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Biofilms, and collections of embedded microbial communities, present structural heterogen-

eities with functional consequences for important processes, such as transport. The origin

of such structures has been unclear. Here, we propose that they can arise as a consequence

of diffusive transport limitation. To illustrate, a model allowing internal heterogeneity is

developed. Linear analysis is applied to a simplified version of the model suggesting that

heterogeneity forms on (or below) the active layer length, a length scale that may not be

suitable for homogenization, with non-trivial implications for system scale properties such as

reduction in system-wide diffusive transport efficiency. Numerics suggest that the simplified

model provides useful insight into behaviour of the full model. We then show examples based

on microcolony formation in host domains and argue that internal heterogeneity can be

related to community function.
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1 Introduction

The label ‘biofilm’ is something of a misnomer as biofilms are generally structurally

heterogeneous, both transversely and horizontally, or maybe even occurring as inclusions

in larger structures, see Figure 1, and often are not necessarily well described by the

usual mathematical connotation of the term film. Transverse structure is a hallmark of

biofilm function, and as such, has received considerable attention both in observational

and modeling studies [22, 27, 39]. Heterogeneity in horizontal structure has also been

documented, though with less attention [22, 32]. The mechanisms that result in such

heterogeneity in biofilm systems are unclear.

Here, we propose a physical mechanism that can generate internal heterogeneity in

biomaterial density; hotspots of locally enhanced biomaterial concentrations cause locally

increased substrate sinks, and hence lead to locally increased substrate transport (Figure 2),

and at the same time, local depletion of substrate concentration. With increased substrate

flux, these biomaterial hotspots can exhibit relatively enhanced growth at the expense of

their nearby neighbours resulting in internal heterogeneity. As this mechanism is diffusive
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Figure 1. Internal micro-biofilms (black circles) included in a larger matrix.

transport based, it is most apparent at the active layer length scale

λG =

√
D

r
, (1.1)

where D is a substrate diffusivity and r is a substrate usage rate. This length is often

associated with the presence of increased metabolic activity, typically near the biofilm–

bulk fluid interface [39]. Roughly, λG measures the length over which substrate can diffuse

before being significantly depleted by usage. At longer lengths, diffusion is unable to

maintain hotspot-generated gradients in substrate concentration.

The length λG is a significant one as it also has been argued to be the material homo-

genizability length scale for heterogeneous biofilm systems [5]. Heterogeneities on smaller

lengths can be regarded as mathematically homogenizable with respect to diffusive trans-

port, while heterogeneities on larger lengths cannot; this begs the dynamical question

which we address here: would a homogeneous, growing system be stable to internal per-

turbations and, if not, at what length scale would growth-driven heterogeneities emerge?

Interestingly, the answer predicted below is that, in fact, internal instabilities arise at

roughly this same length scale λG. That is, we argue that physical considerations lead to

formation of structures on the same length scale as the one that separates homogenizable

from non-homogenizable systems.

These remarks apply not only to heterogeneity within biofilms themselves but also to

mixtures of microbial colonies embedded in matrices of materials of various kinds, for

example, colonies within chronic wounds and cystic fibrosis related mucus plugs [9,24,37]

and, recently, construction of synthetic communities through 3D printing techniques [29,

35]. But, within-biofilm heterogeneity can also be important. Community function itself is

likely influenced by internal heterogeneity, for example, [30, 44]. Ecology in such systems

is thus also likely coupled to structure and is almost certainly linked to diffusive transport,

so that biomaterial heterogeneity may be of importance to long time dynamics, though,

we do not consider such things here as a more complicated model would be necessary.

