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Abstract

The class of all uniformly strongly prime rings is shown to be a special class of rings which generates a
radical class which properly contains both the right and left strongly prime radicals and which is
independent of the Jacobson and Brown-McCoy radicals.
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1. Introduction

In 1975 Handelman and Lawrence [5] introduced the concept of right strongly
prime rings which are equivalent to the absolutely torsion free rings of Rubin [9].
The right strongly prime radical of a ring R is defined to be the intersection of all
right strongly prime ideals of R. The dual notion of left strongly primeness
determines a left strongly prime radical. An example given by Parmenter,
Passman and Stewart [7] showed that these two radicals are distinct. Groenewald
and Heyman [4] characterized the right strongly prime radical as the upper radical
determined by the special class of all right strongly prime rings. Subsequent work
by Parmenter, Stewart and Wiegandt [8] located this radical in the lattice of
radical classes.
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In this paper we define a new radical called the uniformly strongly prime
radical which properly contains both the right and left strongly prime radicals.
Standard radical theoretic terminology as given in Divinsky {2] will be used and
all rings considered will be associative, but need not have identities.

2. Uniformly strongly prime rings

DEerFINITION 1. A ring R is called Right Strongly Prime if for each nonzero
x € R there exists a finite subset F, of R such that the right annihilator of xF, is
Zero.

The set F, is called the right insulator of x. Handleman and Lawrence worked
exclusively with rings with identity; however, Parmenter, Stewart and Wiegandt
[8] have shown that the definition is equivalent in a general associative ring to:

DEFINITION 2. A ring R is Right Strongly Prime if each nonzero ideal I of R
contains a finite subset F which has right annihilator zero.

Such a finite subset F is called the right insulator of the ideal.

It is clear that every right strongly prime ring is prime. It is also possible to
define left strongly prime rings in a manner analogous to that for right strongly
prime. Handelman and Lawrence [5] gave an example to show that these two
concepts are distinct.

DEFINITION 3. A ring is bounded right strongly prime of bound n (denoted
SP.(n)) if each nonzero element has an insulator containing no more than n
elements and at least one element has no insulator with fewer than n elements.

DEFINITION 4. A ring is called Uniformly Right Strongly Prime if the same
insulator may be chosen for each nonzero element.

Since an insulator must be finite, it is clear that every uniformly right strongly
prime ring is SP,(n) for some n. Again, analogous definitions of bounded left
strongly prime and uniformly left strongly prime can be given. As was the case
with the strongly prime concept it is possible to find rings which are bounded left
strongly prime but not bounded right strongly prime and vice versa [5, Example
1]. However, we find that the concept of uniformly strongly prime is two-sided.
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LEMMA 5. A ring R is uniformly strongly prime if there exists a finite subet F C R
such that for any two nonzero elements x and y of R, there exists f € F such that
xfy # 0.

PrROOF. Let R be uniformly right strongly prime. Then R has a uniform right
insulator F which is a finite set such that for any element x € R, xF has no
nonzero right annihilators. Then, if x and y are any two nonzero e¢lements in R,
y cannot be in the annihilator of xF. Hence there is an f € F such that xfy # 0.

For the reverse implication it is easy to see that if the condition is satisfied then
for any x # 0 in R, no nonzero element annihilates xF on the right. Hence R is
uniformly right strongly prime.

It is obvious that the condition in Lemma 5 is not one-sided; consequently, this
condition is equivalent to uniformly left strongly prime as well, and we have:

COROLLARY 6. R is uniformly right strongly prime if and only if R is uniformly
left strongly prime.

DErINITION 7. We will call a uniformly strongly prime ring US-prime, and an
ideal I of a ring R will be called a US-prime ideal of R if R/I is US-prime.

We can establish the following results for US-prime rings which are similar to
those which are true for right strongly prime rings.

LEMMA 8. If R is US-prime and e is a nonzero idempotent in R then eRe is
US-prime. :

PrROOF. Since R is US-prime, R contains a uniform insulator F. Choose
a = exe and b = eye arbitrary nonzero elements in eRe. Then there exists f € F
such that afb = exefeye # 0. But then (exe)(efe)(eye) # 0 and {efe|f€ F}isa
uniform insulator for eRe. Hence, eRs is US-prime.

