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Abstract

We consider, on an Archimedean Riesz space, the spaces of all linear operators lying between
two multiples of the identity (for the order), those leaving all ideals invariant and the order
bounded orthomorphisms. We find, if E is uniformly complete, necessary and sufficient condi-
tions for all such operators defined on sublattices of E to extend to the whole of E. Examples
are given to show the role of uniform completeness. For the space of all orthomorphisms we
give a sufficient condition on E for such an extension to exist.

1980 Mathematics subject classification (Amer. Math. Soc): 47 B 55.

1. Introduction

Let E be an Archimedean Riesz space (we follow Luxemburg and Zaanen (1971)
for general Riesz space terminology). We let Stab(E) denote the space of all
orthomorphisms on E (see below for all definitions) and P{E) denote the subspace
of order bounded orthomorphisms. We also use S{E) to denote the space of all
linear operators on E which leave all ideals invariant and Z(E) to denote those
linear operators T on E for which there is A ̂  0 with — Xx ̂  Tx ̂  Xx for all x e E+.

It is known that P(E)^Stab(E) in general. At one time the author conjectured
that P{E) = Stab(E) when E is Dedekind complete. In an attempt to disprove
this the author needed to extend an orthomorphism from an Archimedean Riesz
space to its universal completion (Luxemburg and Zaanen (1971), Definition 50.4).
This led him to ask when such extensions are possible, for each of the four spaces
mentioned above.

Given an Archimedean Riesz space E and a sublattice H of E it is not easy to
describe even when each element of Z(H) extends to an element of Z(E) (the
simple case E = C(X) will give some idea of the difficulties involved). A more
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tractable problem is to seek those E for which the appropriate operators extend,
for any sublattice H. For the spaces Z(-), S() and /•(•) we have a necessary and
sufficient condition, at least when E is uniformly complete (when this assumption is
used, examples are given to show that it cannot be dispensed with). For Stab(-),
however, we have only a sufficient condition. It seems to the author that there is
little hope of deciding whether or not this condition is necessary until rather more
is known about the structure of orthomorphisms which are not order-bounded.

Section 2 contains the definitions of the spaces involved together with some
relevant results of representation theory. The extension results are all in Section 3.

2. Orthomorphisms and representations

Let E be an Archimedean Riesz space. A linear operator T on E is called an
orthomorphism if Txly whenever xly. An orthomorphism is order bounded
(in the sense that it maps order bounded sets to order bounded sets) if and only
if it is the difference of two positive orthomorphisms (see Meyer (1977), Corollaire
2.4). We follow Meyer by writing Stab(E) for the space of all orthomorphisms on is,
but retain the notation of Wickstead (1977) in writing P(E) for the space of all
order bounded orthomorphisms on E. We also retain the use of S(E) to denote the
space of all linear operators on E which leave every ideal invariant and Z(E) to
denote those linear operators TonE for which there exists A ̂  0 with — Xx^Tx^Xx
for each xeE+.

There are always inclusions

Z(E) <= S(E) <= P(E) <= Stab (E)

and in general all three inclusions may be proper (see Wickstead (1977) for the
first two and Meyer (1977), Example 2.6 for the third. A similar example has been
communicated to the author by Luxemburg (1977). That the inclusion may be
proper will also follow from example (f) below).

If S is a topological space then C°°(5) denotes the continuous extended real
valued functions on S which are finite except on a nowhere dense set. In general
this will not be a linear space when we define h=f+gto mean that h(s) =f(s)+g(s)
whenever the sum is defined (we shall say that sums of the form oo + (—oo) and
products of the form 0-(±oo) are not defined). If S is extremally disconnected then
C^S) is a linear space and even an algebra when we define fg{s) —f(s)g(s)
whenever the product is defined (see Luxemburg and Zaanen (1971), Theorem 47.2).

We say that the map x ^ / of E into C^S) is a representation of E if
(i) E* = {x*: xeE} is a linear space and sublattice of CX(S).
(ii) JCM>- JC^ is a Riesz space isomorphism of E onto E*.