Unsurprisingly, mechanical properties are effected by internal heterogeneity as well [16],

also beyond our scope here, but modeled elsewhere, for example [15, 26].
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Figure 2. Simulation of biomaterial microcolonies (with volume fraction θ) inclusions in a broader

matrix material. Top: biomaterial. Colour is related to biomass volume fraction, which in turn is

related to biomass activity. Bottom: substrate. Contours of substrate concentration, superimposed

on the microcolony locations (circles), shown on the left. Dashed line is the interface between

biofilm-matrix and pure diffusive subregions. Inset square is blown up on the right together with

arrows indicating the direction and relative amplitude of diffusive transport. Note that microcolonies

nearer to the top of the box have improved access to substrate diffusing in from the top z = 0.5,

resulting in increased biomass, and thus, in enhanced substrate sinks capable of depleting substrate

from their neighbourhood. It is this local depletion of substrate which is proposed here to be

responsible for structure formation. Details of model and computational methods provided below.

Relatedly, a number of modeling studies, for example, [15, 18, 33], have suggested that

a different type of structure, that of finger formation, may also be a consequence of

diffusive transport limitation. In particular, a flat biofilm layer is typically susceptible to

an expansion driven instability, in which small bumps protruding towards an exterior

substrate source are able to gain improved access to that source and hence grow into,

eventually, finger-like structures. These fingers exhibit a characteristic length scale, the

same active length λG. This scale emerges in both fingering and heterogeneity phenomenon

because it provides a length scale over which protrusions can ‘steal’ substrate from the

environment. That is, the unstable fingering length scale is also O(λG). However, the details

of the driving instability for fingering are different than the ones described here in that, in

the fingering case, increased substrate transport is driven chiefly by decreasing transport
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distance rather than increasing the strength of the substrate sink. Thus, the fingering

instability is related to the one presented here but the underlying mechanism for gradient

enhancement is different in important respects.

The paper is organized as follows. First, we introduce a growth model based on

diffusion-reaction physics for embedded biomaterial and then employ the mathematical

artifice of perturbing a supposed, already present homogeneous system. A linearization

argument for this simplified system suggests that it is unstable at length scale λG or

smaller, from which we infer as a consequence that (a) homogeneous systems should not

be observed, and (b) heterogeneity may exhibit a signature length scale. We use numerical

simulations of the full model applied to perturbed homogeneous initial conditions in order

to argue that the results of the linearization are valid, despite the simplification. Of course,

perturbation of a homogeneous state is somewhat artificial and is meant instead to argue,

here, that a homogeneous state should not exist and rather a heterogeneous state with a

predicted length scale should be observed. Hence, we also present simulations of strongly

heterogeneous systems reminiscent of microbial colonies embedded in a background

matrix (e.g., a mucus layer) in order to demonstrate possible effects of heterogeneity in

the strongly non-linear regime.

2 Model description

The model domain consists of a slab geometry with two compartments: a biofilm and

matrix region 0 < z < H and a diffusive layer H < z < H+L. We introduce a biomaterial

volume fraction θ(x, t) with 0 � θ � 1 for 0 < z < H and θ = 0 for H < z < H + L.

Substrate is described by concentration function c(x, t). Equations for c and θ take the

form

∇ · (D(z)∇c) = r(c)θ, (2.1)

∂

∂t
θ = Y r(c)f(θ), (2.2)

where r(c) is a reaction function (substrate/time) and f(θ) (unitless) is a population growth

activity. In addition, Y is a yield coefficient (volume fraction/substrate) and

D(z) =

{
D+, H < z < H + L,

D−, 0 < z < H,

is a piecewise constant diffusivity. Equation (2.1) is accompanied by boundary conditions

cz|z=0 = 0, c|z=H+L = c0, where c0 > 0 provides a substrate supply, and by interface

conditions [c] = [Dcz] = 0, where [·] denotes jump across the z = H interface between

biofilm-matrix and diffusive layer regions. Equation (2.2) is supplied with initial conditions

θ(x, 0). For reaction function r(c) we use either first order (linear) form r(c) = r0c or

Monod form r(c) = rmaxc/(K + c). For population growth activity, we use either f(θ) = θ

or f(θ) = θ(1 − θ). The latter choice prevents volume fraction from increasing beyond

θ = 1, though for the most part we avoid the θ ≈ 1 regime anyway, in which case we

don’t observe significant differences between the two. Note that equation (2.2) differs from

the typical material law used in biofilm models, for example, [15, 18, 19], where some sort
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of growth-driven pressure causes material expansion and deformation. Here, rather, we

view microbes as embedded in a background matrix where new biomaterial essentially

slips through the background matrix.

