 00. Its pole
divisor is a subset of d(t) = (ir(Pi(t)),..., 7r(Pg+,(())), and equals it if no Pt(t)
coincides with a ramification point. Therefore

2Q(A)

where <?(A) = Q(t, A) is a polynomial of degree <g.
Write H(A) = H(t,A)=nf=,1(A-u-(Pj(O))- Then

(18) n+--
H(A) '

—, A =

The polynomial Q can be determined. Suppose first that no pole P\(t),..., Pg+1(t)
is a ramification point. Then from (19), we must have Kt= «(P,(0 = Q(ir(Pf(O)
( l < ( < g + l). Then the coefficients of Q are uniquely determined by the linear
system with van der Monde coefficient matrix

(20)
1 7 T ( P g + I ) • • • 7 T ( P g + 1 ) g

This matrix is non-singular, since by 3.10 the TJ-(PJ) are all distinct. In particular,
the highest-order coefficient qg of Q satisfies

(21)

where here and below we write Pr instead of ir{Pr) when no confusion can arise.
The polynomial Q is determined by (20) even when some of the P,'s are

ramification points. For, at any such point Pr, we must have Q(Pr) = 0 = Kr (otherwise
H+ would have a pole of order 2 at Pr). Thus (20) and (21) hold for all pole divisors.
Note that this implies that, if Pr = Pr(t) is a ramification point, then (fi+ + M-)(', Pr)
is finite.

Now plug (14) and (15) into (13), then use (16) and (17). One obtains 2e =
i(fit -/*i), 2a = -(fit +fii) = -2qg for all te B. Hence

2g+2 g+1

(22) e{t)=\ I Xj-l Pr(t),
; = 1 r = l

8+1
(23) a { t ) = - h ^
We see that a and e are continuous in t, and, more importantly, are symmetric
rational functions of the pole divisor. This completes step 1.
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18 C. de Concini and R. A. Johnson

We proceed to step 2. Introduce the g +1 Abel-Jacobi coordinates

(24) yr(0= 7 T ' A 7 7 ( p ) , l r g + 1.
P,(O) K(P)

Note that (\gd\)/K is not a holomorphic differential.
Now, each pole t^-Pj(t) is absolutely continuous and in fact C1 in t; we omit

the proof, which uses continuity of a(t) and e(t), the simplicity of the poles, and
the inverse function theorem. Hence we have

g+i pr~lp'
(25) y'r= I ^ i, K, =

Here and below, the prime ' always means d/dt.
Note in addition that Q(t, A) and H(f, A) are C1 in f, so we have for all pe C

with A = TT(/J)^OO:

2
We multiply by H in the last equality, then substitute Pr = Tr(Pr(t)): recalling that
H{Pr) = O, Q(Pr) = Kr, e(t)=±'£2

Jl
+

1
2 kj-Y.*!] Ps(t), we get

H'(P\ 2g+2

(26) n±m= z A._2 z Ps

Now H'(Pr) = Ujll (A - PJY^P, = -P'r Us^r (Pr - P.)- From (26) we get
p> rr ip _ p )

(27) f l U l r '' = c, - c2 I P,,

Next observe that f l ^ r ( ^ - P.) = I;
g=0 ( - l ) g " V ^ P i , where a(

g% is the (g-;)th
symmetric function in (Plt..., Pr,..., Pg+1) (i.e. omit Pr). Therefore, letting

vl - < r i g + 1 ) • • • I

w e c a n rewr i t e (27) as fo l lows:

Pg P' IK

(28) A - | | i I=diag(c1-c2 I P,\
P' IK S*'

We used the fact that I j = o Pio-^/-!)8--1' = 0 if s ̂  r.