If, further,
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(iii) For each seS there is x eE with 0 < x*(s) < oo, we say that the representation
is admissible.

Order bounded orthomorphisms and representations tie in together nicely. If
TeP(E) and x->x" is a representation of E in C°°(S) then there is <p e C^iS) such
that, for each xeE,

for those s e S for which the product is defined (see Wickstead (1977), Theorem 2.5
for a general proof and Bigard and Keimel (1969) or Conrad and Diem (1971) for
a special case). Conversely any operator which can be described in this way lies
in P(E); so in particular the representation cannot be extended to Stab(E). Later
this will account for the difference between our results for Stab(E) and the other
spaces. It is, perhaps, worth recording here that, for TeP(E) and the corresponding
<peCm(S), TeS(E) if and only if <p is bounded on the support of each x^ whilst
TeZ{E) if and only if <p is bounded.

Every Archimedean Riesz space has many admissible representations. It is not
always possible, even assuming uniform completeness, to choose one so that E*
is an ideal in C^S). This is possible (and we shall need this later) if E is Dedekind
complete, that is every nonempty subset with an upper bound has a least upper
bound. Indeed let (ey)yeT be a maximal disjoint family of positive elements of E.
We may use the Yosida representation (Luxemburg and Zaanen (1971), Section 42)
to represent the ideal generated by ey as C(Xy), where Xy is compact Hausdorff.
As this ideal is Dedekind complete it follows from Luxemburg and Zaanen (1971),
Theorem 43.11 that Xy is extremally disconnected. This representation may be
extended to take the band generated by ey into C^{Sy). The natural representation
of E on the disjoint union of the Xy's will have the desired property.

3. Extension theorems

Our first result not only deals with the problem of extensions for Z(-) but also
will be referred to in the proof of Theorem 3.

Recall that an Archimedean Riesz space has the projection property if for every
band B, B®Bd is the whole of E. For each eeE+ the expression

||x||e = inf{A>0: -Xe^x^Xe}

defines a norm on the ideal generated by e. If each such ideal is complete for
||-||e then E is uniformly complete.

THEOREM 1. Consider the following four conditions on an Archimedean Riesz
space E.
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(i) E is Dedekind complete.
(ii) If H is a sublattice of E and TeZ(H) then there is TeZ(E) with T\H=T.
(iii) If H is a sublattice of E and TeZ(H) then there is TeP(E) with T\H = T.
(iv) E has the projection property.

In general (i) => (ii) => (iii) => (iv). If E is uniformly complete then all four conditions
are equivalent.

PROOF, (i) => (ii). It suffices to prove that each TeZ(H)+ extends as required.
Suppose also that A > 0 with Th^Xh for all h e H +. Define 9?: E-+E by <p(x) = Xx+,
so that tp is positive homogeneous and sublinear. As T^<p on H we may use the
Hahn-Banach theorem to extend T to T: E-+E with O^f s*p. Thus if xeE+,
0 ̂  Tx < Xx and T is the required extension of T in Z{E).

(iii) => (iv). Let B be a band in E. Define T on B® Bd to be linear and with J | 5
being the identity on B and T\ Bd to be the zero operator. Let TeZ(E) be an extension
of T. This is order continuous and hence positive. Thus, if xeE+,

Tx = sup{7g:

which is the definition of the band projection onto B.
Theorem 42.6 of Luxemburg and Zaanen (1971) asserts that Dedekind complete-

ness is equivalent to the projection property together with uniform completeness.
This suffices to complete the proof, as clearly (ii)o(iii).

We give now two examples to show that the implications (ii) => (i) and (iv) => (ii)
in Theorem 1 are not valid in the absence of the assumption of uniform complete-
ness. We refer to (ii) as the Z{-)-extension property. We first present a general
construction.