Note that the substrate reaction-diffusion equation (2.1) is assumed to be at quasi-

equilibrium, that is, the time derivative term ct is neglected as we suppose that the domain

is thin enough so that the time-scale for reaction-diffusion processes to equilibrate is

significantly shorter than the growth time scale. This assumption is common in biofilm

models [27]. Also, we will assume for simplicity in computations that D is constant, that

is, D+ = D−.

3 1D solution

If we suppose the initial conditions to be dependent on z only, that is, θ(x, 0) = θ(z, 0),

then system (2.1)–(2.2) becomes one dimensional. That is, c = c(z, t), θ = θ(z, t), where

(D(z)cz)z = r(c)θ, (3.1)

∂

∂t
θ = Y r(c)f(θ), (3.2)

on the domain 0 < z < H +L with boundary conditions cz(0, t) = 0, c(H +L, t) = c0, and

interface conditions [c] = [Dcz] = 0 at z = H . For reasonable assumptions on the forms

of r and f and initial conditions θ(z, 0), equation (3.1) has a unique, monotone increasing

solution (and a similar statement holds for the initial value problem (3.2)). Note that

in the diffusive layer H < z < H + L, the substrate equation reduces to czz = 0 with

c(H + L) = c0, which has solution that, when combined with the interface conditions,

allows restriction of (3.1)–(3.2) to the biofilm-matrix region 0 < z < H , except now with

boundary conditions cz(0, t) = 0 and c(H, t) + (D−/D+)Lcz(H, t) = c0.

See Figure 3 for a typical solution of (3.1)–(3.2), numerical methods described later.

Note the formation of an active layer λG =
√
D/rmax ≈ 0.01. (In fact, we should use a

modified definition λG =
√
D/rmaxθ̄, where θ̄ is a typical volume fraction, but θ rapidly

approaches 1 in the relevant region of Figure 3, top middle.) Note also that as biomaterial

increases, net flux of substrate into the biofilm-matrix region increases as well and in fact

approaches an asymptote [25].

4 Linear theory

Equations (2.1) and (2.2) do not have closed form solutions, generally, even for choices

r(c) = r0c and f(θ) = θ. Nevertheless, it is useful to consider a linear theory based on

perturbation of a spatially homogeneous biomaterial volume fraction θ(x, t) = θ0(t). In

particular, we replace equation (2.2) by a simplified version

∂

∂t
θ(x, t) = Y r(c(x,H, t))f(θ(x, t)) (4.1)

with depth independent substrate concentration. The resulting dispersion relation, of

course, is not the correct one for system (2.1)–(2.2); but, we can hope that it is qualitat-

ively similar due to the fact that overall growth of biomaterial is dominated by the growth
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Figure 3. Example solution of (3.1)–(3.2). Top row: volume fraction θ(z, t) with initial conditions

(top left) θ(z, 0) = 0.05. Bottom left: flux of c through the top of the biofilm-matrix region. Bottom

middle, right: concentration c(z, t). Parameters: rmax = 720, K = 0.8, Y = 1, D+ = D− = 0.05,

c0 = 1, H = 0.40625, H + L = 0.5.

in the active layer, where in comparison to the entire biofilm-matrix layer, the substrate

concentration c is approximately equal to c(x,H, t). Setting c = c(x,H, t) is in fact an over-

estimate of substrate concentration, and hence, can be expected to lead to overestimates

of growth rate. Afterwards, we compare results of this simplified perturbation analysis to

numerical solution of the full system to check qualitative conclusions.