We multiply (28) on the right by ; , obtaining

i
(29) A | \ \ = \ '• I' a[r)=l Ps-
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Since det A = ±Yli<J (Pt-Pj)^ 0, we can apply A ' in (29); noting that

/o\
1

W
we obtain finally

(30) r =

/ Ti \

Yg

/ 0

That is, the motion of the poles in the y-coordinates is linear. This completes step 2.
The third step is to construct a real torus T of dimension g +1 on which

yx,..., -yg+1 are angular variables. To do so, we introduce the generalized Jacobian
/(Co) corresponding to a singularization Co of C; then /(Co) is a g +1-dimensional
complex analytic variety, and T will be a subset of J{C0). We only sketch the
construction of / (C o ) ; for a detailed discussion see [12] and [11, p. 124]; see also
[30, defn. 1.10].

Define Co to be C with oo+ and oo_ identified to a point. This introduces an extra
hole in C, so intuitively the genus of Co is g + 1 . Let a 1 ; . . . , ag, b , , . . . , bg be a
normalized basis of H,(C, Z); we suppose that none of these curves contain oo±.
Let w , , . . . , wg be the holomorphic differentials dX./x(p),..., Ag - 1 dk/K(P) respec-
tively, and let wg+1 = (Ag d\)/x(p). Let ag+1 be a small circle centred at oo+. Let A
be the lattice in Cg+1 generated by the g + 1 vectors (Ja. « , , . . . ,Ja. a>g+1)(l< i s g + 1 )
and the g vectors (|b/ w , , . . . , J6. «g+1) ( l < i < g ) . Then it can be shown that A has
rank 2g+1 . The generalized Jacobian is defined to be Cg+1/A.

There is an equivalent algebraic definition: J(C0) is the set of divisors d in
C\{°o±} = C under the equivalence relation dt~ d2<=>dl-d2 is the divisor of a
meromorphic function f on C such that /(°o+) =/(oo_) ^ oo.

We define C(g+1> to be the set of unordered (g + l)-tuples of points in C. We
define an Abel map / : C(g+1)-» /(Co) adapted to present purposes: if (pt,... ,pg+l)e
C( g + I ) , then

8+1 / C"i fPj \
I(Pl,---,Pg+l)= Z I « ! , . . . , G>g+l),

J = l \Jp* Jp* I

where p* ¥• oo± is an element of C. It can be shown that / is a holomorphic
diffeomorphism from { (p i , . . . ,pg+\)\Pi ^ cr(pj) if i ̂ j}c cig+1) onto an open dense
subset of /(Co). In particular, let Tc ={(pi,... ,pg+i)e C(g+1)|/7f€ 7r"1[A2j_1, A2j],
1 < i< g+1}. Our pole divisor (PM,..., Pg+1(t)) is in Tc. Recalling (24) and (30),
we see that

(31) I(PM,..., = y(0) + ( 0 , . . . , 0, c2,

where f(0) = I(Pi(0),..., Pg+i(0)). Thus / straightens out the pole motion, which
becomes linear in /(Tc)<= /(Co) .
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Define algebraic functions A, E on an open dense subset of J(C0) by
A ° / ( / ? , , . . . , pg+l) = a(Px,..., Pg+1), E ° I(Pl,..., Pg+l) = e ( p i , . . . , pg+1) (see
(22) and (23)). From (31),

() (y() (0,...,0,c2t,clt)),

() E((0) + (0,...,0,c2t,c,t)).

Now assume that our fixed point yeY has a dense orbit (3.1). Note that
cls{y(t)| —oo< t<oo} is a sub-torus T of I(TC). Also y{t) is obtained by evaluating
A and E along the dense orbit y in T. It is now easy to check that the closure Y
in SE of the orbit {T,(y)\teU} is homeomorphic to T under the map 4>:y-*
I(Pi(y), •••, Pg+iiy))- Moreover </> sends the flow T on V to the rectilinear winding
on T determined by A, ct, and c2. Since normalized Haar measure h on T is the
only measure invariant under the rectilinear winding, we also have 4>(v) = h. We
have thus completely described (Y, T, V) if b = 0.

We proceed to step 4: if a and e are defined as above, then 1 = (-oo, AJ u • • • u
[A2g+2,°°) and j3(A) = 0 for a.a. A e 2 .