LEMMA 9. For any n, R is US-prime if and only if M,(R) is US-prime.

PROOF. Let R be US-prime with insulator F. Let F’ = M, (F U {0}). Then F’
is a finite set in M,(R). If A, B € M,(R) are nonzero, then A has a nonzero
entry, a;; and B has a nonzero entry, b,. Since a;;, b, € R there exists f€ F
such that a,;fb, + 0. Let E, (f) be the elementary matrix with f in the j,r
position and zeros elsewhere. Then AE, (f)B has a,,fb,, in the i, s position and
hence is nonzero. Sinces E,,(f) € F’, we see that F’ is an insulator for M,(R)

and, hence, M, (R) is US-prime. Conversely; suppose, for some n, M,(R) is
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US-prime with insulator F'. Let a, b € R be nonzero. If we let 4 be the matrix
with g in the 1,1 position and zeros elsewhere; B the matrix with b in the 1,1
position and zeros elsewhere; then, 4 and B are nonzero elements of M, (R).
Hence, there is an element D € F’ such that ADB is nonzero. This requires an
entry d in D such that adb # 0. So, if we let F = {r|r is an entry in a matrix in
F’} we see that F becomes an insulator for R. Hence R is US-prime.

Lemmas 8 and 9 allow one to conclude that US-primeness is a Morita invariant
on the category of associative rings.

THEOREM 10. A4 right order in a US-prime ring is US-prime.

PROOF. Let R be a right order in S, a US-prime ring. Let F = {f}, f,-... fi}
be a uniform insulator for S. Without loss of generality we may assume f, # 0 for
all i. Then, since R is an order in S, there exists #,, regular in R, such that
fit; # 0 and f¢; € R. But since ¢, is not a right zero divisor, f,¢; # 0 and there
exists a regular element ¢, € R, such that (f,¢,)¢, € R. Continuing, we get
futity... 1, #0 and fet;t,...t, €R. Let t=1t,...1,. Then t € R since each
t; € R; t is regular, and fr € R for all i. Let F* = {fit,f,t,..., fit}. If x and
y are nonzero elements of R, then #y # 0 and since F insulates S, there exists
f; € F such that xf,(ty) # 0 or x(f;t)y # 0. Thus, F* is a uniform insulator for
R and R is US-prime.

THEOREM 11. Every prime ring with identity can be embedded in a US-prime
ring.

PrOOF. The proof of this result for right strongly prime rings [3, Theorem 3.2]
will suffice, if one notices that the ring constructed there has a uniform insulator.

LeEmMA 12. If R is US-prime, then any essential extension of R is US-prime.

PROOF. Let S be an essential extension of R and let F be the insulator of R. It
is easy to show that if x is a nonzero element of S then xF # 0 and Fx # 0, for
if not, then x € ann(R) which is impossible since R is essential in S and
US-prime. So, suppose s and ¢ are nonzero elements of S. Then there exist
f1, f>» € F such that sf; # 0 and f,¢t # 0. But sf; and f,¢ are in R so there exists
f € F such that sf, ff,t # 0. Hence { f,ff, | fl, f. f, € F} is a uniform insulator
for S and S is US-prime.
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Now, we shall give a characterization of a US-prime ideal along the lines of the
characterization of a prime ideal as an ideal which is a complement to an
m-system.

DEFINITION 13. A subset M of a ring R is called a f-system if there exists a
finite set F C R such that for any two elements x, y € M there exists f € F such
that xfy € M.

F will be called the insulator of M. The empty set will be a #-system by
definition. The concept of a t-system is a somewhat stronger concept than that of
an s-system used by Groenewald and Heyman [4] to characterize right strongly
prime ideals.

THEOREM 14. An ideal P is a US-prime ideal of a ring R if and only if R\ P (the
complement of P in R) is a t-system.

PROOF. Let P be an ideal of R. Suppose R \ P is a t-system. Consider R/P. If
x + P and y + P are nonzero elements of R/P then x and y arein R\ P. Let
F represent the insulator of R\ P. Then, there exists f € F such that xfy €
R\ P. Thatis (x + P(f+ Py + P)=xfy+ P+ P. Hence { f+ P|f€ F}
is a uniform insulator for R/P and R/P is US-prime. Thus P is a US-prime
ideal of R.

