SMALL ISOMORPHISMS BETWEEN GROUP ALGEBRAS
by G. V. WOOD

(Received 27 June, 1989)

If G, and G, are locally compact groups and the algebras L'(G;) and L'(G,) are
isometrically isomorphic, then G, and G, are isomorphic (Wendel, 1952, [8]). There is
evidence that the following generalization of Wendel’s result is true.

If T is an algebra isomorphism of L'(G,) onto L(G,) with || T|| <V?2, then G, and G,
are isomorphic.

This was proved for abelian groups and for connected groups in [1], but in the
general case, it is still unproved. Some partial results have been obtained. That G, and G,
are isomorphic when ||T|| <1-246 was proved in [1]. This was improved to the condition
7|l < (1+V3)/2 in [8], and the number (1 + V3)/2 has some special significance, as we
shall see later.

In this paper, we prove the conjecture for a large class of non-abelian groups when T
is a *-isomorphism. We also show that, for groups outside this class, the existence of a
*-isomorphism between their group algebras with norm <V/2 means that the groups are
“nearly”’ isomorphic. (See Propositions 14, 15, and 16). Corresponding results are also
true for the algebra M(G) and for C(G) when G is compact.

It was shown in [8] that the problem reduces to the discrete case. Let G, and G, be
discrete groups and let T be an algebra isomorphism of /'(G,) and I'(G,) with | T|| < V2.
Then there exists a map ¢ of G, into G, defined by the equation Tx = at(x) + f, where
la| >1/V2. (See [1, Proposition 2.1].)

If || T} <(1+V3)/2, then t is a group isomorphism. (This was proved for abelian
groups in [1, Theorem 2.6], and in the general case in [8, Theorem 2.2].) For
ITIl = (1 + V3)/2, t need not be a isomorphism.

ExampLE. Let G be a cyclic group of order 6 with generator x. Define Tx =
—x/2+4iV3x*/2, and extend to an algebra isomorphism of CG onto CG. Then
IT) = (1 +V3)/2, yet t(x) = x*.

Even though ¢ need not be an isomorphism, it is always true that t(x™") = t(x)~". (See
Lemma 2.1 in [8].)

We now assume that T is a *-map. If Tx = ¥ a;y;, then Tx~' =Y, 4;y;". It follows
that T is an isometry for the /> norm. Comparing the coefficient of the identity in
(Tx)(Tx™") gives ¥ |a;/>*=1. It is this property that makes the case of *-isomorphisms
more tractible than the general case. This fact, together with the V2 bound on the norm
gives inequalities for the coefficients independent of the group structure.

1

Lemma 1 ([6, Lemma 1]). If (a;) el with ¥ |al=K<V2, ¥|a*=1, and |a,|=
la;| = |asy|, . . ., then
(a) las] = (1= laP)/ (K = |a]),
(b) laal = (K = |ai])/2 + V(1 = |a,*)/2 = (K — |ai])*/4),
whenever the expression under the square root sign is positive; i.e. when |a||<K/3 +
QIBIV(B - K*)12), _
(c) lasl < K/3—=V(B—-K»/2)/3.

As in [1], we consider the two cases—whether or not ¢(x?) = ¢(x)?
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Lemma 2. If t(x?) = t(x)* and Tx =\a<(x) +f, with |a| > 1/V2, then |a| > 0-907.

Proof. Let Tx = at(x) + bw + f, where |b| is greater than all the coefficients in f. We
consider two cases:
(1) If w commutes with #(x), then the coefficient of t(x)w in Tx> has modulus
2 |ab| — ||f]15= (la] + |b])* — 1. Since this is not the largest coefficient in Tx?, (|a] + |b|)* —
1<1/V2ie.
lal + |b| < V(1 +1/V2) <1-307.

(2) If w does not commute with #(x), then the coefficient of t(x)w in Tx> has
modulus > |ab| — (Ja| + |b|)(V2 — |a| — |b|). The same is true for the coefficients of wr(x).
Since one of these is neither the first nor second largest coefficient in Tx?, by Lemma 1(c),
we have

lab| — (la| + [B1)(V2 — |a| — |b]) < 1/(3V2).
Now |a|*+|b|><1 and so
(lal + |b[?)/2 + lab] = (|a] + [b)(V2 = la| = |b]) <1/2 + 1/(3V2).
Putting la| + |b| = A, we have
AY2-A(V2-A)<1/2+1/(3V2);

ie.