Let X be a completely regular Hausdorff space and A be any linear space of
continuous real valued functions on X. We say a function is locally in A if

(i) The domain of/, £>(/), is a dense open subset of X.
(ii) If xeD(J~) there is a neighbourhood U of x and geA with g\ U = / | U.
We define an equivalence relation on the set of all functions that are locally in

A by defining f=g to mean f\D(f)nD(g) = g\ D(f) n D(g). Let LA(X) denote
the space of equivalence classes, under =, of the functions which are locally in A.

LA(X) is a linear space if we define

= A/(*) (xeD(f)),

D(f+g) = D(f) n D(g), (f+g) (x) =/(*)+g(x) (x e D(f+g)),

where, as usual, we do not bother to distinguish between functions and their
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equivalence classes. For the pointwise ordering LA(X) is a vector lattice which is
Archimedean provided Zhas the Baire property. For example, if we define fvg by

D(fvg) = [D(f)nD(g)]\d{xeX:f(x)=g(x)},

fvg(x) =/(*) vg(x) (x e D(fvg))

then it is not difficult to check thatfvg is the supremum of/and g (divide D(fvg)
into three disjoint open sets on which f<g,f=g and f>g respectively to show
that condition (ii) is satisfied).

A band B in LA(X) is any set of the form {feLA(X):f\ Yn D(f)=0} where Y
is a regular closed subset of X (that is Y is the closure of its own interior). Any
space LA(S) has the projection property, for if geLA(X), let

Y^O, ftl D(g)\ Y=g\D(g)\ Y.

Then gxeB and g-g^LB.
Any element TeP(LA(X)) may be described by specifying that, for feLA(X),

Tf{x) = <Kx)f(x) (xeD(f)n

for some <peLC(x)(X). The proof of Theorem 2.5 of Wickstead (1977) may be
repeated to show this, where the role of points where a function is infinite is now
taken by points where the function is not defined.

LA(X) = {feLA(X):f is bounded} is an ideal in LA(X) and thus also has the
projection property. The representation result for order bounded orthomorphisms
also works for this subspace.

(a) Archimedean Riesz space with the projection property but without the Z(-)-
extension property

Take 1= [0,1], G to be the space of all polynomial functions on 7,Fthe linear
span of G and the exponential function, exp, and Cthe space of constant functions.
Let E = Lb

F(I) and Hbe the sublattice Lb
G(J). It is easy to check that we may identify

Z(H) with H itself, in the sense that if TeZ{H) there is h e H with, for/eH,

Tf(x) = h(x)f(x) (xeD(f)nD(h))

(or see Theorem 3 of Zaanen (1975)). Now suppose T extends to TeZ(E). Clearly
we still have

Tf(x) = h(x)f(x) (,xeD(f)n DQi)),

where now/is any element of E. Consider 7*(exp). At each point x e DQi) n D(r(exp))
there is a neighbourhood U on which T(exp) coincides with/?+a-exp, where p is
a polynomial and aeR. It follows that, on UnD(h), h coincides with (/>/exp) + a.
There is a neighbourhood Fof x on which h coincides with q, a polynomial function.
Thus on UnVnDQi) the functions q and (/>/exp)+a coincide. Thus, on
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Un Vn DQt), p=0 and q= a. That is if T is to extend to TeZ(E) then
Clearly Lb

F(T)^Lb
c{r) and so the Z( ̂ -extension property fails for E. We have

already seen that E has the projection property, so we have the desired example.

(b) Archimedean Riesz space with the Z(-)-extension property but which is not
Dedekind complete

With the notation of example (a), let E = L^I). Z(E) may be identified with
Lb

c{F) in the usual manner. If H is any sublattice of E and TeZ(H) then there is
<p, defined on Y = {xel: there exists h eH with A(x)^0}, with

Clearly <p is bounded and coincides, on some neighbourhood of any given point of
Y, with a constant function. It may be extended to peLfyl) by defining, for
example, D(p) = Su(I\5) and ^ | ( / \5 )=0 . f now defines the required extension,
T, of T. Thus E has the Z(-)-extension property, while it is easy to check that it is
not Dedekind complete.