Conversely, let P be a US-prime ideal of R. Then R/P is US-prime. Let
F*={fi+P,f,+P,...,f, + P} be a uniform insulator for R/P for some
particular choice of the f,.. Choose x, y € R\ P. Then x + P and y + P are
nonzero elements in R/P and hence there exists f; + P € F* such that
(x + PXfy + PXy+P)y=xf,y+ P+P. Then xf,ye R\ P and F=
{fi, f2>---5 [+ } is an insulator for R\ P and hence R \ P is a t-system as desired.

We can use this characterization to obtain the following useful lemma.

LemMa 15. If A and P are ideals of R with P a US-prime ideal, then P N\ A is a
US-prime ideal of A.

PrOOF. Consider a,b € A\ P. Since P is a US-prime ideal of R we know
R\ P is a t-system with an insulator which we shall call F. Thus, for any fixed
element r € A\ P C R\ P thereexist f; € Fsuch that af;r€ R\ Pand f, € F
such that (af;r)f,b € R\ P. But, since a € A, af,rf,b € A\ P, and, since
r € A, firf, € A: Thus the set { firf; | f1, f; € F} is a finite insulator for 4\ P
and P N A is a US-prime ideal of 4.
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3. The US-prime radical

If R is a ring, the right strongly prime radical of R is the intersection of all its
right strongly prime ideals [5]. Groenewald and Heyman [4] characterized this
radical as a special radical and Parmenter, Stewart and Weigandt [8] have named
it the Groenewald-Heyman radical (GH-radical). In truth, this radical should be
called the right GH-radical, since there is also a left GH-radical and these two
radical classes are incomparable [7]. We now define a radical class which contains
both the left GH-radical and the right GH-radical. Recall that a class .# of rings
is special in the sense of Andrunakievi€ [1] if it is a hereditary class of prime rings
satisfying

1) Be#, BC R andann(B) = 0implies R € #.
It was shown in [6] that condition (1) may be replaced by (1').
(1) Every ring having an essential ideal in ./ is itself in /.

Let M be the class of all US-prime rings.
THEOREM 16. M is a special class of rings.

PrOOF. All US-prime rings are strongly prime and hence prime. The hereditary
property follows easily from Lemma 15 and the fact that property (1) is satisfied
follows from Lemma 12.

As a consequence of Theorem 16, M generates a special upper radical class
% (M) which we shall call the uniformly strongly prime radical and denote by US.
A property of special radical classes is the following.

COROLLARY 17. For any ring R, US(R)y=({I|IC RandR/I € M }.

Let the right (left) GH-radical be denoted by s,(s,). Then, s,(s,) is the upper
radical generated by the class of all right (left) strongly prime rings. Since every
US-prime ring is both right strongly prime and left strongly prime, we have the
following result.

THEOREM 18. 5, G US and s, ¢ US.

PROOF. ‘The inclusions are clear and since Parmenter, Passman and Stewart [7]

have given an example to show that s, # (s, N s,) # s,, the strictness becomes
obvious.
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4. The lattice of radical classes

In an effort to locate the radical US in the lattice of radical classes we first
observe that the right (left) strongly prime radical S,(S),) is strictly contained in
US by Theorem 18. Also, since each ring having no zero divisors is US-prime, the
radical US is contained in N, the generalized Nil radical. This containment is
strict since the ring M,(F), F a field, is N,radical but US-semisimple. Further
positioning is given by

THEOREM 19. US is independent of the Jacobson radical, J, and the Brown-
McCoy radical, G.

PROOF. Goodearl, Handelman, and Lawrence [3, Example 2.3] have given an
example of a ring R which is a simple ring with identity which is not bounded
strongly prime. Thus, R is not US-prime. Since R is simple, we see that R € US
but, since R also has identity, R must be G-semisimple and hence, J-semisimple.
On the other hand, the ring

2n
W_{2m+1

n,me Zand 2n,2m + 1) = 1}

in Divinsky [2, Example 10, page 103] is a ring which is J-radical (and hence
G-radical). However, W is US-prime since it is a domain, and thus, W & US.

The above examples together with results in Parmenter, Stewart and Wiegandt
[8] allow us to positon US in the lattice of radicals as in the following diagram.

In the diagram B is the lower Baer radical, which is equal to the prime radical,
and L is the Levitski radical.

N
9
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