Precisely, let K, C, C1,C2, A, J(C0), I, A, E be as above. Given a divisor

d = (Pu..., Pt+l) e Tc
 d ^ { ( P l , . . . ,/>g+1) e C(g+1)|/>, € T r - ' t A ^ , A2I](1 < i< g+1)},

define //(A) = n d 1 (A - Pt), and let Q(A) be that polynomial of degree g such that

Define M(d,p) = (K(p) + Q(\))/H(k) (A=ir(p)) , so that M(d,<r(p)) =
(<?(A)-»c(p))/H(A). Let r c / ( T c ) be the closure of some orbit y , : f , ( 0 =
7i(0) + ( 0 , . . . ,0 , c2t, c,0 (feR). Corresponding to each yeV, there is a quasi-
periodic function

where a(t) = A(y(t)), e(t) = E(y(t)) and y(t) = y + (0 , . . . , 0, c2t, c,f). For ye T, let
d(t) = / - ' (y(0) , and let M+«,p) = M(d(t),p), p_(t,p) = Af(d(0, «r(p)).

We will eventually show that, if y e T and if A = 7r(p) has a non-zero imaginary
part, then /JL± satisfy the Riccati equation

(33) 4tj± = (-k

We first assume this has been done, and verify (HI) and (H2) for the stationary
ergodic process (Y, T, V) given as follows: Y = {yy \ y e F}, T is translation, and v is
the image of normalized Haar measure /i o n F under the map i/rF-* Y:y^*yy.
(Note that i/f commutes with the flows on F and Y.)

For A e C , define a flow T = TA on F x C 2 by solving equations (2)>r-A, just as in
§2. Let f be the induced flow on FxP ' (C) . Given AeC with ImA^O, choose
pe-rr~\k) so that Im A • Im K(P)>Q, and define m+(y, A) = M(/~1(y) ,p) ,
m_(%A) = Af(/- !(y),o-(p)). By (33), the sections S"(A) ={(A, m±(y, A)) |yeF}
<= FxP : (C) are invariant under f if Im A ^ 0. By a continuity argument, S±(A) can
be extended to define invariant sections also for A e U.
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Now let A e (-00, A ^ u • • -u(A2!r+2,oo). Then I m m + > 0 > I m m _ , so S±(A) are
distinct. Also F x P ^ R ) is invariant under f. Arguing as in the proof of 3.6, we see
that all solutions of (2)y^x are bounded, for all y e F. It follows that y3(A) = 0, and
that A is in the spectrum of Kyy ( yeF) .

On the other hand, it follows from invariance of S*(A) that m±(y, A) depend
only on y = i/»(f). We write m±{y, A). Using the uniqueness of the invariant bundles
in 2.1, we see that A-» m±(y, A) are the Weyl functions for Ky (Im A ^ 0 , ye Y).
Now m±(y, A) extend meromorphically through each resolvent interval (A2,-i, A2l)
(1 < i < g +1). By [15], the essential resolvent of the half-line operator Ky contains
Uf=/ (A2,--i, A2l) {y e Y). This means (2.5) that 2 = (-00, A j u • • • u [A2g+2, 00) con-
tains the spectrum of each Ky.

We conclude that 2 equals the spectrum of Ky for all ye Y, and that /3(A) =0
for a.a. A e l This shows that (HI) and (H2) follow from (33).

Let us verify (33). We consider only fi+. For yeT, let (Pi(t),..., Pg+M) =
I~'(f('))- Explicitly, we want to show that

if Im A 5̂  0. Multiplying by H2 and reorganizing, we transform (34) into

(35) Q'H- QH'-(e-\)H2 + 2aQH + (e + A){K
2+Q2) = KA,

where A = A(\, t) d jTH'~2aH~2(\ + e)Q. We will show that (35) holds for all
AeC.

We claim that A(k, t) is identically zero. To see this, fix t, write Pi = Pi(t)
( l < i < g + l ) , and note that A(ir(P,), 0 = H'(Tr(Pi))-2(ir(Pi) + e)K(Pi) = 0 (see
(26) and the calculation (27)-(30) following it). Hence A is a polynomial with at
least g + l distinct roots. On the other hand, A has degree at most g + l, and
furthermore the coefficient of A g+1 is -2a~2qg = 0 (see (23); here qg is the coefficient
of A8 in Q(X)). Thus deg A<g, hence A is identically zero.