34%2-V2A<1/2+1/(3V2),
i.e.

A2—(2V2)A/3<1/3 +V2/9,
or

(A —V2/3)2<(5+V2)/9.
Hence A <V2/3+V(5+V2)/3<1-316. Thus in both cases, we have A <1-316, and

using Lemma 1(b), |a| > 0-907, as required.
If we have this condition for all x in G;, then ¢ is a homomorphism.

THEOREM 3. If t(x?) =t(x)?, for all x in G,, then t is a homomorphism.

Proof. Let Tx =at(x)+f and Ty =bt(y)+g. By Lemma 2, |a|>0-907 and |b|>
0-907. Hence the coefficient of ¢(x)¢(y) in Txy has modulus greater than

lab| — 1 fIIz lgll2 = labl = V(1 — la?)(1 - |b]?).
But this is greater than (0-907)? — (1 — (0-907)) > 0-65. Now the largest coefficient in Txy
has modulus >0-907 by Lemma 2. Since (0-64)* + (0-907)>> 1, t(xy) = t(x)t(y). Since this

is true for all x and y, ¢ is a homomorphism.
We now turn to the case when #(x?%) # t(x)*

TueoreM 4. If Tx =at(x)+f and t(x*)#t(x)?, then u=t(x*)t(x)™2 has order 2,
commutes with t(x), and we have Tx = at(x) + but(x) + g with |a| + |b| > 1-29.
Proof. Let u=1t(x*)t(x)"% Then ut(x)*> has the largest coefficient in Tx2 Let

Tx = at(x) + but(x) + g. If u does not commute with #(x), the coefficient of ut(x)? in Tx*
has modulus at most

lab| + (la| + |BI)(V2 - |a] - |b]).
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Since 1/V2<la| <1,
lab| + (Ja| + |b))(V2 = |a| — |b]) < (1/V2) |b] + (1/V2 + |b)(1/V2 — |b])
=(1/V2) bl +1/2— |b|?
=5/8 = (Ib| - 1/(2V2))?
<5/8.

This contradicts the fact that ut(x)? has the largest coefficient in Tx% The rest of the proof
now follows as in the abelian case (Lemma 2.4 of [1]). However, there is a minor error in
that part of the proof that shows u has order 2. This is rectified as follows. In estimating
the coefficient of u~!, the inequality should be

lab| < (la| + 1b1) If 1l + IF11%,
which implies that |b] <0-195, but this still gives a contradiction to |b| > 0-37.

COROLLARY 5. Under the hypothesis of Theorem 4, if Tx*=a,ut(x)*+ b, t(x)*+f,,
then either |a| + |b| = 1-36 or |a;] + [by| = 1-36.

Proof. Since |a| + |b| >1-29, it is clear that |b| is the second largest coefficient in Tx.
Now if |a|+|b|<1:36, then, by Lemma 1(b), |a|>0-87 and |b|<0-49, and so
la,))<2|ab] + ||f)3=2]ab] + (1 = |a)* — |b|*) =1 — (Ja] — |b])* <1 — (0-38)* < 0-86. Now

|bil=lal* = b1 = |IflI3=2lal* —=1>0-51,

so is certainly the second largest coefficient in Tx*. Thus, by Lemma 1(b) again,
la,| + |b,| = 1-36.

We now show that only one element u of order 2 can arise in this way.
LemMA 6. The set [t(x*)t(x)™2:x in G,] contains at most one non-trivial element.

Proof. Suppose that u = t(x*)t(x)~%, v=1t(y*)t(y)~? where u+#v, and both have
order 2. Then, by Corollary 5, we may assume that Tx =a,t(x)+ b t(x)u +f;, and
Ty = ayt(y) + byt(y)v + f, with |a,| + |b,| = 1-36 and |a,| + |b,] = 1:36. Now

Txy = a\axt(x)t(y) + a1 byt (x)e(y)v + azb, e (x)ut(y)
+ b byt(x)ut(y)v + (at(x) + b t(x)u)*f
+fi(axt(y) + bat(y)v) + ik
Since t(x)t(y), t(x)t(y)v, t(x)ut(y) and t(x)ut(y)v are all distinct, we have
1 Txy |l = |aiaa| + |a,baf + lazba| +1b1bo| = (lay] + [b4]) || £l
= (la) + 162D 1A = AT
= (1-36)2 — 2(1-36)(V2 — 1-36) — (V2 — 1-36)*
= (1-36)2 — (V2 — 1-36)(V2 + 136)
=2(1-36)2 -2
>1-69.