We set r(c) = r0c and f(θ) = θ. We remark that choice of linear kinetics for r, rather

than, say, Monod kinetics, eases computation, while not changing net substrate flux

significantly [25]; so, we do not expect significant impact on qualitative results. Now,

assuming θ(x, 0) = 0 for z > H , equation (2.1) can be written as

∇2c =

⎧⎪⎨
⎪⎩

0, c(H + L) = c0, H < z < H + L,

1

λ2

θ

θ0
c, cz(0) = 0, 0 < z < H,

(4.2)

with [c] = [Dcz] = 0 at the interface z = H . The length scale λ =
√

D−/r0θ0 is the

effective active layer depth. The quantity θ0, here, is an arbitrary representative value, but

in the case that θ is independent of z, that is, θ = θ0, equation (4.2) has solution

C(z) =

⎧⎪⎪⎨
⎪⎪⎩

c0A(H + L− z) + c0 H < z < H + L

c0B
cosh(z/λ)

cosh(H/λ)
0 < z < H

,
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where

A = − 1

L

D−

D+
L
λ

tanh
(
H
λ

)
1 + D−

D+
L
λ

tanh
(
H
λ

) ,
B =

1

1 + D−

D+
L
λ

tanh
(
H
λ

) .
Equation (2.2) is replaced by the simplified version (4.1) so that

∂

∂t
θ =

d

dt
θ0 = Y r(c|z=H )f(θ0) = Y r0C(H)θ0 = Y r0c0Bθ0,

and hence

θ(t) = θ0(t) = θ0(0)eY r0c0Bt.

Next, in order to study instability, we suppose a spatially sinusoidal (in x) perturturb-

ation to an otherwise homogeneous initial biomaterial volume fraction and linearize. We

write fields c(x, t) and θ(x, t) as

c(x, t) = C(z, t) + c̃(z, t) sin(x/�),

θ(x, t) = θ0(t) + θ̃(t) sin(x/�).

In the diffusive layer, c̃ satisfies

d2

dz2
c̃− 1

�2
c̃ = 0

with c̃(H + L) = 0, so that

c̃(z, t) = Ec0 sinh

(
H + L− z

�

)
, H < z < H + L,

for a constant E. In the biofilm-matrix region, c̃ satisfies

d2

dz2
c̃− 1

Λ2
c̃ =

1

λ2

θ̃

θ0
C

with (d/dz)c̃(0) = 0, where

1

Λ2
=

1

λ2
+

1

�2
.

Solving, we obtain

c̃(z, t) = Fc0B
cosh

(
z
Λ

)
cosh

(
H
Λ

) − �2

λ2

θ̃

θ0
c0B

cosh
(
z
λ

)
cosh

(
H
λ

) , 0 < z < H .

Coefficients E and F are determined by interface conditions for c̃. In particular,

F =
�2

λ2

θ̃

θ0

1 + D−

D+
�
λ
tanh

(
L
�

)
tanh

(
H
λ

)
1 + D−

D+
�
Λ

tanh
(
L
�

)
tanh

(
H
Λ

) .
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Figure 4. Solid curve is the dispersion coefficient σ versus � for the simplified model (see (4.4)) and

dashed curve is the corresponding coefficient for the full model computed numerically. In both cases,

λt=0 = 0.05, approximately the ‘edge’ of the faster growth plateau. Because the simplified model has

increased biomass, its effective active layer is smaller (shifting the dispersion curve to the right) and

growth is somewhat faster since effective flux of substrate into the biofilm layer is larger (shifting

the dispersion curve upwards). Parameter values: Y = 1, r0 = 400, c0 = 1, D− = D+ = 0.05,

H = 0.40625, L = 0.09375, θ0(0) = 0.05.

The perturbed biomaterial volume fraction θ̃ satisfies the linearized equation

∂

∂t
θ̃(z, t) = Y r0C(H, t)θ̃(z, t) + Y r0c̃(H, t)θ0(t) = σθ̃(z, t), (4.3)

where

σ(�) = Y r0c0B

(
1 +

�2

λ2

1 + D−

D+
�
λ
tanh

(
L
�

)
tanh

(
H
λ

)
1 + D−

D+
�
Λ

tanh
(
L
�

)
tanh

(
H
Λ

) − �2

λ2

)
(4.4)

is the dispersion relation. In Figure 4, we plot σ(�) for the simplified model, as given

by (4.4), versus σ(�) computed numerically for the full model. For the numerics, we

apply initial conditions θ(0) = 0.05(1 + 0.001 cos(2πs/�)) and then estimate σ(�) from

the rate of increase in the gap between the maximum and minimum values of θ(t)|z=H .