We now turn our attention to the space 5(-)- The relevant condition here is
rather different in character from those in all our other results. Note in particular
that uniform completeness plays no role here.

THEOREM 2. The following condition on an Archimedean Riesz space E are
equivalent:

(i) Every principal ideal in E is finite dimensional.
(ii) There is a set S and a linear order isomorphism, x\->x*', of E onto the space

of all real-valued functions on S which vanish except on a finite set.
(iii) If His a sublattice of E and TeS(H) then there is TeS(E) with T\H=T.

PROOF, (i)o(ii) is Theorem 61.4 of Luxemburg and Zaanen (1971).
(ii)=>fiii). Let R = {seS: there exists heH with fT(s)>£0}. Each TeS(H)

defines <peC°(R) (= C(R)) such that, for heH,

r) = <p(r)h~(r) (re/?).

Extend 9? to p on S in any manner. $ defines T on E by

for each xeE. This is the desired extension of T.
(iii) => (i). Let eeE+. If the ideal it generates is not finite dimensional we can

find (OneN with 0<e n <e and 0j£=en for all neN and enlem xin^m. Let H be
the linear span of the en's, a sublattice of E. Define T on H by setting Ten = nen

and extending it linearly. Clearly TeS(H). Suppose T extends to TeS(E). We
may, by replacing T by its positive part if necessary, assume that T is positive.
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There exists A>0 with Te^Xe. It follows that Tx^Xx for all x in the positive part
of the ideal generated by e. In particular we have nen = Ten = Ten s* Xen, so that
A ̂  n for all n e N, a contradiction.

This proof shows that P(E) = S(E) for such spaces (it is also true that
P(E) = Stab(E) for them). It is easy to check that the spaces satisfying the equiva-
lent conditions of Theorem 2 are precisely the spaces of all real-valued functions,
on some fixed set, which are zero except on a finite set. These spaces have several
characterizations, see Section 61 of Luxemburg and Zaanen (1971).

Recall that an Archimedean Riesz space E is universally complete if every
disjoint family of positive elements of E has a supremum. The Dedekind complete
and universally complete Riesz spaces are precisely those linearly order isomorphic
to CX(S) for some compact extremally disconnected space S. We shall define E
to be universally bounded if every disjoint family of positive elements of E has an
upper bound. Clearly if E is universally bounded and Dedekind complete it will be
universally complete. Example (d) below will be universally bounded and have the
projection property but will fail to be universally complete.

THEOREM 3. Consider the following three conditions on an Archimedean Riesz
space E.

(i) E is Dedekind complete and every principal band is universally complete.
(ii) IfH is a sublattice of E and TeP(H) then there is TeP(E) with T\H=T.
(iii) E has the projection property and every principal band is universally bounded.
In general (i) => (ii) => (iii). If E is uniformly complete then all three conditions are

equivalent.

PROOF, (i) => (ii). Let x\-^-x* be an admissible representation of E as an ideal in
C°°(S), where S is a disjoint union of extremally disconnected compact Hausdorff
spaces. Let R = {s e S: there exists h e H with 0 < h^(s) < oo} and let f e C°°(/?) with,
for heH,

T) = <p(r)h-(r)

for all r e R for which the product is defined. Extend <p to p e C^S) (as in Theorem
1). We need only prove that if xeE then px^eE^ to be able to define Tx = y,
where y^ = fx*, and deduce that T is the desired extension.

Without loss of generality we may assume p and x are positive. Define,
inductively, open and closed sets An by

A1 = {seS:p(s)<l}-,

An = {seS:<p(s)<n}-\An_1,

so that n-1 ^p\An^n. As E~ is an ideal in C°°(5) we have fx\AJx^eE*. Let
zneE with zn^ = pxl^nix*- Define z to be the supremum of the zm's,
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which exists as each zn lies in the band generated by x, which band is universally
complete. Note that

so that z~ Ss px* by continuity. That px* e E~ now follows as px* e CX(S) and E~
is an ideal in C°°(5) (in fact px = z~).