This contradicts |T| < V2 and so u = v.
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We would now like to quotient out by the subgroup [e, u], but to do this we must
first prove that the subgroup is normal—i.e. that u commutes with all elements of G,. We
know already that u commutes with #(x) whenever t(x*)#t(x)>. We will show that u
commutes with #(x) for all x, and then show that ¢ is onto. We need a refinement of
Lemma 6.

Lemma 7. Let [e, u] = [t(x*)t(x)"% x in G,]. For y in G,, let Ty = at(y) + bt(y)v +f,
where |a|>1/V2 and b is the second largest coefficient. If v+ u or if v=u but does not
commute with t(y), then |a| + |b| < 1-256 and |a| >0-933.

Proof. Suppose v#u. As in Lemma 6, choose x in G, such that Tx =a,#(x) +
bit(x)u + f; with |ay|+|b|>1-36. If |a|+|b|=A, the final inequality of Lemma 6
becomes

| Txy || = A(1-36) — A(V2 — 1-36) — 1-36(V2 — A)
— (V2 - A)(V2-1:36)

=2A4(1-36) — 2

Since ||T||<V?2, we have A <(2+V?2)/2:72<1-256. By Lemma 1(b), |a|>0-933 as
required. Now if v=u, but does not commute with t(y), then the second largest
coefficient in Ty cannot be both ¢(y)u and ut(y). Thus the same argument shows that in
this case we also have |a| + |b| <1:256 and |a| > 0-933.

THEOREM 8. t(x)u = ut(x), for all x in G,.

Proof. Suppose that there exists x in G, such that t(x)u # ut(x) and let Tx = at(x) + f
with Ja| > 1/V2. By Lemma 7, |a| >0-933. Choose y in G, such that ¢(y?) # t(y)?, and let
Ty =a,t(y) +f with |a,|>1/V2. We shall prove that r(xy)=rt(x)t(y). Let Txy=
a,t(xy) +f, with |a,| > 1/V2. Now the coefficient of #(x)t(y) in Txy has modulus greater
than

laa,| = [If1l2 1fill2 = (1/V2)(lai] = V(1 = |a,[*)) > 0-4.

Now if t(xy) # t(x)t(y), then |a,| < V(1 — (0-4)?) <0-92. By Lemma 1(c), the coefficient
of t(x)t(y) must be the second largest in Txy and so, by Lemma 7, t(x)t(y) = t(xy)u =
ut(xy). But this is a contradiction since u commutes with #(y), but not with #(x). Hence
t(xy) = t(x)t(y). Applying the same argument with xy in place of x, we obtain
t(xy®) = t(xy)t(y), but with y* in place of y, we get t(xy?) = t(x)t(y?). It follows that
t(y?) = t(y)?, which is a contradiction. This completes the proof that #(x)u = ut(x).

We now prove that ¢ is onto. We know that ¢+ maps the identity e, of G, into the
identity e, of G,, but here is a stronger result.

LEMMA 9. If x # e, and Tx = ce, + f, then |c| <1/(2V2+ 1) <0-262.

Proof. If Tx =ce,+f, then T(x —ce,)=f and T(x —ce;)" =f". Now ||f|| <K —|c|,
and so [|f|"<(K ~|c|)". On the other hand, [[(x— ce,)"|| = (1 + Ic| + [c])"™. To see
this, there exists a character ¢ on the group generated by x such that |¢(x)—c|=

(1+icl + |c|)"2. Thus
1T = cey)" 1k - cey)” VIl Y™

s(K-
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Since T has a continuous inverse, this cannot tend to zero. Therefore (K —|c|)*=
1+ |c] +)c)* or jc] (1 +2K) < K* - 1. Hence

lc] < (K2 - 1)/(2K + 1) <1/(2V2 + 1) <0-262.
THEOREM 10. t is one-to-one and onto.

Proof. Suppose that ¢ is not one-to-one. If x, y in G, satisfy t(x) =¢(y) =z, then we
have

Tx=a,z+f (la,| > 1/V2),

Ty=az+f, (jal>1/V2).
We consider first the case when x and y commute. Then
T(ax —ayy)=axfi —a\fo,

T(ax —a1y)" = (a2fi — a1 fo)".

llazfi — a; Sl <laol (K = lay]) + |ay| (K — |aa)
< K (lag| + |az]) — 2 ay| |a) <1
since |a,| >1/V2, |a,| >1/V2 and K < V2. Also

Now

l(@2x —a,y)"|l = |I(aze, — alx_l)’)””
= |a,|" (1 + |ay/ay] + Ial/a2|2)"/2:
as in Lemma 9. Thus
I(a2x — a,y)"| = (|a,f* + |a1a;] + |a,)?)"? = 1.