Computations use the full model (2.1)–(2.2) with f(θ) = θ and methods as described

below. While the simplified σ differs from the (numerically approximated) true one, they

have qualitative similarities. In particular, note the smoothed step function profile, with

the step occurring where perturbation length scale � and active length scale λG are

comparable. The step plateaus indicate two basic features of the dynamics. First, there is

a base level of growth that is independent of perturbation length scale � (see the first term

Y r0C(H, t)θ̃(z, t) in (4.3)) arising from the fact that, independent of neighbours, locally

increased biomaterial depletes substrate locally, and hence, increases influx. Second, there

is an enhanced level of growth at perturbation length scales smaller, approximately, than

the active length (see the second term Y r0c̃(H, t)θ0(t) in (4.3)) arising from the fact that if

regions of increased and decreased biomaterial are sufficiently close, then, the increased
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biomaterial can ‘steal’ substrate from its biomaterial-depleted neighbours through diffusive

transport.

We remark on two differences in the dispersion curves in Figure 4. First, the simplified,

analytically calculated dispersion is larger in magnitude than the numerically one, likely,

as previously mentioned, because we overestimated substrate concentration in the sim-

plification. Second, the numerically computed dispersion appears somewhat left-shifted

relative to the analytical one. This may be a consequence of an ambiguity in choice of

active layer length λ =
√

D/r0θ0(t) due to the time dependence of θ0 and the fact that,

in the simplified model, only c(H) matters. We chose, in formula (4.4), θ0 = θ0(0) = 0.05.

As θ0(t) increases in time (in the numerical computation), the instantaneous active layer

length in fact decreases in time, effectively left-shifting the numerical dispersion relation

relative to the analytical one.

5 Application: Highly heterogeneous biofilm-host systems

Having noted length scale formation via linearization and perturbation of homogeneous

states, we turn to the full, non-linear behaviour of heterogeneous solutions of the model

equations (2.1)–(2.2). Our particular focus is on highly heterogeneous systems, such as

can be seen in host-biofilm interactions where microbes are often observed to exist in ap-

parently discrete microcolonies embedded within host matrix [10]. Heterogeneity effects

can impact on transport efficiency [5], which in turn can have clinical effects [23, 36].

Equations (2.1)–(2.2) are suited as a model for such hybrid systems, but their highly het-

erogeneous character, for example, related to presence of interior microcolonies including

the possibility of rapid material spatial transitions, requires numerical computation.

See Figure 5 for a typical computation, using f(θ) = θ(1 − θ) (and θ|t=0 = 0.15). Here

we have randomly seeded a background ‘host’ matrix with relatively densely embedded

biofilm microcolonies, as in Figure 1, with length scale consistent with the results of the

linear theory, that is, colonies separated by roughly the active layer length scale. Top row

shows biomaterial volume fraction at a time t > 0. For reference, the bottom row of

Figure 5 shows substrate concentration, demonstrating its depletion.

Note that both vertical active layer formation and internal (to microcolonies) active

layers show similar observations in in-vivo biofilm infections [10]. In particular, computa-

tions suggest that microcolonies nearest the substrate source become hotspots of activity,

capable of forming internal active layers. This is rather different than the homogenous

case and this local active layer formation may have consequences for function as well as

tolerance to host defense [38,42]. Relatively inactive biomaterial, hidden by an active layer,

is more tolerant to antimicrobial attacks of various forms. That this defense mechanism

may occur globally as well as at the microcolony level (even in regions with substantial

substrate penetration) is potentially relevant to understanding the recalcitrance of chronic

host–biofilm infections.