(ii) => (iii). The implication (iii) => (iv) of Theorem 1 shows that E has the pro-
jection property.

Let eeE+ and (xy) be a disjoint family of positive elements in the band generated
by e. If n e N let Pw y be the band projection onto the band generated by xy A ne
and Qny = Pn,y~P{n-i),y which is also a band projection. Note that Qnyxy^ne
and that xy = supTC Qnyxy. The family of all g n r xy is disjoint so its linear span is
a sublattice H of £. Define TeP{H) with r [g B ) r * 7 ] = «[(?„,,, * r ] . Let T be any
positive extension of T to the whole of E (if J has an extension in P{E) take its
positive part). Now

so that Qnyxy^Te and hence xy^Te for all y.
Finally it is clear that (iii), together with uniform completeness, implies (i).
Neither implication (ii) => (i) nor (iii) => (ii) is valid without the assumption of

uniform completeness. We shall refer to (ii) as the P(-)-extension property.

(c) Archimedean Riesz space with the projection property and which is universally
complete but does not have the P(-)-extension property

In example (a) replace E by LF(I) and H by LO(I). The only extra comment
needed is that every space LJJ) is universally complete.

(d) Archimedean Riesz space with the P(-)-extension property which has a weak
order unit but is not universally complete {and hence not Dedekind complete)

Let P be the space of piecewise affine functions on / = [0,1]. That is those
/ eC( / ) such that there exist x0 = 0, xv...,xn_1,xn= 1 with f\[xt,xi+1] affine
(0^/<«). Let E be the sublattice of LP{I) consisting of those/which coincide
with a product gh (g sL^I), hsP) where it is defined (so E contains the functions
with only finitely many slopes).

It is not difficult to check that P(E) consists of multiplication by functions in
Lc(/). If H is any sublattice of E and TeP(H) it is represented by a function <p
on Y ={xsl: there exists h e H with 0 ̂  h*(x)}, which it is not difficult to check lies
in LaT(Y). Defining D(fi) = D(<p)u(I\S) and p\I\S=0 gives us an extension
of <p in I/C(/), which defines the extension T of T that is required.
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Define fneE by />(/„) = I\{l/n, l/(n-1)} and

(nt-l (te(l/n,l/(n-l)),

[0

It may easily be checked that (/m)WEN has no supremum in E.
We come now to our final theorem. The proof differs from our previous ones

as we do not have a representation of general orthomorphisms available to us.
Note that we do not need uniform completeness for this theorem, but we do need
the additional assumption of order density of the sublattice H.

THEOREM 4. Let E be an Archimedean Riesz space with the principal projection
property and with all principal bands universally complete. If H is an order dense
sublattice of E and TeStab(H) then there is TeStab(E) with T\H=T.

PROOF. Let 0> = {(F, S): F is a linear subspace of E, H<=F, S: F-+E is linear,
S\H = T and xeF, yeE with xly implies Sxly}. P^0 as (H, T) eP, for if yeE+
then y is the supremum (in E) of {/ e H: 0 < y' < y) (using the order density of H
in E). Thus if xeH and xly we have xly' whenever O^y'^y, y'eH. Hence
Txly', for all such y', and hence Txly.

Order & by defining (F, S) < (F',Sr) to mean F c F' and S = S'\ F. If (Fy, SY)yer

is a chain in 0> let G = \JyeTFand define R on G by R(g) = 5r(^) if geFy. This
is a well-defined linear mapping. If geG and yeE with g±j> then geFy so that
ylSyg = /Jg. Thus (G,R)e£P and it is clear that (C7,/?) is the supremum in 0> of
the given chain. It follows from Zorn's lemma that there is a maximal element
{E,T)oi0>.

We claim E = E, from which it will follow that T is the desired extension. Note
first that we may, for each geE, assume that PgE<=E, where Pg denotes the band
projection onto the band generated by g. For define S on Pg E® (I-Pg)E by

S [Pgf+ ( / ' - Pgf)] = Pg(Tf)+(Tf - Pg(Tf')).