This again contradicts the boundedness of 77",
If x and y do not commute, we have that Ty '=a,z '+ f3. Thus Txy '=

(a2 +£i)*(@.27" +£3).
By Lemma 9, the coefficient of e, in Txy~! has modulus less than 1/(2V2 +1). We
have |a,a, — ||fill 1ol <1/(2V2 + 1). Therefore

la1a2} = (V2 = lai)(V2 = laz) < 1/(2V2 + 1),
la,| + |az] < (4V2 +3)/(4 +V2) < 1-6.
It follows from Lemma 1(b), that |a,|<0-9 and |a,| <09, and so, by Lemma 2,
t(x*) #t(x)* and t(y?)#t(y)>. By Theorem 4, we have Tx =a,z+b,zu+g,, with
|ay| + by >1-29, and Ty = a,z + b,zu + g,, with |a,| + |b,| > 1-29. Now
Txy_l = (ala-z + blb-z)e + ((1152 + del)u + h,
where
a1l =< gl (Jaal + 1b2]) + Igal (laul + 1b2l) + llgall 182l
< K(Ig:1l + lg2l) — lig:ll llg=Hl
<V2(V2 -1-29) — (V2 = 1-29)(V2 - 1-29)
=1-29(V2 - 1-29) < 0-17.
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Thus #(xy~') = u and has coefficient with modulus greater than 0-933. This follows from
Lemma 7 if the second coefficient is not that of e,, and if it is, it is necessarily less than
0-262. Now, by Lemma 1(b), the biggest coefficient has modulus greater than 0-94.
Similarly #(y~'x)=u and has coefficient with modulus greater than 0-933. Now
xy~'#y~'x, since x and y do not commute. Repeating the argument with xy~' and y~'x
in place of x and y, we obtain a contradiction, since the sum of coefficients is less than
1-6. This completes the proof that ¢ is one-to-one.

To show that ¢ is onto, let K =t(G,;) and P the linear projection of /,(G,) onto {,(K).
Define Sx = a(x)t(x) where Tx =a(x)t(x) +f and |a(x)|>1/V2. Extend S linearly to a
map from /,(G,) to [,(K). Then ||T — §||/1/V2, so that S is invertible with ||S™'|| < V2.
PS5 =S and so o

IPTS™ —I|| = |P(T = $)S | <(1/V2)V2=1.
Thus PTS™' is invertible. In particular P is invertible and K = G,.

ReMARrk. It seems likely that |[(x —cy)”| =1 for all n, even when x and y do not
commute. If this were true, the above proof would be considerably shortened.

We have proved the main theorem.

THEOREM 11. Let G, and G, be groups and T a *-isomorphism of 1,(G,) onto 1,(G,)
with |T| < V2. Then either G, and G, are isomorphic, or there exist elements v in G, and u
in G, both of order 2 and a map t: G, to G,, such that

(i) t is a bijection preserving inverses,

(i) t(v)=u, and t:G, onto G,/[e, u] is a homomorphism.

Using the techniques for abelian groups contained in [1], we can obtain the following
result.

THEOREM 12. Under the hypothesis of Theorem 11, if u does not belong to the
commutator subgroup of G,, then G, and G, are isomorphic.

Proof. If L is the identity character on G,, then L°T is a character on G,. By
multiplying T by the inverse of this character, we may assume that Lo T =1I,.

If u does not belong to the commutator subgroup of G,, there exists a character ¥
with y¢(u) = —1. Then the composition yeT is a character on G;, and since t(xy)=
t(x)t(y) or t(x)t(y)u, we have yw(t(xy))=xy(t(x))yp(t(y)). Thus (yer)* is also a
character on G,. Define ¢ = (yot) " '(y°T). Then @? is a character on G,. We show that
@? has odd order.

If @ does not have odd order, there exists x in G; such that P3(x) is arbitrarily close
to —1. Thus, given &€ >0, there exists x in G, such that |p(x) +i|<e If

Tx = at(x) + bt(x)u + 2, c;y;,
then
p(x)=a—b+2 co@x) ().