For comparison, we also show a computation with a relatively sparse embedding of

microcolonies, see Figure 6. Note that in contrast to the more densely populated examples

in Figure 5 that microcolonies grow uniformly and at approximately the same rate and

there is no emergent active layer either within microcolonies or at a larger active layer
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Figure 5. Two realisations of randomly embedded circular microcolonies. Top: biomaterial

volume fraction. Bottom: substrate concentration.

scale as was seen in Figure 5. Hence, microbes are at approximately uniform activity level,

potentially reducing diversity of response to external challenge.

A number of models have addressed diffusive transport limitation as a component of

observed persistence of microbial infections as well as possible treatment strategies in

response, for example, [1,13,14,20,21,40,41]. However, these models assume homogenized

biofilm, and hence, do not account for the sort of internal active (and inactive) layers that

occur in microcolonies, at least as suggested in the presented model as in Figure 5, which

would only aggravate the problem of disinfection.

6 Computational methods

Computations use high-order discontinuous Galerkin (DG) finite-element (FE) numerical

schemes. Since finite elements generate a variational formulation of system (2.1)–(2.2),

the effects of sharp transitions can be handled using high-order numerical quadratures in

conjunction with compatible meshes. We employ mesh adaptivity, when required, to resolve

the effect of microcolonies on oxygen profiles [4, 5], see for example Figure 7. High-order

approximations can be obtained by using higher degree basis functions. Another attractive

feature of the DG method here is the ease with which it accounts for various types of

https://doi.org/10.1017/S0956792518000402 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792518000402


1030 A. C. Aristotelous et al.

Figure 6. Time snapshots from a realisation of randomly but relatively sparsely embedded cir-

cular microcolonies. Top: biomaterial volume fraction at three successive times. Bottom: substrate

concentration at the same three times.

Figure 7. (Left) An example of a typical 1-irregular (i.e., at most one hanging node per element

edge) adaptive mesh. Use of hanging nodes minimises mesh propagation. The mesh is obtained by

successive refinement (using quadrisection) and coarsening of an initial mesh containing only a few

large triangles. The triangles are selected to be refined or coarsened according to a marking strategy

described in [3] and references therein, based on inverse inequality estimates. The same number of

boundary edges occur on opposing periodic domain sides as a result of the periodic mapping used.

(Right) Computed substrate concentration using the same mesh.

boundary conditions by incorporating them into the weak formulation. A comprehensive

review of DG methods for the spatial discretisation of steady and unsteady PDEs can be

found in the literature [7, 17, 34].

Periodic boundary conditions (in the horizontal direction) for the nutrient equation

(2.1) are implemented weakly, following the ideas in [43], for the Poisson equation. This

is consistent with the classic DG formulations and the principal behind DG methods.
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The method proposed in [43] requires the existence of the same number of edges in

corresponding periodic boundaries and suggests the creation of a map between matching

periodic edges, defined as periodic pairs ep, that is, ep := {ei, ej}, where ei ⊆ {x = 0}×[0, L]

and ej ⊆ {x = P}× [0, L], (P is the length of the periodic domain). Essentially, a periodic

pair is treated as a single interior edge and the corresponding extra terms are introduced

in the bilinear forms. When dealing with adaptive meshes, it is also necessary to correctly

maintain the periodic map due to the fact that refined periodic edges may create an

imbalance in the number of edges on each periodic boundary [6].

For time-stepping, the Θ-method is employed – the choice of Θ = 0.5 corresponds to

the Crank–Nicholson method, which provides in theory second-order accuracy in time.