Next we rewrite (35): note that

thus (35) is equivalent to

(36) 5(A, f)d= Q'H-(e-X)H2+(e

To prove (36), note first that degS<2g + 3. In fact d e g S < 2 g + l , because the
coefficient of A2g+3 is I - 1 = 0, and the coefficient of A2g+2 is - e - 2 I f^ j ir{Pr) -e +
X^fl2 A, =0 (see (22)). Moreover, it is easy to see that •n-(P1),..., 77-(Pg+1) are zeros
of S.

The idea now is to show that each zero of S is double; this clearly implies (36).
First of all, it is clear that Pr is a double zero of (e-X)H2 (1 < r < g +1; we agree
to confuse Pr with v(Pr)). So we prove that

has double zeros (here F is denned by the above factorization).
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Consider G'= Q"H+ Q'H'+e'(K
2~Q2)-2(e + \)QQ'. We see that

(37) G'(Pr) = Q'(Pr)[H'(Pr)-2(e + Pr)K(Pr)] = 0 ( l s r < g + l);

here we have used (26). Therefore H divides G'. But also G' = F'H + FH'; hence
H divides FH'.

Now, H' = -If:,1 Pj n , ^ (A - Ps)=>H'(Pr) = -P' r ns^ r (Pr - P,). Thus tf'(P,) =
0 iff P^ = 0. Clearly if P'r* 0 for all r, then H divides F, and (36) is proved.

Suppose first that <r(Pr) ^ Pr (1 < r < g+1) . Then it follows from the facts that /
is a diffeomorphism on Tc and that n is invertible near each Pr that 7r(Pr)?*0.
Hence (36) holds in this case. If o-(Pr) = Pr for some r, then we approximate the
divisor d = (P1,..., Pg+1) by divisors dn = (P( ,M ) , . . . , P $ i ) e Tc for which cr(P(

r
n)) ^

P[n) (1 < r < g + 1 ) . By a limiting argument, (36) holds for d. This completes step 4.
We finish the discussion by removing the assumption that b = 0. Let (V, x, v) be

a stationary ergodic process consisting of elements

y =
I a b + e\

\-b+e -a)

for which (HI) and (H2) hold. We show that there are functions a(t), e(t) as
constructed above and 90e [0, 2 77) such that, with B(t) = 0O + Jo b(s) ds,

a(t) = a(t) cos 2B(t)- e(t) sin 2B(t)
(38)

e(t) = a(t) sin2B(t) + e(t) cos2B(t)

Conversely, if there is a point ye Y with dense orbit and functions d(t), e(t) as
constructed above such that relations (38) hold, then (Y, T, V) satisfies (HI) and(H2).

To prove these assertions, let K = {p = e l 8 |0< 0 < 2 T T } , and define a flow T* on
YxlK by

T?(y, PO) = (T,(J

where

Let 7]: Y x K ^ Y:(y, p)^y be the projection, and let v* be a measure on YxK
which is ergodic with respect to T* such that r]{v*) = v. Such a measure exists. Let
y* c y x IK be the support of v*. For each (y, p0) e Y* make the change of variable

(39) u = p{t)v

in equation {2)yk, where pelK is identified with

cos 6 -sin

sin 6 cos

We obtain for each equation (2)vA and each {y, p0) e Y* the equation

where a, e are determined by (38). Note that (HI), (H2) hold for (Y*, T*, V*) if
and only if they hold for (Y, T, V).

It is now straightforward to show that y e Y is characterized by relations (38).
We remark only that the following fact is used: the group action px • (y, p) = (y, pxp)
commutes with T*.

https://doi.org/10.1017/S0143385700003783 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700003783


The algebraic-geometric AKNS potentials 23

We conclude that the most general operator Ky satisfying (HI) and (H2) arises
from an operator constructed in steps 1-4 via the gauge transformation (39).
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