Thus we have a + b + }, ¢; =1 (since Lo T =I,), and

la—b+ 2 ao(t(x) ™ y) +il<e
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Substituting for a, we obtain

I1+i—2b+ 2 c@(t(x)"y) -1 <e.
In particular,
bl >[1+il/2— 2, || — /2.

Since a >1/V2, |a| + |b]| + £ |c;| > V2 — €/2, which is a contradiction.
Thus @* has odd order, n say. Let 8= ¢""', another character on G,, with
6(x) = £ @(x). Define 5: G, to G, by
s(x)=t(x) if 6(x)=o(x),
s(x)=tx)u if O(x)=—@).

Then s is a homomorphism since @ is, and since ¢ is injective and onto, s is also.
This gives us the main theorem.

TueoreM 13. If T is a *-isomorphism of 1,(G,) onto 1,(G,) with ||T\| <V?2, and if G,
(or G,) does not contain a central element of order 2 in the commutator subgroup, then G,
and G, are isomorphic.

If G, has a central element of order 2 in the commutator subgroup, then the map ¢ in
Theorem 11 has the following two additional properties.

ProrosITION 14. t maps the centre of G, into the centre of G,.

Proof. If x is in the centre of G, it is in the centre of /,(G;), and hence Tx is in the
centre of /,(G,). Therefore if Tx = at(x) + f, with |a| > 1/V/2, then for each y in G,,

Tx =y '(Tx)y =ay~'t(x)y +y~'fy.

No coefficient in y~'fy can have modulus greater than 1/V2, and so y ~'t(x)y = ¢#(x) and
t(x) belongs to the centre of G,.

In fact, it can be shown, using similar techniques to those in [1, Theorem 3.4], that
on the centre Z, of G, either T has the form Tx = y(x)¢(x), with ¢ an isomorphism and vy

a character on Z,, or the form
Tx = p(xX)[((1 + 6(x))/2)s(x) + (1 = 0(x))/2)s (x)u],
where v, 6 are characters on Z, with 8 of odd order, and s is an isomorphism.

ProposITION 15. t maps the commutator subgroup of G, into the commutator
subgroup of G,. ’

Proof. t(xyx~'y™") is either t(x)t(y)t(x)7't(y)™" or t(x)t(y)t(x)"'t(y) 'u, both of
which are in the commutator subgroup of G,.

Under these circumstances, we also have the following result.
ProrosiTioN 16. G, and G, have the same numb;:r of elements of each order.

Proof. Let ¥ be the image of x under the quotient map G,— G,/[e, v]. If £ has odd
order n, then one of x and xv has order n, the other 2n. t(x) also has order n, and so, of
the elements #(x) and #(x)u, one will have order n, the other 2n.
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 We next consider elements of order 2. We need to show that
*=e,Hx) =e, (*)

If the implication in either direction is false, then t(x?) # t(x)% But, if Tx = at(x) +f, the
coefficient of ¢t(x)* in Tx* has modulus >|a| — ||f||*>> 0, which gives a contradiction.

Now suppose that x and ¢(x) have order 2n. For the result to be false, one of two
things must happen.

(a) x and xv have order 2n (i.e. x**#v) and #(x) and t(x)u have order 4n (i.e.
t(x)*" = u). But then (x")* =e¢,, yet (¢(x"))* = u, which contradicts (*),

(b) x and xv have order 4n (x** =v) and #(x) and t(x)u have order 2"(¢(x)*" # u).
Then (x")* = v, but (¢(x)")* = e,. This also contradicts (*).

Whether these conditions in themselves mean that the groups are isomorphic is not
clear. Using the book [4] it is possible, though very tedious, to confirm that no
counterexample exists with groups of order up to 32.

The corresponding results for locally compact groups follows easily from the discrete
case. (See [1], [3], and [8] for the details.)

TueoreM 17. Let T be a *-isomorphism of L'(G,) onto L'(G,), [M(G,) onto M(G))]
satisfying ||T|| < V2. If G, (or G,) does not contain a central element of order 2 in the
commutator subgroup, then G, and G, are isomorphic.

THEOREM 18. Let G, and G, be compact groups without central elements of order 2 in
the commutator subgroup. If T is a *-isomorphism of C(G,) onto C(G,), [L™(G,) onto
L*(G,)), satisfying ||T|| < V2, then G, and G, are isomorphic.
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