We decouple equations (2.1)–(2.2) using a time relaxation. Thus, they can be solved

sequentially, resulting in the following fully discrete scheme: find (θh, ch) ∈ V
q
h , such that

(θh
n − θh

n−1, w) = Dt×
{
Θ(f(θnh)r(c

n
h), w) + ((1 −Θ)f(θn−1

h )r(cn−1
h ), w)

}
, (6.1)

DnBn
h(ch

n, w) = −(θn−1
h r(cnh), w), (6.2)

where w ∈ V
q
h is a DG basis function and V

q
h is the DG finite dimensional space [7],

consisting of piecewise polynomial elements of degree q. Recall f(θ) = θ(1 − θ) or

f(θ) = θ. The usual L2-inner product is denoted by (·, ·) and Bn
h(·, ·) is the DG bilinear

form corresponding to the Laplacian operator in variational form with the prescribed

BCs [34, 43]. The qth-order DG basis polynomials provide O(hq+1) accuracy in the

L2-norm of the spatial error at each time step, with h being the mesh discretisation

parameter. Here, we use cubic polynomials which, in theory, gives us an L2-spatial error

that is O(h4). We employ fixed point iteration with extrapolation to solve the nonlinear

systems. Artificial time is used for (6.2) when nonlinear iteration alone was too slow.

Multilevel solvers tailored to our adaptive multilevel mesh are utilised to solve the

linearised algebraic system arising from the numerical discretisation. A conjugate gradient

solver with multigrid [2,11,12] preconditioning is employed. Use of the symmetric interior

penalty variant of DG-FE [7] results in symmetric positive-definite mass and stiffness

matrices that have block structure benefiting the design of our iterative solver and

preconditioner.

7 Discussion

Microbial communities are also physical structures, and as such, are subject to physical

constraints. In particular, in many cases, community function is significantly impacted by

diffusive transport. And if community function is effected, then so is community form.

One possible form of such impact is fingering. Here, we propose another possible example

in the form of a sort of internal version of fingering in which internal, local activity hot

spots are able to enhance diffusive flux and thus amplify. As such, a characteristic length

scale is suggested, namely that of the active length. On this and shorter scales, diffusion

effectively mixes the local concentration gradient and hence reaction-driven depletion can

be ameliorated.

This observation leads to the prediction that microbial systems, including host-microbe

systems, may exhibit heterogeneous microcolony hotspots with length scales determined by
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diffusive tranport limitation. Such microcolonies, as can be seen in Figure 5, can interact

to deplete substrate (such as oxygen) but can also have their own internal, diffusion-

limited structures. The resulting structure, consequent to the presence of diffusion limited

transport, can have importance in microbial function and in host-microbe interactions.

Our approximated linear theory, supported by numerics, does not directly distinguish a

preferred structure wavelength; instead, roughly, all wavelengths below the active length

are equally favored. This is a symptom of model simplicity. Some additional mechanism

could be added in order to cut off short wavelengths depending on the circumstance.

For example, in a host-biofilm system, smaller structures may be more susceptible to

host defense than larger ones [10]. In our simulations, numerical diffusivity creates an

effective lower bound. Of course, structures smaller than a single cell cannot occur in

reality anyway so there is always a cutoff at some point.

We also do not include biomaterial mobility. For example, microcolonies do not

spread through growth. Such effects have been included in other models, including

other multidimensional continuum-based models [15,18,19]. Accounting for displacement,

growth-driven or otherwise, introduces complications which might serve to obscure our

main point regarding diffusion limitation. A conseqence, though, is that we do not predict

influence of diffusion on microcolony size, likely an important statistic.
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M., Jensen, Ø. P. & Høiby, N. (2013) The in vivo biofilm. Trends Microbiol. 21,

466–474.

[11] Bramble, J. H. (2003) Multigrid Methods, Research Notes in Mathematics Series, Chapman

and Hall/CRC, London.

[12] Brenner, S. C. & Sung, L. Y. (2006) Multigrid algorithms for C0 interior penalty methods.

SIAM J. Numer. Anal. 44, 199–223.

[13] Cogan, N. C. (2008) Two-fluid model of biofilm disinfection. Bull. Math. Biol. 70, 800–819.

[14] Cogan, N. G., Cortez, R. & Fauci, L. (2005) Modeling physiological resistance in bacterial

biofilms. Bull. Math. Biol. 67 831–853.

[15] Cogan, N. G. & Keener, J. P. (2004) The role of the biofilm matrix in structural development.

Math. Med. Biol. 21, 147–166.