S is well defined, for

implies

Thus f-hlg so T(J-h)lg and Pg(Tf) = Pg(Th), and f-h lying in the band
generated by g implies that T(/- A) is there also, so that ( / - Pg) {Tf) = ( / - Pg) (Th').
Clearly also 5 has the required orthogonality property, so that S = Tby maximality.

Let geE\E, contrary to our claim. Without loss of generality we may suppose
the band generated by g is the whole of E. For if we can extend T\ Pg E to Pg E® Rg
in the appropriate manner, the extension to is©Rg is routine.
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If yeE,fe£ and f+g±y, define

where Py denotes the band projection onto the band generated by y. Note that if
also y'eE,f'e£ with f'+gly' then

PvP(y',f',g) = PyP(y,f,g).

For/+^,/'+^l|y|A|y| imply that/-/'l|y|A|/|, so that T(f-f')l\y\*\y'\
and hence PWAW(Tf) = PlyW\(Tf). As we also have PyPy, = PWhW\ = PyPy we
see that

PyP{y',f',g) = -

= PyP(y,f,g).

I now claim that there is heE with

Pvh = P(y,f,g)

whenever y±f+g(yeE,fe£). Let ( j r ) r e r be a maximal disjoint family with
yy±f7+g for some fye£. Certainly the family (P(yr,fy,g))yer is disjoint. Using
the universal completeness of the band generated by g (= E) we may form

h= VP(yrfrg)+- VP(yrfrg)-.
T yeT

Clearly PVyh = P{yTfy,g) for each ye F. Suppose ylf+g, v/ithyeE,fe£, then
we have seen that

PyYP(y,f,g) = PyP(yrfvg)

If there isze.Ewith|z|<|}>| but z 1 yy for each yeT, then z 1/+ g contradicting
the maximality of the disjoint family (yy)yeT. It follows that, as both Pyh and
P(y,f,g) lie in the band generated by all the yys, Pvh = P(y,f,g) as claimed.

Now define Eo = E® Rff, To(/+ a.g) = Tf+ ah. If/+ ocglyeE then either a. = 0,
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so that fly => Tf±y=> T0(f+0-g)±y, or else cx

= 0,

so that T0(f+ocg) = <xT0(a.-1f+g)±y again. This contradicts the maximality of T,
completing the proof.

(e) Example to show that order density cannot be dropped from the hypotheses of
Theorem 4

The example given by Meyer of an Archimedean Riesz space E with
Stab{E)^P{E) is a lattice of real-valued functions on [0,1]. This is a sublattice
of ^"([0,1]), the lattice of all real-valued functions on [0,1], which is Dedekind
complete and universally complete. Suppose each TeStab(E) extended to
Te Stab (^([0,1])). As Stab(^([0,1])) = P(JF([0,1])) (if/(/) = 0 then / I *[{*}]
implies Tfl x [{t}], which observation makes the representation of elements of
Stab (^([0,1])) as multiplication by functions on [0,1] simple) we can form
r+e/>(,F([0,1])). But if xeE+ then T+x = (Tx)+ = (Tx)+eE. Thus T+\E= T+
exists in P{E), and hence TeP{E). This contradicts Stab(E)^P(E).

(f) Example of an order bounded orthomorphism with an extension but no order
bounded one

Let us return to the example E = LF(I), H = LG(J) and take any TeP{H)
which does not extend to an element of P(E). LF(I) has the projection property
and is universally complete, so we may certainly apply Theorem 4 to extend T
to TeStab{E).

(g) Example of a Dedekind complete, universally complete Riesz space M with
P(M)^Stab(M)

Every Archimedean Riesz space L can be embedded as an order dense sublattice
of a Dedekind complete, universally complete Riesz space M (Luxemburg and
Zaanen (1971), Theorem 50.8). This applies in particular to Meyer's space or to
Lp(r), both of which have a non order bounded orthomorphism on them. If we
extend this by Theorem 4 the argument used in (e) shows that this extension cannot
be order bounded.
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