[16] Coufort, C., Derlon, N., Ochoa-Chaves, J., Line, A. & Paul, E. (2007) Cohesion and

detachment in biofilm systems for different electron acceptor and donors. Water Sci. Technol.

55, 421–428.

[17] Di Pietro, D. A. & Ern, A. (2012) Mathematical Aspects of Discontinuous Galerkin Methods,

Springer, Berlin.

[18] Dockery, J. D. & Klapper, I. (2002) Finger formation in biofilms. SIAM J. Appl. Math. 62,

853–869.

[19] Eberl, H. J., Parker, D. F. & Van Loosdrecht, M. C. M. (2001) A new deterministic

spatio-temporal continuum model for biofilm development. J. Theor. Med. 3, 161–175.

[20] Eberl, H. J. & Sudarsan, R. (2008) Exposure of biofilms to slow flow fields: The convective

contribution to growth and disinfection. J. Theor. Biol. 253, 788–807.

[21] Efendiev, M. A., Demaret, L., Lasser, R. & Eberl, H. J. (2008) Analysis and simulation of

a meso-scale model of diffusive resistance of bacterial biofilms to penetration of antibiotics.

Adv. Math. Sci. Appl. 18, 269–304.

[22] Galy, O., Latour-Lambert, P., Zrelli, K., Ghigo, J.-M., Beloin, C. & Henry, W. (2012)

Mapping of bacterial biofilm local mechanics by magnetic microparticle actuation. Biophys.

J. 103, 1400–1408.

[23] Hopf, H. W., Hunt, T. K., West, J. M., Blomquist, P., Goodson III, W. H., Jensen, J. A.,

Jonsson, K., Paty, P. B., Rabkin, J. M., Upton, R. A., von Smitten, R. & Whitney, J. D.

(1997) Wound tissue oxygen tension predicts the risk of wound infection in surgical patients.

Arch. Surg. 132, 997–1004.

[24] James, G. A., Zhao, A. G., Usui, M., Underwood, R. A., Nguyen, H., Beyenal, H., Pulcini

E.d., Hunt, A. A., Bernstein, H. C., Fleckman, P., Olerud, J., Williamson, K., Franklin,

M. J. & Stewart, P. S. (2016) Microsensor and transcriptomic signatures of oxygen depletion

in biofilms associated with chronic wounds. Wound Repair Regen. 24, 373–383.

[25] Klapper, I. (2013) Productivity and equilibrium in simple biofilm models. Bull. Math. Biol. 74,

2917–2934.

[26] Klapper, I. & Dockery, J. (2006) Role of cohesion in the material description of biofilms.

Phys. Rev. E 74, 031902.

[27] Klapper, I. & Dockery, J. (2010) Mathematical description of microbial biofilms. SIAM Rev.

52, 221–265.

[28] Klapper, I., Dockery, J. & Smith, H. (2014) Niche partitioning along an environmental

gradient. SIAM J. Appl. Math. 74, 1511–1534.

[29] Lehner, B. A. E., Schmieden, D. T. & Meyer, A. S. (2017) A straightforward approach for

3D bacterial printing. ACS Synth. Biol. 6, 1124–1130.

[30] Lewandowski, L. (2000) MIC and biofilm heterogeneity. Proc. Corros., NACE-400, 1–7.

https://doi.org/10.1017/S0956792518000402 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792518000402


1034 A. C. Aristotelous et al.

[31] Mitri, S., Clarke, E. & Foster, K. R. (2016) Resource limitation drives spatial organization

in microbial groups. ISME J. 10, 1471–1482.

[32] Nadell, C. D., Drescher, K. & Foster, K. R. (2016) Spatial structure, cooperation and

competition in biofilms. Nat. Rev. Microbiol. 14, 589–600.

[33] Picioreanu, C., van Loosdrecht, M. C. & Heijnen, J. J. (2000) Effect of diffusive and

convective substrate transport on biofilm structure formation: A two-dimensional modeling

study. Biotechnol. Bioeng. 69, 504–515.

[34] Rivière, B. (2008) Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations,

SIAM, Philadelphia.
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